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Motivations and aim of this course

Large Random Matrix Theory is an important tool in applied maths:

I High dimensional statistics, modelling

I Spectral graph theory

I Electrical engineering (wireless communication)

I Theoretical ecology

I Mathematical finance

I .. also more theoretical stuff: operator theory (free probability)

Basic reasons

I Matrices are important in applications

I In high dimension, the matrix of interest is often unknown and a RM might be an
acceptable educated guess

Aim of these lectures

I RMT is at the crossroads of proba, stats, combinatorics, complex analysis, etc.

I We intend to lower the entry price to RMT

I will present classical results, technical means, some applications.
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Resources

Figure: Resources (slides, lecture notes, etc.) available here.
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Large Random Matrices

Random matrices
It is a N ×N matrix

Y N =

 Y11 · · · Y1N

...
...

YN1 · · · YNN


whose entries (Yij ; 1 ≤ i, j ≤ N) are random variables.

Matrix features
Of interest are the following quantities

I Y N ’s spectrum (λi, 1 ≤ i ≤ N) and eigenvectors (= eigenstructure)

I Extreme eigenvalues λmin and λmax if spectrum is real, etc.

I Some information beyond the eigenstructure of the matrix.

Asymptotic regime

Often, the description of the previous features takes a simplified form as

N →∞

Moreover this regime is of interest in many applications.
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Large Random Matrices: Wigner Matrices

Matrix model

Let XN = (Xij) a symmetric N ×N
matrix with i.i.d. (real) entries on and
above the diagonal with

EXij = 0 and E |Xij |2 = 1

and Xij = Xji (for symmetry).

I consider the spectrum of Wigner

matrix Y N = XN√
N

Wigner’s theorem (1948)

”The histogram of a Wigner matrix converges to the semi-circular distribution”
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”The histogram of a Wigner matrix converges to the semi-circular distribution”

6



Large Covariance Matrices

: Marčenko-Pastur’s theorem

Matrix model

Let Xn be a N × n matrix with i.i.d.
entries

EXij = 0 , E|Xij |2 = 1

and consider the spectrum of 1
n
XnX

∗
n

in the regime where

N,n→∞ and
N

n
→ c ∈ (0,∞)

dimensions of matrix Xn of the same order

Marčenko-Pastur’s theorem (1967)

”The histogram of a Large Covariance Matrix converges to
Marčenko-Pastur distribution with given parameter (here 0.4)”
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Large Non-Hermitian Matrices I: the Circular Law

Matrix model

Let XN be a N ×N matrix with i.i.d.
entries

EXij = 0 , E|Xij |2 = 1

and consider the spectrum of matrix

YN =
XN√
N

as N →∞
I We call it a Ginibre model

I In this case, the eigenvalues are
complex!

Theorem: The Circular Law (Ginibre, Metha, Girko, Tao & Vu, etc.)

The spectrum of YN converges to the uniform probability on the disc
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Theorem: The Circular Law (Ginibre, Metha, Girko, Tao & Vu, etc.)

The spectrum of YN converges to the uniform probability on the disc
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Large Non-Hermitian Matrices II: the Elliptic Law

Matrix model

Let XN be a N ×N matrix with
standardized entries and:

I the following variables are
independent

{Xii, (Xij , Xji), i < j, }

I assume the covariance structure

cov(Xij , Xji) = ρ

and consider the spectrum of matrix

YN =
XN√
N

as N →∞

Theorem: The Elliptic Law (Girko, Nguyen & O’Rourke, etc.)

The spectrum of YN converges to the uniform probability on the ellipse
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Theorem: The Elliptic Law (Girko, Nguyen & O’Rourke, etc.)

The spectrum of YN converges to the uniform probability on the ellipse
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Large Random Matrices: Spiked Models

Spiked Models

Small perturbations (to be specified) of
standard models can modify the
behavior of extreme eigenvalues.

I Such models are called spiked
models,

I Very useful in applications,

I Example: Spikes = signal
vs MP spectrum = noise
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Spiked Models

Small perturbations (to be specified) of
standard models can modify the
behavior of extreme eigenvalues.
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Figure: Perturbated MP with single spike
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Large Random Matrices: Spiked Models

Spiked Models

Small perturbations (to be specified) of
standard models can modify the
behavior of extreme eigenvalues.

I Such models are called spiked
models,

I Very useful in applications,

I Example: Spikes = signal
vs MP spectrum = noise

N= 400 , n= 1000 , sqrt(c)=0.63, theta=[ 2,2.5 ]
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Large Random Matrices: Spiked Models

Spiked Models

Small perturbations (to be specified) of
standard models can modify the
behavior of extreme eigenvalues.

I Such models are called spiked
models,

I Very useful in applications,

I Example: Spikes = signal
vs MP spectrum = noise

N= 400 , n= 1000 , sqrt(c)=0.63, theta=[ 2,2.3,2.8 ]
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Figure: Perturbated MP with triple spike
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A word on the normalization

Consider XN = (Xij) a N ×N symmetric matrix with i.i.d. (real) entries on and
above the diagonal,

EXij = 0 and var(Xij) = 1 .

Without normalization

1

N

N∑
i=1

λ2
i (XN ) =

1

N
TraceX2

N =
1

N

N∑
i,j=1

|Xij |2 ↗ +∞ (N →∞)

With normalization

1

N

N∑
i=1

λ2
i

(
XN√
N

)
=

1

N
Trace

(
XN√
N

)2

=
1

N2

N∑
i,j=1

|Xij |2 −→ 1 (N →∞)

Hence the heuristics

λi

(
XN√
N

)
' O(1)
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Eigenstructure

Eigenvectors and eigenvalues

Given a N ×N matrix A we are interested in its eigenvalues λ

A~u = λ~u , (~u 6= 0)

and its associated eigenvectors ~u.

Remarks

I λ ∈ C is an eigenvalue of A iff det(A− λI) = 0 ,

I The relationship between an eigenvalue and the entries of the corresponding
matrix is very involved,

I We call the spectrum of matrix A the set of its eigenvalues counted with their
multiplicities (as roots of the polynomial P (λ) = det(A− λI))

Important question

I How can we infer properties on the spectrum of matrix A based on the entries
Aij of the matrix? [moment method, Stieltjes transform ..]
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The spectral theorem

The spectral theorem - complex case

if A is hermitian:
A = A∗ ⇔ [A]ij = [A]ji

then A is diagonalizable with real eigenvalues:

A = U∗ΛU , UU∗ = U∗U = IN

with U unitary matrix and Λ real diagonal.

The spectral theorem - real case

If A is symmetric that is A = AT , then

A = OTΛO , OOT = OTO = IN

where O is (real) orthogonal.

Example

I Let P ∈ R[X] (=polynomial with real coefficients). Let A hermitian and
A = UΛU∗ then

[P (A)]∗ = P (A) and P (A) = UP (Λ)U∗ .
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The spectral measure of a matrix A

.. also called the empirical measure of the eigenvalues.

I It is a central object to express the limiting properties of the spectrum.

The Dirac measure
We define a probability measure δx over R by

δx([a, b]) =

{
1 if x ∈ [a, b]
0 else

The spectral measure

If A is N ×N hermitian with eigenvalues λ1, · · · , λN then its spectral measure is:

LN =
1

N

N∑
i=1

δλi ⇒ LN ([a, b]) =
#{λi ∈ [a, b]}

N

Otherwise stated

LN ([a, b]) is the proportion of eigenvalues of A in [a, b].
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Weak convergence of probability measures I

Let µn(n ≥ 1) be probability measures on (R,B(R)), µ a measure on (R,B(R)).

Weak convergence

We say that µn weakly converges towards µ iff for every bounded continuous function
f : R→ R we have:∫

R
f(x)µn(dx) −−−−→

n→∞

∫
R
f(x)µ(dx) Notation: µn

w−−−−→
n→∞

µ

Remarks

I If µn
w−−−−→

n→∞
µ then µ is a probability measure: µ(R) = 1,

I If µn = L(Xn) and µ = L(X) then: µn
w−−−−→

n→∞
µ ⇐⇒ Xn

D−−−−→
n→∞

X .

17



Weak convergence of probability measures II

Let µn be a family of probability measures on (R,B(R)).

Tightness

The sequence (µn) is tight iff for every ε > 0 there exists a compact set Kε such as

sup
n
µn(Kc

ε) ≤ ε ⇐⇒ inf
n
µn(Kε) ≥ 1− ε .

(basically, up to ε the µn have a common support Kε)

Theorem (weak vs vague convergence)

Let µ a measure. The following statements are equivalent:

I µn
w−−−−→

n→∞
µ,

I µn
v−−−−→

n→∞
µ and (µn) is tight,

I µn
v−−−−→

n→∞
µ and µ is a probability measure.

18



Weak convergence - the moment method I

Characterization by moments
Let µ a probability measure on (R,B(R)) and assume that for all

k ∈ N , mk =

∫
R
xkµ(dx) ∈ R .

We say that µ is uniquely characterized by its moments if it is the unique measure
with moments given by the mk’s.

Theorem (Carleman)

Probability measure µ is uniquely characterized by its moments iff
∑
k≥1

m
− 1

2k
2k =∞

Theorem (sufficient condition)
Probability measure µ is uniquely characterized by its moments if

lim sup
k

(
m2k

(2k)!

) 1
2k

< ∞ .

Remarks

I If µ has a bounded support then it is uniquely characterized by its moments.

I If µ ∼ N (0, 1) then it is uniquely characterized by its moments.

19



Weak convergence - the moment method II

Theorem
Let µn(n ≥ 1) and µ probability measures on (R,B(R)) with all their moments.
Assume that

I µ is uniquely determined by its moments,

I the convergence of the moments holds

∀k ≥ 1,

∫
R
xkµn(dx) −−−−→

n→∞

∫
R
xkµ(dx) .

Then

µn
w−−−−→

n→∞
µ

20



Why is the moment method important in RMT?

I Let A be n× n hermitian and Ln its spectral measure:

Ln =
1

n

n∑
i=1

δλi .

I The k-th moment of Ln writes∫
xkLn(dx) =

1

n

∑
i

λki

I by the spectral theorem, it is also equal to

1

n

∑
i

λki =
1

n
Trace(Ak)

This provides a ”simple” relationship between the eigenvalues of A and its entries
as:

1

n
Trace(Ak) =

1

n

n∑
i1,··· ,ik=1

Ai1i2Ai2i3 · · ·Aiki1

I This last equation is at the heart of combinatorial techniques developed in RMT.
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Spectrum Analysis: The Stieltjes Transform I

Given a probability measure P, its Stieltjes transform is an analytic function on

C+ = {z ∈ C , =(z) > 0}

defined as

g(z) =

∫
R

P(dλ)

λ− z
, z ∈ C+ ,

Examples

1. Dirac measure:

P = δλ0
⇒ g(z) =

1

λ0 − z
2. Spectral measure:

P =
1

N

N∑
i=1

δλi ⇒ g(z) =
1

N

N∑
i=1

1

λi − z

23



Spectrum Analysis: The Stieltjes Transform II

It has good properties such as

I inverse formulas

P[a, b] =
1

π
lim
y↓0
=
∫ b

a
g(x+ iy) dx , if P{a} = P{b} = 0∫

f dP =
1

π
lim
y↓0
=
∫
R
f(x)g(x+ iy) dx ,

I criterion for the weak convergence of probability measures: let gn = ST (µn)

∀z ∈ C+ , gn(z) −−−−→
n→∞

g(z) and g = ST (µ) with µ ∈ P(R)

is equivalent to

µn
w−−−−→

n→∞
µ .

24



Relation with the resolvent of Large Random Matrices I

I The resolvent of A is

Q(z) = (A− zI)−1 z /∈ spectrum(A) .

I Named resolvent because it solves the equation:

Ax = z x+ b ⇔ (A− zI)x = b ⇔ x = Q(z)b

I its singularities are exactly eigenvalues of A.

I Eigen-decomposition of hermitian matrix A yields eigen-decomposition of Q:

A = U∗ΛU ⇒ Q(z) = U∗(Λ− zI)−1U

A = U∗

 λ1

. . .

λN

U ⇒ Q(z) = U∗


1

λ1−z
. . .

1
λN−z

U

25



Relation with the resolvent of Large Random Matrices II

Relation with the resolvent of Large Random Matrices

Let A hermitian with eigenvalues (λi) and spectral measure 1
N

∑N
i=1 δλi .

Then

g(z) = Stieltjes transform of

(
1

N

N∑
i=1

δλi

)

=
1

N

N∑
1

1

λi − z

=
1

N
Trace


1

λ1−z
. . .

1
λN−z

 =
1

N
Trace (A− zI)−1

I The Stieltjes transfom g is the normalized trace of the resolvent (A− zI)−1

I This represents a simple relationship between the ST of the spectral measure and
matrix A. It is the starting point of many techniques to analyze spectral
measures.
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Wigner’s theorem

The semi-circular distribution
Let σ > 0. The semi-circular distribution is given by

Psc,σ2 (dx) =
1

2πσ2

√
(4σ2 − x2)+ dx

Wigner’s theorem (sharp assumptions)

I Let Xij (1 ≤ i < j ≤ N) i.i.d. centered,
Xij−−−→ C with E|Xij |2 = σ2 <∞.

I Let Xii (1 ≤ i ≤ N) i.i.d. centered,
Xii−−→ R with E|Xij |2 = σ2 <∞.

I Independence on and above the diagonal.

I Consider XN and Y N the N ×N hermitian matrices defined by

[XN ]ij =

{
Xij if i ≤ j
Xji if i > j

and Y N =
Xn√
N

Then almost surely,

LN =
1

N

N∑
i=1

δλi(Y N )
w−−−−→

N→∞
Psc,σ2

28



Remarks

I As a consequence of Wigner’s theorem:
#{λi ∈ [a, b]}

N

a.s.−−−−→
N→∞

∫ b

a
Psc,σ2 (dx) .

Wigner Matrix, N= 1500

spectrum

D
en
si
ty
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Figure: The distribution of YN ’s eigenvalues follows the semi-circular density

.
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Additional results

Convergence of λmin and λmax

If E|Xij |4 <∞ then λmax(Y N )
a.s.−−−−→
N→∞

2σ and λmin(Y N )
a.s.−−−−→
N→∞

−2σ

Fluctuations of linear statistics
let f be C4(R) then

N∑
i=1

f(λi(Y N ))−N
∫
R
f(x)Psc(dx)

D−−−−→
N→∞

Z ∼ N (β(f),Θ2(f))

Notice the normalization + exact expression of β(f) and Θ2(f) complicated - cf.
book by Bai and Silverstein.

Fluctuations of λmax

Let Xij ∼ N (0, 1) (i ≤ j) then

N2/3 (λmax(Y N )− 2)
D−−−−→

N→∞
PTW

The distribution PTW is Tracy-Widom distribution, hard to describe - cf. book by
Anderson, Guionnet, Zeitouni.
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A heuristic on the normalization N2/3

I By Wigner’s theorem, #{λi>2−ε}
N

−→
∫ 2
2−ε

√
(4−x2)

2π
dx

I Hence ”for small ε”,

#{λi > 2− ε} ≈ N

∫ 2

2−ε

√
(2− x)(2 + x)

2π
dx

≈ N
2

2π

∫ 2

2−ε

√
2− x dx =

N

π
ε3/2

I To have finitely many values in (2− ε,∞), we want #{λi > 2− ε} = O(1)

I We choose ε = cN−2/3 so that Nε3/2 = O(1) and

#{λi > 2− cN−2/3} = #{N2/3(λi − 2) > c} = O(1)

I This suggests to study the fluctuations of N2/3 (λmax − 2)

I The N2/3 normalization is strongly associated to the
√
x-behaviour of the density

at the corresponding edge
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Weak convergence - the moment method
I Under proper assumptions (ex: compact support), the moments of distribution µ

mk =

∫
xkµ(dx)

fully characterize the distribution µ.

I Given (µN ) and µ, the convergence of the moments

m
(N)
k =

∫
xkµN (dx) −−−−→

N→∞
mk =

∫
xkµ(dx)

characterizes the (weak) convergence of the measures µN
w−−−−→

N→∞
µ.

The moment method ..
.. aims at proving that

m
(N)
k −−−−→

N→∞
mk

Moments of the spectral measure

Recall that LN = 1
N

∑N
i=1 δλi and

m
(N)
k =

∫
xkdLN (dx) =

1

N

N∑
i=1

λki =
1

N
Trace(Y k

N )
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Outline of the proof

1. compute the moments of the semi-circular distribution:∫ 2

−2
λk
√

4− λ2

2π
dλ =

{
1
`+1

(2`
`

)
if k = 2` ,

0 if k = 2`+ 1

2. compute (the expectation of) the asymptotic moments of the spectral
distribution

LN =
1

N

N∑
i=1

δλi

that is

Em(N)
k =

1

N
ETraceY k

N

=
1

N1+ k
2

N∑
i1,··· ,ik=1

EXi1i2Xi2i3 · · ·Xiki1

3. prove that

Em(N)
k −−−−→

N→∞

{
1
`+1

(2`
`

)
if k = 2` ,

0 if k = 2`+ 1

⇒ Computation of empirical moments heavily relies on (sometimes difficult)
combinatorics.

4. Prove some concentration: m
(N)
k − Em(N)

k −−−−→
N→∞

0
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Wigner’s theorem: computation of the moments I

Em(N)
p =

1

N
E
N∑
i=1

λpi =
1

N
ETrace

(
XN√
N

)p

I Simple but very important formula because it establishes the connection between
the eigenvalues and the entries of XN .

1

N
ETrace

(
XN√
N

)p
=

1

N1+ p
2

N∑
i1,··· ,ip=1

EXi1i2Xi2i3 · · ·Xipi1︸ ︷︷ ︸
a prioriNp terms

I Effectively, much less contributing terms: ∼ N1+ p
2 contributing terms

I For example
EX11X12X21 = EX11X

2
12 = EX11EX2

12 = 0 .

or
EX11 · · ·X11 = EXp

11 ↔ N terms

I If p is odd then
1

N
ETrace

(
XN√
N

)p
−−−−→
N→∞

0

(easy argument for symmetric entries).
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Wigner’s theorem: computation of the moments II

1

N
ETrace

(
XN√
N

)p
=

1

N1+ p
2

N∑
i1,··· ,ip=1

EXi1i2Xi2i3 · · ·Xipi1

I Fact: the only contributing terms are those for which p is even and each random
variable appears exactly twice

EX12X23X34X43X32X21 = EX2
12X

2
23X

2
34

so there are exactly p
2

+ 1 degrees of freedom.

I For each configuration, say

EX12X21X13X31

we count the number of terms with the same pattern obtained by permutations
such as

EX16X61X15X51 , EX24X42X28X82 , EXn2X2nXn3X3n .

There are N × (N − 1)× · · · × (N − P
2

) ∼ N1+ p
2 terms.

I Now we need to count the number of different configurations

EX12X21X13X31X14X41 different from EX12X23X32X21X14X41

different from EX12X23X34X43X32X21
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Wigner’s theorem: computation of the moments III

1

N
ETrace

(
XN√
N

)p
=

1

N1+ p
2

×N1+ p
2 × {number of different configurations}+ o(1)

I There is a one-to-one correspondence between the number of p-configurations
and the number of Dyck paths of length p.

•
(1)

•
(2)

•
(3)

•
(2)

•
(4)

•
(2)

•
(1)

Figure: Dyck path of length 6 associated to EX12X23X32X24X42X21
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Wigner’s theorem: computation of the moments III

1

N
ETrace

(
XN√
N

)p
=

1

N1+ p
2

×N1+ p
2 × {number of different configurations}+ o(1)

I There is a one-to-one correspondence between the number of p-configurations
and the number of Dyck paths of length p.

•
(1)

•
(2)

•
(3)

•
(4)

•
(3)

•
(2)

•
(1)

Figure: Dyck path of length 6 associated to EX12X23X34X43X32X21
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Wigner’s theorem: computation of the moments III

1

N
ETrace

(
XN√
N

)p
=

1

N1+ p
2

×N1+ p
2 × {number of different configurations}+ o(1)

I There is a one-to-one correspondence between the number of p-configurations
and the number of Dyck paths of length p.

•
(1)

•
(2)

•
(1)

•
(3)

•
(1)

•
(4)

•
(1)

Figure: Dyck path associated to EX12X21X13X31X14X41
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Wigner’s theorem: computation of the moments III

1

N
ETrace

(
XN√
N

)p
=

1

N1+ p
2

×N1+ p
2 × {number of different configurations}+ o(1)

I There is a one-to-one correspondence between the number of p-configurations
and the number of Dyck paths of length p.

•
(1)

•
(2)

•
(1)

•
(3)

•
(4)

•
(3)

•
(5)

•
(6)

•
(5)

•
(3)

•
(1)

Figure: Dyck path of length 10 associated to EX12X21X13X34X43X35X56X65X53X31
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Wigner’s theorem: computation of the moments III

1

N
ETrace

(
XN√
N

)p
=

1

N1+ p
2

×N1+ p
2 × {number of different configurations}+ o(1)

I There is a one-to-one correspondence between the number of p-configurations
and the number of Dyck paths of length p.

•
(1)

•
(2)

•
(1)

•
(3)

•
(4)

•
(3)

•
(5)

•
(6)

•
(5)

•
(3)

•
(1)

Figure: Dyck path associated to EX12X21X13X34X43X35X56X65X53X31

I The total number of Dyck paths is well known:

#{Dyck paths} =
1

1 + k

(2k

k

)
(p = 2k)

and corresponds to the moments of the semi-circle distribution.
38



Wigner’s theorem: concentration

We can prove (by combinatorial arguments) that

var

(
1

N

∫
xpLN (dx)

)
= O

(
1

N2

)

I Hence by Borel-Cantelli,

∀p ≥ 1 , (a.s.)
1

N

∫
xpLN (dx) −−−−→

N→∞

{
1

1+k

(2k
k

)
p = 2k

0 p = 2k + 1
,

I From which we deduce that

(a.s.) , ∀p ≥ 1
1

N

∫
xpLN (dx) −−−−→

N→∞

{
1

1+k

(2k
k

)
p = 2k

0 p = 2k + 1
,

I and conclude

(a.s.) , LN =
1

N

∑
i

δλi
w−−−−→

N→∞

√
(4− x2)+

2π
dx
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Large Covariance Matrices I

The model

I Consider a N × n matrix Xn with i.i.d. entries

EXij = 0 , E|Xij |2 = σ2 .

Matrix Xn is a n-sample of N -dimensional vectors:

Xn = [x1 · · · xn] with Ex1x
∗
1 = σ2IN .

Objective

I to describe the limiting spectrum of 1
n
XnX

∗
n as

N

n
−−−−→
n→∞

c ∈ (0,∞) .

i.e. dimensions of matrix Xn are of the same order.
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Large Covariance Matrices II

The standard statistical case N << n (small data, large sample)

Assume N fixed and n→∞. Since

Ex1x
∗
1 = σ2IN ,

L.L.N implies

1

n
XnX

∗
n =

1

n

n∑
i=1

xix
∗
i

a.s.−−−−→
n→∞

σ2IN

In particular,

I all the eigenvalues of 1
n
XnX

∗
n converge to σ2,

I equivalently, the spectral measure of 1
n
XnX

∗
n converges to δσ2 .

A priori observation # 1

If the ratio of dimensions c↘ 0, then the spectral measure should
look like a Dirac measure at point σ2.
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Large Covariance Matrices III

The case where c > 1

Recall that Xn is N × n matrix and c = lim N
n
.

If N > n, then 1
n
XnX

∗
n is rank-defficient and has rank n;

I in this case, eigenvalue 0 has multiplicity N − n and the spectral measure writes:

LN =
1

N

N∑
i=1

δλi =
1

N

n∑
i=1

δλi +
N − n
N

δ0

I The limiting spectral measure of LN necessarily features a Dirac measure at 0:

N − n
N

δ0 −→
(

1−
1

c

)
δ0 as

N

n
→ c .

A priori observation #2

If c > 1, then the limiting spectral measure will feature a Dirac
measure at 0 with weight 1− 1

c
.
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Marčenko-Pastur’s theorem

Theorem

I Consider a N × n matrix Xn with i.i.d. entries

EXij = 0 , E|Xij |2 = σ2 .

with N and n of the same order and LN the spectral measure of 1
n
XnX

∗
n:

cn
4
=
N

n
−−−−→
n→∞

c ∈ (0,∞) , LN =
1

N

N∑
i=1

δλi , λi = λi

(
1

n
XnX

∗
n

)
I Then almost surely (= for almost every realization)

LN −−−−−−→
N,n→∞

PM̌P in distribution

where PM̌P is Marčenko-Pastur distribution:

PM̌P(dx) =

(
1−

1

c

)
+

δ0(dx) +

√
[(λ+ − x)(x− λ−)]+

2πσ2xc
dx

with

{
λ− = σ2(1−

√
c)2

λ+ = σ2(1 +
√
c)2
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Simulations vs M̌P distribution

Wishart Matrix, N= 900 , n= 1000 , c= 0.9
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nXnX
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Simulations vs M̌P distribution

Wishart Matrix, N= 900 , n= 1000 , c= 0.9
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Figure: Marčenko-Pastur distribution for c = 0.9
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Simulations vs M̌P distribution

Wishart Matrix, N= 500 , n= 1000 , c= 0.5
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Simulations vs M̌P distribution

Wishart Matrix, N= 500 , n= 1000 , c= 0.5
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Figure: Marčenko-Pastur distribution for c = 0.5
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Simulations vs M̌P distribution

Wishart Matrix, N= 100 , n= 1000 , c= 0.1
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Simulations vs M̌P distribution

Wishart Matrix, N= 100 , n= 1000 , c= 0.1
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Figure: Marčenko-Pastur distribution for c = 0.1
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Simulations vs M̌P distribution

Wishart Matrix, N= 10 , n= 1000 , c= 0.01
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Simulations vs M̌P distribution

Wishart Matrix, N= 10 , n= 1000 , c= 0.01
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Figure: Marčenko-Pastur distribution for c = 0.01
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Strategy of proof: The Stieltjes Transform

Given a probability measure P, its Stieltjes transform is a function

g(z) =

∫
R

P(dλ)

λ− z
, z ∈ C+ , (Notation: g = ST (P))

with inverse formulas

P(a, b) =
1

π
lim
y↓0
=
∫ b

a
g(x+ iy) dx , if P{a} = P{b} = 0

Example

I Spectral measure:

P =
1

N

N∑
i=1

δλi ⇒ g(z) =
1

N

N∑
i=1

1

λi − z

Proposition
Let Y N a hermitian matrix with spectral measure LN then g = ST (LN ) satisfies

g(z) =
1

N
Trace (Y N − zIN )−1
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Strategy of proof II: the ST satisfies an equation

Recall definition of the Stieltjes transform gn:

gn(z) =
1

N

N∑
i=1

1

λi − z
=

1

N
Trace

(
1

n
XNX∗N − zIN

)−1

.

1. [Concentration] we first prove that

var(gn(z)) = O
(

1

n2

)
and hence focus on Egn(z).

2. After algebraic manipulations and probabilistic arguments, we prove that

E gn(z) =
1

σ2(1− cn)− z − zσ2cnE gn(z)
+ εn(z) with εn(z) −−−−−−→

N,n→∞
0 .

3. [Stability] By stability of Marčenko-Pastur’s equation, E gn converges to a
function gM̌P which satisfies the fixed point equation:

gM̌P(z) =
1

σ2(1− c)− z − zσ2cgM̌P(z)

4. We identify PM̌P = (Stieltjes Transform)−1(gM̌P) .
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Elements of proof I

Notations
We introduce the column (normalized) vectors of matrix XN :

1

n
XNX

∗
N =

n∑
i=1

yiy
∗
i with

XN√
N

= [y1, · · · ,yn] .

The resolvent writes

Q =

(
n∑
i=1

yiy
∗
i − zIN

)−1

and we introduce Qi =

∑
j 6=i

yjy
∗
j − zIN

−1

.

49



Elements of proof II

Rank-one perturbations

I Sherman-Morrison identity

Qyiy
∗
i =

Qiyiy
∗
i

1 + y∗iQiyi

I Asymptotic rank-one perturbation: let u ∈ RN and uu∗ a rank-one matrix then∣∣∣∣ 1

N
Trace(A + ~u~u∗ − zIN )−1 −

1

N
Trace(A− zIN )−1

∣∣∣∣ ≤ 1

N=(z)

In particular
1

N
TraceQ−

1

N
TraceQi −−−−→

N→∞
0 .
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Elements of proof III: exact computations

Massaging the resolvent

Q

(
1

n
XX∗ − zIN

)
= IN ⇔ Q

∑
i

yiy
∗
i − zQ = IN

⇔ zQ = −IN +Q
∑
i

yiy
∗
i

⇔ zQ = −IN +
n∑
i=1

Qi
∑
i yiy

∗
i

1 + y∗iQiyi

⇔ zQ = −IN +
n∑
i=1

(
1−

1

1 + y∗iQiyi

)

Going back to the Stieltjes transform gn(z) =
1
NTraceQ

Taking 1
N

Trace{·}+ E{·} yields

zEgn(z) = −1 +
1

N

n∑
i=1

(
1− E

1

1 + y∗iQiyi

)

= −1 +
1

cN

(
1− E

1

1 + y∗1Q1y1

)
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Elements of proof IV: approximate equation

I We can prove that

zEgn(z) = −1+
1

cN

(
1− E

1

1 + y∗1Q1y1

)
= −1+

1

cN

(
1−

1

1 + Ey∗1Q1y1

)
+o(1) .

Now

Ey∗1Q1y1 =
σ2

n
ETraceQ1 '

σ2

n
ETraceQ = cNσ

2Egn(z)

I We end up with the following equation

zEgn(z) = −1 +
1

cN

(
1−

1

1 + cnσ2Egn(z)

)
+ o(1)

which writes

E gn(z) =
1

σ2(1− cn)− z − zσ2cnE gn(z)
+ o(1)

and corresponds to the approximate version of the equation

gM̌P(z) =
1

σ2(1− c)− z − zσ2cgM̌P(z)
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Solving the limiting equation

Explicit Stieltjes transform

I Given the second-degree polynomial zcσ2g2
M̌P

+ [z − σ2(1− c)]gM̌P + 1 = 0 ,

I an explicit solution is given by

gM̌P(z) =
−(z + σ2(c− 1)) +

√
(z − λ+)(z − λ−)

2zcσ2

with aλ− = σ2(1−
√
c)2 and λ+ = σ2(1 +

√
c)2 and where

√
(·) refers to the

appropriate branch of the square root function.

Marčenko-Pastur’s distribution

The inverse formula

PM̌P[a, b] =
1

π
lim
y↓0
=
∫ b

a
gM̌P(x+ iy) dx

can be used to find:

PM̌P(dx) =

(
1−

1

c

)
+

δ0(dx) +

√
[(λ+ − x)(x− λ−)]+

2πσ2xc
dx
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Stability of the canonical equation

Theorem (stability)

I The canonical equation is stable: if

zcσ2g2
M̌P

+ [z − σ2(1− c)]gM̌P + 1 = 0

and

zcδσ
2g2
δ + [z − σ2(1− cδ)]gδ + 1 = δ

then
|gM̌P − gδ| = O(|δ|+ |c− cδ|)

I In particular, since

Egn(z) =
1

σ2(1− cn)− z − zσ2cnEgn(z)
+ εn

or equivalently

zcNσ
2(Egn)2 + [z − σ2(1− cN )]Egn + 1 = εn

we have |Egn − gM̌P| = O(|εn|+ |c− cN |) and

gn(z)
a.s.−−−−−−→

N,n→∞
gM̌P(z)
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Marčenko-Pastur’s Theorem: Summary

I Consider the model 1
n

XNX∗N , then its spectral measure satisfies:

a. s. LN =
1

N

N∑
i=1

δλi
L−−−−−−→

N,n→∞
PM̌P .

I Instead of directly working on LN , we consider its Stieltjes tranform

gn(z) =
1

N
Trace

(
1

n
XNX∗n − zIN

)−1

,

then prove that it concentrates near its expectation

I and satisfies the approximate fixed-point equation

E gn(z) ≈
1

σ2(1− cn)− z − zσ2cnE gn(z)

and that it converges to the solution gM̌P of the canonical equation

gM̌P(z) =
1

σ2(1− c)− z − zσ2cgM̌P(z)

I Computing explicitely gM̌P and inverting it yields finally the formula for PM̌P.
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Large covariance matrices

The model

I Consider a N × n matrix Xn with i.i.d. entries EXij = 0,E|Xij |2 = 1.

I Let RN be a deterministic N ×N nonnegative definite hermitian matrix.

I Consider
Y n = R

1/2
N Xn .

with RN the (deterministic) Population covariance matrix.

I Matrix Y n is a n-sample of N -dimensional vectors:

Y n = [y1 · · · yn] with y1 = R
1/2
N x1 and Ey1y

∗
1 = RN .

Theorem

I The spectral measure of Y n converges toward

P∞ = PR � PM̌P

the free multiplicative convolution of the limit of the spectral measure of RN
and MP.

Remark (small data, large sample)

I If N fixed and n→∞ then 1
n
Y nY

∗
n −→ RN
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Simulations

I Consider the distribution

PR =
1

3
δ1 +

1

3
δ3 +

1

3
δ7

corresponding to a covariance matrix

RN = diag(1, 3, 7)

each with multiplicity ≈ N
3

.

I We plot hereafter

P∞ = PR � PM̌P

for different values of c.

t(z) =
1

3

{
1

(1 − c)λ1 − z − zct(z)λ1

+
1

(1 − c)λ2 − z − zct(z)λ2

+
1

(1 − c)λ3 − z − zct(z)λ3

}

58



Simulations

I Consider the distribution

PR =
1

3
δ1 +

1

3
δ3 +

1

3
δ7

corresponding to a covariance matrix

RN = diag(1, 3, 7)

each with multiplicity ≈ N
3

.

I We plot hereafter

P∞ = PR � PM̌P

for different values of c.
0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

Density
 

LSD
Population

Large Covariance Matrices - Limiting Density (LSD)

Figure: Plot of the Limiting Spectral Measure for
c = 0.01

t(z) =
1

3

{
1

(1 − c)λ1 − z − zct(z)λ1

+
1

(1 − c)λ2 − z − zct(z)λ2

+
1

(1 − c)λ3 − z − zct(z)λ3

}

58



Simulations

I Consider the distribution

PR =
1

3
δ1 +

1

3
δ3 +

1

3
δ7

corresponding to a covariance matrix

RN = diag(1, 3, 7)

each with multiplicity ≈ N
3

.

I We plot hereafter

P∞ = PR � PM̌P

for different values of c.
0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Density
 

LSD
Population

Large Covariance Matrices - Limiting Density (LSD)

Figure: Plot of the Limiting Spectral Measure for
c = 0.1

t(z) =
1

3

{
1

(1 − c)λ1 − z − zct(z)λ1

+
1

(1 − c)λ2 − z − zct(z)λ2

+
1

(1 − c)λ3 − z − zct(z)λ3

}

58



Simulations

I Consider the distribution

PR =
1

3
δ1 +

1

3
δ3 +

1

3
δ7

corresponding to a covariance matrix

RN = diag(1, 3, 7)

each with multiplicity ≈ N
3

.

I We plot hereafter

P∞ = PR � PM̌P

for different values of c.
0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Density
 

LSD
Population

Large Covariance Matrices - Limiting Density (LSD)

Figure: Plot of the Limiting Spectral Measure for
c = 0.25

t(z) =
1

3

{
1

(1 − c)λ1 − z − zct(z)λ1

+
1

(1 − c)λ2 − z − zct(z)λ2

+
1

(1 − c)λ3 − z − zct(z)λ3

}

58



Simulations

I Consider the distribution

PR =
1

3
δ1 +

1

3
δ3 +

1

3
δ7

corresponding to a covariance matrix

RN = diag(1, 3, 7)

each with multiplicity ≈ N
3

.

I We plot hereafter

P∞ = PR � PM̌P

for different values of c.
0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

Density
 

LSD
Population

Large Covariance Matrices - Limiting Density (LSD)

Figure: Plot of the Limiting Spectral Measure for
c = 0.275

t(z) =
1

3

{
1

(1 − c)λ1 − z − zct(z)λ1

+
1

(1 − c)λ2 − z − zct(z)λ2

+
1

(1 − c)λ3 − z − zct(z)λ3

}

58



Simulations

I Consider the distribution

PR =
1

3
δ1 +

1

3
δ3 +

1

3
δ7

corresponding to a covariance matrix

RN = diag(1, 3, 7)

each with multiplicity ≈ N
3

.

I We plot hereafter

P∞ = PR � PM̌P

for different values of c.
0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

Density
 

LSD
Population

Large Covariance Matrices - Limiting Density (LSD)

Figure: Plot of the Limiting Spectral Measure for
c = 0.35

t(z) =
1

3

{
1

(1 − c)λ1 − z − zct(z)λ1

+
1

(1 − c)λ2 − z − zct(z)λ2

+
1

(1 − c)λ3 − z − zct(z)λ3

}

58



Simulations

I Consider the distribution

PR =
1

3
δ1 +

1

3
δ3 +

1

3
δ7

corresponding to a covariance matrix

RN = diag(1, 3, 7)

each with multiplicity ≈ N
3

.

I We plot hereafter

P∞ = PR � PM̌P

for different values of c.
0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Density
 

LSD
Population

Large Covariance Matrices - Limiting Density (LSD)

Figure: Plot of the Limiting Spectral Measure for
c = 0.6

t(z) =
1

3

{
1

(1 − c)λ1 − z − zct(z)λ1

+
1

(1 − c)λ2 − z − zct(z)λ2

+
1

(1 − c)λ3 − z − zct(z)λ3

}

58



Introduction

Basic technical means

Wigner’s theorem

Large Covariance Matrices

Spiked models
Introduction and objective
The limiting spectral measure
The largest eigenvalue
Spiked model eigenvectors
Spiked models: Summary

Large Lotka-Volterra systems of ODE

Appendix

59



Introduction

The largest eigenvalue in M̌P model

Let p = p(n) and assume that

p

n
−−−−→
n→∞

c ∈ (0,∞) .

Consider a p× n matrix Xn with i.i.d. entries EXij = 0 and E|Xij |2 = σ2, then

Ln

(
1

n
XnX∗n

)
−−−−−→
p,n→∞

PM̌P

where PM̌P has support

SM̌P = {0} ∪
[
σ2(1−

√
c)2 , σ2(1 +

√
c)2
]︸ ︷︷ ︸

bulk

(remove the set {0} if c < 1)

Theorem

I Let E|Xij |4 <∞, then:

λmax

(
1

n
XnX∗n

)
a.s.−−−−−→

p,n→∞
σ2(1 +

√
c)2 .

Message: The largest eigenvalue converges to the right edge of the bulk.
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Spiked Models I

Definition

Let Πp be a small perturbation of the identity:

Πp = Ip + Pp where Pp = θ1~u1~u
∗
1 + · · ·+ θk~uk~u

∗
k

where k is independent of the dimensions p, n.

Consider

X̃n = Π
1/2
p Xn

This model will be refered to as a (multiplicative) spiked model.

Think of Πp as

Πp =



1 + θ1
. . .

1 + θk
1

. . .



Very important: The number k of perturbations is finite
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Spiked Models II

Remarks

I The spiked model is a particular case of large covariance matrix model with

Rp = Ip +
k∑
`=1

θ`~u`~u
∗
`

I There are additive spiked models: X̌n = Xn + An where An is a matrix with
finite rank.

Objective

I What is the influence of Πp over LN

(
1
n

X̃nX̃∗n

)
?

None!

I What is the influence of Πp over λmax

(
1
n

X̃nX̃∗n

)
?

Well, it depends!
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Simulations I: Single spikes
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Figure: Spiked model - strength of the perturbation θ = 0.1
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Simulations I: Single spikes
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Simulations I: Single spikes
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Figure: Spiked model - strength of the perturbation θ = 1
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Simulations I: Single spikes
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Figure: Spiked model - strength of the perturbation θ = 2
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Simulations I: Single spikes

N= 800 , n= 2000 , sqrt(c)=0.63, theta=[ 3 ]
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Figure: Spiked model - strength of the perturbation θ = 3
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Observation #1

If the strength θ of the perturbation Pp is large enough, then the limit of

λmax

(
1
n

X̃nX̃∗n

)
is strictly larger than the right edge of the bulk.
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Simulations II: Spectral measure
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Figure: Spiked model - strength of the perturbation θ = 0.1
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Simulations II: Spectral measure
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Simulations II: Spectral measure
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Simulations II: Spectral measure
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Simulations III: Multiple Spikes
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Simulations III: Multiple Spikes
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Figure: Spiked model - Two spikes
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Simulations III: Multiple Spikes
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Figure: Spiked model - Three spikes
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Observation # 2

Whathever the perturbations, the spectral measure converges toward Marčenko-Pastur
distribution
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The limiting spectral measure I

Theorem

The following convergence holds true: Ln
(

1
n

X̃nX̃∗n

)
a.s.−−−−−→

p,n→∞
PM̌P .

Remark

The limiting spectral measure is not sensitive to the presence of spikes
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The limiting spectral measure II

Proof

The spiked model is a particular case of large covariance matrix model with

Rp = Ip +
k∑
`=1

θ`~u`~u
∗
`

Consider the spectral measure of Rp (orthogonal eigenvectors for the perturbations
assumed):

LR
n =

1

p

k∑
i=1

δ1+θi +
1

p

p∑
i=k+1

δ1 −−−−−→
p,n→∞

PR = δ1

hence the limiting canonical equation

t(z) =

∫ PR(d λ)

(1− c)λ− z − zct(z)λ
=

1

(1− c)− z − zct(z)

⇔ zct2 + [z − (1− c)]t + 1 = 0

⇒ We recognize Marčenko-Pastur canonical equation.
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Behaviour of the largest eigenvalue
We consider the following spiked model:

X̃n = (Ip + θ~u~u∗)1/2 Xn with ‖~u‖ = 1 .

which corresponds to a rank-one perturbation.

Theorem

Recall that c = limn→∞
p
n

.

I if θ ≤
√
c then

λmax = λmax

(
1

n
X̃nX̃∗n

)
a.s.−−−−−→

p,n→∞
σ2(1 +

√
c)2

I if θ >
√
c then

λmax
a.s.−−−−−→

p,n→∞
σ2(1 + θ)

(
1 +

c

θ

)
> σ2(1 +

√
c)2
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Figure: Limit of largest eigenvalue λmax as a function of the perturbation θ
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I If θ ≤
√
c then

λmax

(
1

n
X̃nX̃∗n

)
−−−−−→
p,n→∞

σ2(1 +
√
c)2 .
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Figure: Limit of largest eigenvalue λmax as a function of the perturbation θ

I If θ ≤
√
c then

λmax

(
1

n
X̃nX̃∗n

)
−−−−−→
p,n→∞

σ2(1 +
√
c)2 .

Below the threshold
√
c, λmax

(
1
n

X̃nX̃∗n

)
asymptotically sticks to the bulk.
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Figure: Limit of largest eigenvalue λmax as a function of the perturbation θ
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Figure: Limit of largest eigenvalue λmax as a function of the perturbation θ

I if θ >
√
c then

lim
p,n→∞

λmax

(
1

n
X̃nX̃∗n

)
= σ2(1 + θ)

(
1 +

c

θ

)
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Figure: Limit of largest eigenvalue λmax as a function of the perturbation θ

I if θ >
√
c then

lim
p,n→∞

λmax

(
1

n
X̃nX̃∗n

)
= σ2(1 + θ)

(
1 +

c

θ

)
> σ2

(
1 +
√
c
)2

Above the threshold
√
c, λmax

(
1
n

X̃nX̃∗n

)
asymptotically separates from the bulk.
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Strategy of proof

1. We first express a condition for which

λmax

(
1

n
X̃nX̃∗n

)
separates from the bulk and refer to it as the determinant condition

2. Relying on Large Random Matrix theory, we simplify this condition and obtain

the asymptotic condition

3. We finally conclude, obtain the condition θ >
√
c for which the limit of

λmax

(
1
n

X̃nX̃∗n

)
separates from the bulk, and compute this limit.

Notations

I Marčenko-Pastur model

Zn =
1

n
XnX∗n and Q(z) = (−zIp + Zn)−1

I Spiked model

X̃n = Π1/2Xn = (Ip + θ~u~u∗)1/2 Xn and Z̃n =
1

n
X̃nX̃∗n
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The determinant condition I

We wish to find

I λθ eigenvalue of the spiked model

Z̃n =
1

n
Π1/2XnX∗nΠ1/2

I λθ not an eigenvalue of M̌P model

Zn =
1

n
XnX∗n

Otherwise stated

det
(
−λθI + Z̃

)
= 0 but det

(
−λθI + Z

)
6= 0

Inverse of a rank-one perturbation of the identity

Recall that
ΠN = I + θ~u~u∗

Standard results from linear algebra yield

Π−1
N = (I + θ~u~u∗)−1 = I−

θ

1 + θ
~u~u∗
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The determinant condition II

Let’s go for simple computations:

det
(
−λθI + Z̃

)
= 0 ⇔ det

(
−λθI + Π

1/2
N ZΠ

1/2
N

)
= 0
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The determinant condition II

Let’s go for simple computations:

det
(
−λθI + Z̃

)
= 0 ⇔ det

(
−λθI + Π

1/2
N ZΠ

1/2
N

)
= 0

⇔ det
(
−λθΠ−1

N + Z
)

= 0
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The determinant condition II

Let’s go for simple computations:

det
(
−λθI + Z̃

)
= 0 ⇔ det

(
−λθI + Π

1/2
N ZΠ

1/2
N

)
= 0

⇔ det
(
−λθΠ−1

N + Z
)

= 0

⇔ det

(
−λθ

(
I−

θ

1 + θ
~u~u∗

)
+ Z

)
= 0
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The determinant condition II

Let’s go for simple computations:

det
(
−λθI + Z̃

)
= 0 ⇔ det

(
−λθI + Π

1/2
N ZΠ

1/2
N

)
= 0

⇔ det
(
−λθΠ−1

N + Z
)

= 0

⇔ det

(
−λθ

(
IN −

θ

1 + θ
~u~u∗

)
+ Z

)
= 0

⇔ det

(
−λθI + Z + λθ

θ

1 + θ
~u~u∗

)
= 0
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The determinant condition II

Let’s go for simple computations:
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)
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1/2
N

)
= 0

⇔ det
(
−λθΠ−1

N + Z
)

= 0

⇔ det

(
−λθ

(
I−

θ

1 + θ
~u~u∗

)
+ Z

)
= 0

⇔ det

(
−λθI + Z + λθ

θ

1 + θ
~u~u∗

)
= 0

⇔ det

[(
−λθI + Z

)(
I + λθ

θ

1 + θ
~u~u∗Q(λθ)

)]
= 0
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The determinant condition II

Let’s go for simple computations:
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(
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N + Z
)

= 0

⇔ det

(
−λθ

(
I−

θ

1 + θ
~u~u∗

)
+ Z

)
= 0

⇔ det

(
−λθI + Z + λθ

θ

1 + θ
~u~u∗

)
= 0

⇔ det

[(
−λθI + Z

)(
I + λθ

θ

1 + θ
~u~u∗Q(λθ)

)]
= 0

⇔ det

[
I + λθ

θ

1 + θ
~u~u∗Q(λθ)

]
= 0
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The determinant condition II

Let’s go for simple computations:

det
(
−λθI + Z̃

)
= 0 ⇔ det

(
−λθI + Π

1/2
N ZΠ

1/2
N

)
= 0

⇔ det
(
−λθΠ−1

N + Z
)

= 0

⇔ det

(
−λθ

(
I−

θ

1 + θ
~u~u∗

)
+ Z

)
= 0

⇔ det

(
−λθI + Z + λθ

θ

1 + θ
~u~u∗

)
= 0

⇔ det

[(
−λθI + Z

)(
I + λθ

θ

1 + θ
~u~u∗Q(λθ)

)]
= 0

⇔ det

[
I + λθ

θ

1 + θ
~u~u∗Q(λθ)

]
= 0

Interest of this expression

In this equation, perturbation features θ and ~u are separated from the resolvent of M̌P
model (non-spiked model)
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The determinant condition III

A useful formula

Let A ∈ Cm×n and B ∈ Cn×m. Recall the formula

det(Im +AB) = det(In +BA) .

For a one-line proof of this property, write

M =

(
Im −A
B In

)
=

(
I 0
B I

)(
I −A
0 I +BA

)
=

(
I −A
0 I

)(
I +AB 0
B I

)
And compute the determinant of M following each decomposition.

New formulation of the condition

The determinant condition writes

det

[
I + λθ

θ

1 + θ
~u~u∗Q(λθ)

]
= 0 ⇔ λθ

θ

1 + θ
~u∗Q(λθ)~u = −1

⇔ λθ ~u∗Q(λθ)~u = −
1 + θ

θ
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The asymptotic condition I
Recall the condition

λθ~u∗Q(λθ)~u = −
1 + θ

θ

Asymptotic simplification

By Isotropic MP theorem, we have

~u∗Q(λθ)~u −−−−−→
p,n→∞

gM̌P

(
λθ
)
.

Hence the final form of the condition

λθgM̌P

(
λθ
)

= −
1 + θ

θ
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The asymptotic condition II

I We introduce the following function ρ(z):

ρ(z) = 1 + z g(z)

I Let ρM̌P associated to the Stieltjes transform:

ρM̌P(z) = 1 + zgM̌P(z) .

Then the condition over λθ writes:

λθgM̌P

(
λθ
)

= −
1 + θ

θ
⇔ ρM̌P(λθ)− 1 = −

1 + θ

θ

⇔ ρM̌P

(
λθ
)

= −
1

θ
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The asymptotic condition III

Plot of rho_MP

σ2(1 + c)2

−
1
c

Figure: Plot of ρM̌P on (σ2(1 +
√
c)2,∞)

The function ρM̌P admits an explicit expression on (σ2(1 +
√
c)2,∞)

ρM̌P(x) = 1 +
1

2c

{
(1− x− c) +

√
(1− x− c)2 − 4cx

}
(σ2 = 1)
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The asymptotic condition III

Plot of rho_MP

σ2(1 + c)2

−
1
c

−
1
θ

Figure: Plot of ρM̌P on (σ2(1 +
√
c)2,∞)

The asymptotic condition is satisfied if

ρM̌P

(
λθ
)

= −
1

θ
⇔ −

1

θ
> −

1
√
c
⇔ θ >

√
c
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Computing the limit λθ

We have

ρM̌P

(
λθ
)

= −
1

θ
⇔ λθ = ρ−1

M̌P

(
−

1

θ

)
We therefore need to inverse ρM̌P.

I Using Marčenko-Pastur equation and the relation between gM̌P and ρM̌P

gM̌P(z) =
1

σ2(1− c)− z − zσ2cgM̌P(z)

ρM̌P(z) = 1 + zgM̌P(z)

we get

z =
σ2

ρM̌P(z)

(
ρM̌P(z)− 1

) (
1− cρM̌P(z)

)
I Replacing now z = ρ−1

M̌P

(
− 1
θ

)
into the equation yields:

λθ = ρ−1

M̌P

(
−

1

θ

)
= σ2(1 + θ)

(
1 +

c

θ

)
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Spiked model eigenvectors I

I Consider the following p× n spiked model:

X̃n = (I + θ~u~u∗)1/2 Xn with ‖~u‖ = 1 ,

= Π1/2Xn

where Xn has i.i.d. 0/σ2 entries.
I Let ~vmax be the eigenvector associated to λmax, the largest eigenvalue of the

covariance matrix associated to X̃n:(
1

n
X̃nX̃∗n

)
~vmax = λmax~vmax

Question

I What is the behavior of ~vmax as p, n→∞ in the regime where

p

n
→ c ∈ (0,∞)?

Reminder

Behaviour of largest eigenvalue λmax well-understood:

I if θ ≤
√
c then λmax → σ2(1 +

√
c)2, the right edge of M̌P bulk.

I if θ >
√
c then λmax → σ2(1 + θ)(1 + c/θ), i.e. λmax separates from the bulk.
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Spiked model eigenvectors II

Preliminary observations

1. Let p finite, n→∞, then

1

n
X̃nX̃∗n = Π1/2

(
1

n
XnX∗n

)
Π1/2 −−−−→

n→∞
Π

Largest eigenvalue of Π is 1 + θ; associated eigenvector is ~u:

Π~u = (Ip + θ~u~u∗) ~u = (1 + θ)~u .

As a consequence:
~vmax −−−−→

n→∞
~u .

2. If
p, n→∞ ,

p

n
→ c ,

then dim(~vmax) = p↗∞ . We therefore consider the projection

~vmax~v
∗
max

of ~vmax on a generic deterministic vector ~aN ∈ Rp, i.e.

~a∗N~vmax~v
∗
max~aN = |〈~vmax,~aN 〉|2
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Spiked model eigenvectors III

Theorem

Let (~aN ) be a family of deterministic vectors with norm 1, then

~a∗N~vmax~v
∗
max~aN −

(
1−

c

θ2

)(
1 +

c

θ

)−1
~a∗N~u~u

∗~aN
a.s.−−−−−→

p,n→∞
0 .

Remarks

I If p finite, n→∞, then

~a∗N~vmax~v
∗
max~aN − ~a∗N~u~u

∗~aN
a.s.−−−−−→

p,n→∞
0 .

I The large dimension p
n
→ c induces a correction factor:

κ(c) =
(

1−
c

θ2

)(
1 +

c

θ

)−1

I Of course κ(c)→ 1 if c→ 0.
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Outline of proof

1. Expression of ~vmax with the help of the resolvent

~a∗N~vmax~v
∗
max~aN =

1

2iπ

∮
C+
~a∗N Q̃(z)~aN dz

2. Convenient expression of ~vmax where the contribution of the perturbation is
separated from the resolvent of the non-perturbated model (M̌P)

~a∗N~vmax~v
∗
max~aN ≈ −

~a∗N~u~u
∗~aN

1 + θ

∮
C+

g2
M̌P

(z)

ξ−1 + gM̌P(z)
dz

3. Residue calculus to find the final form

~a∗N~vmax~v
∗
max~aN −

(
1−

c

θ2

)(
1 +

c

θ

)−1
~a∗N~u~u

∗~aN
a.s.−−−−−→

p,n→∞
0 .
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Proof I

Reminder from complex analysis

We need a simple result from complex analysis:

1

2iπ

∮
C−

dz

z
= 1

if C− is a contour (take a circle of radius 1) enclosing counterclockwise 0.

I Proof:

let z = eiθ :
1

2iπ

∮
C−

dz

z
=

1

2iπ

∫ 2π

0

d(eiθ)

eiθ
=

1

2iπ

∫ 2π

0

ieiθdθ

eiθ
= 1

In particular, if C+ is a contour enclosing λ clockwise, then:

1

2iπ

∮
C+

dz

λ− z
= 1

(let C+ be a circle (λ+ ρeiθ; 0 ≤ θ ≤ 2π) and perform a change of variable).

If C+ does not enclose λ, then the integral equals zero.
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Proof II

Our objective

To express ~vmax with the help of the resolvent Q̃(z) =
(

1
n

X̃nX̃∗n − zIp
)−1

By the spectral theorem,

1

n
X̃nX̃∗n = Op

 λmax

. . .

λp

O∗p

= [~vmax Op−1]

 λmax

. . .

λp

[ ~v∗max
O∗p−1

]

In particular,

(
1

n
X̃nX̃∗n − zIp

)−1

= [~vmax Op−1]


1

λmax−z
. . .

1
λp−z

[ ~v∗max

O∗p−1

]

Recall that
I if θ >

√
c, λmax separates from the bulk

and consider a contour C+ exclusively enclosing the eigenvalue λmax.
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Proof III

We have

~a∗N~vmax~v
∗
max~aN =

1

2iπ

∮
C+
~a∗N Q̃(z)~aN dz

Indeed,

1

2iπ

∮
C+
~a∗N Q̃(z)~aN dz

=
1

2iπ

∮
C+
~a∗N [~vmax Op−1]


1

λmax−z
. . .

1
λp−z

[ ~v∗max
O∗p−1

]
~aN dz

= ~a∗N [~vmax Op−1]


1

2iπ

∮
1

λmax−z
dz

. . .
1

2iπ

∮
1

λp−z
dz

[ ~v∗max
O∗p−1

]
~aN

= ~a∗N [~vmax Op−1]

 1

. . .

0

[ ~v∗max
O∗p−1

]
~aN

= ~a∗N~vmax~v
∗
max~aN .
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Proof IV

Recall
1

2iπ

∮
C+
~a∗N Q̃(z)~aN dz

and temporarily forget about the integral. Our objective now is:

to find a new formulation of ~a∗N Q̃(z)~aN and clearly separate the contribution from the
perturbation (~u and θ) and the resolvent Q(z) from the non-pertubated model.

Introduce the notations

Z =
1

n
XnX∗n and Z̃ =

1

n
X̃nX̃∗n

and recall the formula for the inverse of a rank-one perturbation:

(A + ~u~u∗)−1 = A−1 −
A−1~u~u∗A−1

1 + ~uA~u∗
,

In particular

Π−1 = (Ip + θ~u~u∗)−1 = Ip −
θ

1 + θ
~u~u∗
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Proof V

Q̃(z) =
(
Π1/2ZΠ1/2 − zI

)−1
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Proof V
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Z− zΠ−1

)−1
Π−1/2
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(
Z− z(I + θ~u~u∗)−1

)−1
Π−1/2

= Π−1/2

(
Z− z

(
I−

θ

1 + θ
~u~u∗

))−1
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Π−1/2
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(
Z− z(I + θ~u~u∗)−1

)−1
Π−1/2

= Π−1/2

(
Z− z

(
I−

θ

1 + θ
~u~u∗

))−1

Π−1/2

= Π−1/2(Z− zI + ξ~u~u∗)−1Π−1/2 where ξ = z
θ

1 + θ
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Q−
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)
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Hence

~a∗N Q̃(z)~aN = ~a∗NΠ1/2Q(z)Π1/2~aN − ξ
~a∗NΠ1/2Q~u~u∗QΠ1/2~aN

1 + ξ~u∗Q~u

Not so ugly!
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Proof V
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(
Q−

Qξ~u~u∗Q

1 + ξ~u∗Q~u

)
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Hence

~a∗N Q̃(z)~aN = ~a∗NΠ1/2Q(z)Π1/2~aN − ξ
~a∗NΠ1/2Q~u~u∗QΠ1/2~aN

1 + ξ~u∗Q~u

Not so ugly! And we have separated the contribution of the perturbation from the
non-perturbated model.
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Proof VI

Recall

~a∗N Q̃(z)~aN = ~a∗NΠ1/2Q(z)Π1/2~aN − ξ
~a∗NΠ1/2Q~u~u∗QΠ1/2~aN

1 + ξ~u∗Q~u
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Proof VI

Recall

~a∗N Q̃(z)~aN = ~a∗NΠ1/2Q(z)Π1/2~aN − ξ
~a∗NΠ1/2Q~u~u∗QΠ1/2~aN

1 + ξ~u∗Q~u

and integrate the first term

1

2iπ

∮
C+
~a∗NΠ1/2Q(z)Π1/2~aN =??
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Proof VI

Recall

~a∗N Q̃(z)~aN = ~a∗NΠ1/2Q(z)Π1/2~aN − ξ
~a∗NΠ1/2Q~u~u∗QΠ1/2~aN

1 + ξ~u∗Q~u

and integrate the first term

1

2iπ

∮
C+
~a∗NΠ1/2Q(z)Π1/2~aN = 0

Why?
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Proof VI

Recall

~a∗N Q̃(z)~aN = ~a∗NΠ1/2Q(z)Π1/2~aN − ξ
~a∗NΠ1/2Q~u~u∗QΠ1/2~aN

1 + ξ~u∗Q~u

and integrate the first term

1

2iπ

∮
C+
~a∗NΠ1/2Q(z)Π1/2~aN = 0

Why? Because

1. the contour only encloses λmax(Z̃) which is away from the bulk,

2. but all the eigenvalues of Z are in the bulk. Hence:

1

2iπ

∮
C+

1

λi(Z)− z
dz = 0.
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Proof VI

Recall

~a∗N Q̃(z)~aN = ~a∗NΠ1/2Q(z)Π1/2~aN − ξ
~a∗NΠ1/2Q~u~u∗QΠ1/2~aN

1 + ξ~u∗Q~u

and integrate the first term

1

2iπ

∮
C+
~a∗NΠ1/2Q(z)Π1/2~aN = 0

Why? Because

1. the contour only encloses λmax(Z̃) which is away from the bulk,

2. but all the eigenvalues of Z are in the bulk. Hence:

1

2iπ

∮
C+

1

λi(Z)− z
dz = 0.

Last step is to simplify the remaining expression by systematically use the large p, n
quadratic form approximation:

~c ∗Q(z)~d− ~c ∗ ~dgM̌P(z)
a.s.−−−−−→

p,n→∞
0
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Proof VI

Recall

~a∗N Q̃(z)~aN = ~a∗NΠ1/2Q(z)Π1/2~aN − ξ
~a∗NΠ1/2Q~u~u∗QΠ1/2~aN

1 + ξ~u∗Q~u

and integrate the first term

1

2iπ

∮
C+
~a∗NΠ1/2Q(z)Π1/2~aN = 0

Why? Because

1. the contour only encloses λmax(Z̃) which is away from the bulk,

2. but all the eigenvalues of Z are in the bulk. Hence:

1

2iπ

∮
C+

1

λi(Z)− z
dz = 0.

Last step is to simplify the remaining expression by systematically use the large p, n
quadratic form approximation:

~c ∗Q(z)~d− ~c ∗ ~dgM̌P(z)
a.s.−−−−−→

p,n→∞
0 ⇒

 ~a∗NΠ1/2Q~u ≈ ~a∗NΠ1/2~u gM̌P(z)

~u∗QΠ1/2~aN ≈ ~u∗Π1/2~aN gM̌P(z)
~u∗Q~u ≈ gM̌P(z)
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Proof VII

After simplifications,

~a∗N~vmax~v
∗
max~aN ≈ −

1

2iπ

∮
C+
|~a∗NΠ1/2~u|2

g2
M̌P

(z)

ξ−1 + gM̌P(z)
dz

= −
~a∗N~u~u

∗~aN
1 + θ

∮
C+

g2
M̌P

(z)

ξ−1 + gM̌P(z)
dz

It remains to compute the correction factor

−
1

1 + θ

∮
C+

g2
M̌P

(z)

ξ−1 + gM̌P(z)
dz

by residue calculus (not that difficult).

A minor miracle occurs:This factor admits a closed form formula!

−
1

1 + θ

∮
C+

g2
M̌P

(z)

ξ−1 + gM̌P(z)
dz =

(
1−

c

θ2

)(
1 +

c

θ

)−1

Finally:

~a∗N~vmax~v
∗
max~aN −

(
1−

c

θ2

)(
1 +

c

θ

)−1
~a∗N~u~u

∗~aN
a.s.−−−−−→

p,n→∞
0 .
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Summary I

Spiked model

I Let Π a small perturbation of the identity [Example: Π = Ip + θ~u~u∗]

I Xn a p× n matrix with i.i.d. entries

then X̃n = Π1/2Xn is a (multiplicative) spiked model

Global regime

Spectral measure Ln
(

1
n

X̃nX̃∗n

)
converges to Marčenko-Pastur distribution PM̌P

Largest eigenvalue

I if θ ≤
√
c , then λmax

(
1
n

X̃nX̃∗n

)
converges to the right edge of the bulk

I if θ >
√
c , then λmax

(
1
n

X̃nX̃∗n

)
separates from the bulk

λmax

(
1

n
X̃nX̃∗n

)
→ σ2(1 + θ)

(
1 +

c

θ

)
> σ2(1 +

√
c)2
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Summary II
Recall that

X̃n = Π1/2Xn where Π = (Ip + θ~u~u∗) .

Eigenvector ~vmax associated to λmax

I Let ~vmax be the eigenvector associated to λmax,(
1

n
X̃nX̃∗n

)
~vmax = λmax~vmax

I and ~u the eigenvector associated to the largest eigenvalue of Π

Π~u = (Ip + θ~u~u∗) ~u = (1 + θ)~u .

Then

~a∗N~vmax~v
∗
max~aN −

(
1−

c

θ2

)(
1 +

c

θ

)−1
~a∗N~u~u

∗~aN
a.s.−−−−−→

p,n→∞
0

I Notice the correction factor depending on c

κ(c) =
(

1−
c

θ2

)(
1 +

c

θ

)−1
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Lotka-Volterra system of coupled differential equations

A popular model to describe the dynamics of interacting species in foodwebs is given
by a system of Lotka-Volterra equations:

dxk(t)

dt
= xk(rk − xk + (Bx)k) k ∈ [N ] , x = (xk) .

Here (Bx)k =
∑
`Bk`x`.

I N is the number of species in a given foodweb,

I xk = xk(t) is the abundance (=population) of species k at time t,

I r = (rk) where rk is the intrinsic growth rate of species k,

I B = (Bk`) where Bk` is the interaction between species ` and species k

Remarks

1. if x0 = x(t = 0) > 0 then for all t > 0, x(t) > 0.

2. if B = 0 (no interactions), we recover the logistic equation

dxk(t)

dt
= xk(rk − xk) ∀k ∈ [N ]
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Main assumption: a random model for the interaction matrix B

I The study of large Lotka-Volterra systems makes it very difficult to calibrate the
model and estimate matrix B.

I An alternative is to consider random matrices, the statistical properties of which
encode some real properties of the foodwed.

I it is a very rough approach but we need a model otherwise ..

No maths = no understanding

A. Rossberg, in Food webs and biodiversity (Wiley)

Some random models

I The Wigner model, (real) Ginibre model: poor adequation to reality but a good
benchmark to explore the mathematical tractability

I The elliptic model: encodes the natural correlation between Bk` and B`k
I Sparse models: encodes the fact that a species only interacts with d� N other

species.

I Variance profiles, non-centered matrices, etc: of interest but harder to analyze.
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Questions

Recall the model of interest

dxk(t)

dt
= xk(rk − xk + (Bx)k) x = (xk) .

I Existence of an equilibrium x? = (x?k) such that

x?k(rk − x?k + (Bx?)k) = 0 ∀k ∈ [N ] .

I Stability of this equilibrium: if x0 > 0, do we have

x(t) −−−−→
t→∞

x??

I Properties of the equilibrium x?, in particular species extinction:

Can we have x?k = 0 for some k ∈ [N ] ?

I Feasibility of this equilibrium:

Can we have x?k > 0 for all k ∈ [N ]?

I Existence of Multiple equilibria?

100



The typical dynamics of a LV system

Figure: A LV system with 9 species, converging to equilibrium, with one species vanishing
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The elliptic model for Large LV systems

I We will mainly consider the ρ-elliptic model where(
Xij
Xji

)
∼ N2

(
0,

(
1 ρ
ρ 1

))
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Figure: elliptic law (left) – circular law corresponding to ρ = 0 (right)

Remark

I Notice that this model interpolates between the (real) Ginibre model where ρ = 0
and the Wigner model where ρ = 1.
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Stability
Recall the model of interest

dxk(t)

dt
= xk(rk − xk + (Bx)k) where B =

X

κ
√
N

and
I X is ρ-elliptic and the spectrum of X√

N
is of order O(1),

I κ is an extra normalizing parameter.

A sufficient condition for stability

Suppose that B = X

κ
√
N

where X is N ×N random ρ-elliptic. If

κ >
√

2(1 + ρ)

then the LV system a.s. eventually admits a unique stable equilibrium x?N ≥ 0.

Elements of proof

I Based on a sufficient result of Takeuchi and Adachi (1980)

I the existence of a Lyapounov function

I the asymptotic behaviour of

λmax(B +BT ) =
1

κ
λmax

(
X +XT

√
N

)
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Feasible equilibrium: a simple linear equation

Consider the LV system

dxk

dt
= xk(rk − xk + (Bx)k) where B =

X

κ
√
N

I We investigate the case where there exists a positive equilibrium

x∗ > 0 ⇔ x∗k > 0 ∀k ∈ [N ] .

I In theoretical ecology it is called a feasible equilibrium and is of interest because
all species survive.

I Such an equilibrium should satisfy

rk − x∗k + (Bx∗)k = 0 ⇔ x∗ = r +Bx∗ , x∗ > 0.

I If matrix I −B is invertible, then

x∗ = (I −B)−1r .
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A logarithmic correction implies feasibility

Suppose that X is ρ-elliptic and consider the system

x∗ = 1 +
X

κ
√
N
x∗ where κ = κN −−−−→

N→∞
∞ .

Denote by κ∗N =
√

2 log(N) .

Theorem (phase transition)

I If κN ≤ (1− δ)κ∗N for N � 1 then P
{

inf
k∈[N ]

x∗k > 0

}
−−−−→
N→∞

0

I If κN ≥ (1 + δ)κ∗N for N � 1 then P
{

inf
k∈[N ]

x∗k > 0

}
−−−−→
N→∞

1

References

I Bizeul-N., 2021 (Ginibre case), Clenet, El Ferchichi, N. 2022 (Elliptic case).
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About the logarithmic factor

I Notice that ∥∥∥∥∥ X

κ∗N
√
N

∥∥∥∥∥ = O
(

1√
2 log(N)

)
Hence

x∗ = 1 +
X

κ
√
N
x∗

' 1

as N →∞.

I but

N 102 103 104 105 106

1
κ∗
N

0.33 0.27 0.23 0.21 0.19

I the logarithmic factor decreases extremely slowly to zero.
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Phase transition

I We plot the frequency of positive solutions over 10.000 trials for the system

x∗ = 1 +
1

K
√

log(N)

X
√
N
x∗

as a function of the parameter K.

I A phase transition occurs at the critical value K =
√

2.
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Statistical properties of the equilibrium

Existence of an equilibrium

Recall that if κ >
√

2(1 + ρ), then

I a.s. eventually there exists a stable equilibrium x?N to the LV system

dxk(t)

dt
= xk(rk − xk + (Bx)k) , k ∈ [N ]

Question

Matrix B being random, so is x?,

I How can we extract statistical information on x? from this?

I We focus on the empirical measure of the equilibrium

µ? =
1

N

∑
i∈[N ]

δx?i

in the asymptotic regime N →∞.
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Main results I

I Recall the LV system
dxk(t)

dt
= xk(rk − xk + (Bx)k) where B = X

κ
√
N

I Assume that r ⊥⊥ B and (a.s.) µr
w,L2

−−−−→
N→∞

L(r̄) .

Theorem (Gueddari-Hachem-N. , 2024)

I Let κ >
√

2(1 + ρ), then

µ?
w,L2

−−−−→
N→∞

L
(

(1 + ργ/δ2)
(
σZ̄ + r̄

)
+

)
Z̄ ∼ N (0, 1) , Z̄ ⊥⊥ r̄ .

where (δ, σ, γ) satisfy

κ = δ + ρ
γ

δ
,

σ
2

=
1

δ2
E
(
σZ̄ + r̄

)2
+
, Z̄ ∼ N (0, 1) , indep. from r̄

γ = P
[
σZ̄ + r̄ > 0

]
.
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Consequences

Proportion of surviving species

We are interested in the proportion of surviving species, depending on κ:

1

N

∑
i∈[N ]

1{x?i>0} ' P
(
σZ̄ + r̄ > 0

)
= γ

Distribution of surviving species

Denote by s(x?) the subvector of x? with positive components of x?. Its size |s(x?)|
is random and the empirical distribution of the surviving species is:

µ
s(x?)

=
1

|s(x?)|
∑

i∈[|s(x?)|]

δ[s(x?)]i
.

A good proxy should be

L
(

(1 + ργ/δ
2
)
(
σZ̄ + r̄

)
+

∣∣∣∣ σZ̄ + r̄ > 0

)
,

the density of which is explicit (often referred to as ”truncated Gaussian”).

References

I Bunin 2017, Galla 2018 (based on theoretical physics methods)

I Akjouj, Hachem, Mäıda, N. 2023, ArXiv. (Wigner case)

I Gueddari, Hachem, N. 2024, Arxiv. (Elliptic case)
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Simulations I: Proportion of surviving species

Figure: Experimental proportions of surviving species vs theoretical values γ for three correlation
coefficients ρ = −0.7, 0, 0.4 w.r.t. the interaction strength (κ).
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Simulations II: density of surviving species

Figure: Histogram of positive abundances vs the truncated gaussian density function fsurv for
ρ = 0.4 with the interaction strength fixed to κ = 2.
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Elements of proof

We can prove that an equilibrium is defined by the following set of constraints:
x? ≥ 0 ,

(I −B)x? − r ≥ 0 ,

x?i ([(I −B)x?]i − ri) = 0 .

We can get an alternative, fixed-point equation formulation: Let x+ = max(x, 0).
Then

z = Bz+ + r

if and only if z+ = x?.

Remarks

I There are many procedures to compute a fixed-point. For example{
z0 ∈ RN

zp+1 = B(zp)+ + r
.

I The main issue is to keep track of the distribution of zp.

I Notice the strong dependence between the zp’s in the previous scheme.

I The class of approximate message passing algorithms (developed by Montanari
et al.) is well suited to fulfill this task.
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Beyond a unique equilibrium

I So far, we have presented some progress to understand large LV systems at a
mathematical level of understanding.

I The truth is that we keep on running after theoretical physicists

Altieri, Barbier, Biroli, Bunin, Cammarota, Galla, Ros, etc.

who discovered these formulas and many other phenomenas earlier, relying on
powerful cavity, replicas, free energy computation methods, etc. many of which
inspired from Parisi’s work.
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Beyond a unique equilibrium

Figure: A figure taken from Bunin’s 2017 article ”Ecological communities with Lotka-Volterra
dynamics” associated to the model

I In particular Bunin and other physicists predict phases with multiple equilibria for
large LV models.

I It is an open question to understand this mathematically.
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Overall conclusion

Thank you for your attention!
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