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Advertisement

My (Math) Department announces open PostDoc positions in
October/November every year

Contact me if you are interested to work on epidemics (and have
some experience ...)
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A biased list of survey literature

Survey papers by me:

T Britton. (2010). Stochastic epidemic models: a survey. Mathematical
biosciences 225 (1), 24-35

T Britton. (2020). Epidemic models on social networks—With inference.
Statistica Neerlandica 74 (3), 222-241

Monographs on Stochastic epidemic models and inference by me
and co-authors:

H Andersson and T Britton (2000). Stochastic epidemic models and their
statistical analysis. Springer
T Britton and E Pardoux (2019). Stochastic epidemic models with
inference. Springer LNM
O Diekmann et al (2013). Mathematical tools for understanding
infectious disease dynamics. Princeton UP.

Also many contributions by others!
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Mathematical models

Aim of mathematical modelling: To describe some real world
phenomenon mathematically in order to learn more about it

Main idea: Mathematical models describes some feature in a
simplified way, keeping only the essential features

Trade-off between simple and complicated models: Simple
models are easier to understand but don’t mimick reality very well.
Complicated models are harder to analyse and contain many
parameters which may be hard to estimate

Stochastic models:

The discrepancy between model and reality may be contained in
”random part” in model

Stochastic models enable uncertainty estimates (i.e. standard
errors) when estimating parameters
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Background: Infectious disease models

We want to model the spread of a transmittable disease in a
community of individuals

At a given time-point an individual may be Susceptible, infected
but not yet infectious (Latent or Exposed), Infectious, or recovered
and immune (Removed)

Different class of epidemic models: SIR, SEIR, SIS, SIRS, ...

Main focus: SIR (childhood diseases, STDs, influenza, covid-19...)

Short term outbreak vs endemic situation

Simplification for short term: fixed population, no waning immunity
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Notation

Some notation to be used

n = # individuals (n(t) if varying over time)

S(t) = # ”susceptibles” (susceptible individuals) at time t

I (t) = # ”infectives” (infectious individuals) at time t

R(t) = # ”removeds” (removed individuals) at time t

T = the time when the epidemic stops

Z (= R(T )− 1) = # infected during the epidemic (excluding
index case). Possible values: 0,1,...,n − 1.

We start with the simplest situation: all individuals are ”identical”
(with respect to disease spreading) and all pairs of individuals have
contact at equal rates.

Homogeneous community that mixes uniformly
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The Reed-Frost stochastic epidemic model

Short term outbreak (fixed community), homogeneous community,
uniform mixing, SIR, discrete time: ”generations”

An epidemic model (Reed-Frost, 1928)

Assume 1 index case (externally infected) the rest n − 1
susceptible

Anyone who gets infected infects other susceptibles
independently with prob p and then recovers

A recovered individual plays no further role in epidemic

The index case infects a random number (Bin(n − 1, p)) of
individuals, they in turn infect an additional random number, and
so on. Once no new individuals are infected the epidemic stops

Think in ”generations”
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Exercise 1

Suppose n = 3 (one index case and 2 susceptibles) and p = 0.2

Possible values for Z : 0,1,2.

P(Z = 0)? For this to happen the index can’t infect anyone

P(Z = 1)? For this to happen the index must infect EXACTLY
one AND this individual cannot infect anyone further

P(Z = 2)? Either the index infects exactly one AND this individual
infects the last one, OR the index infects both

P(Z = 0) = (1− p)2 = 0.64
P(Z = 1) =

(2
1

)
p(1− p)× (1− p) = 0.256

P(Z = 2) =
(2
1

)
p(1− p)× p + p2 = 0.104

or ... P(Z = 2) = 1− P(Z = 0)− P(Z = 1)
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What about larger communities?

General n, think in ”generations”

Epidemic chains: i → 3→ 2→ 0: the index infects 3, they infect 2
and these infect no further and the epidemic stops

P(Z = 0) = P(i → 0) = (1− p)n−1

P(Z = 1) = P(i → 1→ 0) =
(n−1

1

)
p1(1− p)n−2 × (1− p)n−2

P(Z = 2) = P(i → 2→ 0) + P(i → 1→ 1→ 0) = ...

P(Z = 3) = P(i → 3→ 0) + P(i → 2→ 1→ 0) + P(i → 1→
2→ 0) + P(i → 1→ 1→ 1→ 0) = ...

Pn(Z = z) gets very complicated when n ≥ 10 and z ≥ 5.

Underlying reason for the complication: individuals’ outcome
are dependent! (As opposed to other diseases)

What to do then?
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Approximations when n large

When n large then often p (=per individual transmission
probability) is small.

Expected number of infectious contacts: (n − 1)p ≈ np =: R0

R0 = basic reproduction number

Next page: Histogram of final outbreak sizes from 10 000
simulations in a community of n = 1000 individuals (both R0 < 1
and R0 > 1)
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Histogram of final size: R0 = 0.8
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Histogram of final size: R0 = 1.5
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An approximation for the final size

R0 = 1 is ”threshold value”

We now derive an equation for τ heuristically (recall p = R0/n)

Assume n large and let τ = Z/n = final fraction infected

1− τ = proportion not infected (1)

≈ probability not get infected (2)

= prob to escape inf from all infected (3)

= (1− p)Z (4)

=

(
1− R0

n

)nτ

(5)

≈ e−R0τ (using that (1− x/n)n ≈ e−x) (6)
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Approximation for final size

τ should hence (approximately) solve

1− τ = e−R0τ

There are two solutions: τ = 0 and (if R0 > 1): τ = τ? > 0.

Exercise 2 Compute τ∗ numerically when R0 = 1.5, 3 and 6.

On next page is a plot of final size as function of R0
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Plot of final outbreak size as function of R0
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Approximation, cont’d

Strong dichotomy: minor outbreak – major outbreak

P(major outbreak) = 1− P(minor outbreak) can be determined
using branching process theory (random graph theory):

Final size = size of connected component of a randomly selected
node in an Erdös-Renyi random graph

=⇒ P(major outbreak) = τ∗ = size of giant !!!

CLT for major outbreak:
√
n
(
Z
n − τ

∗) ≈ N(0, σ2)

σ2 depends on model parameters

Estimation: 1− z = e−R0z ⇐⇒ R0 = − log(1− z)/z

So if outbreak size z̃ observed R̂0 = − log(1− z̃)/z̃

+ explicit st.err. from CLT
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What about epidemic over time?

A related stochastic epidemic model (the ”General stochastic
epidemic”) can be defined in continuous time:

During the infectious period an individual has ”infectious
contacts” randomly in time at the average rate β, each time
individual is chosen randomly

A susceptible who receives an infectious contact becomes
infectious and remains so for a exponentially distributed time
with mean ν (other contacts have no effect)

Fundamental difference to Reed-Frost: Infectious period random
implies that infection events from an individual become dependent!
=⇒ undirected E-R random network no longer applicable

R0 = expected number of infectious contacts = βν
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What about epidemic over time?

When n is large the process (S(t)/n, I (t)/n) is close to
deterministic limit (s(t), i(t)) which solves differential system

s ′(t) = −βs(t)i(t) (7)

i ′(t) = βs(t)i(t)− 1

ν
i(t) (8)

r ′(t) =
1

ν
i(t) (9)

Next page: plot of I (t)/n for one (typical) simulated epidemic and
deterministic limit i(t), for a few different n
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Plots of simulated stochastic epidemic and deterministic
curve
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Beginning of outbreak

Infectious individuals infect new individual at rate β ∗ (S(t)/n) and
recover at rate γ

In beginning of outbreak in large community S(t)/n ≈ 1, so more
or less constant and equal rate for all infectives!

Infecting → ”give birth”, recover → ”die” =⇒ branching process
paradigm

=⇒ exponential growth rate: I (t) ∼ ert , r solves Euler-Lotka eq.∫ ∞
0

e−rsg(s)ds =
1

R0

where g(s) = is the generation time ditribution (g(s) = γe−γs for
this model)

Estimation: If we know g(s) and observe ”early” growth rate r
Euler-Lotka can be used to estimate R0! (More in last lecture)
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The basic reproduction number

Recall: R0 = expected number individuals a typical infected person
infects when everyone is susceptible

R0 depends both on disease (infectious agent) and on community!!

R0 < 1 or R0 > 1 makes a very big difference!

Next page: R0 for some diseases (and communities and time
periods), Anderson and May, 1991
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R0 for some diseases, communities and time periods
(Anderson & May, 1991)
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Exercise 6: Why is R0 > 1 for all diseases above?
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Extensions (within homogeneous mixing)

Random infectious force (e.g. length of infectious period): affects
P(outbreak) but hardly final size τ

Latent period: big effect on timing of epidemic peak and duration
of epidemic but no effect on final size (unless control measures are
initiated)

More than one index case: big effect on P(outbreak) but negligible
effect on final size τ in large outbreak

Exercise 3. If infectious period deterministic (=R-F) then P(major
outbreak)= τ∗. If infectious period is exponentially distributed then
P( major outbreak)= 1− 1/R0. Compute the latter probability for
R0 = 1.5, 3 and 6 and compare with Reed-Frost model.
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Extensions

Initial fraction of immunes. If there is a fraction r of initially
immunes the same methodology can be used. The difference is
that R0 is replaced by R0(1− r) since initially only the fraction
(1− r) is susceptible. The final fraction infected among the initally
susceptible then solves

1− τ = e−R0(1−r)τ

Major outbreak possible only if R0(1− r) > 1

Exercise 4. Compute τ∗ if initially only 50% were susceptible (and
50% were immune), for R0 = 1.5, 3 and 6.

Exercise 5. What are the overall fractions infected during outbreak
in later case?
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Modelling vaccination (prior to epidemic!)

Why is modelling of disease spread important?

Increase understanding and prevention (e.g. vaccination)

Suppose that a fraction v are vaccinated prior to outbreak

Assume first a perfect vaccine (100% immunity)

=⇒ a fraction v are initially immune (discussed in previous lecture)

Rv is the reproduction number after a fraction v has been
vaccinated

=⇒ Rv = R0(1− v)

Rv < 1 equivalent to R0(1− v) < 1 equivalent to v > 1− 1/R0
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Modelling vaccination cont’d

So, if v > 1− 1/R0 there will be no major outbreak: ”Herd
immunity”

vc = 1− 1/R0 is called the critical vaccination coverage

Exercise 8: Compute vc for a disease having R0 = 1.5, 3 and 6
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Modelling vaccination cont’d

If vaccine is not perfect but relative risk of getting infected from
an infectious contact for vaccinees is 1− E , 0 < E ≤ 1 (E for
”efficacy”, later to be called VES), then

vc =
1

E

(
1− 1

R0

)

For a highly infectious disease (R0 large) and a not so effective
vaccine (E not too close to 1) vc might exceed 1. This means
vaccination alone cannot prevent an outbreak!
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vc for some diseases (Anderson & May, 1991)
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Endemic diseases (deterministic only)

When interest is on long-term situation (as opposed to short term
outbreaks) the assumption of a fixed population must be relaxed

Consider an SIR disease in a population where individuals die and
new are born. Assume:

SIR disease (life long immunity)

population at ”equilibrium” (in terms of size and incidence)

disease endemic (constantly present, no big fluctuations)

s̃, ĩ and r̃ denote the average fractions susceptible, infectious
and removed

R0 = average number of infections caused by one individual –
if everyone was susceptible!

Think of childhood diseases (e.g. chicken-pox)
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Endemic diseases, expression for s̃

When disease is in endemic equilibrium each infected individual on
average infects exactly 1 new person!

Given R0 and s̃ an infected individual infects on average R0s̃ new
individuals

=⇒ R0s̃ = 1 !!

s̃ = 1
R0

s̃ = average fraction susceptible = average age at infection
average life-length

Exercise 9 Suppose R0 = 1.5, 3 and 6 respectively, compute s̃.

Estimation:

R̂0 =
1

s̃
=

average life-length

average age at infection
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Endemic diseases, expression for ĩ

If ι is the average length of infectious period and ` average
life-length, then ι/` is the average time of the life an individual is
infectious

Since population/disease in equilibrium this is also the population
fraction of infectives

ĩ =
ι

`

Average number of infectives: nĩ
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Exercises

Exercise 10 Consider an endemic disease with one week infectious
period and a population with 75 years expected life-length.
Compute the average fraction infective ĩ .

Exercise 11 Consider the disease in the previous exercise and
consider the Icelandic population (n = 250 000). What is the
average number of infectives? How about England
(n = 60 000 000)?

Exercise 12 What do you think will happen with the disease in the
two countries (remember that if the number of infectives drops to
0 the disease goes extinct - until it is ”re-imported”)?
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