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Forecast and observation classes
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What is a good probabilistic forecast?

There should be consistency between the forecaster’s judgement and the forecast, there should
be correspondence between the forecast and the observation, and the forecast should be
informative for the user.

Murphy (WAF, 1993)

We propose a diagnostic approach to the evaluation of predictive performance that is based on
the paradigm of maximizing the sharpness of the predictive distribution subject to calibration.

Gneiting, Balabdaoui and Raftery (JRSSB, 2007)
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Outline for this lecture

Assume we have a prediction p € P and an observation o € O where we wish to measure the

skill of the prediction by applying a function

s:PxO—R

with a lower function value indicating a better skill.

What are good theoretical properties for s?
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General framework without any formulas...

@ Assume G is Nature's distribution of some event y and denote our forecast for y by F.

@ For forecast evaluation, we should use performance metrics that follow the principle

in the long run, we will obtain the optimal performance for F = G |

where “in the long run" means “over very many pairs (y;, F)".

@ Note that this is an abstract quality which is checked theoretically for general classes of
distributions F and G.

o If we agree that this is a sensible framework, we can then, in many cases, just pick a (few)
such metric(s) and perform our forecast evaluation using those.
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Deterministic vs. probabilistic forecasts

(a) Forecast (b) Observation (c) Comparison
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Which deterministic value to choose?

In the absence of explicit guideance, forecasters may report different distributional features as

their point predictions.
Engelberg, Manski and Williams (JBES, 2009)

A decision-theoretic approach provides a unifying framework for the evaluation of both
probabilistic and deterministic forecasts.
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Scoring functions apply to deterministic forecasts
The forecast x is evaluated against the observation y using scoring functions such as
Squared Error (SE) S(x,y) = (x — y)?

Absolute Error (AE) S(x,y) =[x —y|

Generally, we assume that
S:RxR—[0,00) or S:(0,00) % (0,00)— [0,00),
with the regularity conditions
(S0)  S(x,y) > 0 with equality if x =y

(S1) S(x,y) is continuous in x
(S2) The partial derivative 9, S(x, y) exists and is continuous if y # x

8/30



Average scores facilitate comparison across methods
Assume various forecasting methods m=1,..., M compete

They issue point forecasts x,,, with observed values y,,, at a finite set of times, locations or
instancesn=1,..., N

The methods are assessed and ranked by the mean score

N

- 1

Sﬁ:NE S(Xmns Yn) form=1,...,M.
n=1
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Testing equal predictive performance: Diebold-Mariano test

If the forecast cases are indpendent, a test of equal predictive performance can be based on the
statistic

~—Sm _ §m
tN — N N 2 N )
(Y]
where

N
1
5% = N nz—:l (S(Xmma}’n) - S(Xm2"7y"))2’

For correlated forecast errors, the variance estimate needs to be adjusted (Diebold and
Mariano, JBES, 1995).

10/30



Testing equal predictive performance: Permutation test

Alternatively, m; and my can be compared using the statistic

N
1
a1 =13 (G 30)  SCtmn )

n=1

The permuation test is based on resampling copies of sy with random number of labels
swapped. Under the null hypothesis, m; and my perform equally well and the permutations
have the same limiting distributions as sy for N — co. An asymptotic test is obtained by
considering the rank of sy within the permutations (Good, 2013).
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Bayes predictors should be used for probilistic forecasts

For a probabilistic forecast F, decision theory tells us that if the scoring function S is given,
we should issue the Bayes predictor,

X = argminy Er [S(x, Y)]

as the point forecast, where the expectation is with respect to F.

Squared Error (SE) S(x,y) = (x — y)? £ = mean(F)

Absolute Error (AE) S(x,y) = |x—y]
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Consistency and elicitability

Conversly, assume we only have one functional T of F which we know to be, say, the mean
value.

Here, we may apply any scoring function that is consistent for the functional T, in the sense
that
Er [S(T(F), V)] < Er [S(x, Y)]

for all x.

A functional is elicitable if there exists a scoring function that is strictly consistent for it, in
the sense that equality holds if, and only if, x = T(F).

The variance and the mode are not elicitable (Gneiting, JASA, 2011; Heinrich, B, 2014).
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Probabilistic forecasts should generally be evaluated using
proper scoring rules

A consistent scoring function is a special case of a proper scoring rule for probabilistic forecasts
Definition
If 7 denotes a class of probabilistic forecasts on R, a proper scoring rule is any function

R:FxR—=R

such that
R(G,G) :=EgR(G,Y) <EgR(F,Y)=:R(F,G)
forall F,G € F.
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Proper scoring rules prevent hedging

s it possible to hedge the following scoring rule?

(mean(F) — y)?
var(F)

R*(Fvy) =
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Proper scoring rules prevent hedging

The proper Dawid-Sebastiani score is given by

(mean(F) — y)?

R(F.) = loglvar(F) + 750

17/30



Consistent scoring functions are proper scoring rules
Any consistent scoring function induces a proper scoring rule: if the scoring function
S:RxR—[0,00)

is consistent for the functional T, the relationship

R:FxR—[0,0), (F,y)— R(F,y)=S(T(F),y)

defines a proper scoring rule.

Squared Error (SE) R(F,y) = (mean(F) - y)
Absolute Error (AE) R(F,y) = |median(F) — y|
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The class of proper scoring rules is large

A commonly used score is the logarithmic or ignorance score,

R(F,y) = —log(f(y)),

The continuous ranked probability score (CRPS) is given by

R(F,y) = ErlX —y| - SEFEF|X ~ X/
— [1FG0 - 10x = yiPox
1
= [ Fro -ty < Foy -

where the integrands are the Brier score and the quantile score, respectively (Gneiting and
Raftery, JASA, 2007).
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The different scores behave somewhat differently

Score
2
1

SE  AE CRPS IGN
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Back to our example from yesterday

Distribution F (YY) E(Y) Var (Y)
Normal N (p,0%) p~N(25,1) 2-9
Gumbel G(u,0) p+o-y~N(25,1)

Competing forecasts: Normal, non-central t, log-normal, Gumbel
Each forecast is estimated based on 300 i.i.d. observations using methods of moments

Case 1: 1000 forecast-observation pairs

Case 2: 1000000 forecast-observation pairs

(Thorarinsdottir and Schuhen, 2018)
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Score behavior for normal truth
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(a) Normal distribution
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Scores for normal truth

Score value

Score value
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Uncertainty in scores vs.

mean score
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distribution of scores
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Uncertainty in scores vs. distribution of scores
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mean score, p

log

0=0.1

mean score under correct prediction
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The CRPS is appealing but not convenient to calculate:
scoringRules to the rescue!

Dist. on Dist. on ¢ Dist. on intervals Discrete dist.
Gaussian Exponential Generalized extreme value  Poisson
t Gamma Generalized Pareto Neg. binomial
Logistic Log-Gaussian  Trunc. Gaussian
Laplace Log-logistic Trunc. t
Two-piece Gaussian Log-Laplace Trunc. logistic
Two-piece exponential Trunc. exponential
Mixture of Gaussians Uniform
Beta

Truncated families can be defined with or without a point mass at the support boundaries.
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What to do if the predictive distribution is not available in
closed form?

Assume our predictive distribution is the posterior predictive distribution of a Bayesian
forecasting model,

FO) = [ Fely16)dPras(®)
We then have various options to estimate F:
o Mixture-of-parameters: F(y) = LS | Fe(y|6;) for posterior sample {6;}7_,
o Empirical CDF: F(y) =237 1{y > Y;} for Vi ~ F.(-|0;)

o Kernel density estimator: F(y) =137 ¢ <y;nY,-> with bandwidth hj,

o Gaussian approximation: /:_(y) =¢ (%) for posterior mean i and sd &

(Kriiger et al., ISR, 2020)
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How do these approximations compare?

Simulation study with

Felvl) = (%)

and

Score divergence
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F(y) = T(y’O, aq, Oéz).
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Conclusions

@ The performance measure used in forecast evaluation may influence the results of a
comparative study and should be selected with care.

o Different verification measures focus on different aspects of the model output; it is thus
useful to apply multiple complementary measures.
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