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Model evaluation: A fundament of the scientific process

There are three processes that are generally essential for the complete development of any
branch of science, and they must be accurately applied before the subject can be considered to
be satisfactorily explained. The first is the discovery of a mathematical analysis, the second is
the discussion of numerous observations, and the third is a correct application of the
mathematics to the observations, including a demonstration that these are in agreement.

Bigelow (MWR, 1905)

Forecast evaluation: Out-of-sample model evaluation
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More precisely, we should probably call them predictions...

Forecast: Prediction issued before the predicted quantity could be determined

Hindcast: Prediction issued after the predicted quantity could be determined

Projection: Prediction conditioned on specific future boundary conditions that are
intended to represent plausible, yet not necessarily probable, future scenarios
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Forecast and observation classes
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Outline of this lecture series

1 What constitutes a good forecast?

2 How do we evaluate the “goodness” of a forecast?
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Optimally, forecasts should be probabilistic

All those whose duty it is to issue regular daily forecasts know that there are times when they
feel very confident and other times when they are doubtful as to coming weather. It seems to
me that the condition of confidence or otherwise forms a very important part of the prediction.

Cooke (MWR, 1906)
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What is a good probabilistic forecast?

There should be consistency between the forecaster’s judgement and the forecast, there should
be correspondence between the forecast and the observation, and the forecast should be
informative for the user.

Murphy (WAF, 1993)

We propose a diagnostic approach to the evaluation of predictive performance that is based on
the paradigm of maximizing the sharpness of the predictive distribution subject to calibration.

Gneiting, Balabdaoui and Raftery (JRSSB, 2007)
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Calibration vs. sharpness

−4 −2 0 2 4

Calibration: Statistical compatibility between the forecast and the observation: An event
predicted to occur with probability p should be realized with relative frequency p; joint property
of the forecasts and observations

Sharpness: Information content in the forecasts; property of the forecasts only
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We can’t assess calibration with one forecast/observation pair
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PIT/Rank histograms assess calibration of univariate forecasts

A probabilistic forecast for y can be

an ensemble E = {x1, . . . , xm} of point forecasts
a continuous distribution F

The forecast is probabilistically calibrated if

the rank of y is uniform on {1, . . . ,m + 1}
the probability integral transform (PIT) fulfils F (y) ∼ U([0, 1])

We assess the calibration of E1, . . . ,En or F1, . . . ,Fn by plotting a histogram of the ranks/PIT
values.
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Histogram shape informs on type of miscalibration

Let the observation be Y ∼ N (0, 1)

(a) Underdispersive (b) Overdispersive (c) Biased

F = N (0, 0.5) F = N (0, 2) F = N (0.5, 1)
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Examples we will use throughout the lecture series

Distribution F (Y ) E (Y ) Var (Y )

Normal N
(
µ, σ2) µ ∼ N (25, 1) σ2 = 9

Gumbel G (µ, σ) µ+ σ · γ ∼ N (25, 1)
π2

6
σ2 =

3π2

2

Competing forecasts: Normal, non-central t, log-normal, Gumbel
Each forecast is estimated based on 300 i.i.d. observations using methods of moments
Case 1: 1 000 forecast-observation pairs
Case 2: 1 000 000 forecast-observation pairs

Thorarinsdottir and Schuhen (2018)
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1 000 000 forecast-observation pairs, Gumbel truth
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A flat histogram is necessary but not sufficient for calibration

True data distribution: Gt = N (µt , 1) with µt ∼ N (0, 1).

Forecaster Ft Parameters

Ideal N (µt , 1)
Marginal N (0, 2)
Hamill’s N (µt + δt , σ

2
t ) (δt , σt) ∈ {( 1

2 , 1), (−
1
2 , 1), (0,

169
100 )}

(a) Ideal (b) Marginal (c) Hamill’s
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What if we have very many histograms?

Calibrated PITs are uniform on [0, 1]: E[F (Y )] = 0.5, SD[F (Y )] ≈ 0.29
Underdispersive PITs are too often close to 0 or 1: SD[F (Y )] > 0.29
Overdispersive PITs accumulate around 0.5: SD[F (Y )] < 0.29
Biased PITs have E[F (Y )] > 0.5 or E[F (Y )] < 0.5
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Example summary PIT means

8 C. HEINRICH ET AL.

Table 2. Continuous ranked probability score (CRPS) for di!erent variance esti-
mation methods with bias-correction by EMA and p-values for permutation tests
comparing with the best possible model (EMA).

Method NGRm NGRs NGRm,s SMA EMA

CRPS 0.2426 0.2349 0.2311 0.2305 0.2304
p-value <0.1% <0.1% <0.1% <0.1% –

NOTE: Results are aggregated over all grid points, months and years in the validation
period 2001–2016 and the best models are indicated in bold.

all locations, while they range from 0.23 to 0.78 for the NGRm,s.
The !gure indicates that the NGRm,s method exhibits similar
biases as the exponential moving average approach, but tends
to have larger biases overall. Figure 4 further shows the PIT

standard deviations across locations for EMA, indicating overall
good calibration except in the polar regions where the forecast
is somewhat overdispersed.

4.3. Multivariate Predictive Performance

Here, we compare various multivariate postprocessing
approaches where the marginal distributions are generated with
EMA. For computational reasons, we restrict our analysis to
an area covering the northern half of the Atlantic ocean, cf.
Figure 5. The restricted area covers approximately 5600 grid
points. Figure 5 shows the forecast residual, the di"erence
between mean forecast and observations, for June 2016. The

Figure 3. The probability integral transform (PIT) mean values in the validation period 2001–2016 at all locations for EMA (top) and NGRm,s (bottom). White color
corresponds to the mean of a uniform random variable, indicating a calibrated forecast. Red shaded areas indicate a negative bias, while blue shaded areas indicate a
positive bias.

Figure 4. The probability integral transform (PIT) standard deviation in the validation period 2001–2016 at all locations for EMA. White color corresponds to the standard
deviation of a uniform random variable, indicating a calibrated forecast. The red shaded areas indicate underdispersion and the blue shaded areas indicate overdispersion.

Heinrich et al. (JASA, 2020)
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Example summary PIT standard deviations

8 C. HEINRICH ET AL.

Table 2. Continuous ranked probability score (CRPS) for di!erent variance esti-
mation methods with bias-correction by EMA and p-values for permutation tests
comparing with the best possible model (EMA).

Method NGRm NGRs NGRm,s SMA EMA

CRPS 0.2426 0.2349 0.2311 0.2305 0.2304
p-value <0.1% <0.1% <0.1% <0.1% –

NOTE: Results are aggregated over all grid points, months and years in the validation
period 2001–2016 and the best models are indicated in bold.

all locations, while they range from 0.23 to 0.78 for the NGRm,s.
The !gure indicates that the NGRm,s method exhibits similar
biases as the exponential moving average approach, but tends
to have larger biases overall. Figure 4 further shows the PIT

standard deviations across locations for EMA, indicating overall
good calibration except in the polar regions where the forecast
is somewhat overdispersed.

4.3. Multivariate Predictive Performance

Here, we compare various multivariate postprocessing
approaches where the marginal distributions are generated with
EMA. For computational reasons, we restrict our analysis to
an area covering the northern half of the Atlantic ocean, cf.
Figure 5. The restricted area covers approximately 5600 grid
points. Figure 5 shows the forecast residual, the di"erence
between mean forecast and observations, for June 2016. The

Figure 3. The probability integral transform (PIT) mean values in the validation period 2001–2016 at all locations for EMA (top) and NGRm,s (bottom). White color
corresponds to the mean of a uniform random variable, indicating a calibrated forecast. Red shaded areas indicate a negative bias, while blue shaded areas indicate a
positive bias.

Figure 4. The probability integral transform (PIT) standard deviation in the validation period 2001–2016 at all locations for EMA. White color corresponds to the standard
deviation of a uniform random variable, indicating a calibrated forecast. The red shaded areas indicate underdispersion and the blue shaded areas indicate overdispersion.

Heinrich et al. (JASA, 2020)
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In higher dimensions, we lack a unique ordering

Definition (Multivariate ranks, Gneiting et al. (Test, 2008))
1 Apply a pre-rank function ρS(x) : Rd → R+ to the set S = {x1, . . . , xm}.
2 Set the rank of xj equal to the rank of ρS(xj), with ties solved at random.
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Multivariate rank histograms
The multivariate rank histogram (MRH) (Gneiting et al., Test, 2008) uses the ordering

x � y if and only if x(t) ≤ y(t) for all t = 1, . . . ,T ,

resulting in the pre-rank function

ρ(x) =
m∑

k=0

1{xk � x}.
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The MRH works well in low dimensions while it eventually
breaks down

sd = 0.5
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True distribution is standard normal in 5-dim (top) and 15-dim (bottom).
Forecast is represented by 19 curves.
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A simple alternative: Average ranking

●

●

●

●

●

N
or

m
al

iz
ed

 P
re

−
ra

nk

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.6

0

0.3

0.5

1

1

3

2

5

4

R
an

k

●

● ●

●

●

4

4 3

2

2

ρavg(x) =
1
T

T∑
t=1

[
rank of x(t) in {x1(t), . . . , xm(t)}

]
.

(Thorarinsdottir et al., JCGS, 2015)
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Average rank histograms apply in any dimension
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Forecast is represented by 19 curves.
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Further alternative: Centre-outwards ordering
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∑
1≤j<i≤m

1
{
min{xj(t), xi (t)} ≤ x(t) ≤ max{xj(t), xi (t)}

}
=

1
T

T∑
t=1

[
m − rank{x(t)}

][
rank{x(t)} − 1

]
+ (m − 1)

In addition to band depth ranking (Thorarinsdottir et al., JCGS, 2015), minimum spanning tree
ranking provides a centre-outward ordering (Smith and Hansen, MWR, 2004; Wilks, MWR, 2004).
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Band depth is more sensitive, the higher the dimension
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Can averages of univariate attributes detect errors in the
multivariate structure?
Let Y be a zero-mean Gaussian AR(1) process with

Cov(Y (tj),Y (tk)) = exp(−|tj − tk |/τ), τ = 3.
τ 

= 
2

Multivariate Rank

τ 
= 

4

Average Rank Band Depth Rank Minimum Spanning Tree Rank

Y is of dimension 5, forecast is represented by 19 curves.
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Can averages of univariate attributes detect errors in the
correlation structure?
Let Y be a zero-mean Gaussian AR(1) process with

Cov(Y (tj),Y (tk)) = exp(−|tj − tk |/τ), τ = 3.

Rank Mean Rank Variance

Band depth rank

Observation 10.7 37
Random ensemble member (τ = 2) 10.5 33

Average rank

Observation 10.5 37
Random ensemble member (τ = 2) 10.5 33
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Conclusions

Calibration is a fundamental property of a “generally useful” probabilistic forecast

Rank histograms are a simple and a convenient way of empirically assessing calibration

The aim is to detect miscalibration, not prove calibration

In higher dimensions, first check the marginal calibration of a method and follow by
multivariate tests only if the univariate results are satisfying
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