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“In theory there is no difference between theory and practice, while in practice there is.”
— Yale student Benjamin Brewster, class of 1882

or its variant:

“The difference between practice and theory is greater in practice than in theory.”

This slide set (and any updated content) is available at https://tinyurl.com/cuso-summer-2025-bhm
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Introduction



The Central Dogma of molecular biology (Crick, 1956)

Crick’s first outline of the Central Dogma, from an unpublished note made in 1956. Image: Wellcome Library, London.




Molecular pathways from genotype to phenotype
Today, we know that biology involves more than sequence-level information flow.

m DNA carries the instructions that shape how our bodies function and how
diseases may develop.

B These instructions are read through a complex network of molecular
processes inside each cell.

m This network operates across multiple layers of biological activity — including
genes, proteins and biochemical entities — which together influence physical
traits and disease risk.

m The relationships between layers are subtle and depend on context — for
example, they can vary across cell types, tissues or developmental
stages.

m External factors such as lifestyle or environmental exposures can also
influence how these molecular processes unfold.

epigenome

Ben Goldacre

phenome
(disease)

metabolome

proteome

transcriptome
(RNA)

genome
(DNA)
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Guest-Editorial

39

Talkin’ Omics

The 1990s will be remembered as the decade when
advances in biomedical research launched the genomics
era. While new information and technologies are
clearly important products of the genomics revolution,
perhaps most important is a change in mindset of how
we pursue scientific discovery. We are no longer sat-
isfied to study a gene or gene product in isolation, but
rather we strive to view each gene within the complex
circuitry of a cell. Understanding how genes and their
products interact will open many exciting avenues in
biological and biomedical research. In rapid succes-
sion, this new mindset has invigorated the analysis of
all molecular entities, from the genome, to transcripts
(transcriptome) and proteins (proteome). And itis clear
that this is just the beginning of the omics revolution.

While the understanding and treatment of many dis-
eases will be impacted by omics, arguably the greatest
biomedical opportunity for discovery is cancer. As a
family of diseases, all cancer results from changes in
the genome. The genomic changes take many forms,
from point mutations, to amplifications and deletions,

of disease that might be most amenable to intervention.

The complexity of molecular events within the
genome are reflected and amplified by the diversity of
transcripts and proteins within a cell. A variety of
transcripts can be derived from the same gene, and the
encoded proteins can be modified extensively to fulfill
specific biological functions within a cell. The omics
revolution has challenged researchers to integrate the
study of the genome, transcriptome, and proteome, for
this is the most promising approach to attaining a com-
prehensive omic view of the molecular circuitry within
acell.

In this issue of Disease Markers, we are fortunate
to have contributions from some of the leaders of the
omics approach. While many of the articles feature
cancer research, we hope that the more general appli-
cability of the described approaches is apparent. We
have tried to make this inaugural omics special issue of
Disease Markers provocative and informative, and we
hope that it captures the excitement that has led to the
description of omics research as revolutionary.

Robert L. Strausberg, Disease Markers, 2001.
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From isolated genes to systems biology

Systems biology:

m In the early 2000s, advances such as the first sequencing of the human genome (14 April 2003) and the
development of high-throughput technologies (e.g., microarrays, next-generation sequencing, mass
spectrometry) transformed molecular biology.

m The concept of “systems biology” emerged, promoting a holistic view of biological function.
m Biological questions shifted from “Which gene is involved?” to “How do genes interact in networks and pathways?”

B These changes opened new opportunities for understanding disease mechanisms and therapeutic targeting.

Large and complex datasets:

m High-throughput techniques generate multi-layered molecular data across tissues, individuals and time, shaped
by structured, context-specific biological processes.

m Historically limited in genomics by computational constraints, Bayesian methods have become increasingly
tractable and impactful over the past 20 years.
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Why Bayesian modelling in genomics?

In the context of genomics studies, Bayesian hierarchical models offer:
m principled quantification of uncertainty, critical for decision-making and interpretation;
m flexible modelling of complex dependencies, with information borrowing (when supported by the data);

B integration of domain knowledge via custom priors: external (e.g., pathways, annotations, networks) or
structural (e.g., sparsity, smoothness, modularity);

m natural handling of multi-level data (e.g., samples nested within individuals);

B a generative view of the genotype-to-phenotype map, aligned with the systems biology perspective.
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Genetic association studies



Two types of genetic association studies
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DNA and genotypes

maternal paternal

m DNA (deoxyribonucleic acid) consists of two complementary strands forming a Chmmosre chromosome
double helix. Each strand is made up of nucleotides: A (adenine), T - )
(thymine), C (cytosine) and G (guanine). c¢ ~: (S <

] o

m Nucleotides pair specifically across the two strands: A pairs with T, and C pairs
with G. These pairings form the base pairs that encode genetic information.
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m Human DNA is organised into 23 pairs of chromosomes (22 autosomes + 1
sex chromosome), with one set inherited from each parent.

m Anindividual's genotype at a given position (“locus”) refers to the
combination of nucleotides inherited from both parents.
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m Specific regions of DNA called genes contain instructions for producing
proteins, but much of the genome is non-coding and still functionally important.
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SNPs, alleles and minor allele frequency

m A genetic variant is a change at a specific location in the DNA sequence
across individuals in a population. It often involves a change in a single chramoseme chbamosome
nucleotide but can also include insertions, deletions or structural alterations. N

lo}
/

m An allele refers to one of the possible nucleotides observed at a given
genomic position where variation occurs across individuals.
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m The minor allele frequency (MAF) is the frequency at which the less

4

N\ | SN )

common allele occurs in a population. cf S
m A single nucleotide polymorphism (SNP) is a single base substitution (e.g., L P -
C—T) that is present in at least 1% of the population (i.e., MAF > 0.01; typical — — =
threshold to distinguish common SNPs from rare variants). 2 /"— - — :' |
m Example: Suppose in a population, the genotypes at a SNP are distributed as: & \ §
o0 60% CC, 30% CT, 10% TT = allele C has frequency 0.75, T has p— > — =
— — =

frequency 0.25.
o Here, C is the major allele, and T is the minor allele with MAF = 0.25.
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Genome-wide association studies (GWAS)

m Genome-wide association studies (GWAS) aim to identify statistical associations between genetic variants

(usually SNPs) and a trait of interest (or phenotype), such as height, disease status or a clinical measurement.

m In a GWAS, hundreds of thousands to millions of SNPs across the genome are tested for association with the
phenotype, typically in large populations.

m To model the effect of a SNP (say with minor allele T) on the phenotype, different genetic models can be used:

o The additive model (most used) assumes a linear and cumulative effect of the number of minor alleles. Genotypes are
coded as:

0: homozygous major (CC) 1: heterozygous (CT or TC) 2: homozygous minor (TT);
o The dominant model assumes the presence of at least one minor allele confers the full effect. Genotypes are coded
as:
0: homozygous major (CC) 1: heterozygous or homozygous minor (CT, TC, or TT);
o The recessive model assumes an effect only when two copies of the minor allele are present. Genotypes are coded
as:
0: homozygous major or heterozygous (CC, CT or TC) 1: homozygous minor (TT).
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Why study genetic associations?

m Many important health outcomes — such as body mass index (BMI), blood pressure or type-2 diabetes — are
complex traits, meaning that they are influenced by multiple genetic variants together with environmental
factors, rather than variation at a single gene.

m With the sequencing of the human genome, GWAS have started to reveal the genetic architecture of a tapestry of
complex traits through identification of genetic variants associated with such traits across diverse populations.

Last data release 2025-08-24 (https://www.ebi.ac.uk/gwas/search):
7369 publications, 106 320 traits (EFO) and 955 930 top associations.

GWAS Catalog

The NHGRI-EBI Catalog of human genome-wide association studies

earch the catalog Q
Examples: Parkinson disease, rs3093017, Yao, 2q37.2, HBS1L, 6:167120000-167130000, GCST90132222, PMID:35241825

RESOURCE
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https://www.ebi.ac.uk/gwas/search

The costly decline of drug discovery efficiency...

Eroom’s law in pharmaceutical R&D

100

Number of drugs approved per billion US$

0.1 T T T T T T
1950 1960 1970 1980 1990 2000 2010

Year

Logarithmic decline in the number of new drugs approved per US$ billion in R&D spending from 1950 to 2010.
Adapted from Scannell et al. (2012).
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GWAS support drug discovery

GWAS have advanced our understanding of human biology and disease. In some cases, they have also contributed
directly to drug discovery and therapeutic development.

o >90% of drug candidates fail in clinical

. . News & analysis Human genetics evidence
trials (Sun etal, 2022)’ supports two-thirds of the 2021
Biobusiness biefs wompsegormanmancs: FDA-approved drugs
o Drug targets with genetic support are Genetic support for FDA-approved drugs over oy DR s
the pastdecade oD e :

Analysis
Refining theimpact of geneticevidence on
clinical success

2.6 X more likely to reach approval
(Minikel et al., 2024);

H

Jeffery L.Painter™, Matthew R, Nelson™*

o Genetic support underlies 8.2% of all
approved drugs (Nelson et al., 2015), eI _
... but 66% of those approved in 2021 7 : Piemerony
(Ochoa et al,, 2022). R

April2024
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From genetic associations to biomedical translation

PCSK9 and cholesterol-lowering therapy (Chaudhary et al., 2017):
m GWAS identified variants in the PCSK9 gene associated with LDL cholesterol levels.
m Functional studies confirmed PCSK9’s role in lipid metabolism.

m This led to the development of PCSK9 inhibitors, such as alirocumab and evolocumab, now approved to treat
high cholesterol and reduce cardiovascular events.

FTO and obesity (Loos and Yeo, 2014):
m A landmark GWAS linked common variants in the FTO gene to higher BMI and obesity risk.
B These variants are frequent in the European population (MAF > 0.4), with substantial public health relevance.

m Follow-up work revealed a role in appetite regulation, uncovering new pathways for potential intervention.
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Should we consider SNP associations as causal in GWAS?

m Causal interpretations in observational studies are rarely justified without explicit causal modelling.
m In GWAS settings:

o Genotypes precede phenotypes temporally, so reverse causation is implausible.

o Genotypes are less susceptible to many common confounders.

o Therefore, an association is often interpreted as a causal effect of the SNP (or a linked SNP) on the
phenotype.

m Well-documented exceptions are confounding due to population structure (typically corrected using principal
components or mixed-model approaches) or indirect environmental effects (typically avoided using
family-based designs):

o Regional ancestry differences can confound genetic analysis, creating patterns that resemble genetic effects but are
actually due to cultural variation (e.g., cheese type preference).
o Parental DNA can shape both the child’s environment (e.g., TV watching habits) and the child’s own genotype.

m This causal interpretation underpins methods like Mendelian randomisation, which use genetic variants as
instruments to infer causal effects of exposures on outcomes under assumptions of relevance, independence and
exclusion restriction (see, e.g., Davey Smith and Ebrahim, 2003; Burgess et al., 2015).
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Linkage disequilibrium
m Linkage disequilibrium (LD) refers to the non-random association of alleles at different loci.
m It arises because nearby genetic variants tend to be inherited together.

m LD is crucial in association studies, as nearby SNPs often serve as proxies for a causal variant.

Population-specific LD patterns: e.g., shorter blocks in YRI vs. CEU/CHB, due to greater genetic diversity and
older population history in African ancestries.

CEU CHB YRI

o o2 e s
e . wn o wa o - —

LD plots of the SNPs in the Xg28 region. CEU: Utah Residents with Northern and Western European ancestry, CHB: Han Chinese
in Beijing, YRI: Yoruba in Ibadan, Nigeria (HapMap project).
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Univariate screening and the “omitted variable misspecification”

m Most GWAS for continuous traits rely on a series of marginal regressions: for ni.i.d. samples and an n X 1
centred response y,
y=XLs+e, s=1,...,p,
where X; is an n X 1 centred predictor, [3; is its regression coefficient and € is an n X 1 Gaussian error term.

m Suppose the correct model is:
y =X+ X5 +e, pBi,B.F#0.

m Then, forany SNP s € {1,...,p}:
]E(Bs) = (X X)X (X 51 + X2 3).
which shows that the marginal estimator is biased if X; is correlated (i.e., “in LD”) with X; or X,.
This bias may:
m lead to spurious associations — for SNPs s ¢ {1,2} in LD with X or X;.

m hinder the identification of truly associated SNPs — e.g., for SNP s = 1, if in LD with X, the bias may shrink 31
towards zero.

m distort the estimated effect sizes — e.g., even if s = 1 is correctly identified as associated, 31 may be biased.
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Manhattan plot and regional plot

Marginal screening ---- GWAS threshold Zoom (start of chr 11)
Bonferroni threshold

~log10(p)

0 02 04 06 08 10

Example of GWAS using simulated data; true non-zero effects are in red. Left: genome-wide (Manhattan) plot, right: regional plot.
Most strong marginal associations are solely due to local correlation among predictors.

23/128



Frequentist and Bayesian regularisation



High-dimensional regression

Consider the linear regression model

y=XB+e, e~N(0,0%1), (1)
where:

o y € R"is a response vector;
o X € R"*" s afixed design matrix of predictors;
o 3 € RPis the vector of unknown regression coefficients;

o & € R"is a vector of i.i.d. Gaussian errors with mean zero and variance o2

For simplicity, we assume that the response and predictors are centred, and set the intercept to zero (assumed
throughout this course);

m In GWAS, scaling the predictors is not necessary as SNPs are measured on the same scale (allele counts);
scaling implies priors favouring larger effects for rare variants, in line with natural selection (Park et al., 2011);

m We focus on the high-dimensional regime p >> n.

Main objectives: (i) identify relevant predictors (variable selection) and (ii) estimate their effects.
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Sparsity in GWAS

m High-dimensional regression: X7 X is singular when p > n;

m Standard estimators are ill-posed without regularisation or structural assumptions.
Sparsity: assume that most entries of 3 are zero or negligible; this encourages parsimony and enables stable,
identifiable inference.

m For complex traits, strong-effect SNPs are the exception rather than the rule.

m Recent theories like the omnigenic model (Boyle et al., 2017) suggest a pervasive polygenic architecture: a small
subset of “core genes” have large effects, yet many SNPs, in nearly all expressed genes, contribute weak effects.

— this tension motivates flexible approaches that capture both a few strong and many weak signals.

m GWAS emphasises selection over prediction, yet many true effects may be too small to detect confidently;

m This places value on interpretable, variable-level measure of confidence (posterior probabilities) — which we argue
is a strength of Bayesian variable selection.
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Bayesian model selection formalism

Model selection:
m Model space: 2° possible models, each defined by an inclusion vector v € {0, 1}”.

m For each model MA/, the data distribution is:
yi‘MmﬁwU:NN(vaﬂw;Ui); i:17"'7na

where X,7 is the p, -vector of predictors included in model Mw and ,6'7 the corresponding vector of regression
coefficients.

m Given a prior p((3,, 02), the posterior probability of model M., is

~_ ply | My)p(M-)
PM 1) = Sy A (M)

where

oly | M) = / oy | My, By.0%)p(By, 02) B, do?.
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Bayesian model averaging (BMA)

m Posterior distribution of a quantity of interest A:

p(A [y) = p(A| M,y,y)p(M, | y);
Y

m Predictive distribution for new observation y:

= Zp(}"l | MW‘V) P(M'y | y).

Challenges:
m Specification of priors over models and parameters;
m Computation of marginal likelihoods;
m Exploration of model space of size 2°. When p >> n and in presence of small effects, the posterior probability on

any single model will be very small, making identification of a single best model extremely difficult.
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Frequentist approaches to regularisation

Frequentist high-dimensional regression is typically framed as the minimisation of

1
L(B) = §||Y — XBII; + peny(B), )
where penA(ﬁ) is a penalty function indexed by A > 0, a tuning parameter controlling the strength of the penalty.

m Separable penalty functions are typically employed, i.e., peny(3) = Y _, pr(5Bs). e.g. pA(Bs) = A| B for
the lasso (Tibshirani, 1996).

m Optimal estimation properties may be obtained by imposing sparsity conditions like
IIBIIZ logp<n 0<g<oo,

where || - |4 is the £, norm and || 35 = ||Blo = # {1 < s < p: s # 0} (Bihimann and van de Geer,
2011).

m Inthe p > nregime, asymptotic normality no longer holds in general and bootstrapping becomes challenging.
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Bayesian regularisation via priors

Bayesian regularisation replaces penalty functions with priors:

m Many penalised estimators are equivalent to the mode of a posterior distribution with prior
p(ﬁs) X exp{_p/\(ﬁs)}7 s = 17"'7p' (3)

m Example: the lasso is equivalent to a maximum a posteriori (MAP) estimator with independent Laplace priors on
the entries of 3:

A
p(ﬂs) = Eexp{_)\|ﬁs|}a s = 17"'ap'
This prior, known as the Bayesian lasso, was first introduced by Park and Casella (2008).

m Instead of just the mode, Bayesian inference provides the full posterior distribution and thereby quantifies
uncertainty.

m Opportunity to treat A as a parameter to be estimated. The fully Bayes approach of placing a prior on )\ renders
the penalty non-separable, which allows sharing information across different coordinates.
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Scale mixtures of normals

m A wide range of sparsity priors can be expressed as scale mixtures of normal densities:

p(Bs) = /N(ﬂs [0.,) dG(w). s=1.....p. @

where G is a distribution on the variance parameter.
m This representation unifies many popular shrinkage priors (e.g., Laplace, Student-t, Horseshoe) and simplifies:
o Computation: It induces conditional conjugacy for each coefficient, which simplifies posterior sampling. For
example, the Laplace prior can be written as:

By | ws ~ N(0,ws), w5~ Exp(X2/2), s=1,....p.

This turns a non-conjugate shrinkage prior into a conditionally conjugate model for ;.

o Theory: The mixing distribution G clarifies how the prior concentrates mass near zero (for shrinkage) and in
the tails (for robustness). This simplifies the analysis of adaptivity to sparsity and posterior behaviour.
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Posterior consistency and asymptotics

m Posterior consistency: Under the assumption that the true parameter (3, is in the support of the prior, the
posterior converges to a Dirac measure at (3, (see Doob, 1949; Schwartz, 1965).

m Concentration rates: Establishing the rate at which the posterior contracts provides insight into the required
sample size n for a desired accuracy. These rates can be compared to minimax risk bounds to assess adaptivity.

m Bernstein—von Mises theorem: In low-dimensional settings, the posterior approximates a Gaussian distribution
centred at the maximum likelihood estimator. However, in the p >> n regime, the required conditions (e.g., flat
priors around 3,) may fail, making standard asymptotic normality results inapplicable.

“For a Bayesian, the problem with the ‘bias’ concept is that is conditional on the true parameter value. But
you don’t know the true parameter value. There’s no particular virtue in unbiasedness.”
—— Andrew Gelman
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Normal means model

To ease the presentation and unless stated otherwise, we describe these priors in the context of the normal means
problem (Stein, 1981),

yi:Bi+€i7 E,-NN(O71), i:17"'7n7 (5)

where the dimensionality nis large.

Theory for model (5) is frequently examined under a nearly-black sparsity assumption, i.e., assuming that the
unknown true parameter 3, belongs to (Donoho et al., 1992; Johnstone, 1994)

/0[,0,7; n] = {/8 S HIBHO < pn}a Pn = 0(”)7 n— oo. (6)
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Two-group priors



Two-group priors

Formulation (spike-and-slab prior; Mitchell and Beauchamp, 1988; George and McCulloch, 1993):

Split the prior into two components:

Bilm~mgs+(1—m)d, i=1,...,n, (7)
Spike-and-slab prior
where: 3 spike
B gg is an absolutely continuous density (often taken as a centred normal = 3
with variance 0'%); s stab
o
m §, is the Dirac distribution at zero; o
S T T T T T 1
m 7 is the prior probability that (3; is nonzero. =8 -2 -1 0 1 2 3
B

Interpretation:
The spike at zero models noise; the slab models signal.
magnitude of effects and the sparsity level.

Spike-and-slab prior (with Gaussian slab).

This formulation allows separate modelling of the
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Posterior shrinkage under the spike-and-slab prior

It is possible to express model selection priors as shrinkage priors.

Lemma (Adapted from Bhadra et al., 2017)
Assume the normal means model (5) and prior (7) with gg = N (0, 0%) for 3;. Then the posterior mean of [3; can be

expressed as
2

95
BB |yi)=m ()1+ 2y,, 8)

where Tt(y;) = p(B; # 0 | vi). As Uzﬁ = 0

E(S | yi) = (1 + 0(1)) m(¥i)i-

m Global shrinkage is controlled by 0%.

m The term 7(y;) provides adaptive, local shrinkage.
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Hierarchical representation of the spike-and-slab prior
A reparameterisation introduces binary latent indicators 7y;:

Bi | v~ vigs+ (1 — ) do,

v | ® ~ Bernoulli(w), i=1,...,n.

Posterior interpretation for variable selection:
m For regression models (1), with spike-and-slab prior on the regression coefficients (replacing the index i with the

predictor index s), the marginal posterior probability of inclusion (PPI),

E(vs |y) =p(vs=1]y),

directly quantifies the evidence for including predictor s in the model.
m This hierarchical form facilitates both variable selection and uncertainty quantification.

m We use marginal summaries of variable inclusion — indeed, remember that we are not attempting to identify a
single “best” model ./\/l,y (i.e., combination of predictors) or estimate posterior probabilities for specific models.
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Example GWAS for systolic blood pressure (SBP)

Data simulation settings:
m 22 chromosomes with lengths reflecting their relative proportions in the human genome (GRCh38);

m 100 000 SNPs with minor allele frequencies (MAF) uniformly drawn between 0.05 and 0.5, for n = 500
individuals;

m Simulated correlation patterns (linkage disequilibrium, LD) using block-wise autocorrelated structures with realistic
block counts per chromosome;

m Selected 10 risk SNPs among the top associations from a large systolic blood pressure GWAS';

m Assigned effect sizes such that the total proportion of variance explained (PVE, i.e., narrow-sense heritability, see
later) equals 30%;

m Per-SNP PVE sampled across chromosomes from a half-Cauchy distribution;

m Simulated the phenotype as a linear combination of the risk SNPs, with additive noise reflecting the specified PVE.

'Reference GWAS: Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk

scores for blood pressure traits (Keaton et al., 2024).
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Marginal GWAS

Marginal screening ---- GWAS threshold
Bonferroni threshold
© — .
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SNP

Manhattan plot, using frequentist marginal screening. Red: simulated signals.
SNPs marked with a red cross, on chromosome 12:

m rs7137828: regulator of cytokine signalling, known associations with blood pressure, hypertension and
autoimmunity;

m rs11105354: regulator of calcium levels in blood vessels, known association with blood pressure.
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Spike-and-slab posterior inclusion probabilities

Bayesian GWAS

- MPM threshold
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Bayesian spike-and-slab regression. Shown: marginal posterior probabilities of inclusion (PPI).

m Nearly half of the “active” SNPs are correctly assigned high PPlIs.

Red simulated signals.

m Others receive very low PPls despite being truly associated — weak signal and/or difficulty resolving signals when

SNPs are highly correlated (LD).
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Continuous two-group shrinkage priors

Formulation (continuous spike-and-slab prior):
Use a mixture of two continuous densities:

Bilvi~~igs+(1—)g, v~ Bernoulli(r), (10)
where:
B g is a density with strong concentration near zero (continuous “spike”);

B gg is a diffuse distribution allowing large signals (continuous “slab”).

Typically, both are from location-scale families, and conjugate choices aid computation.

Characteristics:
m Avoids discontinuity from point-mass at zero (improves MCMC mixing);

m Does not produce exact zeros (shrinkage rather than formal variable selection).
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Examples of spike-and-slab densities

Common choices for gz and gy:

m Normal-Normal:
95 =N(0,03), g9 =N(0,02), 0<o2< 0}

(e.g., Ishwaran and Rao, 2005);
m Laplace—Laplace:

gp = Laplace(0, A\g), go = Laplace(0, ), 0 < Ay < Mg

(e.g., Rockova and George, 2018);

m Cauchy—Cauchy or Student’s t—Student’s t: to allow for heavier tails and robustness to large signals.

Remarks:
m The choice of gy controls shrinkage near zero; gg governs signal adaptivity.

m Gaussian pairs yield conjugacy; Laplace induces sparsity via £; penalty analogues.
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Additional priors for the “slab” component

m Formulations introduced so far placed independent priors on the nonzero coefficients, ﬁw conditional on 7, e.g.,
2 2 2 2 .
,37 | Y:0p,0¢ ~ J\/pw (03 Uﬁgslpw)'

m Instead, Zellner (1986) introduced the g-prior, which assumes correlations among the regression coefficients
mimicking the correlations among predictors:

2 2 T —1.
By [ v, 9,02 ~ N, (O,QUE(X7 X,) )
m Its covariance is proportional to the inverse Fisher information, Z(3,) = o 2X. X,, and hence mirrors the

uncertainty of the MLE, giving more prior variance where the data is less informative, and vice versa.

m This ties it conceptually to the Jeffreys® prior, p(3,) |I(,8ﬂ,)|‘/2 (same idea but improper/non-conjugate
form).

m g controls prior strength relative to data — common choices include g = n (unit information), g large (flat prior) or
a hyperprior on g for flexibility.

m In GWAS, independent priors are often preferred as the effects /3v need not mirror SNP correlations.

®Harold Jeffreys (1891-1989) also introduced Bayes factors in Theory of Probability (1935, expanded 1948/1961) as a general

framework for Bayesian model comparison.
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Prior specification for the “slab” variance

The slab variance, af,, controls the amount of shrinkage applied to non-zero coefficients. Choosing a hyperprior for
O'% has strong implications for inference.

See:

Andrew Gelman. “Prior distributions for variance parameters in hierarchical models”.
Bayesian Analysis, 1, 515 - 534, 2006.

Some specifications:

m Inverse-Gamma prior, which is conjugate, often used with very small shape and scale, e.g., 0.001 — this
specification is not truly non-informative despite being commonly used as such (overly concentrated near zero);

m Less common: heavy-tailed priors (e.g., Half-Cauchy) or improper priors (e.g., flat on log-scale, p(a%) o< 1/0%)
often used to reflect vague prior knowledge;

m Alternative: fix 0'% to a constant (e.g., 1 or 10) — risk of miscalibrated shrinkage.
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An alternative: prior based on PVE

Guan and Stephens (2011) argue that independence from model size (i.e., <y) implicitly assumes that complex
models explain more variance than simpler ones, which can be unrealistic, as biologically, one may expect many
small effects (strong polygenicity of Boyle et al. (2017)’s omnigenic model) or few large ones.

They consider the following discrete spike-and-slab specification:

Bs | s ~ 7N (0, U%Ui) + (1 =) do,
where

o Jg is the residual variance;

o aé is the slab variance, representing the typical size of nonzero effects.

Main idea: Define the prior on 0% given 7y, such that the prior on proportion of variance explained (PVE),

Var(x3)

PVE(ﬂa Ug) = W)_’_Uga

is approximately uniform on (O7 1), independently of ~y.
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A structured prior via the PVE

® Assuming centred predictors, we have

PVE(B, of) ~ D70

~ VB.08) 11 where V(B,02) = %Z(X,@),z/ag

i=1
is the empirical variance of X3 relative to error variance o2.
m Next,
v(7,0%)
v(v,0%) + 1
may be considered a proxy for the expected PVE, where
V(’)’,O’%) = E[V(ﬂ’ 0’2)"7,0’%] = Uzﬂ Z S

=1

W (vy,0%) =

with s; := 1 3~ | X? the empirical variance of variable j.

[ | hz(’y, 0?3) is only a rough guide to the expected PVE (ratio of expectations, not the expectation of the ratio).

m Impose h* ~ Unif(0, 1), independently of y; this induces a prior on 0% | =y, such that more complex models
receive stronger shrinkage, counteracting the tendency of common priors to inflate PVE with model size.
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Posterior PVE estimates using simulated data

Posterior estimation

Estimated vs simulated h?

0.9
0.8+
0.7
0.6+
05
0.4+
0.3
0.2+
0.14

Posterior mean estimates with 95% credible intervals.

0 01 02 03 04 05 06 07 08 0.9
True h2

T
1

10 000 real SNPs sampled across the genome [height
GWAS dataset from Yang et al. (2010), n = 3 925]; local
LD means sampled SNPs are nearly uncorrelated.

Traits simulated with varying true h?, using 200 randomly
chosen “active” SNPs.

Posterior intervals are tight and h? estimates remain
well-calibrated overall.

Some downward bias appears at high h? since the model
must explain more variance with the same number of
SNPs, so true effects are larger and the slab shrinks them
inward; missed SNPs also contribute.

A slab with heavier tails could help better preserve large
effects.
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Back to our simulated SBP example: model size and PVE

Frequency

Frequency

1500 2500

0 500

1000 2000 3000

0

Estimated model size

—— True model size

Model size

h2 estimate

—— True h2

Individual models often include too many transient, correlated
SNPs, reflecting instability in SNP selection under LD.

Estimated /? is variable and inflated, with wide posterior
uncertainty.

o h?is evaluated at each MCMC iteration from the
corresponding sampled model.

o Large models with redundant SNPs can reduce residual
variance due to overfitting, creating the illusion of higher
genetic signal.

o h? appears high in some iterations and lower in others,
depending on the degree of redundancy and tagging.

Later in the course, we will see how “fine-mapping” strategies
help stabilise inference and disentangle overlapping signals.
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A note on the terminology: PVE, heritability and missing heritability

m PVE: proportion of phenotypic variance explained by a linear predictor from measured genetic variants.

m Heritability: proportion of variance explained by all genetic variants (measured or unmeasured).

m Polygenic risk score (PRS): individual-level score estimating genetic susceptibility to a trait or disease,
computed as a linear prediction where an individual’s genotypes are weighted by effect sizes from GWAS.

“Missing heritability”: GWAS often find much smaller PVE than heritability estimates from family studies (Maher,

2008), because of

B unmeasured variants: rare variants not well tagged by common SNPs;

B undetected effects: small-effect common variants, gene-gene and gene-environment interactions not captured by

standard GWAS.

heritability

PVE

. S e unmeasured variants
missing heritability o ,,qetected effects

>

>

proportion of
trait variance
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One-group priors



One-group shrinkage priors

m Unlike the two-group approach, one-group priors do not explicitly partition coefficients into signal and noise.
m All coefficients are modelled using a single, continuous shrinkage component.

B The classical James-Stein estimator (Stein, 1956; James and Stein, 1961) illustrates the benefits of global
shrinkage, and can be viewed as an early example of empirical Bayes estimation based on a common normal
prior:

Bi | 02 ~ N(0,0?).

m Modern one-group priors extend this idea with hierarchical structures that allow adaptive coefficient-specific
shrinkage, suitable for sparse, high-dimensional settings.
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Global-local scale mixture priors

The general form is given by:

Bi | X,oe ~ N(0,0502),  ANi~f  oo~ag, (1)

where f and g are densities on R

m This leads to non-normal marginal distributions for [3; that can accommodate both sparsity and heavy-tailed
signals.

m 0 is the global scale (affecting all coefficients): it adapts to the overall sparsity level.

m )\ are the local scales (providing coefficient-specific adaptation): they allow individual signals to escape
shrinkage when supported by the data.
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Posterior shrinkage under one-group priors

Lemma (Adapted from Carvalho et al., 2009)
Assume the normal means model (5) and prior (11) for (3;. Let

1

=——— i €(0,1). 12
oo <€) (12)

Rj

Then, the conditional posterior mean of [3; can be expressed as
E(ﬁ: | y,-,oﬁ,)\,?) = (1 —k)y+ K x0,
S0,

E(ﬂ, | y,,ag) = (1 —E(/i, | y,-,ag))y,.

Parameter k; is called shrinkage factor, as it represents the weight placed on zero by the posterior mean of 3;. In
this one-group framework, the quantity 1 — E(n, \ Vi JS) plays a role analogous to the posterior inclusion probability
in two-group models.
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Examples of global-local priors

m Laplace and Student-{ prior: local variances follow exponential and inverse-Gamma distributions, respectively.

m Strawderman-Berger prior (Strawderman, 1971; Berger, 1980):

1 1
B,‘K,‘NN<0,_1>7 KZ,‘NBeta(*,1).
Rj 2

m Normal/inverted-beta prior: local variances follow an inverted-Beta density,

() (14 x) 7

p(N) =

where B(+, -) is the beta function.

p(x;) (unnormalised)

Laplace

B(a, B)

Student-t (df = 1, Cauchy)

)

a, >0,

Strawderman Berger

T T T T T T
00 02 04 06 08 1.0

Ki

T T T T T T
00 02 04 06 08 1.0

Ki

T T T T T T
00 02 04 06 08 1.0

Ki

(13)
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Examples of global-local priors
m Horseshoe prior (Carvalho et al., 2009, 2010):
Bi| o5, A2 ~ N(0,0502), X\ ~cC*(0,1), (14)
where CT (-, ) denotes the half-Cauchy distribution.

m Horseshoe+ prior (Bhadra et al., 2017): more aggressive noise reduction without sacrificing tail robustness:
Bl’ | 037)\I?NN(07U§)\12)7 )\i |77f'\’0+(0777i)7 77fNC+(0a1)-

m Regularised horseshoe prior (Piironen and Vehtari, 2017): prevents overly large signals:

Bi | /\,-,T,CNN(O,TZ/"\,?), e OX

+ 3
: 702+72)\_’2, A ~C7(0,1), ¢>o0.

Horseshoe Horseshoe+ Regularised horseshoe

p(xi) (unnormalised)

T T T T T T T T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

Ki Ki Ki

®In practice the authors recommend placing a prior on c.
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Interpretation of shrinkage profiles
The marginal prior density of k; (shrinkage factor) reveals how the prior treats small versus large signals.

m Horseshoe prior: x; ~ Beta(1/2, 1/2) places mass near 0 (no shrinkage for large signals) and near 1 (strong
shrinkage for noise).

m Student-t and Strawderman-Berger priors: The density of k; exhibits a pole at zero, reflecting fat tails, but
does not enforce full shrinkage.

m Laplace prior: Lighter tails lead to litle mass near zero and may shrink genuine coefficients too much.
One-group priors Tails of one-group priors

— horseshoe

0.030

©
1=} AN - - Cauchy
g N ---+ Laplace
z < 2z 3
% o 3
5 5
o 8 o
o 3
o [S)
o
2 8
S o T T T T T 1 S T T T T 1
-3 -2 -1 0 1 2 3 3 4 5 6 7
] ]

Densities of different one-group priors (Cauchy is t with df = 1).
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Two-group priors as local-scale mixtures
A general prior formulation for 3 assumes a Gaussian prior:
(B[ A, %) =N(0, AXA),

where

o A =diag(Ai, Aa, ..., Ap), with \; >0,i=1,...,n;

o X is positive semidefinite which may depend on Ug.

Placing a mixture prior over \;,

N|m~mgy+(1—m)d, i=1,...,n,

where ™ € (0, 1) controls sparsity and g, is an absolutely continuous density on RT, gives rise to a two-group prior
for 3. This representation bridges model selection and shrinkage:

m model selection via d, on \; (or, equivalently, via introduction of latent binary variables ;) ...

m ...embedded within the class of local-scale mixtures of normal distributions.
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Remarks and literature

“Because posterior sampling is computation-intensive and because variable selection is most desirable
in contexts with many predictor variables, computational considerations are important in motivating
and evaluating the approaches above. The discrete model selection approach and the continuous
shrinkage prior approach are both quite challenging in terms of posterior sampling.”

— Hahn and Carvalho

Related work:

George and McCulloch (1993)

Ishwaran and Rao (2005)

Park and Casella (2008), Hans (2009)

Carvalho et al. (2009)

Clyde et al. (2011)

Polson and Scott (2010), Griffin and Brown (2017)
etc.

Book: Gelman, A., Carlin, J. B., Stern, H., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data
Analysis (3rd ed.), available athttps://sites.stat.columbia.edu/gelman/book/BDA3. pdf
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Selection and multiplicity



Weak vs. strong sparsity

m Strong sparsity: most coefficients are exactly zero (model selection / two-group models);
m Weak sparsity: most coefficients are small, but not exactly zero (one-group models);
m In genomics, strong sparsity has been a common assumption, yet recent biological models challenge this view.

m  Omnigenic hypothesis (Boyle et al., 2017): complex traits are influenced by thousands of variants, including many
with tiny effects. While individual effects are weak, their combined contribution to phenotypic variance can be
substantial.

m The distinction between weak and strong sparsity reflects a broader debate in Bayesian analysis: whether
inference should be framed in terms of parameter estimation or formal hypothesis testing.
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Variable selection: two-group vs. one-group

Recall that: in two-group models, variable selection is achieved via the binary latent indicators ;.

m The highest posterior probability model (HPM) is given by
(15)

arg max p(M .
g_max p(My|y)

m ...but with 2° candidate models, enumeration or efficient sampling is very hard. Instead, marginal PPIs,

p(ys =1 y), are used.
m The median probability model (MPM; Barbieri and Berger, 2004) includes variables with PPl > 0.5 and is
shown to outperform the HPM for prediction when predictors are orthogonal.

In one-group models, no exact zeros exist, so selection is done by thresholding posterior summaries.
m For instance, Carvalho et al. (2010) propose thresholding 1 — JE(/%S | y) at 0.5 based on its analogy with
two-group posterior inclusion probabilities.

B Threshold choices depend on prior structure and inferential goals — no universally optimal rule (for instance,
stricter thresholds for sparse, interpretable models; looser thresholds for predictive performance).
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Multiplicity control in two-group variable selection

® In two-group models, with prior slab gg in

BS|7TN7Tg[3+(1_7T)607 s=1,...,p,
7 can be interpreted as a prior proportion of included variables.

m Given T, the prior probability of model M., is:
p(My | ) =77 (1 — 7)),

where p is the number of variables included in ./\/l.y and s | o~ Bernoulli(7r), independently.

m Lettingm™ = 1/2: each variable has equal prior probability of being included or excluded — no sparsity
enforced.

m Other choices that imply low inclusion probabilities for individual predictors can effectively enforce sparsity.

m But no fixed choice of 7 that is independent of p can adjust for multiplicity.
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Multiplicity control in two-group variable selection
Setting ™ = 1/p is a common choice that favours sparse models as p(M, | ) decays rapidly with p.,, however:

m Define prior odds (PO) penalties as:

p(Mo, [ 7)

PO(py —1:p,) = — ™
(p’Y 1 p“/) p(M%’Y ‘7‘[’) )

where ./\/lﬂ,pr‘ and ./\/lﬂ,pw are models with p, — 1 and p,, included variables, respectively.

m For fixed inclusion probability 7 = 1/p, we have

1—m
PO(p,Y—1:p.Y):T:p—1.

— Same penalty regardless of the number of included variables (p): no increasing preference for simpler

models (still favours sparse models, but every new variable “costs” the same regardless of how many are
already inl).

m In contrast, Scott and Berger (2010) have shown that a fully Bayesian treatment (e.g., Beta prior on 7) adjusts
to the actual sparsity level and induces adaptive penalty for model complexity via non-separability.
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Multiplicity control in fully Bayesian two-group variable selection

m Assume T ~ Beta(a, 3). Then prior model probability is:

(a+py,B+pP—py)
B(w, B) ’

pM,) = [ ol | ) am = 2

where B(-, -) is the Beta function.

m If & = (8 = 1 (uniform prior on 7), then:

p(M,) = ptlp—py)t 1 (p>1‘

(p+1)p  p+1\p,

m Prior probability inversely proportional to the number of models of size p,
— built-in preference for simpler models!
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Multiplicity control in fully Bayesian two-group variable selection

m The posterior probability for model ./\/lﬂ, therefore is:

1 p\ "
P(Mw \ J/) X p? (p ) P(y | M'y);
Y

m Prior odds penalise more complex models:

POlpy ~1:p1) p(M-,) Py

o The penalty depends dynamically on how many
variables are already included.

o Adding the first variable is heavily penalised. It is
easier to add variables once some are already
included.

m Penalty also grows with the number of candidate
variables p.

p(M“/pa,ﬂ) PPy —+1

Prior odds

40 60 80 100

20

Multiplicity penality as p grows

“| — 1st variable added

— 2nd variable added
5th variable added
10th variable added

T T T T T 1
0 20 40 60 80 100

Number of candidate variables (p)
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Typical hyperparameter choices for Beta prior on 7

With 7 ~ Beta(a, ), the hyperparameter specification v = 1, 3 = 1 (uniform prior) may be inadequate in GWAS

and other high-dimensional settings. Instead, common choices are:
m o = [ = 0.5 (Jeffreys’ prior):

o U-shaped prior density places more mass near m = 0and ™ = 1;
o Favours either very sparse or very dense models;

m o =1, = p(more common):

O encourages sparsity;
o implies, a priori:

« 1 af

]E(ﬂ):aJrﬁw;, Var(ﬂ):(a+6)2(a+ﬂ+1)

for p large.

1

~ —
~

2

)
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Alternative prior on 7

In high-dimensional problems, where sparsity can span orders of magnitude, standard Beta(1 R p) can concentrate too
much mass near extreme sparsity levels.

Guan and Stephens (2011) propose a prior on log(7):
log(7) ~ U(a, b),
where a = log(1/p) and b = log(M/p).

m This gives roughly equal prior weight across orders of magnitude of 7.

m Lower and upper bounds correspond to expectations of 1 and M variables included (the choice of M often
motivated by computational cost).

m Prior variance under this prior is Var() ~ M?/p? (times log factors), so for M >> 1 (e.g., 500), it is much
larger than the variance of ™ ~ Beta(1 s p), reflecting genuine uncertainty about the degree of sparsity.
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Impact on calibration of PPIs

Estimating 7 and o3 adapts inference to signal strength and multiplicity (important in polygenic or high LD cases).

1.0
0
0

FEKE AL RE ARH

0.6 0.8
AN
X

0.4
04

0.2
A
0.2

Proportion of True Positives
0.2

04
AN

Proportion of True Positives
. N

Proportion of True Positives

0.0
0.0
0.0

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Posterior Inclusion Probability Posterior Inclusion Probability Posterior Inclusion Probability

PPIs grouped into bins of width 0.05. x-axis: average PPI, y-axis: corresp. proportion of true effects within that bin, with 4= SE.

o Left: Spike-and-slab regression with hyperpriors on 7 and oz — PPls are well calibrated.

o Middle and right: Fixing 7 (middle) or o g (right) to values five-fold too small (black) or large (blue) leads to poorly
calibrated PPIs. Note: o five-fold too large has limited impact on calibration — heavy-tailed priors are safer.

o The rankings remain largely robust to misspecification of 7 and 03, even when PPI calibration is affected.
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Back to the systolic blood pressure GWAS

Estimated model size

—— True model size

2500

Frequency
1500

When applied to the systolic blood pressure example:

B 7 is estimated as low (strong shrinkage), in line with the low
PPIs for true signals in the presence of LD and modest effect

0 500

sizes.

Model size

Sparsity estimate m This happens even though individual models tend to include
too many SNPs: there is instability in selection, with many
correlated SNPs in LD regions appearing only
sporadically, without accumulating support.

—— True parameter

2000

Frequency

500 1000

0

r T 1
0.00005 0.00010 0.00015 0.00020

pi
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Multiplicity control in one-group variable selection

Consider the example of a linear model (1) with a global-local prior on the regression coefficients:

Bs | N2yo2 ~ N(0,\202), As~f, s=1,...,p, (16)
where f is a density on R
m The global scale o controls the overall sparsity level.
m Typical choices for gy:

o Half-Cauchy prior: o ~ C+(0, 1) (default suggestion in early works; Carvalho et al., 2009);
o Fixed value: Set 0 to a small constant 0y = ¢ > 0.

[ ] C*(O7 1) is often too vague: can lead to insufficient shrinkage, especially when the data are weakly informative.

m Fixing o results in a lack of adaptation to the actual sparsity level.
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Multiplicity control in one-group variable selection

m Piironen and Vehtari (2017) propose a prior specification based on the expected number of relevant variables.

m The conditional posterior for 3 given the hyperparameters and data can be written as
p(B| A, 05, 02,y) = N(B,%),
where
B =02 (62A + (X" X)) = (05?A " 0 x7Xx) ",
with A = diag(A, ..., \2) and B = (x™x)~ 1XTy is the OLS estimate (assuming the inverse exists).
m If the predictors are uncorrelated, with E(X;) = 0 and Var(X,) = s2, then X" X ~ ndiag(s?, ..., s2), and

Bs%(1_“is)35a S=1,...,p,

where
1

1+ noz 2032 \2

is the shrinkage factor (with same interpretation as seen for the normal means model!).

Rs =

[ ] Notethat,@—>0asao—>0andB—>ﬁAasao—>oo.
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Multiplicity control in one-group variable selection

m In the case of the horseshoe prior, i.e., where f is C*(O, 1) in (16), independently for all A, the implied prior
on K is:

(7

o 1 ag
plts | 00, 02) = — @ — et 1]
where a; = \/no; ' 0yss.
m When a; = 1, the distribution reduces to a Beta(1/2, 1/2), with horseshoe shape.

m For fixed oy, though, the prior does not adapt to the dimension p (the effective sparsity depends p).
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Multiplicity control in one-group variable selection

m To control sparsity across different p, Piironen and Vehtari (2017) propose choosing o, based on the “effective
number of nonzero coefficients” defined as:

p

My = » (1= Kq). (18)

s=1
m When K are close to 0 and 1 (as they typically are for the horseshoe prior), (18) describes the number of
variables included in the model, therefore serving as an indicator of the effective model size.

m Using (17), it can be shown that

p P
as

E(me | 09, 0:) = Var(mg; | 09,0

(eff| 05 5) ;14'35’ (eff| 0y s 2214—35

s=1

where a; = \/no_ '0gss.
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Multiplicity control in one-group variable selection

m Assuming that the variables are also standardised (s = 1), this simplifies to

Voo,
1+ /noZ o

Voo,
2(1+ ﬁa?ao)zp.

]E(meff ‘ 00705) = p, Var(meff | 00705) =

m Note that oy should scale as oy < Js/ﬁ to avoid a prior specification favouring models of varying sizes
depending on the noise level and sample size.

m Piironen and Vehtari (2017) propose setting o by solving
E(meff | 00705) = Po,

for a prior guess p, of the number of relevant variables, giving

P 0
* p—pm/n
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Effect of prior choices for o, on prior distribution of my

Frequency
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sigma0 ~ C+(0, sigma0*)
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Adapted from Piironen and Vehtari (2017). Prior draws for
megt under different priors (rows) for o, with n = 100,
e =1,p € {10,1000} (columns). The first two priors
use pop = 5 as prior guess for the nb of active variables.

o Fixing 0y = 0 leads to a symmetric prior for me centred
around py.

o Half-Cauchy prior with scale ;' heavier tail, placing more
mass on large me, especially when p is large.

o Standard half-Cauchy oo ~ C*(0, 1): favours solutions with
most coefficients unshrunk, causing weak shrinkage;
problematic for large p unless oy is strongly identified by data.

o Note that changing o or n would alter the induced prior for mgg
for this standard half-Cauchy, unlike for the other priors.

— Based on further numerical experiments, the authors
recommend:
oo | 0 ~ CH(0,07).

as a weakly informative default choice instead of fixing the
global scale to 0.
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Summary

m Principled multiplicity control is crucial in problems with a large number of candidate predictors, like GWAS.

m Univariate analysis ignores correlations and provides no global calibration — choices about the sparsity and
typical size of the nonzero coefficients implicitly made when specifying significance thresholds.

m Estimation of the global parameters 7 and oz (two-group models) or o, (one-group models) via appropriate
hierarchical prior specifications renders the entries of (3 dependent in the marginal prior p(,@):

o yields self-adaptivity to sparsity via a non-separable penalty that borrows strength across coefficients and
adapts to varying sparsity levels;

o enables direct estimation of interpretable global quantities — such as the proportion of variance explained
(PVE) quantifying the total genetic contribution to complex traits.

o provides a built-in correction for multiplicity, that discourages over-selection unless justified by strong
evidence.

m Different strategies have been proposed for specifying such hyperpriors and their hyperparameters, based on
expected numbers of non-zero coefficients or upper bounds for them.
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Bayesian false discovery rate (FDR): local vs. tail-area

We test hypotheses Hys versus Hig, for s = 1, ..., p, based on test statistics z;. Efron et al. (2001) introduces:

m The local FDR:
71'ofo(Zs)

f(zs)
where f,(z) is the density under the null, f(z) the overall (mixture) density and 7, the prior null probability.
Interpreted as the posterior probability that Hy; is true given zg. Local (pointwise), useful for ranking discoveries.

fdr(zs) = p(Hos | zs) =

m The tail-area FDR:

F'
Fdr(zs) = p(Hy | Z < z5) = %07(25),

F(zs)
where Fy(z) and F(z) are the CDFs corresponding to f,(z) and f(z), respectively.
Estimates the expected proportion of nulls among all test statistics z, such that z, < zs;. Cumulative, similar in
spirit to classical frequentist FDR methods.

Note: Although these quantities are defined using posterior-like expressions, they are derived under an empirical
Bayes framework and rely on large-scale testing assumptions. They consider the distribution of test statistics, rather
than model parameters.
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Bayesian FDR for spike-and-slab models

In two-group models, posterior probabilities of inclusion offer a natural basis for model-based FDRs.

One can define the Bayesian FDR (Newton et al., 2004) as

FDR(r) = (1 —PPI)1{PPI; > T}
b 1{PPI; > T}

s=

; (19)

where PPl; = p(s = 1| y), for a given threshold 7 € [0, 1].
m Gives a global empirical Bayes FDR estimate over all variables selected at threshold 7.
m Model-based control: uses PPIs from full Bayesian model.
m Varying 7 over a fine grid yields an estimated FDR(7) curve.

m Selecting the smallest 7* such that FDR(7*) < « enables declaring all variables with PPl > 7* as discoveries
at level .
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Bayesian FDR: step-up assignment

Define ordered PPlIs: PPl > e > PPl(1),
and for each k = 1, ..., p, compute:

k—1
]
FDR() = > (1= PPIG_y).
s=0

m This is the expected false discovery rate
among the top-k variables.

m Each variable is assigned the minimum FDR
level at which it would be selected.

m Closely approximates threshold-based
FDR(7) curves (19) in large-scale settings.

Bayesian FDR
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False discovery rate estimates
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Estimated Bayesian FDR for the systolic blood pressure GWAS example.

Red: simulated signals.
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Correlated tests and Bayesian FDR

m Correlated predictors or test statistics can substantially distort the null distribution of marginal test statistics,
which complicates the estimation of f,(z) and f(z) in empirical Bayes FDR procedures (Efron, 2007).

m As aresult, local FDR and tail-area FDR estimates may be biased.

m As we have seen, fully Bayesian models, such as two-group spike-and-slab priors, can in principle account for
correlations via the likelihood and prior, but PPls may still be sensitive to local dependencies.

m Permutation-based approaches help empirically preserve dependence in the null, but they are computationally
expensive which limits their applicability within hierarchical Bayesian models.

m Developing reliable Bayesian FDR procedures under dependence remains an active and important area of
research.
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Structured priors



Local LD structure and region-level inference

m Common models assume that SNPs are assigned the same prior inclusion probability, which ignores spatial
correlation where SNPs in linkage disequilibrium (LD) form natural groups (Ioci“);

m This LD correlation is mostly local: the genotype correlation matrix X7 X is approximately banded:

m Correlated SNPs from a same locus which display associations with the trait often tag the same underlying
mechanisms.

— motivates a shift in focus from pinpointing risk SNPs to identifying associated loci.
m This mitigates method-specific differences in how signal is estimated (e.g., marginal methods flag any SNP

correlated with a functional SNP; sparse penalised methods, such as the lasso, tend to select one or few
representatives; Bayesian approaches may spread posterior inclusion probabilities across correlated SNPs).

m SNPs within the identified loci can subsequently be prioritised through dedicated follow-up analyses (see
later).

4Defining loci is itself non-trivial and involves a series of choices (e.g., LD thresholds, physical distance, gene boundaries).
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Encoding biological group structure

Can we exploit group structures to improve inference and interpretability?

m Bayesian hierarchical models can encode such structure:

o Group-level parameters capture shared information (e.g., group-level activation);
o Predictor-level parameters remain flexible (e.g., within-group adaptivity).

m Multilevel modelling permits:

o information borrowing within and across groups;
o selective shrinkage that respects group relevance;
o mitigation of correlation-induced redundancy.

m Note: beyond LD, group structure may arise from functional annotations (e.g., coding, regulatory, conserved),
gene membership, biological pathways, cell-type or tissue-specific effects.
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Frequentist group lasso
Performs joint selection of predefined groups g = 1,... G.

Optimisation problem (group lasso, Yuan and Lin, 2006):

G 2 G
min S |y = D208, +AD Bl ¢ Nzl = (7o),
g=1 g=1

2
where:
o y € R"is the response vector;
o X =[X,X,...,Xg], with X, € R"™I9l_is the design matrix;

B=18".8,...,84]" with B, € RI9! is the coefficient vector;

@]

o

Ky, 9 =1,..., G, are positive definite matrices.

Encourages sparsity at the group level, through penalty for A > 0;

®m Reduces to standard lasso when each group contains a single variable and K; = I|g|.
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Bayesian group lasso and spike-and-slab extension

Kyung et al. (2010) show that the multivariate Laplace prior,

A
(8) xop (~218,1k) . 9=1....c.

corresponding to a group lasso penalty, can be written as a scale mixture of normals (easier posterior inference):

lg] +1 X2
By | 02,7'; ~ N (0,0’27'5[|g|) , ng ~ Gamma (2 5 )
‘m Encourages group-wise shrinkage of coefficients (like the frequentist group lasso).

m Estimation based on posterior means or medians does not produce exact zero estimates (unlike the frequentist
group lasso).

Extension (spike-and-slab prior for group selection): introduce binary indicators v, € {0, 1} for group inclusion:
Bg | 79, 02,75 ~ 7N (0, 072 Ng)) + (1 = 75)00(Bg), g ~ Bernoulii(7).

This prior formulation formally encodes group selection by assigning exact zeros to ,Bg of inactive groups.
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Structured grouping in spike-and-slab priors

The latent indicator vector v € {0, 1} is reduced to v € {0,1}¢, for G < p groups.

Chipman (1996) was probably the first to use structural grouping information in Bayesian variable selection, using
a continuous spike-and-slab prior:

“Not only does the grouping principle reduce the size of the total model space, but it makes headway in

dealing with the pitfalls of multiple comparisons.”
— Hugh Chipman (1996)

In practice:
m Identify groups g € {1,..., G} with large posterior probability of inclusion: p(y, = 1| y);

m Within selected groups, inspect entries of 3, with large posterior means.
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Grouped horseshoe prior: different formulations

BGHS (Bayesian grouped horseshoe, Xu et al., 2016; He and Wand, 2024):

By | 05,12 ~ Nig (0,05020), vg~CT(0,1), 00~C*(0,4), A>0, g=1,...,G
m Controls overall sparsity via the global scale o, and group-level sparsity via the local scale v/,;

m Shrinks all entries of ,Bg in a group specific way, via /4, which has heavy tail.

HBGHS (Hierarchical BGHS, Xu et al., 2016, Alt. formulation):

B | 0% Vi A2~ N (0,0820X2) . Ae~ CH(0,1), 15~ CH(0,1), 00 ~CH(0,4), s=1....

m Activates/deactivates groups (SNP loci) via the group-level scale v/g;

m Enables predictor-level adaptivity via the local scale )\, (allows a few strong effects to escape from “inactive
groups”).
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Beyond exchangeability: exploiting SNP-level information

m So far we saw how to encode known group structures, such as LD blocks via Bayesian group shrinkage;
m But individual SNPs may also differ in biological plausibility, which breaks exchangeability in a different way;

m External information, from prior studies or genomic annotations, may help prioritise likely functional variants,
especially within high-LD loci where true signals harder to isolate.

Definition (De Finetti, 1937)

Exchangeability means the joint distribution of random variables is invariant under permutation.
For B4, Be, - . . , Bp, they are exchangeable if:

(ﬁhﬁb T 7/8;7) g (60’(1)7/60'(2)7 tet 7/80'(p))7

for any permutation o.
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What kind of information?

Definition (Morgensztern et al., 2018)
The epigenome is the complete description of all the chemical modifications to DNA and histone proteins that regulate

the expression of genes within the genome.

m These regulatory mechanisms include DNA methylation, histone modifications and small noncoding RNAs.

m They underpin tissue- and context-specific gene regulation.

(“Epigenome” comes from the Greek prefix epi-, meaning ‘on top of’, highlighting its role in regulating gene activity
“above” the DNA sequence itself.)

m Other types of SNP-level annotations:

o Genomic location: exonic, intronic, intergenic, UTRs, regulatory regions.
o Functional features: enhancer/promoter overlap, TF binding sites, chromatin states.
o Quantitative indicators: prior GWAS hits, conservation scores, allele frequency.
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How to encode such information?

m Most GWAS use this only post hoc: practitioners inspect peaks for known genomic marks, which is ad hoc,
subjective and difficult to scale.

m The Bayesian framework lets us encode such information a priori via the model hierarchy.

m Simplest example: In a spike-and-slab model, a higher prior inclusion probability 75 can be assigned to a SNP X
based on existing evidence about a likely higher functional relevance.

“Exchangeability is a function not just of reality, but of the information you have.”
— Andrew Gelman
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Can we learn which annotations matter?
SNP effects may be exchangeable, conditionally, based on shared annotations or biological profiles
(“conditional exchangeability”).
m Many sources of annotation data exist, but not all are equally relevant for a given trait or context.

m Pre-specifying prior inclusion probabilities based on functional annotations may be too rigid or subjective:
relevance of annotations will be tissue, condition and region-specific.

m Can we learn which annotations may matter for the genetic association problem at hand ?

This motivates introducing the concept of co-data.
Definition (te Beest et al., 2017):

Co-data are any type of information that is available on the variables of the primary data, but does not use its
response labels.

Co-data can be used as predictor-level information in the model hierarchy to guide variable selection:
In GWAS, SNP-level annotations can serve as co-data capturing the potential biological relevance of each SNP in
controlling the trait of interest, which in turn could improve association estimates.

91/128



Top-level co-data submodel
Examples of hierarchical co-data priors for:

m spike-and-slab regression (van de Wiel et al., 2018):

Bs | vs ~7vs98+ (1 —7s) g, s | s ~ Bernoulli(ms),

where gy and g are the “spike” and “slab” distributions, respectively. Predictor-specific inclusion probabilities are
modulated by co-data:

7TS:/771(VST£), s=1,...,p

where V;is a L X 1 vector of co-data for predictor s, & is the corresponding vector of effects (assigned its own
prior) and h is a link function (e.g., logit or probit).
— adaptive selection: Predictors with supportive annotations will be prioritised for inclusion.

m horseshoe regression (Busatto and van de Wiel, 2023):
T
Bs | A2,05 ~ N(0,)207), As~C(Vs €,1)L(As >0), s=1,...,p,

where C(-, ) denotes the Cauchy distribution; the local scales A are influenced by co-data V; via the effects €.
— adaptive shrinkage: Effects of predictors with supportive annotations will be less shrunk.
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Inferring the relevance of annotations

m When many annotations are available, some (or even all) may be irrelevant to specific GWAS of interest.

m We may want to select the annotations relevant to the specific GWAS considered, out of a potentially large
number of candidates (hundreds or thousands).

m Place a sparse prior on £ (e.g., spike-and-slab or continuous shrinkage) to:

o pinpoint relevant annotations from the data, for the association problem at hand;
o quantify the extent of their relevance for the effects of the predictors they concern.

m Example:
&G ~Cgs+ (1 —¢)g, ¢~ Bernouli(p), I=1,...,L,

where p(¢; = 1| y) can be used to select the relevant annotations.
— Improves accuracy of association estimates and generates mechanistic hypotheses by highlighting
specific annotations that might underlie the mechanisms of interest.

m Caveat: The top-level model hierarchy can only be reliably inferred if the data are sufficiently informative.
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Simulated example

Truncated ROC curves Selection of annotations

Vanilla vs. annotation-informed =) (i <]
(co-data) spike-and-slab models I £ .|
(simulated data, 100 replicates): H . : .
m p = 250 candidate SNPs for * e — oo bl
n = 400 individuals. < = o e <]
) ) o0 o om o om o e w0 m ® e =
m L = 50 candidate annotations Faso positve rale Amnoations
Supplied to the co-data model, Selection of annotations: noisy co-data
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added to the annotation data. i N N
m Annotations 12, 37, 49 are £ o= . .
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Bayesian fine-mapping



Bayesian fine-mapping

Fine-mapping aims to prioritise SNPs that are most likely to be functional in a pre-identified GWAS-implicated
genomic region (“risk locus”).
m In given risk loci, association signals can span multiple SNPs in LD but, typically, only a few are functional; others

tag them through LD. Note: the functional SNP(s) may or may not be genotyped!

m Goals: (i) help understand how many distinct causal associations may underlie the association results; (i) infer
which subset of SNPs in the risk locus may be causal (or best tag) causal variants; (iii) quantify the strength of
evidence.

m This guides: (i) the selection of variants for follow-up in downstream functional validation experiments; (ii) the
identification of therapeutic targets; (iii) the discovery of new biological mechanisms behind diseases.
Bayesian approach:
o Define a prior over all possible models M., (i.e., subsets of all SNPs in the risk locus);
o Compute posterior probabilities for models and SNPs;
o Use prior constraints (e.g., < 4 functional SNPs) to reduce search space.
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Bayesian model for fine-mapping

m Assume thaty ~ N(Xy8, 021,);

m Let M7 be a model with candidate predictors indexed by vy C {17 e 7p}, with py, < M included predictors, for
M small;

m Prior on models (sparser models favoured & uniform over all models of a given size):
p —1
s (7)) 1o, < my
Y

m Prior on effects:
2 2 .
Byl op~ /\/‘(O,Uﬁlpw),

m MCMC over model space: propose local moves (add, remove, swap predictors);

m Provides a posterior over models,

P(M'v l'y) o< p(y | M"/)p(M’Y)v

from which credible sets of predictors can be derived and ranked for fine mapping.
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Typical posterior summaries of interest

m PPI for each predictor: sum of posterior probabilities over models containing that predictor;
m Top models: highest posterior probability models (HPM);
m Model size distribution: posterior on the number of active predictors;

m Credible sets: minimal sets of predictors designed to capture the active predictors — smaller credible sets
reflect greater certainty (assuming correct coverage).
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Three definitions of credible sets in fine-mapping

LetS = {1,..., p} be the indices of all candidate predictors. Definitions in use for a p-level credible set C:

1. Marginal PPI-based
Find a minimal set C C S such that Z PPIs > p,

seC
where PPIs denote the posterior probability of inclusion for predictor X;. Used in FINEMAP (Benner et al. 2016).

2. Model-based (at least one active predictor)

Find a minimal set C C S such that Z p(My ly) > p,
MNCED
i.e., C has probability > p of containing at least one active predictor. Used in SuSiE (Wang et al. 2020).

3. Model-based (all active predictors)

Find a minimal set C C S such that Z p(My |y) > p,
M, CC
i.e., C has probability > p of containing all active predictors. Used in CAVIAR (Hormozdiari et al. 2014).
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Simulated example

PRI

O Model 1 (est) O Model 1 (best)
.
O Model2 Fine mapping O Model2 Fine mapping
Model 3 Credible set Model 3 Credible set . .
o] - Yiran Li
: © ® g3 ®
° 3 N ® "
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SNPs

stt0sast
]
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Model Count Post. prob.
1:rs11105354+rs7137828 1975  0.395
2:rs11105354+rs7137819 573 0.115

111 rs7137898 1
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Bayesian fine-mapping on a systolic blood pressure locus (involving the active SNPs rs11105354 and rs7137828, on chr12). Metropolis—Hastings
algorithm described on slide 97 with M = 4. Scenarios with two simulated LD structures: five SNP blocks with varied autocorrelation each (left)
and single block with highly correlated SNPs (right).
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From GWAS to causal variant identification

Given that GWAS estimates tend to be unstable due to LD structure, the possibility of subsequently refining signals
with fine-mapping suggests the following pipeline:

m Apply strong LD pruning before GWAS for a more stable detection of signals;
m Identify regions of interest (loci) based on GWAS hits;

m Narrow down likely functional SNPs using Bayesian fine-mapping applied to the full SNP set within each locus.

In practice:

m Fine-mapping is ideally conducted in an independent dataset, often with larger sample size and denser
genotyping or imputation, to avoid data reuse and maximise resolution;

m Functional annotations can inform the prior over model space within risk loci (similar use as for GWAS co-data
models);

m Many fine-mapping approaches rely on GWAS summary statistics (effect estimates and standard errors),
combined with LD information from a suitable reference panel to derive marginal likelihoods or Bayes factors.
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Hierarchical regression for multiple responses



Molecular mechanisms: from the genotype to the phenotype

m A variety of molecular mechanisms mediate the action of the genotype on the phenotype (trait of interest).
m Genetic variants can regulate gene expression (the transcriptome).

m Changes at the transcript level can have downstream effects on proteins (the proteome) or metabolites (the
metabolome).

B These regulatory effects are often subtle, involve pathway-level interactions and can be specific to particular
tissues or cell types.

m Molecular readouts (e.g., gene, protein or metabolite levels) are often referred to as endophenotypes, because
they serve as intermediate molecular proxies for the phenotype.

m We aim to understand not just whether a genetic variant is associated with disease, but how it operates
biologically by studying its effect on molecular traits.
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Molecular QTL studies

m Molecular QTL (quantitative trait locus) studies aim to identify genetic variants that influence molecular traits, e.g.:

o eQTLs: expression QTLs — SNPs affecting gene expression.
o pQTLs: protein QTLs — SNPs affecting protein abundance.
o mQTLs: methylation QTLs — SNPs influencing methylation levels.

m Genetic effects can be:

o cis: the SNP regulates a nearby gene product (e.g., within 1 Mb).
o trans: the SNP regulates a distant gene product, possibly even on another chromosome.

proximal gene A

SNP

distal gene B

m A single SNP may influence multiple traits, a phenomenon known as pleiotropy.
m Hotspot SNPs are pleiotropic SNPs associated with large numbers of gene products in cis and/or trans.
m Univariate screening methods (one pair of SNP/trait at a time) do not account for shared genetic architecture.
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From GWAS hits to mechanisms: revisiting FTO

Recall the FTO example from earlier:
m GWAS linked SNPs in the FTO locus to BMI and obesity risk;
m Initially thought to act “in cis”, through the nearby FTO gene;

m But functional studies revealed a distal regulatory mechanism: SNP rs1421085 alters a regulatory element “in
trans” that modulates expression of /RX3 and /RX5 via long-range chromatin looping (Smemo et al., 2014);

m /RX3and IRX5 might be regarded as potential targets for obesity treatment, not FTO.
¥ FTO

rs1421085

1rx3 IRX5

Studies have found that drugs whose target is supported by eQTL mapping are 2-4 times more likely to be
successful (Sadler et al., 2023).
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Pairwise eQTL screening

m Example dataset: CD141 monocytes from 432 healthy European
individuals, with > 24 400 gene transcripts (traits) and > 380 000
SNPs.

m A marginal pairwise screening on 29 607 SNPs from
chromosome 1 shows:

o About 2.5 times more cis associations than frans associations;

o Many cis associations are probably redundant due to LD;
o Trans effects tend to be weaker than cis effects (general fact).

Number  After LD pruning Effect magnitude

Cis associations 1611 1049 0.11 (0.10)
Trans associations 655 641 0.04 (0.03)

Table: Summary of cis and trans associations at FDR 20% (LD pruning
genetic ¥ > 0.5 and window size 2 Mb).
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LD and Manhattan plots for cis associations with
gene B3GALTS (involved in the transfer
galactose).
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Beyond marginal screening: the need for joint models

Most trans associations identified by marginal screening fail to survive multiplicity correction: they are
largely masked by the large number of redundant (and stronger) cis signals due to LD.

Detecting weaker but biologically important trans effects (including hotspots) requires models that account for all
SNPs and all traits jointly.

Borrowing information across traits under shared genetic control can substantially improve power, especially
for trans-acting effects.

This (again!) highlights the need for interpretable multivariate methods for high-dimensional QTL analysis.
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Sparse multivariate regression model

Consider the canonical sparse multivariate regression model for /\/17:

Y=X,B,+E  E~MNyq(0,h3), (20)

where
o Yisan X gresponse matrix (molecular traits);
o X, isan X p, matrix of selected predictors (SNPs), where p, = 22:1 Vss
o By isapy X gmatrix of regression coefficients;

o Eis an X g matrix of error terms, assigned a matrix-variate normal distribution (Dawid, 1981) with independent
rows and covariance X across traits.
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Interpretable multivariate inference
Need for dual selection:

m Model (20) represents pairwise SNP-trait associations via B, but selection is still row-wise via the p X 1 binary
indicator vector ~y.

m This assumes that a SNP is either associated with all traits or none, which may be a reasonable simplification
in specific multivariate GWAS settings (e.g., shared genetic basis for cholesterol, lipid traits and blood pressure).

m In molecular QTL studies however, each SNP typically regulates a few traits, requiring within-row sparsity in B.,.

Need for scalability in high-dimensional response settings:
m Molecular QTL studies: q (traits) in tens of thousands, p (SNPs) in millions.

m Estimating an (unstructured) trait residual covariance 33 in such settings is prohibitive due to high memory and
runtime cost.

m Existing multivariate models typically restrict g and assume conjugacy to integrate 32 out (e.g., Petretto et al.,
2010; Lewin et al., 2015).

— Flexible multivariate modelling of molecular QTL data is out of reach without structural simplifications.
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A hierarchical model for molecular QTL mapping

One alternative: borrow strength via the spike-and-slab model hierarchy only.

For traits t = 1, ..., g, consider a series of conditionally independent regressions:

y: = XB; + &4, g ~N, (0, 7’f1l,,) , T, ~ Gamma(7y, £t), t=1,...,q,

where

o yiisan x 1 response vector (molecular traits, typically g = 102—10%),

o Xisan X pmatrix of candidate predictors (SNPs, typically, p = 10°-10°),

o [B;isap X 1 vector of regression coefficient,

and place a pairwise spike-and-slab prior on the regression coefficients:
6st | P)/sh 027 Ty ~ P)/SIN(O» 027—1_1) + (1 - ’Yst) 507 ’75[ ~ Bernoulli(ws),

with
ws ~ Beta(ag, bs), 0 2~ Gamma(\, v).

(21)

(22)

(23)
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Why this hierarchical model?

Model (21)—(23) takes a different path from canonical multivariate approaches:

m ltreplaces the p X 1 binary indicator vector 4y with a matrix ¥ = {~ }, which enables direct selection of
predictor-response pairs, via the marginal posterior inclusion probabilities p(’Ysr =1 | y):

m It does not model residual covariance explicitly, which avoids the curse of dimensionality in g > n settings;

m It introduces dependence across responses through the prior on effect inclusion, via shared w; and o; for
molecular QTL mapping this allows information sharing across traits under shared genetic control.

m In particular, the model directly parametrises pleiotropic effects via wg, so that E(ws | y) can be used to select
hotspot predictors controlling multiple responses.
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Prior-induced sparsity and multiplicity control
Sparsity in the association pattern is controlled via the prior on w;.

m The prior odds penalty representing the support for a model to have an additional response associated with a
given predictor X is
. pr(qu—1) bs +q—qs
Po(qs_1 -QS) = = R
pr(qu) as+qs — 1

where ./\/lc,s now denotes a model in which X; is associated with 1 < gs < g responses.

m Penalty increases with the number of responses g but no inherent correction for the predictor dimension p.

m This is because wj is predictor-specific so we have separability across predictors, unlike in the example
discussed in the context of single-response spike-and-slab regression.

P 50 250 500 1,000 2,500

Mean # FP

Uncorrected 1.06 6.70 16.52 35.22 73.55
Mean # TP

Uncorrected 9.67 9.69 9.72 9.77 9.80

For instance, choosing as = 1, bs = 2q — 1, so E(ws) = (29) ™" (prior mean number of responses associated with Xs is 0.5 independently of

p) leads to a linear increase of false positives as p grows (using the MPM selection rule, PP1 > 0.5).
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Prior-induced sparsity and multiplicity control
m To address this, we control the probability of any association between X and responses:

q
bs+qg—t
Ui =1 :1—||7S :
pr( tq{'yst }) 1 2+ bo+q—1t

setting it to po/p, where py is a prior guess of the number of predictors included in the model.

m This can be achieved by setting (assuming exchangeability):

q(p — p)
a =1, bsETa 0<p<p.
0

m The model now adjusts for multiplicity in terms of numbers of both candidate predictors p and responses g.

P 50 250 500 1,000 2,500

Mean # FP
Uncorrected 1.06 6.70 16.52 35.22 73.55
Corrected 0.39 0.30 0.36 0.34 0.31
Mean # TP
Uncorrected 9.67 9.69 9.72 9.77 9.80
Corrected  9.69  9.42 9.20 9.25 8.98

The number of false positives remains roughly constant and close to zero with correction, small cost on the number of true positives.
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Prior-induced sparsity and multiplicity control

m Similarly to the single-response spike-and-slab model, there is also a relation between the penalty on the model
complexity and the current model size.

m Here the penalty is not uniform depending on the number of responses associated with a given predictor Xg:
moving from zero to one response associated with X is harder than moving from nine to ten.

m Ensures a sufficient regularisation on the “hotspot sizes”, especially important in weakly informative, large-q
settings. Prior odds
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Alternative priors for inclusion probabilities

Recall: The predictor-specific prior on the spike-and-slab inclusion probability in model (21)—(23): ws ~ Beta(aS7 bs);

m Controls the extent to which predictor s is associated with lots of traits (“hotspot propensity”);

m Allows sparsity control through a prior on the total number of predictors entering the model.

Alternative formulations have been proposed for the inclusion probabilities:

Top-level spike-and-slab prior (Scott-Boyer et al., 2012):
ws | ms ~ weBeta(as, bs) + (1—7s)d, s ~ Beta(ap, by);
m Allows some predictors to have zero probability of inclusion across all traits.

“Independent” formulation:
w; ~ Beta(ay, by);

m Implements a trait-specific probability of inclusion, direct extension of single-trait models (no sharing across traits).
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Alternative priors for inclusion probabilities

Multiplicative formulation (Richardson et al., 2010):
Wst = wspr, Py ~ Beta(ay, by), ws ~ Gamma(cs, ds);

B wg: predictor-specific hotspot propensity (similarly as before) and p;: trait-specific modulation.

Hotspot-tailored formulation (Ruffieux et al., 2020):
Wst = ¢(05+<t)7 CY NN(nOatg)a 05 ‘ >\S7UO NN(OaUSAi)a As ~ C+(Oa1); 0o NC+(O7C]71/2),
where ®(-) is the standard normal CDF and C™ (-, -) is a half-Cauchy distribution.

m 6: predictor-specific hotspot propensity and (;: trait-specific modulation;

m Horseshoe prior on 8, provides local and global shrinkage on the propensity of predictors to be involved in
associations: global scale o, adapts to overall sparsity while local scales A allow flexible deviations (heavy tails).
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Alternative formulations

B These models allow increased flexibility, but beware: top-level parameters may not be well-informed if data are
weakly informative.

m Similar shrinkage structures could be considered using one-group priors (e.g., the horseshoe) directly on S;.

m Important caveat: By design, the above formulations capture dependence solely via the spike-and-slab model
hierarchy: they assume a diagonal residual covariance X (independent errors).

m This can be deleterious when residual correlations reflect meaningful biological or technical structure that the
model fails to account for: can bias effect estimates, miscalibrate uncertainty, and either reduce power or inflate
false positives.

m Multivariate SSL (mSSL; Deshpande et al. 2019) estimates trait residual covariance jointly with sparse [, but at
higher computational cost (not applicable at the scales typically encountered in molecular QTL studies).
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A flexible hierarchical model for cross-tissue eQTL effects

Understand how a given gene is regulated by SNPs across multiple tissues:

Y=XB+E, E~MNy (01,X), (24)

o Y: n X r matrix of expression for a given gene across r tissues;
o X: n X p matrix of cis-SNP genotypes;
o B: p X r matrix of SNP effects across tissues (typically r = 1 — 100);

o X: residual covariance across tissues.

Prior for effects of SNP s across the r tissues (mixture of normals; Morgante

etal., 2023): ) ) )
prior covariance matrices
L] ]
b ~ Z Wk 0 Sk g ... | | ..
2 L
o {Sk},'f:1: covariance matrices encodlng plausible patterns of tissue sharing; tissues
ow= (W1, ceey WK): mixture weights learned via empirical Bayes.

Goal: Learn which patterns of effect sharing are supported by the data and exploit them to improve estimation.
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Structured priors for cross-tissue effects

Specifically, the prior distribution over SNP effects is defined as a combination of scaled, covariance matrices:

LT
bs ~ Wo,050 + Z Z WO,/,tM(oa UJ,ZU(J,;),

=1 t=1

[¢]

d,: point mass at zero (spike) to induce sparsity;

@]

Uy ;- fixed normalised covariance matrices (largest diagonal entry is 1);
o w;: scaling factors, log-spaced to cover a wide effect size range;

o wy,,;: Mixture weights estimated from the data (empirical Bayes).

Effect sharing patterns — specification of covariance matrices U ;:

o Canonical: e.g., identity (tissue-specific), equal effects (shared), rank-1 (single-tissue) or sparse block structures
(subset sharing).

o Data-driven: estimated once across genes from summary statistics (marginal screening).
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GTEx illustration: Bayesian vs. elastic net

Predict gene expression across 48 tissues using GTEx data (for 1 000 randomly chosen genes).

m Bayesian model naturally handles missingness (60%) by imputing Yss at each step using current estimates of
effects and residual covariance;

m Benchmark: elastic net (frequentist, £; + £, penalised regression) with 5-fold cross-validation;

m Accuracy in each tissue quantified using root mean squared errors (RMSE):

Dhest

RMSE(m) = — Z Yim — Jim)”
(C5 S

where y;, is the observed expression in tissue m for test sample i, y;, is the predicted expression and nyg; is the

test set size. To improve comparability across tissues, RMSEs are standardised by the standard deviation of y;,, in
the test set.
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GTEx illustration: Bayesian vs. elastic net

Gene expression prediction performance
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Further directions



Integrating QTL mapping and GWAS signals

Broad motivation: Understand the molecular mechanisms linking SNPs to disease phenotypes.

m Colocalisation (Giambartolomei et al., 2014):
Goal: assess whether a QTL and a GWAS signal in the same region are likely to share a causal SNP.

o Enables functional interpretation of GWAS loci and prioritisation of putative target genes.

m Mendelian randomisation (MR; Davey Smith and Ebrahim, 2003):
Goal: use SNPs as instruments to assess whether a biomarker (such as a gene or protein) causally affects an
outcome (trait or disease).

o Supports causal inference in observational studies by using SNPs as natural experiments.

m Phenome-wide association studies (PheWAS; Bush et al., 2016):
Goal: scan many phenotypes (from EHRSs, registries) for association with a given SNP or risk score.

o ldentifies pleiotropic effects across diverse phenotypes.
o Detects opportunities for drug repurposing through shared genetic architecture.
o Supports hypothesis generation about gene function or comorbidities.
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New directions in biomedical genomics

m Emerging modalities: Single-cell genomics, spatial transcriptomics, diagnostic imaging, longitudinal designs —
all require richer datasets with matched genotypes.

m Beyond traditional phenotypes: Leverage ML/AI to derive biologically relevant latent traits (e.g., brain
connectivity, immune profiles, mental health signatures).

m Knowledge-aware Al: Incorporate biological constraints into predictive models — e.g., structured priors, Bayesian
neural networks, constraint-based loss functions.

Heart MRI leart Histology

Organ morphology Tissue morphology Cell morphology

Image: Human Technopole.
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New directions in biomedical genomics (2)

m Big resources and biases: Biobanks (UKBB, FinnGen, etc.) enable broad studies, but raise concerns about
ancestry representation, selection bias and portability of findings.

m Scalability and privacy: Widespread use of summary statistics, emerging use federated learning and synthetic
data.

m From association to function: CRISPR screens and perturbation assays enable functional validation of genetic
findings at scale.

UK Biobank overview from its creation to 2019. Image: UKBB.
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Summary: Bayesian hierarchical models — beyond genomics

m Interpretability and generative insights:

o Reflect nested variation and generative processes — conceptual clarity and alignment with domain knowledge.
o Especially suited for scientific inference and mechanism-based reasoning.

m Information borrowing and adaptive shrinkage:

o Partial pooling enables principled information sharing across units (non-separability).
o Regularisation arises naturally via priors — stabilises inference under limited data or high dimensionality.

m Flexibility and modularity:

o Models can often be seamlessly extended to multi-level, spatio-temporal or latent structures.
o Structured priors and co-data can be integrated.

m Uncertainty propagation:

o Posteriors at all levels enable coherent interval estimation.
o Averaging over plausible configurations helps in collinear and missing-data settings.
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Thank you for your attention

Upcoming: 22nd Armitage Workshop and Lecture, 23 October 2025, Cambridge.
Topic: “Integration of data from multiple domains”. Keynote: Prof. Matthew Stephens, University of Chicago.

Registration (in-person/online):

https://www.mrc-bsu.cam.ac.uk/events/22nd-armitage-workshop-and-lecture
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