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Large Random Matrices

Random matrices

Itisa N x N matrix
Yiu -+ Yin

YN =
Y1 -+ YN

whose entries (Y;;; 1 <4,7 < N) are random variables.

Matrix features

Of interest are the following quantities
> Y n's spectrum ()\;, 1 < ¢ < N) and eigenvectors (= eigenstructure)
» Extreme eigenvalues \,;, and Apax if spectrum is real, etc.

» Some information beyond the eigenstructure of the matrix.

Asymptotic regime
Often, the description of the previous features takes a simplified form as
N — oo

Moreover this regime is of interest in many applications.



Large Random Matrices: Wigner Matrices

Matrix model

Let Xy = (X;;) a symmetric N X N
matrix with i.i.d. (real) entries on and
above the diagonal with

EX;; =0and E|X;;? =1

and X;; = Xj; (for symmetry).
> consider the spectrum of Wigner

matrix | Yy = X—\/%
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Matrix model
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Large Random Matrices: Wigner Matrices

Matrix model
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Large Random Matrices: Wigner Matrices

Matrix model

Let Xy = (X;;) a symmetric N X N
matrix with i.i.d. (real) entries on and
above the diagonal with

EX;; =0and E|X;;? =1

and X;; = Xj; (for symmetry).
> consider the spectrum of Wigner
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with density  — Va2

27

"The histogram of a Wigner matrix converges to the semi-circular distribution”




Large Covariance Matrices

Matrix model

Let X, be a N X n matrix with i.i.d.
entries

EX;; =0, E|X;2=1

*

and consider the spectrum of %Xan
in the regime where

N
N,n— oo and — — c € (0,00)
n

dimensions of matrix X ,, of the same order ‘
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Matrix model
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Large Covariance Matrices

Matrix model

Let X, be a N x n matrix with i.i.d.
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Large Covariance Matrices

Matrix model
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Large Covariance Matrices

Matrix model

Let X, be a N X n matrix with i.i.d.
entries

EX;; =0, E|X;2=1

and consider the spectrum of %XnX;;
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Large Covariance Matrices : Maréenko-Pastur's theorem

Wishart Matrix, N= 1600 ,n= 4000

@ _ F\
. S N
Matrix model N
\
Let X, be a N x n matrix with i.i.d. .| ‘\
entries
EX;; =0, E|X;2=1 R
and consider the spectrum of %XnX;;
in the regime where S
N
N,n— oo and — —c € (0,00) s
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dimensions of matrix X ,, of the same order‘

Figure: Mar&enko-Pastur’s distribution (in
red)

Mar¢enko-Pastur's theorem (1967)

"The histogram of a Large Covariance Matrix converges to
Margenko-Pastur distribution with given parameter (here 0.4)”




Large Non-Hermitian Matrices I: the Circular Law

Matrix model
Let Xy be a N x N matrix with i.i.d.
entries

EX;; =0, E[X;2=1

and consider the spectrum of matrix

as N -
» We call it a Ginibre model

> In this case, the eigenvalues are
complex!



Large Non-Hermitian Matrices I: the Circular Law

Non-hermitian matrix eigenvalues, N= 20
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> In this case, the eigenvalues are Re(spectrum)

complex!
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Large Non-Hermitian Matrices I: the Circular Law

Non-hermitian matrix eigenvalues, N= 50
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Large Non-Hermitian Matrices I: the Circular Law

Matrix model

Let Xy be a N x N matrix with i.i.d.
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Large Non-Hermitian Matrices I: the Circular Law

Matrix model
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Large Non-Hermitian Matrices I: the Circular Law

Non-hermitian matrix eigenvalues, N= 1000
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Large Non-Hermitian Matrices I: the Circular Law

Non-hermitian matrix eigenvalues, N= 1000
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In this case, the eigenvalues are

complex!

>

Figure: The circular law (in red)

Theorem: The Circular Law (Ginibre, Metha, Girko, Tao & Vu, etc.)

‘ The spectrum of Yy converges to the uniform probability on the disc ‘




Large Non-Hermitian Matrices Il: the Elliptic Law

Matrix model

Let Xy be a N x N matrix with
standardized entries and:

> the following variables are
independent

{Xii, (X, X5i), i < 4, }
> assume the covariance structure
cov(Xij, Xji) = p
and consider the spectrum of matrix

Yy=

g

as N - c©



Large Non-Hermitian Matrices Il

Matrix model

Let Xy be a N x N matrix with
standardized entries and:

> the following variables are
independent

{ X, (X5, X54), 1< 4, }
> assume the covariance structure
cov(Xij, Xj5) = p

and consider the spectrum of matrix

Yy=

g

as N - c©

: the Elliptic Law

Im(spectrum)

Elliptic matrix eigenvalues, N= 50, rho= 0.25

w
e 4
° o
w °
3 o 9o o
o
o o o © °
o o © o o o
° o ° °
= 00 9 ° 2o o003
° ° o o o )
o
o ° ° o o
vz ° °
24 o o ©
" o o
e
-n.
T T T T T T T
15 40 05 00 05 1.0 15
Re(spectrum)

Figure: Distribution of Y n's eigenvalues



Large Non-Hermitian Matrices Il

Matrix model
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Large Non-Hermitian Matrices Il

Matrix model

Let Xy be a N x N matrix with
standardized entries and:

> the following variables are
independent

{Xii, (X, Xji), 4 < g, }
> assume the covariance structure
cov(Xij, Xji) = p
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Large Non-Hermitian Matrices Il: the Elliptic Law

M at rix m OC| eI Elliptic matrix eigenvalues, N= 500 , rho= 0.25

Let Xy be a N X N matrix with a
standardized entries and:

> the following variables are
independent -

{Xis, (X5, X54), 1 < 4, }

Im(spectrum)
00

> assume the covariance structure

COV(Xij, in) =p <

and consider the spectrum of matrix

Re(spectrum)

XN
Yy =N
N N

as N — oo Figure: The elliptic law (in red)

Theorem: The Elliptic Law (Girko, Nguyen & O'Rourke, etc.)

The spectrum of Y 5 converges to the uniform probability on the ellipse ‘




Large Random Matrices: Spiked Models

Spiked Models

Small perturbations (to be specified) of
standard models can modify the
behavior of extreme eigenvalues.

> Such models are called spiked
models,

> Very useful in applications,

> Example: Spikes = signal
vs MP spectrum = noise



Large Random Matrices: Spiked Models

N=800, n= 2000 , sqrt(c)=0.63, theta=[ 3]

Spiked Models y

Small perturbations (to be specified) of
standard models can modify the
behavior of extreme eigenvalues.

Density
0.4
|

> Such models are called spiked
models,

> Very useful in applications,

> Example: Spikes = signal o =

vs MP spectrum = noise : T : )

spectrum

Figure: Perturbated MP with single spike



Large Random Matrices: Spiked Models

N= 400, n= 1000, sqrt(c)=0.63, theta=[ 2,2.5]
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Spiked Models N

Small perturbations (to be specified) of
standard models can modify the
behavior of extreme eigenvalues.

Density

> Such models are called spiked
models,

> Very useful in applications,

> Example: Spikes = signal o m =
vs MP spectrum = noise ! ' ' ' ' ! ' '

spectrum

Figure: Perturbated MP with double spike



Large Random Matrices: Spiked Models

N=400, n= 1000 , sqrt(c)=0.63, theta=[ 2,2.3,2.8 ]

Spiked Models N

Small perturbations (to be specified) of
standard models can modify the
behavior of extreme eigenvalues.

Density

> Such models are called spiked
models,

> Very useful in applications,

> Example: Spikes = signal o Em =

vs MP spectrum = noise ' i i i ' ' ' '
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spectrum

Figure: Perturbated MP with triple spike



A word on the normalization

Consider X v = (X;5) a N x N symmetric matrix with i.i.d. (real) entries on and
above the diagonal,
EX;; =0 and var(X;;) =1.

Without normalization

N N
1 1 1
N E M(XN) = NTraceX?V =N E X512 2 +oo (N — o0)
i=1 ij=1

With normalization

N
1 Xy 1 Xy\? 1
N Z)\f (ﬁ) = NTrace (ﬁ) =Nz Z X2 — 1 (N — o)

i=1 1,j=1

Hence

Ai (ﬁ) ~ o)

10



Basic technical means
Matrix basics

11



Eigenstructure
Eigenvectors and eigenvalues

Given a N x N matrix A we are interested in its eigenvalues \

AG=)a, (Z#0)

and its associated eigenvectors .

Remarks

> X € Cis an eigenvalue of A iff | det(A — X)) =0

> The relationship between an eigenvalue and the entries of the corresponding
matrix is very involved.

> We call the spectrum of matrix A the set of its eigenvalues counted with their
multiplicities (as roots of the polynomial P(A) = det(A — AI))
Important question

» How can we infer properties on the spectrum of matrix A based on the entries
A;; of the matrix? [moment method, Stieltjes transform ..]



The spectral theorem
The spectral theorem - complex case

if A is hermitian:

A=A" & [Al;= [A]ji

then A is diagonalizable with real eigenvalues:

A = U*AU, UU*:U*U:IN\

with U unitary matrix and A real diagonal.

The spectral theorem - real case

If A is symmetric that is A = AT, then

A=0TAO, 00T =0T0=1Iy

where O is (real) orthogonal.

Example

> Let P € R[X] (=polynomial with real coefficients). Let A hermitian and
A =UAU" then

[P(A)]* = P(A) and P(A)=UP(AU*.



The spectral measure of a matrix A

. also called the empirical measure of the eigenvalues.

> It is a central object to express the limiting properties of the spectrum.

The Dirac measure
We define a probability measure 6, over R by

52 ([a, b)) :{ (1) Lflsa;e (a, b]

The spectral measure

If Ais N X N hermitian with eigenvalues A1, --- , Ay then its spectral measure is:
1 #{\; € [a,b]}
Ly =— 0. = L )= = A
N= ; A; ~([a,8]) N

Otherwise stated

‘ Ly ([a,b]) is the proportion of eigenvalues of A in [a, b].




Basic technical means

Weak convergence of probability measures

15



Weak convergence of probability measures |
Let pn(n > 1) be probability measures on (R, B(R)), 1 a measure on (R, B(R)).
Weak convergence

We say that u, weakly converges towards p iff for every bounded continuous function
f:R — R we have:

/f(:z;),un(da:)m)/f(x),u(dx) Notation: | ptn, ——
R R

n—00

Vague convergence

We say that p,, vaguely converges towards p iff for every continuous function
f : R — R with bounded support, we have:

n—00

/f(ac),un(da:)m)/f(x),u(dx) Notation: | ptn, ——
R R

Remarks

> If i, — = 1 then p is a probability measure: u(R) = 1,
n— oo

> Uf pn % w then 1 might not be a probability measure,
n oo

> I o = £(Xp) and g = L(X) then: pn —“—p <= X, —2 5 X.

n—00



Weak convergence of probability measures |l
Let prn be a family of probability measures on (R, B(R)).
Tightness

The sequence (ur) is tight iff for every € > 0 there exists a compact set K. such as

sup un(K5) <e <= infup(K:)>1—¢.
n n

(basically, up to € the puyn have a common support K. )

Theorem (weak vs vague convergence)

Let x a measure. The following statements are equivalent:

g Rend?
> #) wand (un) is tight,

> ﬁ w and p is a probability measure.

17



Weak convergence - the moment method |

Characterization by moments
Let p a probability measure on (R, B(R)) and assume that for all

keN, mk:/xku(da})eR.
R

We say that p is uniquely characterized by its moments if it is the unique measure
with moments given by the my's.
Theorem (Carleman)

_ L
Probability measure p is uniquely characterized by its moments iff Z m%z’“ = 00
E>1

Theorem (sufficient condition)

Probability measure p is uniquely characterized by its moments if

1
. moy, \ 2k
1 < .
1mksup <(2k)') oo

Remarks

> If u has a bounded support then it is uniquely characterized by its moments.

> If p~ N(0,1) then it is uniquely characterized by its moments.




Weak convergence - the moment method Il

Theorem

Let pn(n > 1) and p probability measures on (R, B(R)) with all their moments.
Assume that

> 1 is uniquely determined by its moments,

> the convergence of the moments holds
vk > 1, /azkun(dx) —_— / P p(dz) .
R n—r oo R

Then

w
Pn ——— p
n—oo




Why is the moment method important in RMT?

v

Let A be n X n hermitian and L,, its spectral measure:

1

v

The k-th moment of L, writes

/:1: Ly (dz) Z)J“

v

by the spectral theorem, it is also equal to

— Z pLgEs fTrace(Ak)

This provides a "simple” relationship between the eigenvalues of A and its entries
as:

1 1 =
fTrace(Ak) = — Z AiligAiQi;; e Azkll
n n i1, ip=1

> This last equation is at the heart of combinatorial techniques developed in RMT.

20



Basic technical means

The Stieltjes transform

21



Spectrum Analysis: The Stieltjes Transform |

Given a probability measure P, its Stieltjes transform is an analytic function on Ct

defined as

Examples

1. Dirac measure:

2. Spectral measure:

g(z):/}{% . zecCt,

1
P=94 = =
Xo 9(z) Xo— 2
N N
1 1 1
P=— o\, = ==
N;A’ 9(2) N;/\i—z

22



Spectrum Analysis: The Stieltjes Transform Il
It has good properties such as

> inverse formulas

1 b
Pla, b] 7lim%/ gz +iy)de , ifP{a} =P{b} =0
T yl0 a
/deFD = 711m\s/f(x (z + iy) dz
T yl0

> criterion for the vague convergence of probability measures: let g, = ST (1n)
VzeCt, gn(z) —— g(2) <= jpn ——p.
n—r oo n—r oo

where
ST(p) =g,
but we do not know if u is a probability measure.
> criterion for the weak convergence of probability measures: let gn = ST (pn)

VzeCT, gn(2) —= g(z) and g = ST(u) with p € P(R)

is equivalent to

w
fn —— .
n—o0

23



Relation with the resolvent of Large Random Matrices |

v

The resolvent of A is

‘ Qz)=(A—zD7t z ¢ spectrum(A).

» Named resolvent because it solves the equation:

& A-e=b & 2=QEP

> its singularities are exactly eigenvalues of A.

» Eigen-decomposition of hermitian matrix A yields eigen-decomposition of Q:

A=UAU = Qz)= U"(A—z)"'U

A1 A1—z
A=U* - U = Q)=U* - U

AN 1

24



Relation with the resolvent of Large Random Matrices Il

Relation with the resolvent of Large Random Matrices

Let A hermitian with eigenvalues ()\;) and spectral measure % vazl O

Then
1N
z) = Stieltjes transform of | — Ox,
9(2) i (N ; A,,>
N
1 1
- N 21: i — 2z
1
A1—2z
1 1 _1
= —Trace " = —Trace (A — zI)
N . N

AN—2Z

> | The Stieltjes transfom g is the normalized trace of the resolvent (A — zI)~!

> This represents a simple relationship between the ST of the spectral measure and
matrix A. It is the starting point of many techniques to analyze spectral
measures.

25



Wigner's theorem
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Wigner's theorem

The semi-circular distribution

Let 0 > 0. The semi-circular distribution is given by

]PJSC,G'2 (dx) =

(402 — x2)y dx

2mo2

Wigner's theorem (sharp assumptions)

Xij .
> Let X;; (1 <i<j<N)iid. centered, —% C with E|X;;|? = 02 < co.

> Let X;; (1 <i< N)iid. centered, ity R with E|X;;|? = 02 < oco.
> Independence on and above the diagonal.

> Consider X 5 and Y iy the N X N hermitian matrices defined by

X ifi<j
Xnlij = J = d Yy=
X wlij {Xf ifi>j; o N

3l

Then almost surely,

N
1 w
Ly = N 2;6/\1-(3’1\;) N oo ]Psc,<72
i=
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Remarks

#{)‘i S [a’b]}

> As a consequence of Wigner's theorem:

a.s.

N

N— oo

b
Psc,a2 (dz) |

‘Wigner Matrix, N= 1500

Density
0.10 020 025 030
I I I |

0.05
I

0.00
L

Figure: The distribution of Y 5 's eigenvalues follows the semi-circular density
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Additional results

Convergence of Apin and A\pax

If ]E‘Xij|4 < oo then )\max(YN) _ %5 L 95 |and /\min(YN) as. oo
N—oco N — o0

Fluctuations of linear statistics
let f be C4(R) then

D

N
S IO ) =N [ faPeldn) B 2~ NGB, ©2(1)
i=1

Notice the normalization + exact expression of B(f) and ©2%(f) complicated - cf.
book by Bai and Silverstein.

Fluctuations of Apax

Let X;; ~N(0,1) (¢ < j) then

N2/3 Omax (Y n) — 2) —2— Prywy
N — o0

The distribution Py is Tracy-Widom distribution, hard to describe - cf. book by
Anderson, Guionnet, Zeitouni.
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A heuristic on the normalization N2/3

o 2
» By Wigner's theorem, W — f22_5 @ dz

» Hence "for small ",

2 J/(2-2)(2
#{Ni>2-¢} =~ N/ wdz
2—e 2m
2 2 N
~ N— V2—xdr = g3/
21 Jo_e T

» To have finitely many values in (2 — €, 00), we want ‘ #{\i >2—¢} = 0Q1) ‘

> We choose ¢ = ¢cN~2/3 so that | Ne3/2 = O(1) | and

#{i>2-cN2P) = #NB-2)>c = 01)

» This suggests to study the fluctuations of | N2/3 (Amax — 2)

» The N2/3 normalization is strongly associated to the v/z-behaviour of the density
at the corresponding edge
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Weak convergence - the moment method
> Under proper assumptions (ex: compact support), the moments of distribution p
mg =/$ku(dﬂf)

fully characterize the distribution p.

> Given (un) and u, the convergence of the moments
m™) = /IkﬂN(de) ——rmy = /$ku(d$)
N—o0

characterizes the (weak) convergence of the measures %) .
— 00

The moment method ..

. aims at proving that

Moments of the spectral measure
Recall that Ly = % Ef\[:l 0y, and

mch) :/ kd Ly (dz) ZAk = —Trace(Y'%;)
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Outline of the proof

1. compute the moments of the semi-circular distribution:

2 2¢ :
/ VAN { () ifk=2¢,

_2 27 0 ifk=20+1

2. compute (the expectation of) the asymptotic moments of the spectral

distribution
1 X
Ly = — Ox,
S DI
=1
that is
1
]Em;N) N]ETraceYﬁ“V
1 N

= 1k E : EXiy i, Xigis - Xigiy
N 2 i1, yip=1

3. prove that

1 (2 .
[N ﬁ(l) 1fk‘:2£7
0 ifk=20+4+1

N—o0

N)

Em{ (N) o (V)

and Em ' ~m,

= Computation of empirical moments heavily relies on (sometimes difficult)
combinatorics.

(N)

k

(N)

4. Prove some concentration: m —Em; " ——0
N—o0



Large Covariance Matrices
Maréenko-Pastur theorem
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Large Covariance Matrices |

The model
» Consider a N x n matrix X, with i.i.d. entries
]EXi]' =0 5 ]E|X”|2 = 0'2 .

Matrix X ,, is a n-sample of N-dimensional vectors:

Xn=[x1 -+ @®n] with Emle:UQIN.

Objective
> to describe the limiting spectrum of %XnX;‘L as

N
— ——c€(0,00) .

n mn—oo

i.e. dimensions of matrix X ,, are of the same order.
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Large Covariance Matrices |l

The standard statistical case N << n (small data, large sample)

Assume N fixed and n — oco. Since

Exiz] = Iy,

L.L.N implies
Ly xr LN g _as °p
R XnXh= o miel B Sl
=

In particular,

> all the eigenvalues of %XnX; converge to o2,

> equivalently, the spectral measure of %XnX; converges to 2.

A priori observation # 1

If the ratio of dimensions ¢ N\ 0, then the spectral measure should
look like a Dirac measure at point o2.
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Large Covariance Matrices Il

The case where ¢ > 1
N

Recall that X ,, is N X n matrix and ¢ = lim o

If N > n, then %XHX;; is rank-defficient and has rank n;

> in this case, eigenvalue 0 has multiplicity N — n and the spectral measure writes:

1 1 & N-n
Ly = NZ% = NZ% + =%
i=1 =1
> The limiting spectral measure of L necessarily features a Dirac measure at 0:

N — 1 N
négﬂ(177>50 as — —c.
c

N n

A priori observation #2

If ¢ > 1, then the limiting spectral measure will feature a Dirac
measure at 0 with weight 1 — %
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Marcenko-Pastur’'s theorem

Theorem
» Consider a N X n matrix X ,, with i.i.d. entries
EXij =0, E|X;[*=0"
with N and n of the same order and Ly the spectral measure of %XnX;.

N
1 1 .
»c € (0,00), LN:N;(s)\i , A=A (EXan)

n—oo

>
=]z

> Then almost surely (= for almost every realization)

Ly ———— Pyp  in distribution

N,n—oc0

where Py is Margenko-Pastur distribution:

( 1) do(dz) + \/[()\+ _o s Ai)]*— dx
+

1_ 2
2nozc

Pyp(dz) = c

. AT o2(1 — /c)?
with { M= 021+ 4/0)?
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Simulations vs MP distribution

Wishart Matrix, N=900 , n= 1000, c= 0.9
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Simulations vs MP distribution

Wishart Matrix, N=900 , n= 1000, c= 0.9
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Figure: Mar&enko-Pastur distribution for ¢ = 0.9
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Simulations vs MP distribution

Wishart Matrix, N= 500 , n= 1000, c= 0.5
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Simulations vs MP distribution

Wishart Matrix, N= 500 , n= 1000, c= 0.5
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Figure: Mar&enko-Pastur distribution for ¢ = 0.5
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Simulations vs MP distribution

Wishart Matrix, N=100, n=1000, c= 0.1

Density
0.4 0.6 0.8 1.0 1.2
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Simulations vs MP distribution

Wishart Matrix, N=100, n=1000, c= 0.1

Density
0.4 0.6 0.8 1.0 1.2
L L

0.2

0.0

T T T 1
0 1 2 3

spectrum

Figure: Mar&enko-Pastur distribution for ¢ = 0.1
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Simulations vs MP distribution

Wishart Matrix, N=10, n=1000, c= 0.01
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Simulations vs MP distribution

Wishart Matrix, N=10, n=1000, c= 0.01
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Figure: Mar&enko-Pastur distribution for ¢ = 0.01
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Large Covariance Matrices

Proof of Mar&enko-Pastur's theorem
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Strategy of proof: The Stieltjes Transform

Given a probability measure P, its Stieltjes transform is a function
P(dA
g(z) :/ # , zeCH, (Notation: g = ST (P))
RA—2Z

with inverse formulas

1 b
P(a,b) = ;Bi%s/ gle+iy)de, if P{a} =P{b} =0

Example

> Spectral measure:

1 1 1
P=— o\, = ==
N; i 9(2) NZ:N*Z

Proposition
Let Y x a hermitian matrix with spectral measure Ly then g = ST(Ly) satisfies

1
g9(z) = NTrace (Yn —2In)" !

40



Strategy of proof Il: the ST satisfies an equation

Recall definition of the Stieltjes transform g;:

@) 121\’: 1 Lo Ly x 1 -1
z = — = — ace — —Z .
In N¢:1>‘i_z N no "o N

1. Convergence of the Stieltjes transform. Since
N
Ly = iZJA. — P, <  gn(z) —— ST (Py;p)
N -1 ' N,n—o0 MP N,n—oc0 MP

we prove the convergence of g,.

2. After algebraic manipulations and probabilistic arguments, we prove that

1
02(1 —cp) — 2 — z02cpgn(2) N,n—o0

gn,(Z) =
3. By stability of Maréenko-Pastur’s equation, g, converges to a function gyp
which satisfies the fixed point equation:

1
02(1—¢) — z — zo2cgyp(2)

gnip (2) =

4. We identify | Pyp = (Stieltjes Transform) ! (ggp) |

+en(z) with ep(z) —— 0
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Large Covariance Matrices

Large covariance matrices: general case
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Large covariance matrices
The model
» Consider a N x n matrix X with i.i.d. entries EX;; = 0,E|X;;|% = 1.

> Let Ry be a deterministic N X N nonnegative definite hermitian matrix.

» Consider
Y. =RY’X, .

with Ry the (deterministic) Population covariance matrix.

> Matrix Y5, is a n-sample of N-dimensional vectors:
. 1/2 *
Yn=[y; - y,] with y; =Ry“x1 and Ey,y] =Ry .

Theorem

> The spectral measure of Y',, converges toward

R
Poo = PR R Pyp

the free multiplicative convolution of the limit of the spectral measure of Ry
and MP.

Remark (small data, large sample)

> If N fixed and n — oo then

ly,.Y; — Ry ‘
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Simulations

> Consider the distribution
1 1 1
PR =5 -4 -
31+33+37
corresponding to a covariance matrix
Ry = diag(1,3,7)

each with multiplicity ~ %

» We plot hereafter
Poo = PR KPPy,

for different values of c.

1 1 1

1
t(z) = 7{ + +
3 (1 —c)A1 — 2 — zct(2)A1 (1 — c)Ag — 2 — zct(2)An (1 — c)Ag — z — zct(2)Ag

)
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Spiked models
Introduction and objective
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Introduction
The largest eigenvalue in MP model
Let p = p(n) and assume that

B—)cE(O,oo).
n mn—oo

Consider a p X n matrix Xy, with i.i.d. entries EX;; = 0 and E\Xij\Q = o2, then
1 *
L, (7Xan> — Pyp
n ,
where Py has support

Syp = {0} U [0°(1-v0)?, 0?1+ Vo)’

bulk
(remove the set {0} if ¢ < 1)
Theorem
> Let E|X;;|* < oo, then:
Amax (%an;i) ﬁ a2(1+0e)? .

‘ Message: The largest eigenvalue converges to the right edge of the bulk.
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Spiked Models |

Definition
Let IT,, be a small perturbation of the identity:
II, =1, + P, where P, = 01udy + - + Bkﬁkﬁ;

where k is independent of the dimensions p, n.
Consider

X, = Y*X,

This model will be refered to as a (multiplicative) spiked model.

Think of IT), as
1+64

II, = 1+ 6

Very important: The number k of perturbations is finite
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Spiked Models Il

Remarks
» The spiked model is a particular case of large covariance matrix model with
k
Ry =1,+ > 0,ii,ii}
=1
» There are additive spiked models: Xn = X,, + A,, where A,, is a matrix with

finite rank.

Objective
> What is the influence of IT;, over Ly (%inf(;) ?

> What is the influence of II, over Amax (%f(nf(;) ?
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Spiked Models Il

Remarks
» The spiked model is a particular case of large covariance matrix model with
k
Ry =1,+ > 0,ii,ii}
=1
» There are additive spiked models: Xn = X,, + A,, where A,, is a matrix with

finite rank.

Objective
> What is the influence of IT;, over Ly (%inf(;) ? None!

> What is the influence of II, over Amax (%f(nf(;) ?
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Spiked Models Il

Remarks
» The spiked model is a particular case of large covariance matrix model with
k
Ry =1,+ > 0,ii,ii}
=1
» There are additive spiked models: Xn = X,, + A,, where A,, is a matrix with

finite rank.

Objective
> What is the influence of IT;, over Ly (%inf(;) ? None!

» What is the influence of IT, over Amax (%Xni;) ? Well, it depends!
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Simulations I: Single spikes
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Figure: Spiked model - strength of the perturbation 6§ = 0.1
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Simulations I: Single spikes

N= 800, n=2000, sqrt(c)=0.63, theta=[ 0.5 ]
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Figure: Spiked model - strength of the perturbation § = 0.5
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Simulations I: Single spikes
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Figure: Spiked model - strength of the perturbation 6 = 1
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Simulations I: Single spikes
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Figure: Spiked model - strength of the perturbation 6 = 2
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Simulations I: Single spikes

Density

N= 800, n=2000, sqrt(c)=0.63, theta=[ 3 ]
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Figure: Spiked model - strength of the perturbation § = 3
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Observation #1

If the strength 6 of the perturbation P, is large enough, then the limit of
Amax (%Xni;;) is strictly larger than the right edge of the bulk.
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Simulations Il: Spectral measure
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Simulations Il: Sp
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Simulations Il: Spectral measure
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Simulations Il: Spectral measure
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Simulations Il: Spectral measure
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Simulations Il: Spectral measure
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Simulations Il: Multiple Spikes
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Simulations Ill: Multiple Spikes
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Simulations IlI: Multiple Spikes

N= 400, n=1000, sqrt(c)=0.63, theta=[ 2,2.5 ]

0.8
il

04 0.6

Density

0.2

T T T T T T T
0.0 0.5 1.0 1.5 20 25 3.0

spectrum

Figure: Spiked model - Two spikes

3.5

52



Simulations IlI: Multiple Spikes
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Simulations IlI: Multiple Spikes
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Simulations IlI: Multiple Spikes
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Simulations IlI: Multiple Spikes
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Observation # 2

Whathever the perturbations, the spectral measure converges toward Maréenko-Pastur
distribution
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Spiked models

The limiting spectral measure
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The limiting spectral measure |

Theorem

The following convergence holds true: | Ly, (%)Ninf(;;) LN PMP .

Remark

The limiting spectral measure is not sensitive to the presence of spikes
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The limiting spectral measure |l

Proof
The spiked model is a particular case of large covariance matrix model with
k
R,=1I,+ Z@gﬁgﬁz
=1

Consider the spectral measure of R, (orthogonal eigenvectors for the perturbations
assumed):

k P
1 1
LnR:;E 61+9,;+; > 6 —— PR =4
=1

n—oo
i=k+1 P

hence the limiting canonical equation

_ PR(d)) _ 1
b = / (1—c)A—z—zet(2)A (1 —c) — 2 — zct(2)

& ‘zct2+[z—(1—c)]t+1:0

= We recognize Mar&enko-Pastur canonical equation.
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Spiked models

The largest eigenvalue
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Behaviour of the largest eigenvalue
We consider the following spiked model:

X, = (I, + 6ad*)/2 X, with |jd||=1.
which corresponds to a rank-one perturbation.

Theorem

Recall that ¢ = limn— 00 %.

1~ ~
Amax = >\max (7XnX:;) L> 0'2(1 =+ \/6)2
n P,n—>00

a.s. 2 c 2 2
)\maxma (1+9)(1+5)>0 (1++e)
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Phase transition Phenomenon

limit of lambda_max as a function of theta

lambda_max

o*(1++c)?

0 Jc
theta
Figure: Limit of largest eigenvalue Amax as a function of the perturbation 6
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Phase transition Phenomenon

limit of lambda_max as a function of theta

lambda_max

o*(1++c)?

0 Jc
theta
Figure: Limit of largest eigenvalue Amax as a function of the perturbation 6

> If 0 < /c then

1~ ~
Amax ( an;’;) E—— 02(1 + \/6)2 .
p,n—>00

n
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Phase transition Phenomenon

limit of lambda_max as a function of theta

lambda_max

o*(1++c)?

0 Jc
theta
Figure: Limit of largest eigenvalue Amax as a function of the perturbation 6

> If 0 < /c then

1~ ~
Amax (7X-7’LX-:L) E—— 02(1 + \/6)2 .
n p,n—>00

Below the threshold \ﬁ Amax (%5(,&2,*1) asymptotically sticks to the bulk.
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Phase transition Phenomenon

limit of lambda_max as a function of theta
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Figure: Limit of largest eigenvalue Amax as a function of the perturbation 6
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Phase transition Phenomenon

limit of lambda_max as a function of theta

lambda_max

o*(1++c)?

0 Jc
theta
Figure: Limit of largest eigenvalue Amax as a function of the perturbation 6

> if 0 > \/c then

P,n—>00 n

. 1l . 9 c
lim /\max< Xan) = o2(1+06) (1+5)
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Phase transition Phenomenon

limit of lambda_max as a function of theta

lambda_max

o*(1++c)?

0 Jc
theta
Figure: Limit of largest eigenvalue Amax as a function of the perturbation 6

> if 6 > \/c then

P,n—>00

: 1 . _ 2 ¢ 2 2
lim  Amax (;ann> = o°(1+6) <1+5>>0 (14 +c)

Above the threshold /¢, Amax (%5(”5(;) asymptotically separates from the bulk.
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Strategy of proof

1. We first express a condition for which

1~ ~
Amax (7X7LX:>
n

separates from the bulk and refer to it as ‘ the determinant condition

2. Relying on Large Random Matrix theory, we simplify this condition and obtain

‘ the asymptotic condition ‘

3. We finally conclude, obtain the condition for which the limit of

Amax (%f(nf'(;) separates from the bulk, and compute this limit.

Notations
» Mar&enko-Pastur model

1
zn:;xnxg and  Q(z) = (=2, + Zn) !

> Spiked model

~ ~ 1~ ~
X, =TY2X, = (I, + 6did*)/?X,,  and  Znp=-X,X*
n
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The determinant condition |

We wish to find
> A% eigenvalue of the spiked model

= 1
Zp = —TI'/2X, X T1/2
n
> A% not an eigenvalue of MP model
1 *
Z, = —-X.X,
n

Otherwise stated

det (—)\91 + Z) =0| but |det (—,\91 + z) £0

Inverse of a rank-one perturbation of the identity

Recall that
IIy =1+ gau*

Standard results from linear algebra yield

0
My = (14 6ad*) ' =1— —— i
= (I+6ud) 1+o "
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The determinant condition |l

Let's go for simple computations:

det<—,\91+2):0 o det(—)\91+l'[

1/2
N

ZI11

1/2
N

) =0
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The determinant condition |l

Let's go for simple computations:

det (-A1+2) =0 & det (-NT+11°Z11)/%) =0

& det (-1 +2) =0
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The determinant condition |l

Let's go for simple computations:

det (-A1+2) =0 & det (-NT+11°Z11)/%) =0

& det (-1 +2) =0

0
< det (=AY I——ﬁﬁ*>+z):o
1+6
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The determinant condition |l

Let's go for simple computations:

det(—)\el-i-Z):O o det(—)\91+l'[

1/2
N

ZI11

1/2
N

) =0
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The determinant condition |l

Let's go for simple computations:

det (—,\91 + Z) -0 &

AT + n1/2zn1/2) -0

det (—NTIL! +Z>:0

det (-
(-
o (3 (1- ) +2) =0
(- :
l

0
)\91 z I+)0—gda Q' =0
+ ( + 1_i_euu Q")
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The determinant condition |l

Let's go for simple computations:

det(—/\91+2):0 & det <,\91+n1/2zn1/2):0
(

0
det [T+ 2 ——da QW) =0
& e [ + 1+6.uu Q( )}




The determinant condition |l

Let's go for simple computations:

det(—/\91+2):0 & det <,\91+n1/22n1/2):0
(

& det ( A"I+z) (I+A91L_;_9ﬁ‘ﬁ*Q(>\9)>} -0

6 did* 6 _
& | det [I+)\ TR0 )}

Interest of this expression

In this equation, perturbation features # and @ are separated from the resolvent of MP
model (non-spiked model)
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The determinant condition Il1
A useful formula
Let A € C™*™ and B € C"*™. Recall the formula

‘ det(Im + AB) = det(I, + BA) ‘

For a one-line proof of this property, write

v (Im =AY _ (I O\(I A \_ (I -A\(I+AB 0
T\B L) \B 1J\o 1+Ba) 0 I B I

And compute the determinant of M following each decomposition.

New formulation of the condition

The determinant condition writes

det I+>\‘9%"”*Q(/\9) =0 « X i Q%) =

e [ Mar QW)=

)
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The asymptotic condition |
Recall the condition

_1+9

Na QA = ;

Asymptotic simplification

By Isotropic MP theorem, we have
e 0\~ . 6
arQ(A")d —>p,n~>oo gnip ()\ ) .

Hence the final form of the condition




The asymptotic condition Il

> We introduce the following function p(z):
p(z) = 1+ 24(2)
> Let pyp associated to the Stieltjes transform:
prip(2) = 1+ zgyp(2) -
Then the condition over \? writes:

1406
Neye (V) = e () -1=

= PNIP ()\6) = —5

1

140

0
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The asymptotic condition Il

Plot of rho_MP

al-

o*(1++c)?

Figure: Plot of pyp on (o2(1 + 1/¢)?, c0)
The function pyp admits an explicit expression on (02(1 4 1/c)?, 00)

pMP(m):l—&—i{(l—z—c)—&— (1—m—c)2—40r} (o2
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The asymptotic condition Il

Plot of rho_MP

@ =

al-

o*(1++c)?
Figure: Plot of pyp on (o2(1 + 1/¢)?, c0)
The asymptotic condition is satisfied if

e (9) =3 o beod e
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Computing the limit \?

We have
1 1
. 0y _ _ = o _ -1 (_Z
Pyrp </\>— 9 e A _pMP( 9)

We therefore need to inverse pyp.

> Using Mar¢enko-Pastur equation and the relation between gy;p and pyip

ap(2) :
Enp 02(1 —¢) — z — zo2cgyp(2)
prp(2) = 1+ zgyp(2)
we get
o2
Z= m (Pxtp(2) = 1) (1 = cpyrp(2))

> Replacing now z = plgllp (—%) into the equation yields:

¥ sy (cg) =00 (145)
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Spiked models

Spiked model eigenvectors
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Spiked model eigenvectors |

» Consider the following p X n spiked model:
X, = (I+6du")"/?X, with [d|=1,
m/2x,,

where X,, has i.i.d. 0/0? entries.
> Let ¥max be the eigenvector associated to Amax, the largest eigenvalue of the
covariance matrix associated to X,,:

1o i) = "
(gxnx;i) Umax = AmaxUmax
Question

> What is the behavior of ¥max as p,n — oo in the regime where

P e (0,00)?
n

Reminder

Behaviour of largest eigenvalue Amax well-understood:

- if then Amax — 02(1 + /c)2, the right edge of MP bulk.

- if then Amax — 02(1+8)(1+¢/6), i.e. Amax separates from the bulk.
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Spiked model eigenvectors Il
Preliminary observations

1. Let p finite, n — oo, then

L (%xnx;) m2
Largest eigenvalue of IT is 1 + 6; associated eigenvector is u:
i = (I, + gud*)d = (1 + 0)d .
As a consequence:

Tmax —— 4 .

p
p,m — 0, - —c,
n

then | dim(Tmax) = p * 0o | We therefore consider the projection

e
VUmaxVUmax
of Umax on a generic deterministic vector @y € RP?, i.e.

a}‘\rﬁmaxﬁ;knaxaN = ‘<'l7maX7 ‘-iN>|2
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Spiked model eigenvectors Ill

Theorem

Let (@) be a family of deterministic vectors with norm 1, then

—k = —k — C c\ 1 =k ok = .S.
ANUmaxUmax@N — (1 — — 1+ = dyuu‘ay —— 0.

E 0
Remarks
> If p finite, n — oo, then

— a.s.
Bl Tmax TGN — G Gy —22 0 .
p,nﬁoo

> The large dimension % — ¢ induces a correction factor:

k(c) = (1 - 9%) (1 + §>71

> Of course k(c) — 1 if ¢ — 0.
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Outline

of proof

Expression of ¥max with the help of the resolvent

AN TmaxUiax@N = —— ayQ(z)a@y dz

2im Je+
Convenient expression of Umax where the contribution of the perturbation is
separated from the resolvent of the non-perturbated model (MP)

L _ayvﬁﬁ*aN?{ gp (%) &
C

IR
N Tmaxmax N 1406 + &1+ gyp(2)

Residue calculus to find the final form

JERFREN N - c N1 s a.s.
AN UmaxUmaxEN — <1 - 972) (1 + 5) ayuu‘ay ——— 0.
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Proof |

Reminder from complex analysis

We need a simple result from complex analysis:
1 dz

o —=1

2T Jo- =z

if C~ is a contour (take a circle of radius 1) enclosing counterclockwise 0.

» Proof:

let z = ¢ — = — B = oo 5
2t Jo- =z 2im Jo e 2t Jo e

In particular, if CTt is a contour enclosing A clockwise, then:

1 dz

2im Je+ A — =z

=1

(let C* be a circle (A 4 pe®?;0 < @ < 27) and perform a change of variable).

If CT does not enclose ), then the integral equals zero.

0 1 dz 1 27 d(et?) 1 27 4940 _

1
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Proof Il

Our objective

~ ~ ~ -1
To express Umax With the help of the resolvent Q(z) = (%XTLX; - zIp)

By the spectral theorem,

>\max
1~ ~
SR, X = 0, 3 o:
n .
)\P
)\max e
— vmax
['Umax Op—l} *
p—1
AP
In particular,
1 Amax —Z2 .
1 kel ""* — Umax
— an - ZIp = ['Umax Opfl} o*
n 1 p—1

Ap—2z
Recall that
> if 6 > \/c, Amax separates from the bulk
and consider a contour Ct exclusively enclosing the eigenvalue Amax.



Proof Il

We have
a*Narrlaxﬁit]axaN = . C_L’}kVQ(Z)l_I‘N dz
2im Jo+
Indeed,
1 —% —
— ayQ(z)an dz
2em Jo+
1
1 Amax —2 .
JERT Ve —
= . af}k\f ['Umax Op—l] |: Lhax :| ay dz
2am Jeo+ 1 p—1
Ap—z
1 1
3ix § pes—td §
JERT . v -
= a}ﬁv[’vmax Op—l] |: Ta); j| an
p—
1 1
2% § Ap—=z dz
1
ax (43 . ﬁ‘:nax =
=  @dy|[Umax Op-1] . - an
p—

_ —k = —k —
= ANTmaxUpmax@N -

75



Proof IV

Recall

- f’u’}FvQ(Z)aN dz
2em Jo+

and temporarily forget about the integral. Our objective now is:

to find a new formulation of &'}‘VQ(Z)EN and clearly separate the contribution from the
perturbation (4 and €) and the resolvent Q(z) from the non-pertubated model.

Introduce the notations
1 N ~ s 5.
Z=-X,X; and Z=-X,Xj
n n

and recall the formula for the inverse of a rank-one perturbation:

Aflﬁ-‘*Afl
(A+aa)l=a-t 2 UA
1+ dAud*
In particular
0
! = (1, +6da*) ! =1, - ——aa*
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Proof V

Q(2)

(1‘11/2z1'11/2 - zI) -
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Proof V

(1‘11/221'11/2 - zI) -

/2 (Z—2m )"/
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Proof V

(1'11/2z1'11/2 - zI) -

/2 (z — - " /2
/2 (Z — 2(1 4 6da*) )~ /2
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Proof V

Q) = (HI/QZHI/Q—zI>71

= m V2 (z-mm ) o2
= OV (Z-:1+60ua") ) /2

—1
= II1/2 (Z—z(l—%ﬁﬁ*)) /2
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Proof V

(1‘11/2z1'11/2 - zI)

-1

mo-1/2(z - -1~ /2
02 (Z - 2(1+6da) )~ /2

—1
/2 (z —z (I - %ﬁﬁ*)) m/2

-

n2z

—zI 4 gud

YTIITY2? where € = 2

0

146
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Proof V

(1'11/2z1'11/2 - zI)

—1

-2 (z— - )" /2
02 (Z - 2(1+6da) )~ /2

—1
/2 (z —z (I - %ﬁﬁ*)) m/2

n2z

o-1/2 (Q o

-

—zI 4 gud

YTIITY2? where € = 2

Qciii*Q )H_l/z
1+ £d*Qu

0

146
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Proof V

Qz) = (1‘11/2z1'11/2—z1)71

mo-1/2(z - -1~ /2
02 (Z - 2(1+6da) )~ /2

-1

= 12 <Z—z(l—iﬁﬁ*)> m1/2
1496

= T Y*(Z -1+ ¢iai") 'Y where £ = z

_ H_1/2<Q7 QUi Q )1—[—1/2
1+&6*Qu

0
146

Hence

@I/ 2Qud*QIIY/ 2@ y
1+ &ad* Qi

@y Qz)ay = ayTI/2Q()I  2a@y — ¢
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Proof V

Qz) = (1‘11/2z1'11/2—z1)71

= W2 (z-.m )t /?
= O Y2 (Z-21+0aa7) ") Il

-1

= H*1/2<Z—z(l—iﬁﬁ*>> m1/2
1496

= T Y*(Z -1+ ¢iai") 'Y where £ = z

_ H_1/2<Q7 QUi Q )1—[—1/2
1+&6*Qu

0
146

Hence

@I/ 2Qud*QIIY/ 2@ y

ayQ()ay = AT/ 2QE)I 2ay — e e

Not so ugly!
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Proof V

Qz) = (1‘11/2z1'11/2—z1>71

= W2 (z-.m )t /?
= O V2 (Z-:1+60ua") ) /2

-1
= 1'1*1/2(Z—Z(I—1L;66ﬁ*>) m/2

= T Y*(Z -1+ ¢iai") 'Y where £ = z

_ H_1/2<Q7 QUi Q )1—[—1/2
1+&6*Qu

0
146

Hence

@I/ 2Qud*QIIY/ 2@ y

@5 Q()ay = L IV/2Q()IT 2@y — ¢ e Qs

Not so ugly! And we have separated the contribution of the perturbation from the
non-perturbated model.
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Proof VI

Recall

@y Q(z)ay = @nII/2Q(:) %@y

-

@yTIY/2Qua* QII' /2@y

1+ 6 Qd
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Proof VI

Recall

. - . - ax Hl/QQﬁﬁ*QHI/QaN
@ Qz)ay = aTI/2Q()I  2ay — ¢ =X

1+ &u*Qu
and integrate the first term

1
— ¢ ayI/2Q()m/?ay =77
2im Je+
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Proof VI

Recall

. - . - ax Hl/QQﬁﬁ*QHI/QaN
@ Qz)ay = aTI/2Q()I  2ay — ¢ =X

1+ &u*Qu
and integrate the first term
1
— asI'/2Q(z)II  ?ay =0
2im Jo+

Why?
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Proof VI

Recall

e o - . ayIIt/2Quu* QIIY/2a
AN Q)N = GRTI2Q)IT 2ay — ¢ = ﬁgﬁ*&i -

and integrate the first term
1
— ¢ aymI/?Q(x)mY?@y =0
2im Je+

Why? Because
1. the contour only encloses Amax(Z) which is away from the bulk,

2. but all the eigenvalues of Z are in the bulk. Hence:

1 7{ 1
P ——F— dz = 0.
2im Jo+r N(Z) — =
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Proof VI

Recall

e o o . ayIIt/2Quu* QIIY/2a
aNQ(z)dy = aym'/?Q(x) ' 2ay — =X 15—2&1*8& =

and integrate the first term
1
— ¢ aymI/?Q(x)mY?@y =0
2im Je+

Why? Because
1. the contour only encloses Amx(i) which is away from the bulk,

2. but all the eigenvalues of Z are in the bulk. Hence:

1 7{ 1
P ——F— dz = 0.
2im Jo+r N(Z) — =

Last step is to simplify the remaining expression by systematically use the large p,n
quadratic form approximation:

a.s.

*Q(2)d — & d gyp(2) 0

p,n—>00




Proof VI

Recall

e o o . ayIIt/2Quu* QIIY/2a
aNQ(z)dy = aym'/?Q(x) ' 2ay — =X 15—2&1*8& =

and integrate the first term

1
— ¢ aymI/2Q(z)mY2a@y =0
2im Je+
Why? Because
1. the contour only encloses Amx(i) which is away from the bulk,

2. but all the eigenvalues of Z are in the bulk. Hence:

1 7{ 1
P ——F— dz = 0.
2im Jo+r N(Z) — =

Last step is to simplify the remaining expression by systematically use the large p,n
quadratic form approximation:

—x 111/20907 o~ A% T71/20 o
ok 7T ox 7 a.s. Ti\fn 1/(22_? ~ gi\frll/2:lgMP(Z)
¢*Q(z)d — ¢*dgyp(2) p—— 0 |= i QI} ay =~ u'Il'/?ay gyp(2)
a*Qu ~  gyp(2)
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Proof VII

After simplifications,

—

% = —k
QN UmaxUmax @N

X

1

2¢m

a2

ct

andidy

gp(2)
£+ gyp (2)

140

It remains to compute the correction factor

1

gyp (2)

g4p(2) J
%ch €T +gup(2)

dz

140 Jor € +gyp(2)

by residue calculus (not that difficult).

A minor miracle occurs: This factor admits a closed form formula!

1 7{ 8yp (2)
140 Je+ €+ gypl(z

Finally:

o= (=) (045)”

=% — —k —
AN UVmaxUmax@GN — (1 —

[

02

)(

14 =
+0
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Spiked models

Spiked models: Summary
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Summary |

Spiked model

> Let IT a small perturbation of the identity [Example: II = I, + 0Gi*]
» X, a p X n matrix with i.i.d. entries

then | X,, = IT!/2X,, | is a (multiplicative) spiked model

Global regime

Spectral measure L, (%5(,5&;;) converges to Mar&enko-Pastur distribution Pyp
Largest eigenvalue

> if |6 < \/c| then Amax (%an(;;) converges to the right edge of the bulk

> if |0 > \/c| then Amax (%5@5&2) separates from the bulk

1l = .
Amax (;xnx;) = o2(1+6) (1 + g) > 02(1 4 v/2)?
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Summary I
Recall that _
X, =M'%2X, where II= (I, + 6dd*) .

Eigenvector Uy, associated to Apax
> Let Umax be the eigenvector associated to Amax,
P .
;ann Umax = AmaxUmax

> and U the eigenvector associated to the largest eigenvalue of I

i = (I, + Odd*) i = (1+ 0)i .

Then
a5 TmaxFandn — (1= o) (1+ 5)716* Gty —= 0
NUmaxUmax@N 02 0 N N oo

» Notice the correction factor depending on ¢

0030+




Large Lotka-Volterra systems of ODE
Introduction
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Lotka-Volterra system of coupled differential equations

A popular model to describe the dynamics of interacting species in foodwebs is given
by a system of Lotka-Volterra equations:

day(t)
dt

= xp(ry — zp + (Bx)k) ke[N], == (zk).

Here (Bx), = >, Brexy.
> N is the number of species in a given foodweb,
> 1z = 1 (t) is the abundance (=population) of species k at time ¢,
> 1 = () where r is the intrinsic growth rate of species k,

> B = (By¢) where Byy is the interaction between species ¢ and species k
Remarks
1. if g = x(t = 0) > 0 then for all t > 0, x(t) > 0.

2. if B =0 (no interactions), we recover the logistic equation

dz (t)
dt

=ap(ry —xx)  Vk € [N]



Main assumption: a random model for the interaction matrix B

> The study of large Lotka-Volterra systems makes it very difficult to calibrate the
model and estimate matrix B.

> An alternative is to consider random matrices, the statistical properties of which
encode some real properties of the foodwed.

> it is a very rough approach but we need a model otherwise ..

No maths = no understanding

A. Rossberg, in Food webs and biodiversity (Wiley)

Some random models
> The Wigner model, (real) Ginibre model: poor adequation to reality but a good
benchmark to explore the mathematical tractability
> The elliptic model: encodes the natural correlation between By, and By

> Sparse models: encodes the fact that a species only interacts with d < N other
species.

» Variance profiles, non-centered matrices, etc: of interest but harder to analyze.
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Questions

Recall the model of interest

v

dxy,(t)
dt

=ak(re —zp + (Bx)g) | == (k).

Existence of an equilibrium x* = (z}) such that
zj(ry —zf + (Bx*)) =0 Vk € [N].
Stability of this equilibrium: if g > 0, do we have

z(t) —— x*?
t— oo

Properties of the equilibrium x*, in particular species extinction:

Can we have z} =0 for some k€ [N]?

Feasibility of this equilibrium:
Can we have zj >0 for all k€ [N]?

Existence of Multiple equilibria?
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The typical dynamics of a LV system

Dynamique systéme différentiel de Lotka-Volterra

1754

1.50 4

1254

1.001

Abondances (x;)

0.75 1

0.50 4

0.25 4

0.00 4

Temps (t)

Figure: A LV system with 9 species, converging to equilibrium, with one species vanishing
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The elliptic model for Large LV systems

> We will mainly consider the p-elliptic model where

(x2)~ (o5 1))

Elliptic matrix eigenvalues, N= 500 , rho= 0.25 Non-hermitian matrix eigenvalues, N= 1000

E E
§ s R
£ £
e
15 40 o5 00 05 10 1s 10 0s 00 0s 10
Re(specirum) Re(spectum)
Figure: elliptic law (left) — circular law corresponding to p = 0 (right)
Remark

> Notice that this model interpolates between the (real) Ginibre model where p = 0
and the Wigner model where p = 1.
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Large Lotka-Volterra systems of ODE

Stability
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Stability

Recall the model of interest

dx(t) X
= - B h B =
o ap(re — o + (Bx)g) | where s

and
» X is p-elliptic and the spectrum of % is of order O(1),
> K is an extra normalizing parameter.
A sufficient condition for stability
X

Suppose that B = e where X is N x N random p-elliptic. If

K> +/2(14 p)

then the LV system a.s. eventually admits a unique stable equilibrium x%; > 0.
Elements of proof

> Based on a sufficient result of Takeuchi and Adachi (1980)
> the existence of a Lyapounov function

> the asymptotic behaviour of

X+XT>

1
)\max(B + BT) = ;)\max ( \/N



Large Lotka-Volterra systems of ODE

All species survive: feasibility
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Feasible equilibrium: a simple linear equation

Consider the LV system

d X
W _ 2 (re — 2k + (Bx)g) where B=——

dt kVN

» We investigate the case where there exists a positive equilibrium
z*>0 <& x5 >0 Vke[N].

In theoretical ecology it is called a feasible equilibrium and is of interest because
all species survive.

v

> Such an equilibrium should satisfy

If matrix I — B is invertible, then

v

x* = (I —-B) lr.



A logarithmic correction implies feasibility

Suppose that X is p-elliptic and consider the system

X
el ——2* hy = — 0.
T +n\/ﬁm where K=Ky Nﬂoooo

Denote by | K3y = v/21og(N) |.

Theorem (phase transition)

> If < (1 —=96)ky for N 1 th Pq inf 27 >0, —— 0
o S (1= for > v | P{ i o > 0} S
> If ky > (1+6)K}y for N> 1 then ]P{kierbfv]xz>0}m>l

References

> Bizeul-N., 2021 (Ginibre case), Clenet, El Ferchichi, N. 2022 (Elliptic case).
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About the logarithmic factor

» Notice that

X 1
n}*\,\/ﬁ" =¢ < 210g(N)>

Hence
* 1+ X *
xr = — X
wkV N
~ 1
as N — oo.
> but
N 102 | 103 | 10* | 10° | 106
= 0.33 | 0.27 | 0.23 | 0.21 | 0.19
N

> the logarithmic factor decreases extremely slowly to zero.



Phase transition

Homogeneous case, Gaussian entries

104 — n = 1000
—-- n =400
—=—- threshold

» We plot the frequency of positive solutions over 10.000 trials for the system
1 X
e
K/log(N) VN

as a function of the parameter K.

¥ =1

> A phase transition occurs at the critical value K = /2.



Large Lotka-Volterra systems of ODE

Stability without feasibility
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Statistical properties of the equilibrium

Existence of an equilibrium

Recall that if & > /2(1 + p), then

> a.s. eventually there exists a stable equilibrium x}; to the LV system

day(t)
= o (ri — ap + (Bx)p), k€ [N]
Question
Matrix B being random, so is «*,

» How can we extract statistical information on x* from this?

> We focus on the empirical measure of the equilibrium

. 1
W= 2
i€[N]

in the asymptotic regime N — co.
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Main results |

dzy(t)
> Recall the LV system pranial (rk — zk + (Bx)g) | where B = niﬁ
2
> Assume that » Il B and (a.s.) u” LI L(F) .
N—oo
Theorem (Gueddari-Hachem-N. , 2024)
> Let k > /2(1 + p), then
W (00 (0247),)| Z~NOY), ZAF
N — o0 + ’ ’
where (§, 0, ~) satisfy
K = 5+ PEV
o2 = %E(nz+f)i, Z ~ N(0,1), indep. from 7

L= ]P’[GZ+F>0].
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Consequences
Proportion of surviving species

We are interested in the proportion of surviving species, depending on k:

1 _
N Z l{x:>0} >~ P(UZ+7_’>O):
1€[N]

Distribution of surviving species

Denote by s(a*) the subvector of * with positive components of x*. Its size |s(x*)|
is random and the empirical distribution of the surviving species is:

Hs(w*) _ 1

Sratmrl -
" [s(=*)];
8@ s '

A good proxy should be

£<(1+p /%) (cZ +7), ‘02+f>0) ,

the density of which is explicit (often referred to as "truncated Gaussian”).
References

> Bunin 2017, Galla 2018 (based on theoretical physics methods)

> Akjouj, Hachem, Maida, N. 2023, ArXiv. (Wigner case)

» Gueddari, Hachem, N. 2024, Arxiv. (Elliptic case)
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Simulations |: Proportion of surviving species
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Figure: Experimental proportions of surviving species vs theoretical values ~ for three correlation
coefficients p = —0.7,0,0.4 w.r.t. the interaction strength (k).
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Simulations II: density of surviving species
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Figure: Histogram of positive abundances vs the truncated gaussian density function fsyury for
p = 0.4 with the interaction strength fixed to k = 2.
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Elements of proof

We can prove that an equilibrium is defined by the following set of constraints:

z* > 0,
(I-B)xz*—r > 0,
zf ([(I - B)x*]; —r;) = 0.

We can get an alternative, fixed-point equation formulation: Let x4 = max(z,0).

Then

if and only if z; = a*.

Remarks

> There are many procedures to compute a fixed-point. For example

Z0 € RN
Zpr1 = B(zp)y + 7
> The main issue is to keep track of the distribution of z,.

> Notice the strong dependence between the z,'s in the previous scheme.

» The class of approximate message passing algorithms (developed by Montanari
et al.) is well suited to fulfill this task.



Large Lotka-Volterra systems of ODE

Beyond a unique equilibrium
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Beyond a unique equilibrium

> So far, we have presented some progress to understand large LV systems at a
mathematical level of understanding.

> The truth is that we keep on running after theoretical physicists
Altieri, Barbier, Biroli, Bunin, Cammarota, Galla, Ros, etc.

who discovered these formulas and many other phenomenas earlier, relying on
powerful cavity, replicas, free energy computation methods, etc. many of which
inspired from Parisi's work.
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Beyond a unique equilibrium

T

Unbounded Growth

Multiple Attractors (MA)

'

Unique Fixed-Point (UFP)

L L L
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cooperation
PR
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= Smean(e, J) >

Figure: A figure taken from Bunin's 2017 article " Ecological communities with Lotka-Volterra

dynamics” associated to the model

> In particular Bunin and other physicists predict phases with multiple equilibria for

large LV models.

> It is an open question to understand this mathematically.
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Overall conclusion

Thank you for your attention!
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Appendix
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