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6.1 INTRODUCTION
In a discussion article on the application of mathematics in meteorology, Bigelow (1905) describes the
fundamentals of modeling in a timeless manner:

There are three processes that are generally essential for the complete development of any branch of

science, and they must be accurately applied before the subject can be considered to be satisfactorily

explained. The first is the discovery of a mathematical analysis, the second is the discussion of nu-

merous observations, and the third is a correct application of the mathematics to the observations,

including a demonstration that these are in agreement.
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The topic of this chapter is methods for carrying out the last item on Bigelow’s list, that is, methods
to demonstrate the agreement between a model and a set of observations. Ensemble prediction systems
and statistically postprocessed ensemble forecasts provide probabilistic predictions of future weather.
Verification methods applied to these systems should thus be equipped to handle both the verification
of the best prediction derived from the ensemble and the verification of the associated prediction
uncertainty.

Murphy (1993) argues that a general prediction system should strive to perform well on three types
of goodness: There should be consistency between the forecaster’s judgment and the forecast, there
should be correspondence between the forecast and the observation, and the forecast should be infor-
mative for the user. Similarly, Gneiting, Balabdaoui, and Raftery (2007) state that the goal of proba-
bilistic forecasting should be to maximize the sharpness of the predictive distribution subject to
calibration. Here, calibration refers to the statistical consistency between the forecast and the observa-
tion, while sharpness refers to the concentration of the forecast uncertainty; the sharper the forecast, the
higher information value will it provide, as long as it is also calibrated. The prediction goal of Gneiting
et al. (2007) is thus equivalent to Murphy’s second and third types of goodness.

We focus on verification methods for probabilistic predictions of continuous variables in one or
more dimensions under the general framework described by Murphy (1993) and Gneiting et al.
(2007). Specifically, we denote an observation in d dimensions by y ¼ (y1, …, yd) 2 Ωd for d ¼ 1,
2, …, where Ω denotes either the real axis , the nonnegative real axis "0, the positive real axis
>0, or an interval on . A probabilistic forecast for y given by a distribution function with support
onΩd is denoted by F2F for some appropriate class of distributionsF , with the density denoted by f if
it exists. For ensemble forecasts, we will alternatively use the notation x¼ {x1,…, xK} to describe theK
ensemble members or F for the associated empirical distribution function. Verification methods for
deterministic predictions and other types of variables are discussed, for example, in Wilks (2011,
Chapter 8) and Jolliffe and Stephenson (2012).

This chapter is organized as follows. Diagnostic tools for checking calibration are discussed in
Section 6.2. Section 6.3 describes methods that assess the accuracy of forecasts where each forecast
is issued a numerical score based on the event that materializes. Scoring rules apply to individual events
while divergence functions compare the empirical distribution of a series of events with a predictive
distribution. The scores may focus on certain aspects of the forecast, such as the tails, and it is important
also to assess the uncertainty in the scores. The properties of various univariate scores are compared in a
simulation study. While the methods in Section 6.3 provide a decision-theoretically coherent approach
to model evaluation and model ranking, they may hide key information about the model performance
such as the direction of bias. Additional evaluation may thus be needed to better understand the per-
formance of a single model. Approaches for this are discussed in Section 6.4. The chapter then closes
with a summary in Section 6.5.

6.2 CALIBRATION
Calibration, or reliability, is the most fundamental aspect of forecast skill for probabilistic forecasts as
it is a necessary condition for the optimal use and value of the forecast. Calibration refers to the sta-
tistical compatibility between the forecast and the observation; the forecast is calibrated if the obser-
vation cannot be distinguished from a random draw from the predictive distribution.
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6.2.1 UNIVARIATE CALIBRATION
Several alternative notions of univariate calibration exist for a single forecast (Gneiting et al., 2007;
Tsyplakov, 2013) and a group of forecasts (Str€ahl & Ziegel, 2017). We focus on the so-called prob-
abilistic calibration as suggested by Dawid (1984); F is probabilistically calibrated if the probability
integral transform (PIT) F(Y), the value of the predictive cumulative distribution function for the ran-
dom observation Y, is uniformly distributed. If F has a discrete component, a randomized version of the
PIT given by

lim
y"Y

FðyÞ+V FðYÞ% lim
y"Y

FðyÞ
! "

with V&Uð½0,1(Þ may be used, see Gneiting and Ranjan (2013). Here, we use y"Y to denote that the
limit is taken as y approaches Y from below.

Assume our test set consists of n observations y1, …, yn. For a forecasting method issuing contin-
uous univariate predictive distributions F1, …, Fn, calibration can be assessed empirically by plotting
the histogram of the PIT values

F1ðy1Þ,…,FnðynÞ:

A forecasting method that is calibrated on average will return a uniform histogram, a \-shape indicates
overdispersion and a [-shape indicates underdispersion, while a systematic bias results in a triangular-
shaped histogram. Examples of miscalibration are shown in Fig. 6.1, including a biased forecast
(panel a), an underdispersive forecast (panel b), an overdispersive forecast (panel c), and an example
of a multiply misspecified forecast where the left tail is too light, the main bulk of the distribution lacks
mass and the right tail is too heavy (panel d).

The discrete equivalent of the PIT histogram, which applies to ensemble forecasts, is the verifica-
tion rank histogram (Anderson, 1996; Hamill & Colucci, 1997). It shows the distribution of the ranks of
the observations within the corresponding ensembles and has the same interpretation as the PIT
histogram.
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FIG. 6.1

Probability integral transform (PIT) histograms for 100,000 simulated standard Gaussian N ð0,1Þ observations
and various misspecified forecasts: (a) biased N ð0:5,1Þ forecasts, (b) underdispersive N ð0,0:752Þ forecasts,
(c) overdispersive N ð0,22Þ forecasts, and (d) multiply misspecified generalized extreme value GEV(0, 1, 0.5)
forecasts. The theoretically optimal histograms are indicated with dashed lines.
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The information provided by a rank histogram may also be summarized numerically by the reli-
ability index (RI), which is defined as

RI¼
XI

i¼1

ζi%
1

I

####

####

where I is the number of (equally sized) bins in the histogram and ζi is the observed relative frequency
in bin i ¼ 1, …, I. The RI thus measures the departure of the rank histogram from uniformity (Delle
Monache, Hacker, Zhou, Deng, & Stull, 2006).

6.2.2 MULTIVARIATE CALIBRATION
For assessing the calibration of multivariate forecasts, Gneiting, Stanberry, Grimit, Held, and Johnson
(2008) formalized a general two-step framework. Let S¼ {x1,…, xK, y} denote a set of K + 1 points in
Ωd comprising an ensemble forecast with Kmembers and the corresponding observation y. The rank of
y in S, rankS(y), is calculated in two steps,

(i) apply a prerank function ρS : Ω
d !"0 to calculate the prerank ρS(u) of every u 2 S resulting in a

univariate value for each u;
(ii) set the rank of the observation y equal to the rank of ρS(y) in {ρS(x1), …, ρS(xK), ρS(y)},

rankSðyÞ¼
X

v2S
1fρSðvÞ) ρSðyÞg

where 1 denotes the indicator function and ties are resolved at random.

Here, we focus on four different approaches that follow this general two-step framework. Further
approaches are discussed in Gneiting et al. (2008), Ziegel and Gneiting (2014), and Wilks (2017).
The difference between our four approaches lies in the definition of the prerank function ρS in step
(i). The multivariate ranking of Gneiting et al. (2008) is defined using the prerank function

ρmS ðuÞ¼
X

v2S
1fv≼ug (6.1)

where v≼u if and only if vi) ui in all components i¼ 1,…, d. Gneiting et al. (2008) further consider an
optional initial step in the ranking procedure in which the data is normalized in each component before
the ranking. The average ranking proposed by Thorarinsdottir, Scheuerer, and Heinz (2016) provides a
similar ascending rank structure and is given by the average over the univariate ranks. That is, let

rankSðu, iÞ¼
X

v2S
1fvi ) uig

denote the standard univariate rank of the ith component of u among the values in S. The multivariate
average rank is then defined using the prerank function

ρaSðuÞ¼
1

d

Xd

i¼1

rankSðu, iÞ (6.2)

Two further approaches assess the centrality of the observation within the ensemble. Under minimum
spanning tree ranking, the prerank function ρmst

S ðuÞ is given by the length of the minimum spanning tree
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of the set S n u, that is, the set S without the element u (Smith & Hansen, 2004; Wilks, 2004). Here, a
spanning tree of the set Snu is a collection of K % 1 edges such that all points in Snu are used, with no
closed loops. The spanning tree with the smallest length is then the minimum spanning tree (Kruskal,
1956); it may, for example, be calculated using the R package vegan (Oksanen et al., 2017; R Core
Team, 2016).

Alternatively, the band-depth ranking proposed by Thorarinsdottir et al. (2016) uses a prerank
function that calculates the proportion of components of u 2 S inside bands defined by pairs of points
from S. It can be written as

ρbdS ðuÞ¼ 1

d

Xd

i¼1

rankSðu, iÞ ðK + 1Þ% rankSðu, iÞ½ (+ rankSðu, iÞ%1½ (
X

v2S
1fvi ¼ uig

" #

(6.3)

If ui 6¼ vi with probability 1 for all u, v 2 S with u 6¼ v and i ¼ 1,…, d the formula in Eq. (6.3) may be
simplified to

ρbdS ðuÞ¼ 1

d

Xd

i¼1

ðK + 1Þ% rankSðu, iÞ½ ( rankSðu, iÞ%1½ ( (6.4)

This implies that the formula in Eq. (6.3) should be used for forecasts with a discrete component, for
example, precipitation forecasts. The band depth in Eq. (6.3) is equivalent to the simplicial depth pro-
posed by Liu (1990) and thus also to the simplicial depth ranking proposed by Mirzargar and Anderson
(2017), see López-Pintado and Romo (2009) and Thorarinsdottir et al. (2016).

While all four methods return a uniform rank histogram for a calibrated forecast, the interpretation
of the histogram shape for a misspecified forecast varies between the methods as demonstrated in the
following example.

6.2.3 EXAMPLE: COMPARING MULTIVARIATE RANKING METHODS
The four multivariate ranking methods are compared in Fig. 6.2 for several different settings where
y2d can be thought of as a temporal trajectory of a real-valued variable observed at d¼ 10 equidistant
time points t ¼ 1, …, 10. In the first two examples (rows 1 and 2), y is a realization of a zero-mean
Gaussian AR(1) (autoregressive) process Y with a covariance function given by

CovðYi, YjÞ¼ expð%ji% jj=τÞ, τ> 0: (6.5)

The process Y thus has standard Gaussian marginal distributions while the parameter τ controls how
fast correlations decay with time lag. We set τ¼ 3 for Y and consider ensemble forecasts with 50 mem-
bers of the same type, but with a different parameter value τ. That is, we set τ¼ 1.5 in row 1 (too strong
correlation) and τ¼ 5 in row 2 (too weak correlation). It follows from this construction that a univariate
calibration test at a fixed time point would not detect any miscalibration in the forecasts.

While all four methods are able to detect the misspecification in the correlation structure, the result-
ing histograms vary in shape. The shape of the average rank histograms and the band-depth rank histo-
grams offer a similar interpretation as that of the univariate rank histograms in Fig. 6.1 with a [-shape
when the correlation is too strong (underdispersion across components) and a \-shape when the cor-
relation is too weak (overdispersion across components). In these 10-dimensional examples, the pre-
rank ordering of the multivariate rank histograms (Eq. 6.1) is only able to detect miscalibration related

1596.2 CALIBRATION



To
o 

st
ro

ng
 c

or
re

la
tio

n
To

o 
w

ea
k 

co
rr

el
at

io
n

O
ve

rd
is

pe
rs

io
n

Average rank

U
nd

er
di

sp
er

si
on

Band depth rank Multivariate rank Minimum spanning tree rank

FIG. 6.2

Rank histograms for multivariate data showing various types of miscalibration under different ranking methods:
average ranking (first column), band-depth ranking (second column), multivariate ranking (third column),
and minimum spanning tree ranking (fourth column); 10,000 simulated observations of dimension 10 are
compared with ensemble forecasts with 50 members. In the top two rows, the observations are realizations of a
zero-mean Gaussian AR(1) process with the covariance function in Eq. (6.5) where τ ¼ 3. The forecasts
follow the samemodel with τ¼ 1.5 (first row) and τ¼ 5 (second row). In the bottom two rows, the observations are
i.i.d. standard Gaussian variables while the forecasts have variance 1.252 (third row) and 0.852 (fourth row).
The theoretically optimal histograms are indicated with dashed lines.

160 CHAPTER6 VERIFICATION: ASSESSMENTOF CALIBRATIONANDACCURACY



to the highest ranks (see also the discussion in Pinson & Girard, 2012 and Thorarinsdottir et al., 2016).
Under minimum spanning tree ranking, too many observations have high ranks when the correlation in
the forecasts is too strong and the opposite holds for the example with too weak correlation in the
forecasts.

In the latter two examples in Fig. 6.2 (rows 3 and 4), both observations and forecasts are i.i.d. vari-
ables in 10 dimensions. However, the marginal distributions of the ensemble forecasts are misspecified.
The observations follow a standard Gaussian distribution, the forecasts in row 3 have a standard de-
viation of 1.25 (overdispersion) and the forecasts in row 4 have a standard deviation of 0.85 (under-
dispersion). The shape of the average rank histograms is exactly that of their univariate counterparts in
Fig. 6.1, indicating that this ranking method cannot distinguish betweenmiscalibration in the marginals
and the higher-order structure. For the two ranking methods based on centrality, the marginal overdis-
persion results in too many high ranks while the marginal underdispersion results in too many low
ranks. For this dimensionality, the multivariate ranking is unable to detect the miscalibration.

Further comparison of the four ranking methods is provided in Thorarinsdottir et al. (2016) and
Wilks (2017). In general, it is a challenging task to represent and compare a multifaceted higher-order
structure with a single value. As the different methods vary in their strengths and weaknesses, it is
recommended that several of these methods be applied when assessing multivariate calibration. The
multivariate ranking of Gneiting et al. (2008), for instance, does not satisfy affine invariance
(Mirzargar & Anderson, 2017) while lower-dimensional positive and negative biases may cancel
out under average ranking (Thorarinsdottir et al., 2016).

Furthermore, a prior assessment of the marginal calibration may increase the information value in
the multivariate rank histograms and ease the interpretation of the resulting shapes. As the multivariate
methods perform a simultaneous assessment of the marginal and the higher-order calibration, a specific
nonuniform shape may represent multiple types of misspecifications. For example, depth-based ap-
proaches such as the band-depth ranking and the minimum spanning tree ranking are not able to dis-
tinguish between underdispersive and biased forecasts (Mirzargar & Anderson, 2017).

6.3 ACCURACY
In this section, we discuss methods for assessing forecast accuracy that are appropriate for ranking and
comparing competing forecasting methods. Alternative assessment techniques that may provide addi-
tional insights for understanding the performance and errors of a single forecasting model, but are not
appropriate for forecast ranking are discussed in Section 6.4.

6.3.1 UNIVARIATE ASSESSMENT
Scoring rules assess the accuracy of probabilistic forecasts by assigning a numerical penalty to each
forecast-observation pair. Specifically, a scoring rule is a mapping

S : F *Ωd ![f∞g (6.6)

where for every F2F the map y 7! S(F, y) is quasiintegrable. In our notation, a smaller penalty in-
dicates a better prediction. A scoring rule is proper relative to the class F if

GSðG,YÞ)GSðF,YÞ (6.7)
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for all probability distributions F,G2F , that is, if the expected score for a random observation Y is
optimized if the true distribution of Y (G) is issued as the forecast. The scoring rule is strictly proper
relative to the class F if Eq. (6.7) holds with equality only if F ¼ G. Propriety will encourage honesty
and prevent hedging, which coincides with Murphy’s first type of goodness (Murphy, 1993). That is,
the scores cannot be hedged by a willful divergence of the forecast from the true distribution to improve
the perceived performance, see for example the discussion in Section 1 of Gneiting (2011).

Competing forecasting methods are verified based on a proper scoring rule by comparing their
mean scores over an out-of-sample test set. The method with the smallest mean score is preferred. For-
mal tests of the null hypothesis of equal predictive performance can also be employed, see
Section 6.3.7. While average scores are directly comparable if they refer to the same set of forecast
situations, this may no longer hold for distinct sets of forecast cases, for instance due to spatial and
temporal variability in the predictability of weather. For ease of interpretability and to address this is-
sue, verification results are sometimes represented as a skill score of the form

Sskilln ðAÞ¼

1

n

Xn

i¼1

SðFA
i ,yiÞ%

1

n

Xn

i¼1

SðFref
i ,yiÞ

1

n

Xn

i¼1

SðFperf
i ,yiÞ%

1

n

Xn

i¼1

SðFref
i ,yiÞ

(6.8)

for the forecasting method Awhere Fref denotes the forecast from a reference method, Fperf denotes the
perfect forecast, and n is the size of the test set. The skill score is standardized such that it takes the
value 1 for an optimal forecast and the value 0 for the reference forecast. Negative values thus indicate
that the forecasting method A is of a lesser quality than the reference forecast. However, it is vital to
select the reference forecast with care (Murphy, 1974, 1992) as skill scores of the form of Eq. (6.8) may
be improper even if the underlying scoring rule S is proper (Gneiting &Raftery, 2007; Murphy, 1973a).

The most popular proper scoring rules for univariate real-valued quantities are the ignorance (or
logarithmic) score (IGN) and the continuous ranked probability score, see Gneiting and Raftery
(2007) for a more comprehensive list. IGN is defined as

IGNðF,yÞ¼% log f ðyÞ (6.9)

where f denotes the density of F (Good, 1952). It thus applies to absolutely continuous distributions
only and cannot be applied directly to ensemble forecasts. For a large enough ensemble, the density
of the ensemble forecast may potentially be approximated using, for example, kernel density estimation
or by fitting a parametric distribution. Alternatively, IGN may be replaced by the Dawid-Sebastiani
(DS) score (Dawid & Sebastiani, 1999),

DSðF,yÞ¼ logσ2F +
ðy%μFÞ

2

σ2F
(6.10)

where μF denotes the mean value of F and σ2F its variance. While the proper DS score equals IGN for a
Gaussian predictive distribution F, it only requires the estimation of the ensemble mean and variance.

The continuous ranked probability score (CRPS) (Matheson & Winkler, 1976) is of particular in-
terest in that it simultaneously assesses both calibration and sharpness, and thus all three types of good-
ness discussed by Murphy (1993). The CRPS applies to probability distributions with a finite mean and
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has three equivalent definitions (Gneiting & Raftery, 2007; Gneiting & Ranjan, 2011; Hersbach, 2000;
Laio & Tamea, 2007),

CRPSðF,yÞ¼FjX% yj%1

2
FFjX%X0j (6.11)

¼
Z +∞

%∞
FðxÞ%1fy) xgð Þ2dx (6.12)

¼
Z 1

0

F%1ðτÞ% y
$ %

1fy)F%1ðτÞg% τ
$ %

dτ (6.13)

Here, X and X0 denote two independent random variables with distribution F, 1fy) xg denotes the
indicator function that is equal to 1 if y ) x and 0 otherwise, and F%1ðτÞ¼ inffx2 : τ)FðxÞg is
the quantile function of F.

It follows directly from Eqs. (6.12), (6.13) that the CRPS is tightly linked to other proper scores that
focus on specific parts of the predictive distribution. The form in Eq. (6.12) can be interpreted as the
integral over the Brier score (Brier, 1950), which assesses the predictive probability of threshold ex-
ceedance. The Brier score is usually written in the form

BSðF,y|uÞ¼ pu%1fy" ugð Þ2 (6.14)

for a threshold u with pu ¼ 1 % F(u). Similarly, the integrand in Eq. (6.13) equals the quantile score
(Friederichs & Hense, 2007; Gneiting & Raftery, 2007),

QSðF,y|qÞ¼ F%1ðqÞ% yð Þ 1fy)F%1ðqÞg%qð Þ (6.15)

which assesses the predicted quantile F%1(q) for a probability level q 2 (0, 1).
When the predictive distribution F is given by a finite ensemble {x1, …, xK}, the CRPS represen-

tation in Eq. (6.11) is equal to

CRPSðF,yÞ¼ 1

K

XK

k¼1

jxk% yj% 1

2K2

XK

k¼1

XK

l¼1

jxk% xlj (6.16)

see Grimit, Gneiting, Berrocal, and Johnson (2006). For small ensembles, Ferro, Richardson, and
Weigel (2008) propose a fair approximation given by

CRPSðF,yÞ+ 1

K

XK

k¼1

jxk% yj% 1

2KðK%1Þ
XK

k¼1

XK

l¼1

jxk% xlj (6.17)

For large ensembles, a more computationally efficient calculation is based on the generalized quantile
function (Laio & Tamea, 2007). Let x(1) )⋯ ) x(K ) denote the order statistics of x1, …, xK. Then

CRPSðF,yÞ¼ 2

K2

XK

i¼1

xðiÞ %y
$ %

K1fy< xðiÞg% i+
1

2

! "
(6.18)

see also Murphy (1970). The formula in Eq. (6.18) is implemented in the R package scoringRules

together with exact formulas for a large class of parametric families of distributions (see Table 6.1
and Jordan, Kr€uger, & Lerch, 2017).
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When the forecasting model is estimated using a Bayesian analysis, the predictive distribution F is
commonly given by the posterior predictive distribution under the model. Here, F is rarely known in
closed form and is, instead, approximated by a large sample that is often obtained using Markov chain
Monte Carlo techniques. However, such techniques may yield highly correlated samples, which com-
plicates the employment of approximation formulas as those for the CRPS shown herein. Optimal ap-
proximations for both IGN and CRPS when the distribution F is the posterior predictive distribution
from a Bayesian analysis are discussed in Kr€uger, Lerch, Thorarinsdottir, and Gneiting (2016).

The quality of a deterministic forecast x is typically assessed by applying a scoring function s(x, y),
that assigns a numerical score based on x and the corresponding observation y. As in the case of proper
scoring rules, competing forecasting methods are compared and ranked in terms of the mean scores
over the cases in a test set. Popular scoring functions include the squared error, s(x, y) ¼ (x % y)2,
and the absolute error, s(x, y) ¼ jx % yj.

A scoring function can be applied to a probabilistic prediction F2F if it is consistent for a func-
tional T relative to the class F in the sense that

FsðTðFÞ,YÞ)Fsðx,YÞ (6.19)

for all x 2Ω and F2F . A consistent scoring function becomes a proper scoring rule if the functional T
in Eq. (6.19) is used as the derived deterministic prediction based on F. That is, if S(F, y) ¼ s(T(F), y).
The squared error proper scoring rule is given by

SEðF,yÞ¼ ðmeanðFÞ% yÞ2 (6.20)

where mean(F) denotes the mean value of F, and the absolute error proper scoring rule becomes

AEðF,yÞ¼ jmedðFÞ% yj (6.21)

where med(F) denotes the median of F.
One appealing property of scoring rules that derive from scoring functions is thus the possibility of

comparing deterministic and probabilistic forecasts. See Gneiting (2011) for an extensive discussion of
the use of scoring functions to evaluate probabilistic predictions.

Table 6.1 Parametric Families of Distributions for Which the CRPS Is Implemented in the R

Package scoringRules (Jordan et al., 2017)

Dist. on  Dist. on >0 Dist. on Intervals Discrete Dist.

Gaussian Exponential Generalized extreme value Poisson

t Gamma Generalized Pareto Neg. binomial

Logistic Log-Gaussian Trunc. Gaussian

Laplace Log-logistic Trunc. t

Two-piece Gaussian Log-Laplace Trunc. logistic

Two-piece exponential Trunc. exponential

Mixture of Gaussians Uniform

Beta

Notes: The truncated families can be defined with or without a point mass at the support boundaries.
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6.3.2 SIMULATION STUDY: COMPARING UNIVARIATE SCORING RULES
The purpose of this simulation study is to demonstrate a coherent approach to using proper scores and
rank or PIT histograms in practice, while highlighting some of the difficulties that might arise when
working with limited data sets. In particular, we investigate how different scoring rules rank forecasts
according to their skill, and how these results differ with the amount of available data.

We start by generating two sets of observation data, drawn randomly from the same fixed “true”
distribution. The first set consists of 100 values, which will serve as verifying observations, while the
second set, the training data, consists of 300 values for each of the 100 observations. Our goal is to issue
forecasts matching the observations, based on the information contained in the training data. For the
first part of the simulation study, the true distribution is normal, with a random mean μ&N 25,1ð Þ and
fixed standard deviation σ ¼ 3. In the second part, the truth is a Gumbel distribution, with the mean
following a N 25,1ð Þ distribution and the scale parameter fixed to 3, see Table 6.2.

Using a method-of-moments approach, we estimate four competing forecast distributions for each
observation, which are listed in Table 6.3. The distribution parameters are calculated by plugging the
sample mean and sample standard deviation from the training data into the equations for mean and
variance. For the noncentral t-distribution, the degrees of freedom are obtained numerically by a
root-finding algorithm described in Brent (1973), while restricting them to ν " 3, ensuring that both
mean and variance exist. As a fifth forecaster, we use the true distribution, from which the observations

Table 6.2 Observation-Generating Distributions Used in the Simulation Study

Distribution F Yð Þ  Yð Þ Var Yð Þ

Part 1 Normal N μ,σ2ð Þ μ&N 25,1ð Þ σ2 ¼ 9

Part 2 Gumbel G μ,σð Þ μ+ σ , γ&N 25,1ð Þ π2
6 σ

2 ¼ 3π2
2

Notes: The expected values are random variables following a normal distribution, while the scale parameters are fixed.
γ denotes the Euler-Mascheroni constant.

Table 6.3 Forecasters Used in Both Parts of the Simulation Study, and Their Expected Values
and Variances as Functions of the Distribution Parameters

Distribution F Yð Þ  Yð Þ Var Yð Þ

Normal N μ,σ2ð Þ μ σ2

Noncentral t t ν,μð Þ

μ
ffiffi
ν
2

p Γ
ν%1

2

! "

Γ
ν
2

' ( , if ν > 1 ν 1 + μ2ð Þ
ν%2

%μ2ν
2

Γ
ν%1

2

! "

Γ
ν
2

' (

0

BB@

1

CCA

2

, if ν > 2

Lognormal lnN μ,σ2ð Þ exp μ + σ2
2

' (
exp σ2ð Þ%1ð Þexp 2μ + σ2ð Þ

Gumbel G μ,σð Þ μ + σ , γ π2

6
σ2

Note: γ denotes the Euler-Mascheroni constant.
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are generated. An ensemble of 50 members is drawn randomly from each of the forecast distributions,
which is then paired with the observations.

The performance of the five forecasters is evaluated using the absolute error, the squared error, the
ignorance score, the CRPS, and the PIT histogram. We also produced rank histograms, but they turned
out to be almost identical to the PIT histograms. As we encountered variations in the scores depending
on the initial random seed, the whole process is repeated 10 times with different initial seeds, so that the
final number of forecast-observation pairs comes to 1000.

In order to understand the true ranking of the five forecasting methods in terms of skill, we repro-
duce the simulation study with 10 times 100,000 forecasts. For the case of a normal true distribution,
Fig. 6.3 shows the mean absolute error, mean CRPS and mean ignorance score, along with 95% boot-
strap confidence intervals (see Section 6.3.7) computed from 1000 bootstrap samples.We have omitted
the squared error from this plot, as its values are on a much larger scale than the other scores. Looking at
the results for the small sample size in the top row, all scores assign the lowest mean value, and there-
fore the highest skill, to the normal distribution with the true parameters. However, if no knowledge
about the true distribution is available, as in a real forecast setting, the absolute error and the CRPS

FIG. 6.3

Top row: Mean absolute error, CRPS and ignorance score, and the 95% bootstrap confidence interval for the five
forecast distributions, if the true distribution is normal. Scores are based on 1000 forecast-observation pairs.
Bottom row: Same as above, but scores are based on 1 million forecast-observation pairs.
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would prefer the lognormal distribution over all other forecasters, while the ignorance score judges the
normal distribution with estimated parameters to be the best.

The bottom panel of Fig. 6.3 shows the results from running the same study with the larger sample
size, which changes the order in which we would expect the forecasters to rank. Here, all scores cor-
rectly find the Gumbel distribution, which has a completely different shape and tail behavior than the
truth, to be the worst forecast, and the two forecasts based on normal distributions to be the best. This
contradicts the results in the top panel, where only the ignorance score ranked the forecasters in the
same order as we would expect.

Due to assigning large penalties to outliers, the ignorance score is able to discriminate between the
shapes of the forecast distributions, and shows a significant difference at the 95% level between the
Gumbel and the normal, lognormal, and true distributions. The relatively poor performance of the non-
central t-distribution can probably be explained by the fact that, while this distribution approximates a
normal distribution if the degrees of freedom are large, the asymptotic distribution will have a standard
deviation of 1, which does not match the given standard deviation of 3 in this example.

Judging from Fig. 6.4, which shows PIT histograms for the small-sample study with a normal true
distribution, we cannot make any statements about the forecast ranking, except that the Gumbel dis-
tribution forecast is clearly uncalibrated. Only when looking at the large sample equivalent in Fig. 6.5
do we see that the normal and the true forecasters are the only ones not suffering from miscalibration.
A formal chi-squared test (see Section 6.3.7) rejects the assumption of uniformity for the Gumbel

FIG. 6.4

PIT histograms for the five forecast distributions, if the true distribution is normal, based on 1000 forecast-
observation pairs.
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distribution and even the t and lognormal distributions (at a level of 5%) in the small-sample case, and
for all distributions apart from the true one in the large sample case.

Fig. 6.6 illustrates one example forecast, for which the scores are plotted as functions of the ver-
ifying observation, in this case a sample value from aN 27:16,9ð Þ distribution. While the score minima
largely coincide for the true and the t-distribution, it becomes clear from the shape of the ignorance
score why it is much better at identifying the Gumbel distribution as inferior: because of the lack
of symmetry, Gumbel forecasts will receive a much higher penalty if the observation lies left of the
distribution mode than if it lies on the right.

For the second part of the simulation study, we used a Gumbel distribution as truth, where the mean
is distributed asN 25,1ð Þ and the scale parameter is 3. The same kinds of forecasts are produced again:
normal, noncentral t, lognormal, and Gumbel distributions, based on the sample means and variances of
the training data. In Fig. 6.7, the outcome of the study is shown for a small sample size (top row) and a
very large sample size (bottom row). As previously, all scores agree on the forecast ranking when the
sample is large. The Gumbel distribution with estimated parameters and the true Gumbel distribution
are assigned the lowest scores, while the normal forecaster now has the lowest skill.

However, the rankings look different in the top panel, where the true distribution is only ranked the
third best by the absolute error and the CRPS, behind the estimated Gumbel and noncentral t-distribu-
tions. The ignorance score again is the only score able to reproduce the forecast ranking we expect from
the bottom panel. This is, of course, concerning and hints at the fact that even for a data set of apparently
sufficient size, such as the 1000 50-member ensembles used here, the scores do not necessarily provide
robust and proper results.

FIG. 6.5

PIT histograms for the five forecast distributions, if the true distribution is normal, based on 1 million forecast-
observation pairs.
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Again we cannot really judge the degree of forecast calibration by just looking at the small-sample
PIT histograms in Fig. 6.8, except for the clearly uncalibrated normal distribution. A case could be
made that the histogram for the true distribution looks slightly flatter than the other ones, but not with
great certainty. It becomes clear, however, from Fig. 6.9, that the forecasts based on noncentral t and
lognormal distributions also suffer frommultiple types of miscalibration. These findings are confirmed
by a chi-squared test, which rejects the uniformity hypothesis for all except the Gumbel distributions in
Fig. 6.8 and all except the true distribution in Fig. 6.9.

Picking an example forecast from the data set, Fig. 6.10 shows that the ignorance score for the two
Gumbel distribution forecasters is again nonsymmetric, and therefore minimizes at a different value
compared with the CRPS. In general, the ignorance score takes its minimum value at the mode of
the distribution, and the CRPS at the median.

We can gather from this simulation study that even proper scores can behave very differently,
depending on the size of the underlying data set, and are not necessarily able to rank competing fore-
casters according to their actual skill. Therefore, we suggest always using a combination of scoring
rules to get a maximum amount of information about the performance of a particular model or fore-
caster. The ignorance score is more sensitive to the shape of a distribution and thus is suitable to check
if a chosen distribution actually fits the data. The CRPS is very useful for comparing models when the
forecasts do not take the form of a standard probability distribution, or if for a given data set such a
distribution cannot be perfectly specified.

(a) (b) (c)

(d) (e)
FIG. 6.6

Squared error, absolute error, CRPS, and ignorance score as functions of the verifying observation, for one forecast
case in the simulation study: (a) normal distribution forecast, (b) noncentral t-distribution forecast, (c) lognormal
distribution forecast, (d) Gumbel distribution forecast, and (e) forecast based on the true normal distribution.
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These results also have implications for the ongoing discussion of whether to use maximum like-
lihood methods or minimize the CRPS to estimate model parameters (Gneiting, Raftery, Westveld, &
Goldman, 2005), in that there might not be a definitive answer. Depending on the forecast situation and
model choice, it could be preferable to switch between the two approaches. A case can be made for
performing a thorough exploratory analysis of the data at hand before fitting any distributions, to find
one that matches the data best. If it is difficult to select one distribution over the other, the simpler
model should be preferred.

In all circumstances, the ranking of forecasters should not be solely based on the mean score, even if
the sample size seems to be sufficiently large, but confidence intervals should be given, for example, by
applying bootstrapping techniques. We found that even for 1 million data points, differences between
the forecast scores were often not significant at the 5% level.

6.3.3 ASSESSING EXTREME EVENTS
Forecasts specifically aimed at predicting extreme events can be assessed in a standard manner, for
example, by using the scoring rules discussed in Section 6.3.1 (Friederichs & Thorarinsdottir, 2012).

FIG. 6.7

Top row: Mean absolute error, CRPS and ignorance score, and the 95% bootstrap confidence interval for the five
forecast distributions, if the true distribution is a Gumbel distribution. Scores are based on 1000 forecast-
observation pairs. Bottom row: Same as above, but scores are based on 1 million forecast-observation pairs.
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FIG. 6.8

PIT histograms for the five forecast distributions, if the true distribution is a Gumbel distribution, based on 1000
forecast-observation pairs.

FIG. 6.9

PIT histograms for the five forecast distributions, if the true distribution is a Gumbel distribution, based on 1million
forecast-observation pairs.
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However, the restriction of conventional forecast evaluation to subsets of extreme observations by
selecting the extreme observations after-the-fact while discarding the nonextreme ones, and to proceed
with standard evaluation tools, will invalidate their theoretical properties and encourage hedging
strategies (Lerch, Thorarinsdottir, Ravazzolo, & Gneiting, 2017).

Specifically, Gneiting and Ranjan (2011) show that a proper scoring rule S is rendered improper if
the product with a nonconstant weight function w is formed, where w depends on the observed value y.
That is, consider the weighted scoring rule

S0ðF,yÞ¼wðyÞSðF,yÞ: (6.22)

Then if Y has density g, the expected scoregS0ðF,YÞ is minimized by the predictive distributionFwith
density

f ðyÞ¼ wðyÞgðyÞZ
wðzÞgðzÞdz (6.23)

which is proportional to the product of the weight function w and the true density g. In particular, if
wðyÞ¼1fy" ug for some high threshold value u, then S0 corresponds to evaluating F only on observed
values exceeding u under the scoring rule S.
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FIG. 6.10

Squared error, absolute error, CRPS, and ignorance score as functions of the verifying observation, for one
forecast case in the simulation study: (a) normal distribution forecast, (b) noncentral t-distribution forecast,
(c) lognormal distribution forecast, (d) Gumbel distribution forecast, and (e) forecast based on the true Gumbel
distribution.

172 CHAPTER6 VERIFICATION: ASSESSMENTOF CALIBRATIONANDACCURACY



Instead, one can apply proper weighted scoring rules that are tailored to emphasize specific regions
of interest. Diks, Panchenko, and Van Dijk (2011) propose two weighted versions of the ignorance
score that correct for the result in Eq. (6.23). The conditional likelihood (CL) score is given by

CLðF,yÞ¼%wðyÞ log f ðyÞZ

Ω
wðzÞf ðzÞdz

0

BB@

1

CCA

and the censored likelihood (CSL) score is defined as

CSLðF,yÞ¼%wðyÞ log f ðyÞ% 1%wðyÞð Þ log 1%
Z

Ω
wðzÞf ðzÞdz

! "

Here, w is a weight function such that 0 ) w(y) ) 1 and
R
wðyÞf ðyÞdy> 0 for all potential predictive

distributionsF2F . Whenw(y)- 1, both the CL and the CSL score reduce to the unweighted ignorance
score in Eq. (6.9).

Gneiting and Ranjan (2011) propose the threshold-weighted continuous ranked probability score
(twCRPS), defined as

twCRPSðF,yÞ¼
Z

Ω
wðzÞ FðzÞ%1fy) zgð Þ2dz

where, again,w is a nonnegativeweight function, see alsoMathesonandWinkler (1976).Whenw(y)-1,
the twCRPS reduces to the unweighted CRPS in Eq. (6.12) while wðyÞ¼1fy¼ ug equals the Brier
score in Eq. (6.14). More generally, the twCRPS puts emphasis on a particular part of the forecast dis-
tribution F as specified by w. For focusing on the upper tail of F, Gneiting and Ranjan (2011) consider
both indicator weight functions of the typewðyÞ¼1fy" ug and nonvanishing weight functions such as
w(y)¼Φ(yju, σ2)whereΦ denotes the cumulative distribution function of theGaussian distributionwith
mean u and variance σ2. Corresponding weight functions for the lower tail of F are given by
wðyÞ¼1fy) ug and w(y) ¼ 1 % Φ(yju, σ2) for some low threshold value u.

Nonstationarity in the mean climate, for example, due to spatial heterogeneity, may render it dif-
ficult to define a common threshold value u over a large number of forecast cases. Here, it may be more
natural to define a weight function in quantile space using the CRPS representation in Eq. (6.13),

twCRPSðF,yÞ¼
Z 1

0

wðτÞ F%1ðτÞ% y
$ %

1fy)F%1ðτÞg% τ
$ %

dτ

where w is a nonnegative weight function on the unit interval (Gneiting & Ranjan, 2011; Matheson &
Winkler, 1976). Setting w(τ) - 1 retrieves the unweighted CRPS in Eq. (6.13) while this definition of
twCRPS with wðτÞ¼1fτ¼ qg equals the quantile score in Eq. (6.15). Examples of more general
weight functions for this setting include wðτÞ¼1fτ" qg and w(τ) ¼ τ2 for the upper tail, and wðτÞ¼
1fτ) qg and w(τ) ¼ (1%τ)2 for the lower tail, with appropriate threshold values q, see also Gneiting
and Ranjan (2011).

Lerch et al. (2017) find that there are limited benefits in using weighted scoring rules compared with
using standard, unweighted scoring rules when testing for equal predictive performance. However, the
application of weight functions as described here may facilitate interpretation of the forecast skill.
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6.3.4 EXAMPLE: PROPER AND NONPROPER VERIFICATION OF EXTREMES
In the following, we illustrate that the use of nonproper methods to verify and compare competing fore-
casts for extremes can lead to a distortion of the results and possibly false inference. Taking the same
setting as the first part of the simulation study in Section 6.3.2, we generate sets of observation and
training data from a normal distribution with standard deviation 3 and the mean a random value from
a N 25,1ð Þ distribution.

Four of the forecasting methods in Section 6.3.2 are compared: a normal distribution with estimated
parameters based on the training data, a Gumbel distribution with estimated parameters, a normal dis-
tribution with the true parameters, and a Gumbel distribution with the true means as location parameter
and scale parameter σ ¼ 3. The forecasters’ performance for extremes, which we consider to be values
greater or equal to the 97.5% quantile of the observations u, will be measured using the threshold-
weighted CRPS with three different weight functions and the unweighted CRPS, where the cases
are restricted to observations above the threshold. The weight functions considered are variations
on the indicator function:

w1 yð Þ ¼1 y" uf g

w2 yð Þ ¼ 1 +1 y" uf g

w3 yð Þ ¼ 1 +1 y" uf g , u

Mean scores and 95% confidence intervals, calculated by numerical integration based on the small
sample data set from Section 6.3.2, are shown in Fig. 6.11 for the threshold-weighted CRPS and
the CRPS with restricted observations, along with the unweighted CRPS. The results for the twCRPS
with weight function w1 are omitted, as they are equal to 0 for all forecasters.

However, just by adding 1 to the indicator function, we obtain meaningful scores with weight func-
tion w2, showing the Gumbel distribution with fixed parameters to be the least skillful forecast, while
the two normal distribution forecasters are of significantly better quality. The twCRPS with weight
function w3 and the unweighted CRPS lead to similar conclusions, although the differences between
the scores are sometimes not significant. In contrast to the other scores, the CRPS based on the re-
stricted data set clearly shows the Gumbel distribution with fixed parameters to be the preferred
forecaster.

Although the fixed Gumbel parameters and shape are obviously wrong, this is no surprise, as this
distribution was purposely chosen because it has a heavy tail. Fig. 6.12 shows predictive densities for
one example from the data set. If we restrict the evaluation to the area above the chosen threshold,
represented by the black vertical line, the Gumbel distribution with fixed parameters is indeed the
seemingly best forecast, as it assigns the highest probabilities to extreme values. The two normal dis-
tributions and the Gumbel distribution with estimated parameters, which tries to approximate the true
normal distribution, have a very similar tail behavior, explaining their similar performance in terms of
all scores.

We come to the same conclusion as Lerch et al. (2017), that conditioning a data set on extremal
observations can result in preferring a forecaster who predicts extremes with inflated probabilities.
When evaluating forecasts for a certain range of values, proper methods such as the threshold-weighted
CRPS should be used, where the whole data set is considered.
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6.3.5 MULTIVARIATE ASSESSMENT
Two general approaches can be employed to assess multivariate forecasts with scoring rules: Use spe-
cialized multivariate scores, or reduce the multivariate forecast to a univariate quantity and subse-
quently apply the univariate scores discussed previously. For the latter approach, the appropriate
univariate quantities depend on the context. Multivariate forecasts of single weather quantities are usu-
ally in the form of temporal trajectories, spatial fields, or space-time fields. Here it can, for instance, be
useful to assess the predictive performance of derived quantities such as maxima, minima, and accu-
mulated totals, all of which depend on accurate modeling of both marginal and higher order structures.
See, for example, Feldmann, Scheuerer, and Thorarinsdottir (2015) for an assessment of spatial fore-
cast fields for temperature.
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FIG. 6.11

Mean scores and 95% bootstrap confidence interval for the four versions of the CRPS. Top row: twCRPS with
weight functions w2 and w3. Bottom row: CRPS restricted to observations above the threshold u and unweighted
CRPS.
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Scores that directly assess multivariate forecasts are rather scarce and, as noted by Gneiting and
Katzfuss (2014), there is a need to develop further decision-theoretically principled methods for mul-
tivariate assessment. The univariate Dawid-Sebastiani score in Eq. (6.10) can be applied in a multivar-
iate setting with

DSðF,yÞ¼ log detΣF + ðy%μFÞ
>Σ%1

F ðy%μFÞ (6.24)

where μF is the mean vector and ΣF the covariance matrix of the predictive distribution with detΣF

denoting the determinant of ΣF (Dawid & Sebastiani, 1999). However, note that unless the sample size
is much larger than the dimension of the multivariate quantity, sampling errors can affect the calcu-
lation of detΣF and Σ%1

F (see e.g., Table 2 in Feldmann et al., 2015). Similarly, if the multivariate pre-
dictive density is available, the ignorance score in Eq. (6.9) can be employed (Roulston & Smith, 2002).

Gneiting and Raftery (2007) propose the energy score (ES) as a multivariate generalization of the
CRPS. It is given by

ESðF,yÞ¼F kX% y k%1

2
FF kX%X

0 k (6.25)

where X and X0 are two independent random vectors distributed according to F and k,k is the Euclidean
norm. For ensemble forecasts, the natural analog of the formulas in Eqs. (6.16), (6.17) apply. If the
multivariate observation space Ωd consists of weather variables on varying scales, the margins should
be standardized before computing the joint energy score for these variables (Schefzik,
Thorarinsdottir, & Gneiting, 2013). This can be done using the marginal means and standard deviations
of the observations in the test set. The energy score has been developed with low-dimensional quan-
tities in mind and it may lose discriminatory power in higher dimensions (Pinson, 2013).
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FIG. 6.12

Example predictive densities given by the four competing forecasters. The black vertical line shows the threshold
u, above which observations are considered to be extreme.
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Scheuerer and Hamill (2015) propose a multivariate scoring rule that considers pairwise differences
of the components of the multivariate quantity. In its general form, the variogram score (VS) of order p
is given by

VSpðF,yÞ¼
Xd

i¼1

Xd

j¼1

ωij jyi% yjjp%FjXi%Xjjp
$ %2

(6.26)

where yi and yj are the ith and the jth component of the observation, Xi and Xj are the ith and the jth
component of a random vector X that is distributed according to F, and ωij are nonnegative weights.
Scheuerer and Hamill (2015) compare different choices of the order p and find that the best results in
terms of discriminative power are obtained with p¼ 0.5. Furthermore, they recommend using weights
proportional to the inverse distance between the components unless a prior knowledge regarding the
correlation structure is available.

A comparison of the three multivariate scores in Eqs. (6.24)–(6.26) is provided in Scheuerer and
Hamill (2015). The authors conclude by recommending the use of multiple scores as they complement
each other in their strengths and weaknesses. The variogram score is generally able to distinguish be-
tween correct and misspecified correlation structures, but it has certain limitations resulting from the
fact that it is proper but not strictly proper. Some of these limitations can be addressed by also using the
energy score that is more sensitive to misspecifications in the predictive mean and less affected by
finite representations of the predictive distribution.While the latter is an issue for the Dawid-Sebastiani
score, it performs well for continuous predictive distributions, in particular for multivariate Gaussian
models (Wei, Balabdaoui, & Held, 2017).

6.3.6 DIVERGENCE FUNCTIONS
In some cases, in particular in climate modeling, it is of interest to compare the predictive distribution F
against the true distribution of the observations, which is commonly approximated by the empirical
distribution function of the available observations y1, …, yn,

ĜnðxÞ¼
1

n

Xn

i¼1

1fyi ) xg: (6.27)

The two distributions, F and Ĝn, can be compared using a divergence

D : F *F !"0 (6.28)

where D(F, F) ¼ 0.
Assume that the observations y1,…, yn forming the empirical distribution function Ĝn are indepen-

dent with distribution G2F . A propriety condition for divergences corresponding to that for scoring
rules (Eq. 6.7) states that the divergence D is n-proper for a positive integer n if

GDðG,ĜnÞ)GDðF,ĜnÞ (6.29)

and asymptotically proper if

lim
n!∞

GDðG,ĜnÞ) lim
n!∞

GDðF,ĜnÞ (6.30)

for all probability distributions F,G2F (Thorarinsdottir, Gneiting, & Gissibl, 2013). While the con-
dition in Eq. (6.30) is fulfilled by a large class of divergences, only score divergences have been shown
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to fulfill Eq. (6.29) for all integers n. A divergence D is a score divergence if there exists a proper
scoring rule S such that DðF,GÞ¼GSðF,YÞ%GSðG,YÞ.

A score divergence that assesses the full distributions is the integrated quadratic divergence (IQD)

IQDðF,GÞ¼
Z +∞

%∞
FðxÞ%GðxÞð Þ2dx (6.31)

which is the score divergence of the continuous ranked probability score (Eq. 6.12). Alternative score
divergences that assess specific properties of the predictive distribution include the mean value diver-
gence (MVD),

MVDðF,GÞ¼ meanðFÞ%meanðGÞð Þ2 (6.32)

which is the divergence associated with the squared error scoring rule (Eq. 6.20), and the Brier diver-
gence (BD) associated with the Brier score (Eq. 6.14),

BDðF,G|uÞ¼ GðuÞ%FðuÞð Þ2 (6.33)

for some threshold u.
Fig. 6.13 provides a comparison of the score divergences in Eqs. (6.31)–(6.33) for two simple set-

tings where the observation distribution is given by a standard normal distribution and all the forecast
distributions are also normal distributions but with varying parameters. In the left plot, the variance is
correctly specified while the forecast mean value varies. In the right plot, the forecast mean values
equal that of the observation distribution while the standard deviation varies. We compare the IQD,
the MVD, and the BD with thresholds u¼ 0.67 and u¼ 1.64, which equal the 75% and the 95% quan-
tiles of the observation distribution, respectively. The divergences are more sensitive to forecast errors
in the mean than the spread. In particular, the MVD is, naturally, not able to detect errors in the forecast
spread. Furthermore, integrating over the BD for all possible thresholds u and obtaining the IQD yields
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Comparison of expected score divergence values for a standard normal observation distribution and normal
forecast distributions with varying mean values (left) or standard deviations (right).
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a better discrimination than investigating the differences for individual quantiles. The right plot also
shows that the model ranking obtained under the BD strongly depends on the threshold u.

While every proper scoring rule is associated with a score divergence, not all score divergences are
practical for use in the setting where the empirical distribution function Ĝn is used. One example is the
Kullback-Leibler divergence, which is the score divergence of the ignorance score in Eq. (6.9). The
Kullback-Leibler divergence becomes ill-defined if the forecast distribution F has positive mass any-
where where the observation distributionG has mass zero. WhenG is replaced by Ĝn and, especially, if
the sample size n is relatively small, such issues might occur. One option to circumvent the issue is to
treat the data as categorical and bin it in b bins prior to the evaluation. That is, identify the probability
distribution Fwith a probability vector (f1,…, fb) and, similarly,Gwith a probability vector (g1,…, gb).
The Kullback-Leibler divergence is then given by

KLDðF,GÞ¼
Xb

i¼1

fi log
fi
gi

see also the discussion in Thorarinsdottir et al. (2013).
Historically, much of the forecast evaluation literature has focused on the evaluation of probabi-

listic forecasts against deterministic observations and an in-depth discussion of optimal theoretical
and/or practical properties of divergences is lacking. Applied studies commonly employ divergences
that are asymptotically proper rather than n-proper for all positive integer n, see for example, Palmer
(2012) and Perkins, Pitman, Holbrook, and McAneney (2007).

6.3.7 TESTING EQUAL PREDICTIVE PERFORMANCE
As demonstrated in the simulation study in Section 6.3.2, the estimation of the mean score over a test set
may be associated with a large uncertainty. A simple bootstrapping procedure over the individual
scores may be used to assess the uncertainty in the mean score, see for example, Friederichs and
Thorarinsdottir (2012). Assume we have n score values S(F1, y1), …, S(Fn, yn). By repeatedly resam-
pling vectors of length n (with replacement) and calculating the mean of each sample, we obtain an
estimate of the variability in the mean score. Note that some care is needed if the forecast errors,
and thus the resulting scores, are correlated. A comprehensive overview over bootstrapping methods
for dependent data is given in Lahiri (2003).

Formal statistical tests can be applied to test equal predictive performance of two competing
methods under a proper scoring rule. The most commonly applied test is the Diebold-Mariano test
(Diebold &Mariano, 1995), which applies in the time series setting. Consider two competing forecast-
ing methods F and G that for each time step t ¼ 1, …, n issue forecasts Ft and Gt, respectively, for an
observation yt+k that lies k time steps ahead. The mean scores under a scoring rule S are given by

S
F
n ¼

1

n

Xn

t¼1

SðFt,yt + kÞ and S
G
n ¼ 1

n

Xn

t¼1

SðGt,yt + kÞ

The Diebold-Mariano test uses the test statistic

tn ¼
ffiffiffi
n

p S
F
n %S

G
n

σ̂n

(6.34)
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where σ̂2
n is an estimator of the asymptotic variance of the score difference. Under the null hypothesis of

equal predictive performance and standard regularity conditions, the test statistic tn in Eq. (6.34) is
asymptotically standard normal (Diebold & Mariano, 1995). When the null hypothesis is rejected
in a two-sided test, F is preferred if tn is negative and G is preferred if tn is positive.

Diebold and Mariano (1995) note that for ideal k-step-ahead forecasts, the forecast errors are at
most (k% 1)-dependent. An estimator for the asymptotic variance σ̂2

n based on this assumption is given
by

σ̂2
n ¼

γ̂0 if k¼ 1

γ̂0 + 2
Xk%1

j¼1

γ̂ j, if k" 2

8
>><

>>:
(6.35)

where γ̂ j denotes the lag j sample autocorrelation of the sequence fSðFi ,yi+ kÞ%SðGi ,yi+ kÞgni¼1 for j¼ 0,
1, 2,… (Gneiting & Ranjan, 2011). Alternative estimators are discussed in Diks et al. (2011) and Lerch
et al. (2017).

In the spatial setting, Hering and Genton (2011) propose the spatial prediction comparison test,
which accounts for spatial correlation in the score values without imposing assumptions on the under-
lying data or the resulting score differential field. This test is implemented in the R package SpatialVx

(Gilleland, 2017). Weighted scoring rules and their connection to hypothesis testing are discussed in
Holzmann and Klar (2017).

A simple test for the uniformity of a rank or PIT histogram is the chi-squared test. It tests if the
histogram values can be considered samples from a uniform distribution and therefore if any deviations
of uniformity are random or systematic (Wilks, 2004, 2011). The chi-squared statistic based on n cases
and K ensemble members is

χ2 ¼
XK + 1

i¼1

mi% fð Þ2

f
(6.36)

with mi denoting the actual number of counts for bin i and f ¼ n
K + 1 the expected number of counts for a

uniform distribution. We can reject the null hypothesis of the histogram being uniform if this statistic
exceeds the quantile of the chi-squared distribution with K degrees of freedom at the chosen level of
significance.

In its general form, however, the chi-squared test only applies to independent data, which is not the
case in many forecast settings due to, for example, temporal or spatial correlation between forecast data
points. Some methods to address this effect are proposed in Wilks (2004). If the goal is to not only test
for uniformity, but also for the other deficiencies in calibration shown in Section 6.2.1, Elmore (2005)
and Jolliffe and Primo (2008) present alternatives that are more flexible and appropriate. Wei et al.
(2017) propose calibration tests for multivariate Gaussian forecasts based on the Dawid-Sebastiani
score in Eq. (6.24).

6.4 UNDERSTANDING MODEL PERFORMANCE
When assessing the performance of an individual model, for example, to identify weaknesses and test
potential improvements, it might be useful to look at tools that do not necessarily follow the principles
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of propriety described in Section 6.3. For instance, it can be useful to investigate the forecast bias to
better understand the potential sources of forecast errors even if competing forecasting models should
not be ranked based on mean bias as it is not a proper score (Gneiting & Raftery, 2007). Here, we dis-
cuss a few tools that may be used to provide a better understanding of the performance of an individual
forecasting model, even though ranking of competing forecasters should not be based on these tools.

One of the most popular measures used by national weather services is the anomaly correlation
coefficient (ACC), a valuable tool to track the gain in forecast skill over time (Jolliffe &
Stephenson, 2012). The ACC quantifies the correlation between forecast anomalies and the anomalies
of the observation, typically an analysis. Anomalies are defined as the difference between the forecast
or analysis and the climatology for a given time and location. Usually, the climatology is based on the
model climate, calculated from the range of values predicted by the dynamical forecast model over a
long time period.

For a deterministic forecast fi, valid at time i, with a corresponding analysis ai and climate statistic
ci, there are two equivalent definitions for the ACC (e.g., Miyakoda, Hembree, Strickler, & Shulman,
1972):

ACC¼

XN

i¼1

fi% cið Þ , ai% cið Þ%
XN

i¼1

fi% cið Þ ,
XN

i¼1

ai% cið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

fi% cið Þ2%
XN

i¼1

fi% cið Þ

 !2
vuut ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ai% cið Þ2%
XN

i¼1

ai% cið Þ

 !2
vuut

¼

XN

i¼1

f 0i % f 0
$ %

a0i%a0
$ %

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

f 0i% f 0
$ %2XN

i¼1

a0i%a0ð Þ2
s

Here, f 0i ¼ fi% ci is the forecast anomaly and a0i ¼ ai% ci the anomaly of the analysis, with respective
sums f 0 ¼

PN
i¼1 fi% cið Þ and a0 ¼

PN
i¼1 ai% cið Þ. The ACC is a preferred evaluation tool for gridded fore-

casts and spatial fields, as these are usually compared with an analysis or a similar gridded observation
product.

However, there are certain limitations and pitfalls one has to be aware of when using this measure.
Due to it being a correlation coefficient, the ACC does not give any information about forecast biases
and errors in scale, so that it can overestimate the forecast skill (Murphy & Epstein, 1989). As such, it
should always be used in conjunction with an estimate of the actual bias, or applied to previously bias-
corrected data.

It has been established empirically that an anomaly correlation of 0.6 corresponds to a limit in use-
fulness for a medium-range forecast. Murphy and Epstein (1989) warn, however, that the ACC is an
upper limit of the actual skill and that the ACC should be seen as a measure of potential skill. Naturally,
the ACC relies to a large extent on the underlying climatology used to compute the anomalies.

When evaluating forecast skill with proper scores, it is often useful to compute separate indicators
for the degree of calibration and the sharpness of the forecast. The well-known and widely used de-
composition of the Brier score by Murphy (1973b) separates the score value in three parts, quantifying
reliability, resolution, and uncertainty.

1816.4 UNDERSTANDING MODEL PERFORMANCE



Consider a forecast sample of size N, where probability forecasts pu ¼ 1 % F(u) are computed for
exceeding a threshold u and binary observations take the form o¼1fy" ug. If the forecasts take K
unique values, with nk denoting the number of forecasts within the category k and pu,k the probability
forecast associated with category k, then the Brier score can be written as

BSðF,yjuÞ¼ 1

N

XK

k¼1

nk pu,k% "okð Þ2% 1

N

XK

k¼1

nk "ok% "oð Þ2 + "o 1% "oð Þ (6.37)

where "ok is the event frequency for each of the forecast values and "o¼ 1
N

PN
i¼1oi the climatological

event frequency, computed from the sample. The first part of the sum in Eq. (6.37) relates to the re-
liability or calibration, the second, having a negative effect on the total score, to the resolution or sharp-
ness, and the last part is the climatological uncertainty of the event.

This representation of the Brier score relies on the number of discrete forecast values K being rel-
atively small. If pu takes continuous values, care must be taken when binning the forecast into cate-
gories, so as not to introduce biases (Br€ocker, 2008; Stephenson, Coelho, & Jolliffe, 2008). Several
analog decompositions have been proposed for other scores, such as the CRPS (Hersbach, 2000),
the quantile score (Bentzien & Friederichs, 2014), and the ignorance score (Weijs, van Nooijen, &
van de Giesen, 2010). Br€ocker (2009) shows that any proper score can be decomposed analogously
to Eq. (6.37). Recently, Siegert (2017) formulated a general framework allowing for the decomposition
of arbitrary scores.

While it is common and advisable to look at a model’s performance in certain weather situations or
for certain periods of time, it is important to be aware of Simpson’s paradox (Simpson, 1951). It de-
scribes the phenomenon that a certain effect appearing in several subsamples may not be found in a
combination of these samples, or that the larger sample may even show the complete opposite effect.

For example, a forecast model can have superior skill over all four seasons, compared with another
model, but still be worse when assessed over the whole year. Hamill and Juras (2006) showed this to be
true for a synthetic data set of temperature forecasts on two islands. In this case, the climatologies of the
two islands were so different that the values of performance measures were misleadingly improved.
Fricker, Ferro, and Stephenson (2013) found that this spurious skill does not affect proper scores de-
rived from scoring rules, but care should be taken when using scores derived from a contingency table
that are not proper, and skill scores in general.

In general, it is recommended to use statistical significance testing in order to evaluate potential
model improvements. Differences in scores are often very small and it is hard to judge if they are caused
by genuine improvement or chaotic error growth. Geer (2016) investigate a version of the Student’s
t-test modified for multiple models and taking account of autocorrelation in the scores. They also found
that in order to detect an improvement of 0.5%, at least 400 forecast fields on a global grid would be
required. This confirms our findings from Section 6.3.2 that it is essential to carefully consider the ex-
periment sample size in order to generate meaningful and robust results.

6.5 SUMMARY
In this chapter, a variety of methods to assess different aspects of forecast goodness were presented and
discussed. Calibration errors can be diagnosed with the help of histograms, in both univariate and
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multivariate settings. It is recommended to use multiple such diagnostics, especially in the multivariate
case, as different tools highlight different types of miscalibration.

Scoring rules provide information about the accuracy of a forecast and are valuable tools for com-
paring forecasting methods. In this context, only proper scores should be used, as they ensure that the
forecast based on the best knowledge will receive the best score. There are many such scores available,
with the CRPS and the ignorance score being among the most popular. However, only looking at the
mean of one such score can be misleading, even if the underlying sample seems to be of sufficient size.
Therefore, it is crucial to also provide information about the error of a mean score, and to base decisions
about model preference on the evaluation of multiple scoring rules, if possible. If we do not want to
compare models, but rather understand the behavior of a model, it can be helpful to use measures that
are not necessarily proper. Especially skill scores and the ACC are widely used.

By adding appropriate weight functions to the CRPS and the ignorance score, it is possible to eval-
uate extreme event forecasts in a proper way. These weight functions can be designed to emphasize, for
example, different parts of the climatological distribution. Scores for multivariate quantities not only
give information about the calibration and sharpness of the forecast, but also assess the correct repre-
sentation of the covariance structure between locations, forecast times, or variables. However, some of
them have limitations and do not work well if the number of dimensions is large.

Given the multitude of available evaluation tools and scores, which are constantly growing due to
new research and applications, it is essential to be aware of their properties and how to choose a suitable
measure. To make sure that all aspects of a forecast’s performance are addressed, a number of scores
should be calculated and a quantification of the associated uncertainty given.
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