
Sparsity and information borrowing in Bayesian hierarchical models

for genetic association problems

Hélène Ruffieux
MRC Biostatistics Unit, University of Cambridge

CUSO Summer School
7–10 September 2025



“In theory there is no difference between theory and practice, while in practice there is.”
––– Yale student Benjamin Brewster, class of 1882

or its variant:

“The difference between practice and theory is greater in practice than in theory.”

This slide set (and any updated content) is available at https://tinyurl.com/cuso-summer-2025-bhm
https://drive.proton.me/urls/H623P50HR4#0ZfmagXsvIRr
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Introduction



The Central Dogma of molecular biology (Crick, 1956)

Crick’s first outline of the Central Dogma, from an unpublished note made in 1956. Image: Wellcome Library, London.
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Molecular pathways from genotype to phenotype

Today, we know that biology involves more than sequence-level information flow.

↭ DNA carries the instructions that shape how our bodies function and how
diseases may develop.

↭ These instructions are read through a complex network of molecular
processes inside each cell.

↭ This network operates across multiple layers of biological activity – including
genes, proteins and biochemical entities – which together influence physical
traits and disease risk.

↭ The relationships between layers are subtle and depend on context – for
example, they can vary across cell types, tissues or developmental
stages.

↭ External factors such as lifestyle or environmental exposures can also
influence how these molecular processes unfold.
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Robert L. Strausberg, Disease Markers, 2001.
8 / 128



From isolated genes to systems biology

Systems biology:

↭ In the early 2000s, advances such as the first sequencing of the human genome (14 April 2003) and the
development of high-throughput technologies (e.g., microarrays, next-generation sequencing, mass
spectrometry) transformed molecular biology.

↭ The concept of “systems biology” emerged, promoting a holistic view of biological function.

↭ Biological questions shifted from “Which gene is involved?” to “How do genes interact in networks and pathways?”

↭ These changes opened new opportunities for understanding disease mechanisms and therapeutic targeting.

Large and complex datasets:

↭ High-throughput techniques generate multi-layered molecular data across tissues, individuals and time, shaped
by structured, context-specific biological processes.

↭ Historically limited in genomics by computational constraints, Bayesian methods have become increasingly
tractable and impactful over the past 20 years.
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Why Bayesian modelling in genomics?

In the context of genomics studies, Bayesian hierarchical models offer:

↭ principled quantification of uncertainty, critical for decision-making and interpretation;

↭ flexible modelling of complex dependencies, with information borrowing (when supported by the data);

↭ integration of domain knowledge via custom priors: external (e.g., pathways, annotations, networks) or
structural (e.g., sparsity, smoothness, modularity);

↭ natural handling of multi-level data (e.g., samples nested within individuals);

↭ a generative view of the genotype-to-phenotype map, aligned with the systems biology perspective.
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Genetic association studies



Two types of genetic association studies
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DNA and genotypes

↭ DNA (deoxyribonucleic acid) consists of two complementary strands forming a
double helix. Each strand is made up of nucleotides: A (adenine), T
(thymine), C (cytosine) and G (guanine).

↭ Nucleotides pair specifically across the two strands: A pairs with T, and C pairs
with G. These pairings form the base pairs that encode genetic information.

↭ Human DNA is organised into 23 pairs of chromosomes (22 autosomes + 1
sex chromosome), with one set inherited from each parent.

↭ An individual’s genotype at a given position (“locus”) refers to the
combination of nucleotides inherited from both parents.

↭ Specific regions of DNA called genes contain instructions for producing
proteins, but much of the genome is non-coding and still functionally important.
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SNPs, alleles and minor allele frequency

↭ A genetic variant is a change at a specific location in the DNA sequence
across individuals in a population. It often involves a change in a single
nucleotide but can also include insertions, deletions or structural alterations.

↭ An allele refers to one of the possible nucleotides observed at a given
genomic position where variation occurs across individuals.

↭ The minor allele frequency (MAF) is the frequency at which the less
common allele occurs in a population.

↭ A single nucleotide polymorphism (SNP) is a single base substitution (e.g.,
C→T) that is present in at least 1% of the population (i.e., MAF > 0.01; typical
threshold to distinguish common SNPs from rare variants).

↭ Example: Suppose in a population, the genotypes at a SNP are distributed as:

↑ 60% CC, 30% CT, 10% TT ↓ allele C has frequency 0.75, T has
frequency 0.25.

↑ Here, C is the major allele, and T is the minor allele with MAF = 0.25.
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Genome-wide association studies (GWAS)

↭ Genome-wide association studies (GWAS) aim to identify statistical associations between genetic variants
(usually SNPs) and a trait of interest (or phenotype), such as height, disease status or a clinical measurement.

↭ In a GWAS, hundreds of thousands to millions of SNPs across the genome are tested for association with the
phenotype, typically in large populations.

↭ To model the effect of a SNP (say with minor allele T) on the phenotype, different genetic models can be used:

→ The additive model (most used) assumes a linear and cumulative effect of the number of minor alleles. Genotypes are
coded as:

0: homozygous major (CC) 1: heterozygous (CT or TC) 2: homozygous minor (TT);

→ The dominant model assumes the presence of at least one minor allele confers the full effect. Genotypes are coded
as:

0: homozygous major (CC) 1: heterozygous or homozygous minor (CT, TC, or TT);

→ The recessive model assumes an effect only when two copies of the minor allele are present. Genotypes are coded
as:

0: homozygous major or heterozygous (CC, CT or TC) 1: homozygous minor (TT).
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Why study genetic associations?

↭ Many important health outcomes – such as body mass index (BMI), blood pressure or type-2 diabetes – are
complex traits, meaning that they are influenced by multiple genetic variants together with environmental
factors, rather than variation at a single gene.

↭ With the sequencing of the human genome, GWAS have started to reveal the genetic architecture of a tapestry of
complex traits through identification of genetic variants associated with such traits across diverse populations.

Last data release 2025-08-24 (https://www.ebi.ac.uk/gwas/search):
7 369 publications, 106 320 traits (EFO) and 955 930 top associations.
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The costly decline of drug discovery efficiency...

Eroom’s law in pharmaceutical R&D
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Logarithmic decline in the number of new drugs approved per US$ billion in R&D spending from 1950 to 2010.
Adapted from Scannell et al. (2012).
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GWAS support drug discovery

GWAS have advanced our understanding of human biology and disease. In some cases, they have also contributed
directly to drug discovery and therapeutic development.

↑ >90% of drug candidates fail in clinical
trials (Sun et al., 2022);

↑ Drug targets with genetic support are
2.6→ more likely to reach approval
(Minikel et al., 2024);

↑ Genetic support underlies 8.2% of all
approved drugs (Nelson et al., 2015),
. . . but 66% of those approved in 2021
(Ochoa et al., 2022).

In 2021, 50 drugs were approved by the FDA’s 

Center for Drug Evaluation and Research, 

continuing a spell of improved productivity. 

Reflecting on the past observation that drugs 

addressing targets supported by human 

genetic evidence are more likely to progress 

through clinical trials, we investigated the 

proportion of new approvals that can be 

retrospectively explained based on publicly 

available human genetic information by using 

 ✉

✉

often requires the integration of multiple 

layers of genetic and functional genomic data 

combined with clinical knowledge about the 

molecular and phenotypic characteristics of 

the disease. Finerenone, an NR3C2 antagonist 

approved in 2021 for the treatment of chronic 

kidney disease (CKD), exemplifies both the 

opportunities and challenges of developing 

a therapeutic hypothesis based on genetic 

evidence. GWAS and functional genomic 

 R E G U L ATO RY  WAT C H

Human genetics evidence  
supports two-thirds of the 2021 
FDA-approved drugs

or proteins. See  Supplementary information for details and an expanded figure. Data source: 

https://doi.org/10.1038/d41573-023-00158-x

News & analysis

Biobusiness briefs

Genetic support for FDA-approved drugs over 
the past decade

H
uman genetic evidence has been 

reported as a proxy for the success 

of drugs in clinical trials owing to its 

ability to pinpoint causal mechanis-

tic links between drug targets and diseases. 

Two-thirds of the new drugs approved by 

the FDA in 2021 were supported by human 

genetic evidence associating the intended 

pharmacological target or its physical inter-

actors with the indication or a surrogate trait. 

Here, we expand this retrospective analysis 

to FDA approvals from 2013–2022 (see Sup-

92% (250) had publicly available genetic sup-

port prior to approval, though it remains 

unclear whether genetics influenced the 

discovery or development phases of these 

programmes (Fig. 1). For the remaining 8%, 

genetic evidence was only publicly avail-

able after the medicine received regulatory 

approval. For example, dimethyl fumarate, 

an oral therapy approved in 2013 for relapsing 

forms of multiple sclerosis, was, to the best of 

our knowledge, not supported by any preced-

ing genetic evidence in the public domain. 

Interestingly, expedited approvals were twice 

as likely to be supported by genetic evidence 

(odds ratio = 1.9 [1.1–3.4], p = 0.02). This asso-

ciation could indicate that serious conditions 

are more likely to have deeper genetic charac-

terization and/or a stronger understanding 

of the relationship between the drug target 

and the cause of the disease for expedited 

drugs (see Supplementary information for 

details). As an example of the latter, of the five 

drugs approved for the treatment of Duch-

enne muscular dystrophy in the past decade, 

Analysis

Refining the impact of genetic evidence on 
clinical success

Eric Vallabh Minikel1, Jeffery L. Painter2,5, Coco Chengliang Dong3 & Matthew R. Nelson3,4 ✉

The cost of drug discovery and development is driven primarily by failure1, with only 

about 10% of clinical programmes eventually receiving approval2–4. We previously 

estimated that human genetic evidence doubles the success rate from clinical 

development to approval5. In this study we leverage the growth in genetic evidence 

over the past decade to better understand the characteristics that distinguish clinical 

success and failure. We estimate the probability of success for drug mechanisms with 

genetic support is 2.6 times greater than those without. This relative success varies 

among therapy areas and development phases, and improves with increasing 

https://doi.org/10.1038/s41586-024-07316-0
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From genetic associations to biomedical translation

PCSK9 and cholesterol-lowering therapy (Chaudhary et al., 2017):

↭ GWAS identified variants in the PCSK9 gene associated with LDL cholesterol levels.

↭ Functional studies confirmed PCSK9’s role in lipid metabolism.

↭ This led to the development of PCSK9 inhibitors, such as alirocumab and evolocumab, now approved to treat
high cholesterol and reduce cardiovascular events.

FTO and obesity (Loos and Yeo, 2014):

↭ A landmark GWAS linked common variants in the FTO gene to higher BMI and obesity risk.

↭ These variants are frequent in the European population (MAF > 0.4), with substantial public health relevance.

↭ Follow-up work revealed a role in appetite regulation, uncovering new pathways for potential intervention.
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Should we consider SNP associations as causal in GWAS?

↭ Causal interpretations in observational studies are rarely justified without explicit causal modelling.

↭ In GWAS settings:

↑ Genotypes precede phenotypes temporally, so reverse causation is implausible.
↑ Genotypes are less susceptible to many common confounders.
↑ Therefore, an association is often interpreted as a causal effect of the SNP (or a linked SNP) on the

phenotype.

↭ Well-documented exceptions are confounding due to population structure (typically corrected using principal
components or mixed-model approaches) or indirect environmental effects (typically avoided using
family-based designs):

→ Regional ancestry differences can confound genetic analysis, creating patterns that resemble genetic effects but are
actually due to cultural variation (e.g., cheese type preference).

→ Parental DNA can shape both the child’s environment (e.g., TV watching habits) and the child’s own genotype.

↭ This causal interpretation underpins methods like Mendelian randomisation, which use genetic variants as
instruments to infer causal effects of exposures on outcomes under assumptions of relevance, independence and
exclusion restriction (see, e.g., Davey Smith and Ebrahim, 2003; Burgess et al., 2015).
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Linkage disequilibrium

↭ Linkage disequilibrium (LD) refers to the non-random association of alleles at different loci.

↭ It arises because nearby genetic variants tend to be inherited together.

↭ LD is crucial in association studies, as nearby SNPs often serve as proxies for a causal variant.

↭ Population-specific LD patterns: e.g., shorter blocks in YRI vs. CEU/CHB, due to greater genetic diversity and
older population history in African ancestries.

LD plots of the SNPs in the Xq28 region. CEU: Utah Residents with Northern and Western European ancestry, CHB: Han Chinese
in Beijing, YRI: Yoruba in Ibadan, Nigeria (HapMap project).
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Univariate screening and the “omitted variable misspecification”
↭ Most GWAS for continuous traits rely on a series of marginal regressions: for n i.i.d. samples and an n ↔ 1

centred response y ,
y = Xsωs + ω, s = 1, . . . , p,

where Xs is an n ↔ 1 centred predictor, ωs is its regression coefficient and ω is an n ↔ 1 Gaussian error term.

↭ Suppose the correct model is:
y = X1ω1 + X2ω2 + ω, ω1, ω2 ↗= 0.

↭ Then, for any SNP s ↘ {1, . . . , p}:

E(ω̂s) = (X T
s Xs)

→1
X

T
s (X1ω1 + X2ω2),

which shows that the marginal estimator is biased if Xs is correlated (i.e., “in LD”) with X1 or X2.

This bias may:

↭ lead to spurious associations – for SNPs s /↘ {1, 2} in LD with X1 or X2.

↭ hinder the identification of truly associated SNPs – e.g., for SNP s = 1, if in LD with X2, the bias may shrink ω̂1

towards zero.

↭ distort the estimated effect sizes – e.g., even if s = 1 is correctly identified as associated, ω̂1 may be biased.
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Manhattan plot and regional plot
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Most strong marginal associations are solely due to local correlation among predictors.
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Frequentist and Bayesian regularisation



High-dimensional regression

Consider the linear regression model

y = Xε + ω, ω ≃ N (0, ε2
ωIn), (1)

where:

↑ y ↘ Rn is a response vector;

↑ X ↘ Rn↑p is a fixed design matrix of predictors;

↑ ε ↘ Rp is the vector of unknown regression coefficients;

↑ ω ↘ Rn is a vector of i.i.d. Gaussian errors with mean zero and variance ε2
ω.

↭ For simplicity, we assume that the response and predictors are centred, and set the intercept to zero (assumed
throughout this course);

↭ In GWAS, scaling the predictors is not necessary as SNPs are measured on the same scale (allele counts);
scaling implies priors favouring larger effects for rare variants, in line with natural selection (Park et al., 2011);

↭ We focus on the high-dimensional regime p ⇐ n.

Main objectives: (i) identify relevant predictors (variable selection) and (ii) estimate their effects.
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Sparsity in GWAS

↭ High-dimensional regression: X
T

X is singular when p > n;

↭ Standard estimators are ill-posed without regularisation or structural assumptions.

Sparsity: assume that most entries of ε are zero or negligible; this encourages parsimony and enables stable,
identifiable inference.

↭ For complex traits, strong-effect SNPs are the exception rather than the rule.

↭ Recent theories like the omnigenic model (Boyle et al., 2017) suggest a pervasive polygenic architecture: a small
subset of “core genes” have large effects, yet many SNPs, in nearly all expressed genes, contribute weak effects.

⇒→ this tension motivates flexible approaches that capture both a few strong and many weak signals.

↭ GWAS emphasises selection over prediction, yet many true effects may be too small to detect confidently;

↭ This places value on interpretable, variable-level measure of confidence (posterior probabilities) – which we argue
is a strength of Bayesian variable selection.
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Bayesian model selection formalism

Model selection:

↭ Model space: 2p possible models, each defined by an inclusion vector ϑ ↘ {0, 1}p.

↭ For each model Mε , the data distribution is:

yi | Mε , εε , ε2
ω ≃ N (Xε

i εε , ε2
ω), i = 1, . . . , n,

where X
ε
i is the pε -vector of predictors included in model Mε , and εε the corresponding vector of regression

coefficients.

↭ Given a prior p(εε , ε2
ω), the posterior probability of model Mε is

p(Mε | y) =
p(y | Mε)p(Mε)∑
ε p(y | Mε)p(Mε)

,

where

p(y | Mε) =

∫
p(y | Mε , εε , ε2

ω)p(εε , ε2
ω) dεε dε2

ω.
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Bayesian model averaging (BMA)

↭ Posterior distribution of a quantity of interest !:

p(! | y) =
∑

ε

p(! | Mε , y) p(Mε | y);

↭ Predictive distribution for new observation ỹ :

p(ỹ | y) =
∑

ε

p(ỹ | Mε , y) p(Mε | y).

Challenges:

↭ Specification of priors over models and parameters;

↭ Computation of marginal likelihoods;

↭ Exploration of model space of size 2p. When p ⇐ n and in presence of small effects, the posterior probability on
any single model will be very small, making identification of a single best model extremely difficult.
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Frequentist approaches to regularisation

Frequentist high-dimensional regression is typically framed as the minimisation of

L(ε) = 1

2
⇑y ⇒ Xε⇑2

2 + penϑ(ε), (2)

where penϑ(ε) is a penalty function indexed by ϑ > 0, a tuning parameter controlling the strength of the penalty.

↭ Separable penalty functions are typically employed, i.e., penϑ(ε) =
∑p

s=1 ϖϑ(ωs), e.g., ϖϑ(ωs) = ϑ|ωs| for
the lasso (Tibshirani, 1996).

↭ Optimal estimation properties may be obtained by imposing sparsity conditions like

⇑ε⇑q
q log p ⇓ n, 0 ⇔ q < ↖,

where ⇑ · ⇑q is the ϱq norm and ⇑ε⇑0
0 = ⇑ε⇑0 = # {1 ⇔ s ⇔ p : ωs ↗= 0} (Bühlmann and van de Geer,

2011).

↭ In the p ⇐ n regime, asymptotic normality no longer holds in general and bootstrapping becomes challenging.
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Bayesian regularisation via priors

Bayesian regularisation replaces penalty functions with priors:

↭ Many penalised estimators are equivalent to the mode of a posterior distribution with prior

p(ωs) ↙ exp{⇒ϖϑ(ωs)}, s = 1, . . . , p. (3)

↭ Example: the lasso is equivalent to a maximum a posteriori (MAP) estimator with independent Laplace priors on
the entries of ε:

p(ωs) =
ϑ

2
exp{⇒ϑ|ωs|}, s = 1, . . . , p.

This prior, known as the Bayesian lasso, was first introduced by Park and Casella (2008).

↭ Instead of just the mode, Bayesian inference provides the full posterior distribution and thereby quantifies
uncertainty.

↭ Opportunity to treat ϑ as a parameter to be estimated. The fully Bayes approach of placing a prior on ϑ renders
the penalty non-separable, which allows sharing information across different coordinates.
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Scale mixtures of normals

↭ A wide range of sparsity priors can be expressed as scale mixtures of normal densities:

p(ωs) =

∫
N
(
ωs | 0, ςs

)
dG(ςs), s = 1, . . . , p, (4)

where G is a distribution on the variance parameter.

↭ This representation unifies many popular shrinkage priors (e.g., Laplace, Student-t , Horseshoe) and simplifies:

↑ Computation: It induces conditional conjugacy for each coefficient, which simplifies posterior sampling. For
example, the Laplace prior can be written as:

ωs | ςs ≃ N (0, ςs), ςs ≃ Exp(ϑ2/2), s = 1, . . . , p.

This turns a non-conjugate shrinkage prior into a conditionally conjugate model for ωs.

↑ Theory: The mixing distribution G clarifies how the prior concentrates mass near zero (for shrinkage) and in
the tails (for robustness). This simplifies the analysis of adaptivity to sparsity and posterior behaviour.
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Posterior consistency and asymptotics

↭ Posterior consistency: Under the assumption that the true parameter ε0 is in the support of the prior, the
posterior converges to a Dirac measure at ε0 (see Doob, 1949; Schwartz, 1965).

↭ Concentration rates: Establishing the rate at which the posterior contracts provides insight into the required
sample size n for a desired accuracy. These rates can be compared to minimax risk bounds to assess adaptivity.

↭ Bernstein–von Mises theorem: In low-dimensional settings, the posterior approximates a Gaussian distribution
centred at the maximum likelihood estimator. However, in the p ⇐ n regime, the required conditions (e.g., flat
priors around ε0) may fail, making standard asymptotic normality results inapplicable.

“For a Bayesian, the problem with the ‘bias’ concept is that is conditional on the true parameter value. But
you don’t know the true parameter value. There’s no particular virtue in unbiasedness.”

––– Andrew Gelman
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Normal means model

To ease the presentation and unless stated otherwise, we describe these priors in the context of the normal means
problem (Stein, 1981),

yi = ωi + φi , φi ≃ N (0, 1) , i = 1, . . . , n, (5)

where the dimensionality n is large.

Theory for model (5) is frequently examined under a nearly-black sparsity assumption, i.e., assuming that the
unknown true parameter ε0 belongs to (Donoho et al., 1992; Johnstone, 1994)

l0[pn; n] = {ε ↘ Rn : ⇑ε⇑0 ⇔ pn} , pn = o(n), n → ↖. (6)
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Two-group priors



Two-group priors

Formulation (spike-and-slab prior; Mitchell and Beauchamp, 1988; George and McCulloch, 1993):
Split the prior into two components:

ωi | ↼ ≃ ↼ gϖ + (1 ⇒ ↼) ↽0, i = 1, . . . , n, (7)

where:

↭ gϖ is an absolutely continuous density (often taken as a centred normal
with variance ε2

ϖ );

↭ ↽0 is the Dirac distribution at zero;

↭ ↼ is the prior probability that ωi is nonzero. −3 −2 −1 0 1 2 3

0.
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Spike-and-slab prior (with Gaussian slab).

Interpretation:
The spike at zero models noise; the slab models signal. This formulation allows separate modelling of the
magnitude of effects and the sparsity level.
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Posterior shrinkage under the spike-and-slab prior

It is possible to express model selection priors as shrinkage priors.

Lemma (Adapted from Bhadra et al., 2017)

Assume the normal means model (5) and prior (7) with gϖ = N (0, ε2
ϖ) for ωi . Then the posterior mean of ωi can be

expressed as

E(ωi | yi) = ↼(yi)
ε2
ϖ

1 + ε2
ϖ

yi , (8)

where ↼(yi) = p(ωi ↗= 0 | yi). As ε2
ϖ → ↖,

E(ωi | yi) =
(

1 + o(1)
)
↼(yi)yi .

↭ Global shrinkage is controlled by ε2
ϖ .

↭ The term ↼(yi) provides adaptive, local shrinkage.
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Hierarchical representation of the spike-and-slab prior
A reparameterisation introduces binary latent indicators ⇀i :

ωi | ⇀i ≃ ⇀i gϖ + (1 ⇒ ⇀i) ↽0,

⇀i | ↼ ≃ Bernoulli(↼), i = 1, . . . , n.
(9)

Posterior interpretation for variable selection:

↭ For regression models (1), with spike-and-slab prior on the regression coefficients (replacing the index i with the
predictor index s), the marginal posterior probability of inclusion (PPI),

E(⇀s | y) = p(⇀s = 1 | y),

directly quantifies the evidence for including predictor s in the model.

↭ This hierarchical form facilitates both variable selection and uncertainty quantification.

↭ We use marginal summaries of variable inclusion – indeed, remember that we are not attempting to identify a
single “best” model Mε (i.e., combination of predictors) or estimate posterior probabilities for specific models.
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Example GWAS for systolic blood pressure (SBP)

Data simulation settings:

↭ 22 chromosomes with lengths reflecting their relative proportions in the human genome (GRCh38);

↭ 100 000 SNPs with minor allele frequencies (MAF) uniformly drawn between 0.05 and 0.5, for n = 500
individuals;

↭ Simulated correlation patterns (linkage disequilibrium, LD) using block-wise autocorrelated structures with realistic
block counts per chromosome;

↭ Selected 10 risk SNPs among the top associations from a large systolic blood pressure GWAS1;

↭ Assigned effect sizes such that the total proportion of variance explained (PVE, i.e., narrow-sense heritability, see
later) equals 30%;

↭ Per-SNP PVE sampled across chromosomes from a half-Cauchy distribution;

↭ Simulated the phenotype as a linear combination of the risk SNPs, with additive noise reflecting the specified PVE.

1Reference GWAS: Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk
scores for blood pressure traits (Keaton et al., 2024).
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Marginal GWAS
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Manhattan plot, using frequentist marginal screening. Red: simulated signals.

SNPs marked with a red cross, on chromosome 12:

↭ rs7137828: regulator of cytokine signalling, known associations with blood pressure, hypertension and
autoimmunity;

↭ rs11105354: regulator of calcium levels in blood vessels, known association with blood pressure.
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Spike-and-slab posterior inclusion probabilities
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Bayesian spike-and-slab regression. Shown: marginal posterior probabilities of inclusion (PPI). Red simulated signals.

↭ Nearly half of the “active” SNPs are correctly assigned high PPIs.

↭ Others receive very low PPIs despite being truly associated – weak signal and/or difficulty resolving signals when
SNPs are highly correlated (LD).
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Continuous two-group shrinkage priors

Formulation (continuous spike-and-slab prior):
Use a mixture of two continuous densities:

ωi | ⇀i ≃ ⇀i gϖ + (1 ⇒ ⇀i) g0, ⇀i ≃ Bernoulli(↼), (10)

where:

↭ g0 is a density with strong concentration near zero (continuous “spike”);

↭ gϖ is a diffuse distribution allowing large signals (continuous “slab”).

Typically, both are from location-scale families, and conjugate choices aid computation.

Characteristics:

↭ Avoids discontinuity from point-mass at zero (improves MCMC mixing);

↭ Does not produce exact zeros (shrinkage rather than formal variable selection).
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Examples of spike-and-slab densities

Common choices for gϖ and g0:

↭ Normal–Normal:
gϖ = N (0, ε2

ϖ), g0 = N (0, ε2
0), 0 < ε2

0 ⇓ ε2
ϖ

(e.g., Ishwaran and Rao, 2005);

↭ Laplace–Laplace:

gϖ = Laplace(0, ϑϖ), g0 = Laplace(0, ϑ0), 0 < ϑ0 ⇓ ϑϖ

(e.g., Ročková and George, 2018);

↭ Cauchy–Cauchy or Student’s t–Student’s t: to allow for heavier tails and robustness to large signals.

Remarks:

↭ The choice of g0 controls shrinkage near zero; gϖ governs signal adaptivity.

↭ Gaussian pairs yield conjugacy; Laplace induces sparsity via ϱ1 penalty analogues.
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Additional priors for the “slab” component
↭ Formulations introduced so far placed independent priors on the nonzero coefficients, εε , conditional on ϑ, e.g.,

εε | ϑ, ε2
ϖ , ε2

ω ≃ Npω

(
0, ε2

ϖε2
ωIpω

)
;

↭ Instead, Zellner (1986) introduced the g-prior, which assumes correlations among the regression coefficients
mimicking the correlations among predictors:

εε | ϑ, g, ε2
ω ≃ Npω

(
0, gε2

ω(X
↓
ε Xε)

→1
)
;

↭ Its covariance is proportional to the inverse Fisher information, I(εε) = ε→2
ω X

↓
ε Xε , and hence mirrors the

uncertainty of the MLE, giving more prior variance where the data is less informative, and vice versa.

↭ This ties it conceptually to the Jeffreys2 prior, p(εε) ↙ |I(εε)|1/2 (same idea but improper/non-conjugate
form).

↭ g controls prior strength relative to data – common choices include g = n (unit information), g large (flat prior) or
a hyperprior on g for flexibility.

↭ In GWAS, independent priors are often preferred as the effects εε need not mirror SNP correlations.
2Harold Jeffreys (1891-1989) also introduced Bayes factors in Theory of Probability (1935, expanded 1948/1961) as a general

framework for Bayesian model comparison.
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Prior specification for the “slab” variance

The slab variance, ε2
ϖ , controls the amount of shrinkage applied to non-zero coefficients. Choosing a hyperprior for

ε2
ϖ has strong implications for inference.

See:

Andrew Gelman. “Prior distributions for variance parameters in hierarchical models”.
Bayesian Analysis, 1, 515 - 534, 2006.

Some specifications:

↭ Inverse-Gamma prior, which is conjugate, often used with very small shape and scale, e.g., 0.001 – this
specification is not truly non-informative despite being commonly used as such (overly concentrated near zero);

↭ Less common: heavy-tailed priors (e.g., Half-Cauchy) or improper priors (e.g., flat on log-scale, p(ε2
ϖ) ↙ 1/ε2

ϖ )
often used to reflect vague prior knowledge;

↭ Alternative: fix ε2
ϖ to a constant (e.g., 1 or 10) – risk of miscalibrated shrinkage.
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An alternative: prior based on PVE

Guan and Stephens (2011) argue that independence from model size (i.e., ϑ) implicitly assumes that complex
models explain more variance than simpler ones, which can be unrealistic, as biologically, one may expect many
small effects (strong polygenicity of Boyle et al. (2017)’s omnigenic model) or few large ones.

They consider the following discrete spike-and-slab specification:

ωs | ⇀s ≃ ⇀sN (0, ε2
ϖε2

ω) + (1 ⇒ ⇀s) ↽0,
where

↑ ε2
ω is the residual variance;

↑ ε2
ϖ is the slab variance, representing the typical size of nonzero effects.

Main idea: Define the prior on ε2
ϖ given ϑ, such that the prior on proportion of variance explained (PVE),

PVE(ε, ε2
ω) =

Var(Xε)

Var(Xε) + ε2
ω

,

is approximately uniform on (0, 1), independently of ϑ.
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A structured prior via the PVE
↭ Assuming centred predictors, we have

PVE(ε, ε2
ω) ∝ V(ε, ε2

ω)

V(ε, ε2
ω) + 1

, where V(ε, ε2
ω) =

1

n

n∑

i=1

(Xε)2
i /ε2

ω

is the empirical variance of Xε relative to error variance ε2
ω.

↭ Next,

h2(ϑ, ε2
ϖ) :=

v(ϑ, ε2
ϖ)

v(ϑ, ε2
ϖ) + 1

may be considered a proxy for the expected PVE, where

v(ϑ, ε2
ϖ) = E[V(ε, ε2

ω)|ϑ, ε2
ϖ ] = ε2

ϖ

∑

j:εj=1

sj ,

with sj :=
1
n

∑n
i=1 X 2

ij the empirical variance of variable j .

↭ h2(ϑ, ε2
ϖ) is only a rough guide to the expected PVE (ratio of expectations, not the expectation of the ratio).

↭ Impose h2 ≃ Unif(0, 1), independently of ϑ; this induces a prior on ε2
ϖ | ϑ, such that more complex models

receive stronger shrinkage, counteracting the tendency of common priors to inflate PVE with model size.
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Posterior PVE estimates using simulated data

Estimated vs simulated h
2

Q. Zhou and Y. Guan 585

Figure 3: Heritability estimates. The left panel is the result of fastBVSR, obtained
using 20, 000 burn-in steps and 100, 000 sampling steps, and the right panel is the result
of GCTA. In each iteration of BVSR, the heritability is estimated by computing the
proportion of explained variance of y using the sampled parameter values. The grey
bars represent 95% credible intervals for fastBVSR and ±2 standard error for GCTA.

summarized in Supplementary S4. The software is written in C++ and available at
http://www.haplotype.org/software.html. In fastBVSR, we also implemented Rao-
Blackwellization, as described in Guan and Stephens (2011), to reduce the variance of
the estimates for γ and β. By default, Rao-Blackwellization is done every 1000 iterations.

To check the performance of fastBVSR, we performed simulation studies based on
a real dataset described in Yang et al. (2010) (henceforth the Height dataset). The
Height dataset contains 3, 925 subjects and 294, 831 common SNPs (minor allele fre-
quency ≥ 5%) after routine quality control (c.f. Xu and Guan, 2014). We sampled
10, 000 SNPs across the genome to perform simulation studies. Our aim was to check
whether fastBVSR can reliably estimate the heritability in the simulated phenotypes.
To simulate phenotypes of different heritability, we randomly selected 200 causal SNPs
(out of 10, 000) to obtain γ. For each selected SNP we drew its effect size from the
standard normal distribution to obtain βγ (the subvector of β that contains nonzero
entries). Then we simulated the standard normal error term to obtain ε, and scaled the
simulated effect sizes simultaneously using λ such that y = λXγβγ + ε and the heri-
tability, 1 − Var(ε)/Var(y), was h (taking values in 0.01, 0.02, . . . , 0.99). This was the
same procedure as that of Guan and Stephens (2011). For each simulated phenotype, we
ran fastBVSR to obtain the posterior estimate of heritability. We compared fastBVSR
with GCTA (Yang et al., 2011), which is a software package to estimate heritability and
do prediction using the linear mixed model. For heritability estimation, GCTA has been
shown to be unbiased and accurate in a wide range of settings (Yang et al., 2010; Lee
et al., 2011). The result is shown in Figure 3. Both fastBVSR and GCTA can estimate
the heritability accurately; the mean absolute error is 0.014 for fastBVSR and 0.029 for

h2

Posterior mean estimates with 95% credible intervals.

↭ 10 000 real SNPs sampled across the genome [height
GWAS dataset from Yang et al. (2010), n = 3 925]; local
LD means sampled SNPs are nearly uncorrelated.

↭ Traits simulated with varying true h2, using 200 randomly
chosen “active” SNPs.

↭ Posterior intervals are tight and h2 estimates remain
well-calibrated overall.

↭ Some downward bias appears at high h2 since the model
must explain more variance with the same number of
SNPs, so true effects are larger and the slab shrinks them
inward; missed SNPs also contribute.

↭ A slab with heavier tails could help better preserve large
effects.
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Back to our simulated SBP example: model size and PVE

Estimated model size

Model size

Fr
eq

ue
nc

y

10 20 30 40 50 60 70

0
50

0
15

00
25

00 True model size

h2 estimate

h2

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
20

00
30

00

True h2

Individual models often include too many transient, correlated
SNPs, reflecting instability in SNP selection under LD.

Estimated h2 is variable and inflated, with wide posterior
uncertainty.

↑ h2 is evaluated at each MCMC iteration from the
corresponding sampled model.

↑ Large models with redundant SNPs can reduce residual
variance due to overfitting, creating the illusion of higher
genetic signal.

↑ h2 appears high in some iterations and lower in others,
depending on the degree of redundancy and tagging.

Later in the course, we will see how “fine-mapping” strategies
help stabilise inference and disentangle overlapping signals.
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A note on the terminology: PVE, heritability and missing heritability

↭ PVE: proportion of phenotypic variance explained by a linear predictor from measured genetic variants.

↭ Heritability: proportion of variance explained by all genetic variants (measured or unmeasured).

↭ Polygenic risk score (PRS): individual-level score estimating genetic susceptibility to a trait or disease,
computed as a linear prediction where an individual’s genotypes are weighted by effect sizes from GWAS.

“Missing heritability”: GWAS often find much smaller PVE than heritability estimates from family studies (Maher,
2008), because of

↭ unmeasured variants: rare variants not well tagged by common SNPs;

↭ undetected effects: small-effect common variants, gene-gene and gene-environment interactions not captured by
standard GWAS.

proportion of  
trait variance

heritability

PVE missing heritability • unmeasured variants 
• undetected effects
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One-group priors



One-group shrinkage priors

↭ Unlike the two-group approach, one-group priors do not explicitly partition coefficients into signal and noise.

↭ All coefficients are modelled using a single, continuous shrinkage component.

↭ The classical James–Stein estimator (Stein, 1956; James and Stein, 1961) illustrates the benefits of global
shrinkage, and can be viewed as an early example of empirical Bayes estimation based on a common normal
prior:

ωi | ε2
0 ≃ N (0, ε2

0).

↭ Modern one-group priors extend this idea with hierarchical structures that allow adaptive coefficient-specific
shrinkage, suitable for sparse, high-dimensional settings.
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Global-local scale mixture priors

The general form is given by:

ωi | ϑ2
i , ε

2
0 ≃ N (0, ε2

0ϑ
2
i ), ϑi ≃ f , ε0 ≃ g, (11)

where f and g are densities on R+.

↭ This leads to non-normal marginal distributions for ωi that can accommodate both sparsity and heavy-tailed
signals.

↭ ε0 is the global scale (affecting all coefficients): it adapts to the overall sparsity level.

↭ ϑi are the local scales (providing coefficient-specific adaptation): they allow individual signals to escape
shrinkage when supported by the data.
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Posterior shrinkage under one-group priors

Lemma (Adapted from Carvalho et al., 2009)

Assume the normal means model (5) and prior (11) for ωi . Let

⇁i =
1

1 + ε2
0ϑ

2
i
, ⇁i ↘ (0, 1). (12)

Then, the conditional posterior mean of ωi can be expressed as

E
(
ωi | yi , ε

2
0 , ϑ

2
i

)
= (1 ⇒ ⇁i) yi + ⇁i ↔ 0,

so,

E
(
ωi | yi , ε

2
0

)
=

(
1 ⇒ E

(
⇁i | yi , ε

2
0

))
yi .

Parameter ⇁i is called shrinkage factor, as it represents the weight placed on zero by the posterior mean of ωi . In
this one-group framework, the quantity 1 ⇒ E(⇁i | yi , ε2

0) plays a role analogous to the posterior inclusion probability
in two-group models.
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Examples of global-local priors
↭ Laplace and Student-t prior: local variances follow exponential and inverse-Gamma distributions, respectively.

↭ Strawderman–Berger prior (Strawderman, 1971; Berger, 1980):

ωi | ⇁i ≃ N
(

0,
1

⇁i
⇒ 1

)
, ⇁i ≃ Beta

(1

2
, 1
)

.

↭ Normal/inverted-beta prior: local variances follow an inverted-Beta density,

p
(
ϑ2

i

)
=

(ϑ2
i )

ϱ→1 (1 + ϑ2
i )

→ϱ→ϖ

B(α, ω)
, α, ω > 0, (13)

where B(·, ·) is the beta function.
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Examples of global-local priors
↭ Horseshoe prior (Carvalho et al., 2009, 2010):

ωi | ε2
0 , ϑ

2
i ≃ N (0, ε2

0ϑ
2
i ), ϑi ≃ C+(0, 1), (14)

where C+(·, ·) denotes the half-Cauchy distribution.

↭ Horseshoe+ prior (Bhadra et al., 2017): more aggressive noise reduction without sacrificing tail robustness:

ωi | ε2
0 , ϑ

2
i ≃ N (0, ε2

0ϑ
2
i ), ϑi | ηi ≃ C+(0, ηi), ηi ≃ C+(0, 1).

↭ Regularised horseshoe prior (Piironen and Vehtari, 2017): prevents overly large signals:

ωi | ϑi , ▷, c ≃ N
(

0, ▷ 2ϑ̃2
i

)
, ϑ̃2

i =
c2ϑ2

i

c2 + ▷ 2ϑ2
i
, ϑi ≃ C+(0, 1), c > 0.3
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3In practice the authors recommend placing a prior on c.
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Interpretation of shrinkage profiles

The marginal prior density of ⇁i (shrinkage factor) reveals how the prior treats small versus large signals.

↭ Horseshoe prior: ⇁i ≃ Beta(1/2, 1/2) places mass near 0 (no shrinkage for large signals) and near 1 (strong
shrinkage for noise).

↭ Student-t and Strawderman–Berger priors: The density of ⇁i exhibits a pole at zero, reflecting fat tails, but
does not enforce full shrinkage.

↭ Laplace prior: Lighter tails lead to little mass near zero and may shrink genuine coefficients too much.
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Two-group priors as local-scale mixtures

A general prior formulation for ε assumes a Gaussian prior:

↼(ε | !,”) = N (0, !”!),

where

↑ ! = diag(ϑ1, ϑ2, . . . , ϑn), with ϑi > 0, i = 1, . . . , n;

↑ ” is positive semidefinite which may depend on ε2
ω.

Placing a mixture prior over ϑi ,

ϑi | ↼ ≃ ↼gϑ + (1 ⇒ ↼)↽0, i = 1, . . . , n,

where ↼ ↘ (0, 1) controls sparsity and gϑ is an absolutely continuous density on R+, gives rise to a two-group prior
for ε. This representation bridges model selection and shrinkage:

↭ model selection via ↽0 on ϑi (or, equivalently, via introduction of latent binary variables ⇀i ) . . .

↭ . . . embedded within the class of local-scale mixtures of normal distributions.
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Remarks and literature

“Because posterior sampling is computation-intensive and because variable selection is most desirable
in contexts with many predictor variables, computational considerations are important in motivating
and evaluating the approaches above. The discrete model selection approach and the continuous

shrinkage prior approach are both quite challenging in terms of posterior sampling.”
— Hahn and Carvalho

Related work:

George and McCulloch (1993)
Ishwaran and Rao (2005)
Park and Casella (2008), Hans (2009)
Carvalho et al. (2009)
Clyde et al. (2011)
Polson and Scott (2010), Griffin and Brown (2017)
etc.

Book: Gelman, A., Carlin, J. B., Stern, H., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data
Analysis (3rd ed.), available at https://sites.stat.columbia.edu/gelman/book/BDA3.pdf
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Selection and multiplicity



Weak vs. strong sparsity

↭ Strong sparsity: most coefficients are exactly zero (model selection / two-group models);

↭ Weak sparsity: most coefficients are small, but not exactly zero (one-group models);

↭ In genomics, strong sparsity has been a common assumption, yet recent biological models challenge this view.

↭ Omnigenic hypothesis (Boyle et al., 2017): complex traits are influenced by thousands of variants, including many
with tiny effects. While individual effects are weak, their combined contribution to phenotypic variance can be
substantial.

↭ The distinction between weak and strong sparsity reflects a broader debate in Bayesian analysis: whether
inference should be framed in terms of parameter estimation or formal hypothesis testing.
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Variable selection: two-group vs. one-group
Recall that: in two-group models, variable selection is achieved via the binary latent indicators ⇀s.

↭ The highest posterior probability model (HPM) is given by

arg max
ω↔{0,1}p

p(Mε | y). (15)

↭ . . . but with 2p candidate models, enumeration or efficient sampling is very hard. Instead, marginal PPIs,
p(⇀s = 1 | y), are used.

↭ The median probability model (MPM; Barbieri and Berger, 2004) includes variables with PPI > 0.5 and is
shown to outperform the HPM for prediction when predictors are orthogonal.

In one-group models, no exact zeros exist, so selection is done by thresholding posterior summaries.

↭ For instance, Carvalho et al. (2010) propose thresholding 1 ⇒ E(⇁s | y) at 0.5 based on its analogy with
two-group posterior inclusion probabilities.

↭ Threshold choices depend on prior structure and inferential goals – no universally optimal rule (for instance,
stricter thresholds for sparse, interpretable models; looser thresholds for predictive performance).
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Multiplicity control in two-group variable selection

↭ In two-group models, with prior slab gϖ in

ωs | ↼ ≃ ↼ gϖ + (1 ⇒ ↼) ↽0, s = 1, . . . , p,

↼ can be interpreted as a prior proportion of included variables.

↭ Given ↼, the prior probability of model Mε is:

p(Mε | ↼) = ↼pω (1 ⇒ ↼)p→pω ,

where pε is the number of variables included in Mε and ⇀s | ↼ ≃ Bernoulli(↼), independently.

↭ Letting ↼ = 1/2: each variable has equal prior probability of being included or excluded → no sparsity
enforced.

↭ Other choices that imply low inclusion probabilities for individual predictors can effectively enforce sparsity.

↭ But no fixed choice of ↼ that is independent of p can adjust for multiplicity.
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Multiplicity control in two-group variable selection
Setting ↼ = 1/p is a common choice that favours sparse models as p(Mε | ↼) decays rapidly with pε , however:

↭ Define prior odds (PO) penalties as:

PO(pε ⇒ 1 : pε) =
p(Mεpω→1 | ↼)

p(Mεpω
| ↼)

,

where Mεpω→1 and Mεpω
are models with pε ⇒ 1 and pε included variables, respectively.

↭ For fixed inclusion probability ↼ = 1/p, we have

PO(pε ⇒ 1 : pε) =
1 ⇒ ↼

↼
= p ⇒ 1.

→ Same penalty regardless of the number of included variables (pε ): no increasing preference for simpler
models (still favours sparse models, but every new variable “costs” the same regardless of how many are
already in!).

↭ In contrast, Scott and Berger (2010) have shown that a fully Bayesian treatment (e.g., Beta prior on ↼) adjusts
to the actual sparsity level and induces adaptive penalty for model complexity via non-separability.
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Multiplicity control in fully Bayesian two-group variable selection

↭ Assume ↼ ≃ Beta(α, ω). Then prior model probability is:

p(Mε) =

∫ 1

0

p(Mε | ↼)p(↼) d↼ =
B(α + pε , ω + p ⇒ pε)

B(α, ω)
,

where B(·, ·) is the Beta function.

↭ If α = ω = 1 (uniform prior on ↼), then:

p(Mε) =
pε! (p ⇒ pε)!

(p + 1) p!
=

1

p + 1

(
p

pε

)→1

.

↭ Prior probability inversely proportional to the number of models of size pε
→ built-in preference for simpler models!
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Multiplicity control in fully Bayesian two-group variable selection
↭ The posterior probability for model Mε therefore is:

p(Mε | y) ↙ 1

p + 1

(
p

pε

)→1

p(y | Mε);

↭ Prior odds penalise more complex models:

PO(pε ⇒ 1 : pε) =
p(Mεpω→1)

p(Mεpω
)

=
p ⇒ pε + 1

pε
.

↑ The penalty depends dynamically on how many
variables are already included.

↑ Adding the first variable is heavily penalised. It is
easier to add variables once some are already
included.

↭ Penalty also grows with the number of candidate
variables p.
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Typical hyperparameter choices for Beta prior on ω

With ↼ ≃ Beta(α, ω), the hyperparameter specification α = 1, ω = 1 (uniform prior) may be inadequate in GWAS
and other high-dimensional settings. Instead, common choices are:

↭ α = ω = 0.5 (Jeffreys’ prior):

↑ U-shaped prior density places more mass near ↼ = 0 and ↼ = 1;
↑ Favours either very sparse or very dense models;

↭ α = 1, ω = p (more common):

↑ encourages sparsity;
↑ implies, a priori:

E(↼) = α

α + ω
∝ 1

p
, Var(↼) =

αω

(α + ω)2(α + ω + 1)
∝ 1

p2
,

for p large.
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Alternative prior on ω

In high-dimensional problems, where sparsity can span orders of magnitude, standard Beta(1, p) can concentrate too
much mass near extreme sparsity levels.

Guan and Stephens (2011) propose a prior on log(↼):

log(↼) ≃ U(a, b),

where a = log(1/p) and b = log(M/p).

↭ This gives roughly equal prior weight across orders of magnitude of ↼.

↭ Lower and upper bounds correspond to expectations of 1 and M variables included (the choice of M often
motivated by computational cost).

↭ Prior variance under this prior is Var(↼) ∝ M2/p2 (times log factors), so for M ⇐ 1 (e.g., 500), it is much
larger than the variance of ↼ ≃ Beta(1, p), reflecting genuine uncertainty about the degree of sparsity.
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Impact on calibration of PPIs

Estimating ↼ and εϖ adapts inference to signal strength and multiplicity (important in polygenic or high LD cases).BAYESIAN VARIABLE SELECTION REGRESSION FOR GWAS 1801

(a) (b) (c)

FIG. 5. Calibration of the posterior inclusion probabilities (PIPs) from BVSR. The graph was
obtained by binning the PIPs obtained from BVSR in 20 bins of width 0.05. Each point on the graph
represents a single bin, with the x coordinate being the mean of the PIPs within that bin, and the y

coordinate being the proportion of SNPs in that bin that were true positives (i.e., causal SNPs in our
simulations). Vertical bars show ±2 standard errors of the proportions, computed from a binomial
distribution. Panel (a) is the result of BVSR, using the priors described here. The fact that the points
lie near the line y = x indicates that the PIPs are reasonably well calibrated, and thus provide a
reliable assessment of the confidence that each SNP should be included in the regression. Panel (b)
is the result from BVSR fixing π to be either 5× smaller (black star) or 5× larger (blue cross) than
the true value (σa fixed to true value). Panel (c) is the result of fixing σa to be either 5× smaller
(black star) or 5× larger (blue cross) than the true value (π fixed to true value).

the estimation of PVE above (fifty data sets with PVE = 0.01–0.5 for both normal
and exponential effect size distributions). The figure shows that the PIPs are rea-
sonably well calibrated. In particular, SNPs with high PIP have a high probability
of being causal variants in the simulations.

To illustrate the potential benefits of using moderately-diffuse prior distributions
on π and σa , allowing their values to be informed by the data, rather than fixing
them to specific values, we also applied BVSR with either π or σa fixed to an “in-
correct” value (approximately 5 times larger or smaller than the values used in the
simulations). Figure 5(b) and (c) show how, as might be expected, this can result in
poorly-calibrated estimates of the PIP (of course, if one were lucky enough to fix
both π and σa to their “correct” values, then calibration of PIPs will be good, but,
in practice, the correct values are not known). We note that fixing σa to be five-fold
too large seems to have only a limited detrimental effect on calibration, which is
consistent with the fact that in single-SNP analyses, with moderate sample sizes,
BFs are relatively insensitive to choice of σa provided it is not too small [e.g.,
Stephens and Balding (2009), Figure 1]. This suggests that, in specifying priors on
σa , it may be prudent to err on the side of using a distribution with too long a tail
rather than too short a tail. Note that, as in Bayesian single-SNP analyses, although
the numerical value of the PIP is sensitive to choice of π , the ranking of SNPs is
relatively insensitive to choice of π (and, indeed, σa). Consequently, in contrast to
the calibration plot, power plots of the kind shown in Figure 3 are not sensitive to
choice of prior on either π or σa (results not shown).

PPIs grouped into bins of width 0.05. x-axis: average PPI, y -axis: corresp. proportion of true effects within that bin, with ± SE.

↑ Left: Spike-and-slab regression with hyperpriors on ↼ and εϖ → PPIs are well calibrated.

↑ Middle and right: Fixing ↼ (middle) or εϖ (right) to values five-fold too small (black) or large (blue) leads to poorly
calibrated PPIs. Note: εϖ five-fold too large has limited impact on calibration → heavy-tailed priors are safer.

↑ The rankings remain largely robust to misspecification of ↼ and εϖ , even when PPI calibration is affected.

68 / 128



Back to the systolic blood pressure GWAS

Estimated model size
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When applied to the systolic blood pressure example:

↭ ↼ is estimated as low (strong shrinkage), in line with the low
PPIs for true signals in the presence of LD and modest effect
sizes.

↭ This happens even though individual models tend to include
too many SNPs: there is instability in selection, with many
correlated SNPs in LD regions appearing only
sporadically, without accumulating support.
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Multiplicity control in one-group variable selection

Consider the example of a linear model (1) with a global-local prior on the regression coefficients:

ωs | ϑ2
s, ε

2
0 ≃ N (0, ϑ2

sε
2
0), ϑs ≃ f , s = 1, . . . , p, (16)

where f is a density on R+.

↭ The global scale ε0 controls the overall sparsity level.

↭ Typical choices for ε0:

↑ Half-Cauchy prior: ε0 ≃ C+(0, 1) (default suggestion in early works; Carvalho et al., 2009);
↑ Fixed value: Set ε0 to a small constant ε0 = c > 0.

↭ C+(0, 1) is often too vague: can lead to insufficient shrinkage, especially when the data are weakly informative.

↭ Fixing ε0 results in a lack of adaptation to the actual sparsity level.
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Multiplicity control in one-group variable selection
↭ Piironen and Vehtari (2017) propose a prior specification based on the expected number of relevant variables.

↭ The conditional posterior for ε given the hyperparameters and data can be written as

p(ε | !, ε2
0 , ε

2
ω, y) = N (ε̄,”),

where
ε̄ = ε2

0!
(
ε2

0!+ ε2
ω(X

T
X)→1

)→1
ε̂, ” =

(
ε→2

0 !→1 + ε→2
ω X

T
X

)→1
,

with ! = diag(ϑ2
1, . . . , ϑ

2
p) and ε̂ = (X T

X)→1
X

T
y is the OLS estimate (assuming the inverse exists).

↭ If the predictors are uncorrelated, with E(Xs) = 0 and Var(Xs) = s2
s , then X

T
X ∝ n diag(s2

1, . . . , s2
p), and

ω̄s ∝ (1 ⇒ ⇁s)ω̂s, s = 1, . . . , p,

where

⇁s =
1

1 + nε→2
ω ε2

0s2
sϑ

2
s

is the shrinkage factor (with same interpretation as seen for the normal means model!).

↭ Note that ε̄ → 0 as ε0 → 0 and ε̄ → ε̂ as ε0 → ↖.
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Multiplicity control in one-group variable selection

↭ In the case of the horseshoe prior, i.e., where f is C+(0, 1) in (16), independently for all ϑs, the implied prior
on ⇁s is:

p(⇁s | ε0, εω) =
1

↼

as√
⇁s(1 ⇒ ⇁s) [(a2

s ⇒ 1)⇁s + 1]
, (17)

where as =
′

nε→1
ω ε0ss.

↭ When as = 1, the distribution reduces to a Beta(1/2, 1/2), with horseshoe shape.

↭ For fixed ε0, though, the prior does not adapt to the dimension p (the effective sparsity depends p).
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Multiplicity control in one-group variable selection

↭ To control sparsity across different p, Piironen and Vehtari (2017) propose choosing ε0 based on the “effective
number of nonzero coefficients” defined as:

meff =
p∑

s=1

(1 ⇒ ⇁s). (18)

↭ When ⇁s are close to 0 and 1 (as they typically are for the horseshoe prior), (18) describes the number of
variables included in the model, therefore serving as an indicator of the effective model size.

↭ Using (17), it can be shown that

E(meff | ε0, εω) =
p∑

s=1

as

1 + as
, Var(meff | ε0, εω) =

p∑

s=1

as

2(1 + as)2
,

where as =
′

nε→1
ω ε0ss.
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Multiplicity control in one-group variable selection

↭ Assuming that the variables are also standardised (ss = 1), this simplifies to

E(meff | ε0, εω) =

′
nε→1

ω ε0

1 +
′

nε→1
ω ε0

p, Var(meff | ε0, εω) =

′
nε→1

ω ε0

2(1 +
′

nε→1
ω ε0)2

p.

↭ Note that ε0 should scale as ε0 ↙ εω/
′

n to avoid a prior specification favouring models of varying sizes
depending on the noise level and sample size.

↭ Piironen and Vehtari (2017) propose setting ε0 by solving

E(meff | ε0, εω) = p0,

for a prior guess p0 of the number of relevant variables, giving

ε↗
0 =

p0

p ⇒ p0

εω′
n
.
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Effect of prior choices for ε0 on prior distribution of meff
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Adapted from Piironen and Vehtari (2017). Prior draws for
meff under different priors (rows) for ω0, with n = 100,
ωω = 1, p → {10, 1000} (columns). The first two priors
use p0 = 5 as prior guess for the nb of active variables.

↑ Fixing ε0 = ε↗
0 leads to a symmetric prior for meff centred

around p0.

↑ Half-Cauchy prior with scale ε↗
0 : heavier tail, placing more

mass on large meff, especially when p is large.

↑ Standard half-Cauchy ε0 ≃ C+(0, 1): favours solutions with
most coefficients unshrunk, causing weak shrinkage;
problematic for large p unless ε0 is strongly identified by data.

↑ Note that changing εω or n would alter the induced prior for meff

for this standard half-Cauchy, unlike for the other priors.

→ Based on further numerical experiments, the authors
recommend:

ε0 | εω ≃ C+(0, ε↗
0 ).

as a weakly informative default choice instead of fixing the
global scale to ε↗

0 .
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Summary

↭ Principled multiplicity control is crucial in problems with a large number of candidate predictors, like GWAS.

↭ Univariate analysis ignores correlations and provides no global calibration → choices about the sparsity and
typical size of the nonzero coefficients implicitly made when specifying significance thresholds.

↭ Estimation of the global parameters ↼ and εϖ (two-group models) or ε0 (one-group models) via appropriate
hierarchical prior specifications renders the entries of ε dependent in the marginal prior p(ε):

↑ yields self-adaptivity to sparsity via a non-separable penalty that borrows strength across coefficients and
adapts to varying sparsity levels;

↑ enables direct estimation of interpretable global quantities – such as the proportion of variance explained
(PVE) quantifying the total genetic contribution to complex traits.

↑ provides a built-in correction for multiplicity, that discourages over-selection unless justified by strong
evidence.

↭ Different strategies have been proposed for specifying such hyperpriors and their hyperparameters, based on
expected numbers of non-zero coefficients or upper bounds for them.
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Bayesian false discovery rate (FDR): local vs. tail-area

We test hypotheses H0s versus H1s, for s = 1, . . . , p, based on test statistics zs. Efron et al. (2001) introduces:

↭ The local FDR:

fdr(zs) = p(H0s | zs) =
↼0f0(zs)

f(zs)
,

where f0(z) is the density under the null, f(z) the overall (mixture) density and ↼0 the prior null probability.
Interpreted as the posterior probability that H0s is true given zs. Local (pointwise), useful for ranking discoveries.

↭ The tail-area FDR:

Fdr(zs) = p(H0 | Z ⇔ zs) =
↼0F0(zs)

F(zs)
,

where F0(z) and F(z) are the CDFs corresponding to f0(z) and f(z), respectively.
Estimates the expected proportion of nulls among all test statistics zr such that zr ⇔ zs. Cumulative, similar in
spirit to classical frequentist FDR methods.

Note: Although these quantities are defined using posterior-like expressions, they are derived under an empirical
Bayes framework and rely on large-scale testing assumptions. They consider the distribution of test statistics, rather
than model parameters.
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Bayesian FDR for spike-and-slab models

In two-group models, posterior probabilities of inclusion offer a natural basis for model-based FDRs.

One can define the Bayesian FDR (Newton et al., 2004) as

FDR(▷) =

∑p
s=1(1 ⇒ PPIs) 1{PPIs > ▷}∑p

s=1 1{PPIs > ▷}
, (19)

where PPIs = p(⇀s = 1 | y), for a given threshold ▷ ↘ [0, 1].

↭ Gives a global empirical Bayes FDR estimate over all variables selected at threshold ▷ .

↭ Model-based control: uses PPIs from full Bayesian model.

↭ Varying ▷ over a fine grid yields an estimated FDR(▷) curve.

↭ Selecting the smallest ▷ς such that FDR(▷ς) ⇔ α enables declaring all variables with PPIs > ▷ς as discoveries
at level α.
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Bayesian FDR: step-up assignment

Define ordered PPIs: PPI(p) ∞ · · · ∞ PPI(1),
and for each k = 1, . . . , p, compute:

FDR(k) =
1

k

k→1∑

s=0

(1 ⇒ PPI(p→s)).

↭ This is the expected false discovery rate
among the top-k variables.

↭ Each variable is assigned the minimum FDR
level at which it would be selected.

↭ Closely approximates threshold-based
FDR(▷) curves (19) in large-scale settings.

Estimated Bayesian FDR for the systolic blood pressure GWAS example.

Red: simulated signals.
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Correlated tests and Bayesian FDR

↭ Correlated predictors or test statistics can substantially distort the null distribution of marginal test statistics,
which complicates the estimation of f0(z) and f(z) in empirical Bayes FDR procedures (Efron, 2007).

↭ As a result, local FDR and tail-area FDR estimates may be biased.

↭ As we have seen, fully Bayesian models, such as two-group spike-and-slab priors, can in principle account for
correlations via the likelihood and prior, but PPIs may still be sensitive to local dependencies.

↭ Permutation-based approaches help empirically preserve dependence in the null, but they are computationally
expensive which limits their applicability within hierarchical Bayesian models.

↭ Developing reliable Bayesian FDR procedures under dependence remains an active and important area of
research.
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Structured priors



Local LD structure and region-level inference

↭ Common models assume that SNPs are assigned the same prior inclusion probability, which ignores spatial
correlation where SNPs in linkage disequilibrium (LD) form natural groups (loci

4);

↭ This LD correlation is mostly local: the genotype correlation matrix X
T

X is approximately banded;

↭ Correlated SNPs from a same locus which display associations with the trait often tag the same underlying
mechanisms.

→ motivates a shift in focus from pinpointing risk SNPs to identifying associated loci.

↭ This mitigates method-specific differences in how signal is estimated (e.g., marginal methods flag any SNP
correlated with a functional SNP; sparse penalised methods, such as the lasso, tend to select one or few
representatives; Bayesian approaches may spread posterior inclusion probabilities across correlated SNPs).

↭ SNPs within the identified loci can subsequently be prioritised through dedicated follow-up analyses (see
later).

4Defining loci is itself non-trivial and involves a series of choices (e.g., LD thresholds, physical distance, gene boundaries).
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Encoding biological group structure

Can we exploit group structures to improve inference and interpretability?

↭ Bayesian hierarchical models can encode such structure:

↑ Group-level parameters capture shared information (e.g., group-level activation);
↑ Predictor-level parameters remain flexible (e.g., within-group adaptivity).

↭ Multilevel modelling permits:

↑ information borrowing within and across groups;
↑ selective shrinkage that respects group relevance;
↑ mitigation of correlation-induced redundancy.

↭ Note: beyond LD, group structure may arise from functional annotations (e.g., coding, regulatory, conserved),
gene membership, biological pathways, cell-type or tissue-specific effects.
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Frequentist group lasso
Performs joint selection of predefined groups g = 1, . . . G.

Optimisation problem (group lasso, Yuan and Lin, 2006):

min
ε






∥∥∥∥∥y ⇒
G∑

g=1

Xgεg

∥∥∥∥∥

2

2

+ ϑ
G∑

g=1

⇑εg⇑Kg




 , ⇑z⇑Kg = (z↫Kgz)1/2,

where:

↑ y ↘ Rn is the response vector;

↑ X = [X1, X2, . . . , XG], with Xg ↘ Rn↑|g|, is the design matrix;

↑ ε = [ε↓
1 , ε↓

2 , . . . , ε↓
G ]↓, with εg ↘ R|g|, is the coefficient vector;

↑ Kg , g = 1, . . . , G, are positive definite matrices.

↭ Encourages sparsity at the group level, through penalty for ϑ > 0;

↭ Reduces to standard lasso when each group contains a single variable and Kg = I|g|.
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Bayesian group lasso and spike-and-slab extension

Kyung et al. (2010) show that the multivariate Laplace prior,

p(εg) ↙ exp

(
⇒ϑ

ε
⇑εg⇑2

)
, g = 1, . . . G,

corresponding to a group lasso penalty, can be written as a scale mixture of normals (easier posterior inference):

εg | ε2, ▷ 2
g ≃ N|g|

(
0, ε2▷ 2

g I|g|
)
, ▷ 2

g ≃ Gamma

(
|g| + 1

2
,
ϑ2

2

)
.

.
↭ Encourages group-wise shrinkage of coefficients (like the frequentist group lasso).

↭ Estimation based on posterior means or medians does not produce exact zero estimates (unlike the frequentist
group lasso).

Extension (spike-and-slab prior for group selection): introduce binary indicators ⇀g ↘ {0, 1} for group inclusion:

εg | ⇀g, ε
2, ▷ 2

g ≃ ⇀gN|g|(0, ε
2▷ 2

g I|g|) + (1 ⇒ ⇀g)↽0(εg), ⇀g ≃ Bernoulli(↼).

This prior formulation formally encodes group selection by assigning exact zeros to εg of inactive groups.
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Structured grouping in spike-and-slab priors

The latent indicator vector ϑ ↘ {0, 1}p is reduced to ϑ ↘ {0, 1}G, for G ⇓ p groups.

Chipman (1996) was probably the first to use structural grouping information in Bayesian variable selection, using
a continuous spike-and-slab prior:

“Not only does the grouping principle reduce the size of the total model space, but it makes headway in
dealing with the pitfalls of multiple comparisons.”

— Hugh Chipman (1996)

In practice:

↭ Identify groups g ↘ {1, . . . , G} with large posterior probability of inclusion: p(⇀g = 1 | y);

↭ Within selected groups, inspect entries of εg with large posterior means.
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Grouped horseshoe prior: different formulations

BGHS (Bayesian grouped horseshoe, Xu et al., 2016; He and Wand, 2024):

εg | ε2
0 , ◁

2
g ≃ N|g|

(
0, ε2

0◁
2
g I|g|

)
, ◁g ≃ C+(0, 1), ε0 ≃ C+(0, A), A > 0, g = 1, . . . , G.

↭ Controls overall sparsity via the global scale ε0 and group-level sparsity via the local scale ◁g ;

↭ Shrinks all entries of εg in a group specific way, via ◁g , which has heavy tail.

HBGHS (Hierarchical BGHS, Xu et al., 2016, Alt. formulation):

ωs | ε2
0 , ◁

2
g(s), ϑ

2
s ≃ N

(
0, ε2

0◁
2
g(s)ϑ

2
s

)
, ϑs ≃ C+(0, 1), ◁g ≃ C+(0, 1), ε0 ≃ C+(0, A), s = 1, . . . , p.

↭ Activates/deactivates groups (SNP loci) via the group-level scale ◁g ;

↭ Enables predictor-level adaptivity via the local scale ϑs (allows a few strong effects to escape from “inactive
groups”).
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Beyond exchangeability: exploiting SNP-level information

↭ So far we saw how to encode known group structures, such as LD blocks via Bayesian group shrinkage;

↭ But individual SNPs may also differ in biological plausibility, which breaks exchangeability in a different way;

↭ External information, from prior studies or genomic annotations, may help prioritise likely functional variants,
especially within high-LD loci where true signals harder to isolate.

Definition (De Finetti, 1937)

Exchangeability means the joint distribution of random variables is invariant under permutation.
For ω1, ω2, . . . , ωp, they are exchangeable if:

(ω1, ω2, . . . , ωp)
d
= (ωφ(1), ωφ(2), . . . , ωφ(p)),

for any permutation ε.
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What kind of information?

Definition (Morgensztern et al., 2018)

The epigenome is the complete description of all the chemical modifications to DNA and histone proteins that regulate
the expression of genes within the genome.

↭ These regulatory mechanisms include DNA methylation, histone modifications and small noncoding RNAs.

↭ They underpin tissue- and context-specific gene regulation.

(“Epigenome” comes from the Greek prefix epi-, meaning ‘on top of’, highlighting its role in regulating gene activity
“above” the DNA sequence itself.)

↭ Other types of SNP-level annotations:

↑ Genomic location: exonic, intronic, intergenic, UTRs, regulatory regions.
↑ Functional features: enhancer/promoter overlap, TF binding sites, chromatin states.
↑ Quantitative indicators: prior GWAS hits, conservation scores, allele frequency.
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How to encode such information?

↭ Most GWAS use this only post hoc: practitioners inspect peaks for known genomic marks, which is ad hoc,
subjective and difficult to scale.

↭ The Bayesian framework lets us encode such information a priori via the model hierarchy.

↭ Simplest example: In a spike-and-slab model, a higher prior inclusion probability ↼s can be assigned to a SNP Xs

based on existing evidence about a likely higher functional relevance.

“Exchangeability is a function not just of reality, but of the information you have.”
— Andrew Gelman
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Can we learn which annotations matter?

SNP effects may be exchangeable, conditionally, based on shared annotations or biological profiles
(“conditional exchangeability”).

↭ Many sources of annotation data exist, but not all are equally relevant for a given trait or context.

↭ Pre-specifying prior inclusion probabilities based on functional annotations may be too rigid or subjective:
relevance of annotations will be tissue, condition and region-specific.

↭ Can we learn which annotations may matter for the genetic association problem at hand ?

This motivates introducing the concept of co-data.

Definition (te Beest et al., 2017):

Co-data are any type of information that is available on the variables of the primary data, but does not use its
response labels.

Co-data can be used as predictor-level information in the model hierarchy to guide variable selection:
In GWAS, SNP-level annotations can serve as co-data capturing the potential biological relevance of each SNP in
controlling the trait of interest, which in turn could improve association estimates.
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Top-level co-data submodel

Examples of hierarchical co-data priors for:

↭ spike-and-slab regression (van de Wiel et al., 2018):

ωs | ⇀s ≃ ⇀s gϖ + (1 ⇒ ⇀s) g0, ⇀s | ↼s ≃ Bernoulli(↼s),

where g0 and gϖ are the “spike” and “slab” distributions, respectively. Predictor-specific inclusion probabilities are
modulated by co-data:

↼s = h→1(V↓
s ϖ), s = 1, . . . , p,

where Vs is a L ↔ 1 vector of co-data for predictor s, ϖ is the corresponding vector of effects (assigned its own
prior) and h is a link function (e.g., logit or probit).
→ adaptive selection: Predictors with supportive annotations will be prioritised for inclusion.

↭ horseshoe regression (Busatto and van de Wiel, 2023):

ωs | ϑ2
s, ε

2
0 ≃ N (0, ϑ2

sε
2
0), ϑs ≃ C(V↓

s ϖ, 1)1(ϑs > 0), s = 1, . . . , p,

where C(·, ·) denotes the Cauchy distribution; the local scales ϑs are influenced by co-data Vs via the effects ϖ.
→ adaptive shrinkage: Effects of predictors with supportive annotations will be less shrunk.
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Inferring the relevance of annotations

↭ When many annotations are available, some (or even all) may be irrelevant to specific GWAS of interest.

↭ We may want to select the annotations relevant to the specific GWAS considered, out of a potentially large
number of candidates (hundreds or thousands).

↭ Place a sparse prior on ϖ (e.g., spike-and-slab or continuous shrinkage) to:

↑ pinpoint relevant annotations from the data, for the association problem at hand;
↑ quantify the extent of their relevance for the effects of the predictors they concern.

↭ Example:
0l | 1l ≃ 1l gϖ + (1 ⇒ 1l)g0, 1l ≃ Bernoulli(ϖ), l = 1, . . . , L,

where p(1l = 1 | y) can be used to select the relevant annotations.
→ Improves accuracy of association estimates and generates mechanistic hypotheses by highlighting
specific annotations that might underlie the mechanisms of interest.

↭ Caveat: The top-level model hierarchy can only be reliably inferred if the data are sufficiently informative.
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Simulated example

Vanilla vs. annotation-informed
(co-data) spike-and-slab models
(simulated data, 100 replicates):

↭ p = 250 candidate SNPs for
n = 400 individuals.

↭ L = 50 candidate annotations
supplied to the co-data model,
with different levels of noise
added to the annotation data.

↭ Annotations 12, 37, 49 are
simulated as triggering the
genetic signal (red).
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Bayesian fine-mapping



Bayesian fine-mapping

Fine-mapping aims to prioritise SNPs that are most likely to be functional in a pre-identified GWAS-implicated
genomic region (“risk locus”).

↭ In given risk loci, association signals can span multiple SNPs in LD but, typically, only a few are functional; others
tag them through LD. Note: the functional SNP(s) may or may not be genotyped!

↭ Goals: (i) help understand how many distinct causal associations may underlie the association results; (ii) infer
which subset of SNPs in the risk locus may be causal (or best tag) causal variants; (iii) quantify the strength of
evidence.

↭ This guides: (i) the selection of variants for follow-up in downstream functional validation experiments; (ii) the
identification of therapeutic targets; (iii) the discovery of new biological mechanisms behind diseases.

Bayesian approach:

↑ Define a prior over all possible models Mε (i.e., subsets of all SNPs in the risk locus);

↑ Compute posterior probabilities for models and SNPs;

↑ Use prior constraints (e.g., ⇔ 4 functional SNPs) to reduce search space.
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Bayesian model for fine-mapping

↭ Assume that y ≃ N (Xεεε , ε2
ωIn);

↭ Let Mε be a model with candidate predictors indexed by ϑ ∈ {1, . . . , p}, with pε ⇔ M included predictors, for
M small;

↭ Prior on models (sparser models favoured & uniform over all models of a given size):

p(Mε) ↙
(

p

pε

)→1

1(pε ⇔ M);

↭ Prior on effects:
εε | ε2

ϖ ≃ N (0, ε2
ϖ Ipω );

↭ MCMC over model space: propose local moves (add, remove, swap predictors);

↭ Provides a posterior over models,
p(Mε | y) ↙ p(y | Mε)p(Mε),

from which credible sets of predictors can be derived and ranked for fine mapping.
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Typical posterior summaries of interest

↭ PPI for each predictor: sum of posterior probabilities over models containing that predictor;

↭ Top models: highest posterior probability models (HPM);

↭ Model size distribution: posterior on the number of active predictors;

↭ Credible sets: minimal sets of predictors designed to capture the active predictors → smaller credible sets
reflect greater certainty (assuming correct coverage).
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Three definitions of credible sets in fine-mapping

Let S = {1, . . . , p} be the indices of all candidate predictors. Definitions in use for a ϖ-level credible set C:

1. Marginal PPI-based

Find a minimal set C ∋ S such that
∑

s↔C
PPIs ∞ ϖ,

where PPIs denote the posterior probability of inclusion for predictor Xs. Used in FINEMAP (Benner et al. 2016).

2. Model–based (at least one active predictor)

Find a minimal set C ∋ S such that
∑

Mω↘C ≃=⇐

p(Mε | y) ∞ ϖ,

i.e., C has probability ∞ ϖ of containing at least one active predictor. Used in SuSiE (Wang et al. 2020).

3. Model–based (all active predictors)

Find a minimal set C ∋ S such that
∑

Mω⇒C
p(Mε | y) ∞ ϖ,

i.e., C has probability ∞ ϖ of containing all active predictors. Used in CAVIAR (Hormozdiari et al. 2014).
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Simulated example

Bayesian fine-mapping on a systolic blood pressure locus (involving the active SNPs rs11105354 and rs7137828, on chr12). Metropolis–Hastings

algorithm described on slide 97 with M = 4. Scenarios with two simulated LD structures: five SNP blocks with varied autocorrelation each (left)

and single block with highly correlated SNPs (right).
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From GWAS to causal variant identification

Given that GWAS estimates tend to be unstable due to LD structure, the possibility of subsequently refining signals
with fine-mapping suggests the following pipeline:

↭ Apply strong LD pruning before GWAS for a more stable detection of signals;

↭ Identify regions of interest (loci) based on GWAS hits;

↭ Narrow down likely functional SNPs using Bayesian fine-mapping applied to the full SNP set within each locus.

In practice:

↭ Fine-mapping is ideally conducted in an independent dataset, often with larger sample size and denser
genotyping or imputation, to avoid data reuse and maximise resolution;

↭ Functional annotations can inform the prior over model space within risk loci (similar use as for GWAS co-data
models);

↭ Many fine-mapping approaches rely on GWAS summary statistics (effect estimates and standard errors),
combined with LD information from a suitable reference panel to derive marginal likelihoods or Bayes factors.
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Hierarchical regression for multiple responses



Molecular mechanisms: from the genotype to the phenotype

↭ A variety of molecular mechanisms mediate the action of the genotype on the phenotype (trait of interest).

↭ Genetic variants can regulate gene expression (the transcriptome).

↭ Changes at the transcript level can have downstream effects on proteins (the proteome) or metabolites (the
metabolome).

↭ These regulatory effects are often subtle, involve pathway-level interactions and can be specific to particular
tissues or cell types.

↭ Molecular readouts (e.g., gene, protein or metabolite levels) are often referred to as endophenotypes, because
they serve as intermediate molecular proxies for the phenotype.

↭ We aim to understand not just whether a genetic variant is associated with disease, but how it operates
biologically by studying its effect on molecular traits.
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Molecular QTL studies

↭ Molecular QTL (quantitative trait locus) studies aim to identify genetic variants that influence molecular traits, e.g.:

↑ eQTLs: expression QTLs – SNPs affecting gene expression.
↑ pQTLs: protein QTLs – SNPs affecting protein abundance.
↑ mQTLs: methylation QTLs – SNPs influencing methylation levels.

↭ Genetic effects can be:

↑ cis: the SNP regulates a nearby gene product (e.g., within 1 Mb).
↑ trans: the SNP regulates a distant gene product, possibly even on another chromosome.

genome 
(DNA)

phenome 
(disease)

metabolome

proteome

transcriptome 
(RNA)

cis

trans

proximal gene A 

distal gene B

SNP

cis

trans

FTO

IRX3

rs1421085

IRX5

↭ A single SNP may influence multiple traits, a phenomenon known as pleiotropy.

↭ Hotspot SNPs are pleiotropic SNPs associated with large numbers of gene products in cis and/or trans.

↭ Univariate screening methods (one pair of SNP/trait at a time) do not account for shared genetic architecture.
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From GWAS hits to mechanisms: revisiting FTO

Recall the FTO example from earlier:

↭ GWAS linked SNPs in the FTO locus to BMI and obesity risk;

↭ Initially thought to act “in cis”, through the nearby FTO gene;

↭ But functional studies revealed a distal regulatory mechanism: SNP rs1421085 alters a regulatory element “in
trans” that modulates expression of IRX3 and IRX5 via long-range chromatin looping (Smemo et al., 2014);

↭ IRX3 and IRX5 might be regarded as potential targets for obesity treatment, not FTO.
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Studies have found that drugs whose target is supported by eQTL mapping are 2-4 times more likely to be
successful (Sadler et al., 2023).
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Pairwise eQTL screening

↭ Example dataset: CD14+ monocytes from 432 healthy European
individuals, with > 24 400 gene transcripts (traits) and > 380 000
SNPs.

↭ A marginal pairwise screening on 29 607 SNPs from
chromosome 1 shows:

↑ About 2.5 times more cis associations than trans associations;
↑ Many cis associations are probably redundant due to LD;
↑ Trans effects tend to be weaker than cis effects (general fact).

Number After LD pruning Effect magnitude

Cis associations 1 611 1 049 0.11 (0.10)
Trans associations 655 641 0.04 (0.03)

Table: Summary of cis and trans associations at FDR 20% (LD pruning
genetic r 2 > 0.5 and window size 2 Mb).
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Beyond marginal screening: the need for joint models

↭ Most trans associations identified by marginal screening fail to survive multiplicity correction: they are
largely masked by the large number of redundant (and stronger) cis signals due to LD.

↭ Detecting weaker but biologically important trans effects (including hotspots) requires models that account for all
SNPs and all traits jointly.

↭ Borrowing information across traits under shared genetic control can substantially improve power, especially
for trans-acting effects.

↭ This (again!) highlights the need for interpretable multivariate methods for high-dimensional QTL analysis.
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Sparse multivariate regression model

Consider the canonical sparse multivariate regression model for Mε :

Y = XεBε + E, E ≃ MN n↑q (0, In,”) , (20)

where

↑ Y is a n ↔ q response matrix (molecular traits);

↑ Xε is a n ↔ pε matrix of selected predictors (SNPs), where pε =
∑p

s=1 ⇀s;

↑ Bε is a pε ↔ q matrix of regression coefficients;

↑ E is a n ↔ q matrix of error terms, assigned a matrix-variate normal distribution (Dawid, 1981) with independent
rows and covariance ” across traits.
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Interpretable multivariate inference
Need for dual selection:

↭ Model (20) represents pairwise SNP-trait associations via B, but selection is still row-wise via the p ↔ 1 binary
indicator vector ϑ.

↭ This assumes that a SNP is either associated with all traits or none, which may be a reasonable simplification
in specific multivariate GWAS settings (e.g., shared genetic basis for cholesterol, lipid traits and blood pressure).

↭ In molecular QTL studies however, each SNP typically regulates a few traits, requiring within-row sparsity in Bε .

Need for scalability in high-dimensional response settings:

↭ Molecular QTL studies: q (traits) in tens of thousands, p (SNPs) in millions.

↭ Estimating an (unstructured) trait residual covariance ” in such settings is prohibitive due to high memory and
runtime cost.

↭ Existing multivariate models typically restrict q and assume conjugacy to integrate ” out (e.g., Petretto et al.,
2010; Lewin et al., 2015).

⇒→ Flexible multivariate modelling of molecular QTL data is out of reach without structural simplifications.
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A hierarchical model for molecular QTL mapping

One alternative: borrow strength via the spike-and-slab model hierarchy only.

For traits t = 1, . . . , q, consider a series of conditionally independent regressions:

yt = Xεt + ωt , ωt ≃ Nn

(
0, ▷→1

t In

)
, ▷t ≃ Gamma(ηt , ⇁t), t = 1, . . . , q, (21)

where

↑ yt is a n ↔ 1 response vector (molecular traits, typically q = 102–104),

↑ X is a n ↔ p matrix of candidate predictors (SNPs, typically, p = 105–106),

↑ εt is a p ↔ 1 vector of regression coefficient,

and place a pairwise spike-and-slab prior on the regression coefficients:

ωst | ⇀st , ε
2, ▷t ≃ ⇀st N (0, ε2▷→1

t ) + (1 ⇒ ⇀st) ↽0, ⇀st ≃ Bernoulli(ςs), (22)

with
ςs ≃ Beta(as, bs), ε→2 ≃ Gamma(ϑ, ◁). (23)
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Why this hierarchical model?

Model (21)–(23) takes a different path from canonical multivariate approaches:

↭ It replaces the p ↔ 1 binary indicator vector ϑ with a matrix ϑ = {⇀st}, which enables direct selection of
predictor-response pairs, via the marginal posterior inclusion probabilities p(⇀st = 1 | y):

↭ It does not model residual covariance explicitly, which avoids the curse of dimensionality in q ⇐ n settings;

↭ It introduces dependence across responses through the prior on effect inclusion, via shared ςs and ε; for
molecular QTL mapping this allows information sharing across traits under shared genetic control.

↭ In particular, the model directly parametrises pleiotropic effects via ςs, so that E(ςs | y) can be used to select
hotspot predictors controlling multiple responses.
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Prior-induced sparsity and multiplicity control
Sparsity in the association pattern is controlled via the prior on ςs.

↭ The prior odds penalty representing the support for a model to have an additional response associated with a
given predictor Xs is

PO(qs⇒1:qs) =
pr(Mqs→1)

pr(Mqs)
=

bs + q ⇒ qs

as + qs ⇒ 1
,

where Mqs now denotes a model in which Xs is associated with 1 ⇔ qs ⇔ q responses.

↭ Penalty increases with the number of responses q but no inherent correction for the predictor dimension p.

↭ This is because ςs is predictor-specific so we have separability across predictors, unlike in the example
discussed in the context of single-response spike-and-slab regression.

p 50 250 500 1,000 2,500

Mean # FP
Uncorrected 1.06 6.70 16.52 35.22 73.55
Mean # TP

Uncorrected 9.67 9.69 9.72 9.77 9.80

For instance, choosing as ↑ 1, bs ↑ 2q ↓ 1, so E(εs) ↑ (2q)→1 (prior mean number of responses associated with Xs is 0.5 independently of

p) leads to a linear increase of false positives as p grows (using the MPM selection rule, PPI > 0.5).
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Prior-induced sparsity and multiplicity control
↭ To address this, we control the probability of any association between Xs and responses:

pr (△q
t=1{⇀st = 1}) = 1 ⇒

q

t=1

bs + q ⇒ t

as + bs + q ⇒ t
,

setting it to p0/p, where p0 is a prior guess of the number of predictors included in the model.

↭ This can be achieved by setting (assuming exchangeability):

as ▽ 1 , bs ▽ q(p ⇒ p0)

p0
, 0 < p0 < p.

↭ The model now adjusts for multiplicity in terms of numbers of both candidate predictors p and responses q.

p 50 250 500 1,000 2,500

Mean # FP
Uncorrected 1.06 6.70 16.52 35.22 73.55

Corrected 0.39 0.30 0.36 0.34 0.31
Mean # TP

Uncorrected 9.67 9.69 9.72 9.77 9.80
Corrected 9.69 9.42 9.20 9.25 8.98

The number of false positives remains roughly constant and close to zero with correction, small cost on the number of true positives.
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Prior-induced sparsity and multiplicity control

↭ Similarly to the single-response spike-and-slab model, there is also a relation between the penalty on the model
complexity and the current model size.

↭ Here the penalty is not uniform depending on the number of responses associated with a given predictor Xs:
moving from zero to one response associated with Xs is harder than moving from nine to ten.

↭ Ensures a sufficient regularisation on the “hotspot sizes”, especially important in weakly informative, large-q
settings.

Chapter 3. Variational inference for multiple-response hierarchical regression

Figure 3.2 – Prior odds ratios, POR(qs °1 : qs ), for qs = 1, . . . ,5, as and bs as in (3.9), q = 100, p§ = 2, and
for a total number of predictors ranging from p = 5 to 5,000; see Scott and Berger (2010) for a similar
visualisation of prior odds ratios in a single-response context.

p 50 250 500 1,000 2,500
Mean # of FP

Uncorrected 1.06 (0.11) 6.70 (0.33) 16.52 (0.64) 35.22 (0.79) 73.55 (1.09)
Corrected 0.39 (0.08) 0.30 (0.07) 0.36 (0.07) 0.34 (0.08) 0.31 (0.08)

Mean # of TP
Uncorrected 9.67 (0.07) 9.69 (0.07) 9.72 (0.06) 9.77 (0.05) 9.80 (0.06)

Corrected 9.69 (0.06) 9.42 (0.09) 9.20 (0.09) 9.25 (0.10) 8.98 (0.10)

Table 3.1 – Multiplicity adjustment for the predictor dimension. The average numbers of false positives
(FP) and true positives (TP) obtained with the uncorrected and corrected regimes are compared for
p∞ = 10 active predictors and an increasing number of noise predictors, p °p∞. Selection is performed
using the median probability model rule, pr(∞st = 1 | y) > 0.5 (Barbieri and Berger, 2004). The total
number of responses is q = 25. 64 replicates were performed; standard errors are in parentheses.

and setting this probability to be equal to p§/p, where p§ ø p is the average number of predictors
expected to be included in the model. This can be achieved by choosing

as ¥ 1, bs ¥ q(p °p§)/p§ , 0 < p§ < p, (3.9)

assuming exchangeability.

Figure 3.2 displays (3.7) for qs = 1, . . . ,5 as a function of p and indicates that, when as and bs are
specified as in (3.9), the penalty does increase with the total number of predictors, p; in other words,
the prior now also controls for the predictor dimensionality. Moreover, the penalties are not uniform
when moving from one to two responses associated with Xs , or from four to five, for instance; we will
discuss the implications of this in Chapter 5.

The experiment reported in Table 3.1 confirms that adjustment takes place in practice. It considers
problems with p∞ = 10 “active” predictors, i.e., associated with at least one response, and an increasing
number of “noise” predictors and it compares the regime with as and bs set according to (3.9) to an
“uncorrected” regime with as ¥ 1, bs ¥ 2q °1, so E(!s ) ¥ (2q)°1, meaning that the prior mean number

38
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Alternative priors for inclusion probabilities

Recall: The predictor-specific prior on the spike-and-slab inclusion probability in model (21)–(23): ςs ≃ Beta(as, bs);

↭ Controls the extent to which predictor s is associated with lots of traits (“hotspot propensity”);

↭ Allows sparsity control through a prior on the total number of predictors entering the model.

Alternative formulations have been proposed for the inclusion probabilities:

Top-level spike-and-slab prior (Scott-Boyer et al., 2012):

ςs | ↼s ≃ ↼sBeta(as, bs) + (1⇒↼s)↽0, ↼s ≃ Beta(a0, b0);

↭ Allows some predictors to have zero probability of inclusion across all traits.

“Independent” formulation:
ςt ≃ Beta(at , bt);

↭ Implements a trait-specific probability of inclusion, direct extension of single-trait models (no sharing across traits).
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Alternative priors for inclusion probabilities

Multiplicative formulation (Richardson et al., 2010):

ςst = ςsϖt , ϖt ≃ Beta(at , bt), ςs ≃ Gamma(cs, ds);

↭ ςs: predictor-specific hotspot propensity (similarly as before) and ϖt : trait-specific modulation.

Hotspot-tailored formulation (Ruffieux et al., 2020):

ςst = ”(2s + 1t), 1t ≃ N (n0, t2
0 ), 2s | ϑs, ε0 ≃ N (0, ε2

0ϑ
2
s), ϑs ≃ C+(0, 1), ε0 ≃ C+(0, q→1/2),

where ”(·) is the standard normal CDF and C+(·, ·) is a half-Cauchy distribution.

↭ 2s: predictor-specific hotspot propensity and 1t : trait-specific modulation;

↭ Horseshoe prior on 2s provides local and global shrinkage on the propensity of predictors to be involved in
associations: global scale ε0 adapts to overall sparsity while local scales ϑs allow flexible deviations (heavy tails).
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Alternative formulations

↭ These models allow increased flexibility, but beware: top-level parameters may not be well-informed if data are
weakly informative.

↭ Similar shrinkage structures could be considered using one-group priors (e.g., the horseshoe) directly on ωst .

↭ Important caveat: By design, the above formulations capture dependence solely via the spike-and-slab model
hierarchy: they assume a diagonal residual covariance ” (independent errors).

↭ This can be deleterious when residual correlations reflect meaningful biological or technical structure that the
model fails to account for: can bias effect estimates, miscalibrate uncertainty, and either reduce power or inflate
false positives.

↭ Multivariate SSL (mSSL; Deshpande et al. 2019) estimates trait residual covariance jointly with sparse ωst , but at
higher computational cost (not applicable at the scales typically encountered in molecular QTL studies).
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A flexible hierarchical model for cross-tissue eQTL effects

Understand how a given gene is regulated by SNPs across multiple tissues:

Y = XB + E, E ≃ MN n↑r(0, In,”), (24)

↑ Y : n ↔ r matrix of expression for a given gene across r tissues;

↑ X : n ↔ p matrix of cis-SNP genotypes;

↑ B: p ↔ r matrix of SNP effects across tissues (typically r = 1 ⇒ 100);

↑ ”: residual covariance across tissues.

Prior for effects of SNP s across the r tissues (mixture of normals; Morgante
et al., 2023):

bs ≃
K∑

k=1

wk Nr(0, Sk)

↑ {Sk}K
k=1: covariance matrices encoding plausible patterns of tissue sharing;

↑ w = (w1, . . . , wK ): mixture weights learned via empirical Bayes.

≔

≔

Goal: Learn which patterns of effect sharing are supported by the data and exploit them to improve estimation.
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Structured priors for cross-tissue effects

Specifically, the prior distribution over SNP effects is defined as a combination of scaled, covariance matrices:

bs ≃ w0,0ϱ0 +
L∑

l=1

T∑

t=1

w0,l,t Nr(0, ς
2
l U0,t),

↑ ϱ0: point mass at zero (spike) to induce sparsity;

↑ U0,t : fixed normalised covariance matrices (largest diagonal entry is 1);

↑ ςl : scaling factors, log-spaced to cover a wide effect size range;

↑ w0,l,t : mixture weights estimated from the data (empirical Bayes).

Effect sharing patterns – specification of covariance matrices U0,t :

↑ Canonical: e.g., identity (tissue-specific), equal effects (shared), rank-1 (single-tissue) or sparse block structures
(subset sharing).

↑ Data-driven: estimated once across genes from summary statistics (marginal screening).
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GTEx illustration: Bayesian vs. elastic net

Predict gene expression across 48 tissues using GTEx data (for 1 000 randomly chosen genes).

↭ Bayesian model naturally handles missingness (60%) by imputing Ymiss at each step using current estimates of
effects and residual covariance;

↭ Benchmark: elastic net (frequentist, ϱ1 + ϱ2 penalised regression) with 5-fold cross-validation;

↭ Accuracy in each tissue quantified using root mean squared errors (RMSE):

RMSE(m) =

 1

ntest

ntest∑

i=1

(yim ⇒ ŷim)
2,

where yim is the observed expression in tissue m for test sample i , ŷim is the predicted expression and ntest is the
test set size. To improve comparability across tissues, RMSEs are standardised by the standard deviation of yim in
the test set.

121 / 128



GTEx illustration: Bayesian vs. elastic net

Bayesian model outperforms
elastic net in most tissues.

↭ Strongest gains are in
low-sample tissues or those
with shared eQTL effects
(e.g., among the brain tissue);

↭ Smaller gains are in
large-sample, tissue-specific
settings (e.g., muscle, testis).

Relative RMSE difference:

RMSEBayesian ⇒ RMSEelastic net

RMSEelastic net

Gene expression prediction performance
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Further directions



Integrating QTL mapping and GWAS signals

Broad motivation: Understand the molecular mechanisms linking SNPs to disease phenotypes.

↭ Colocalisation (Giambartolomei et al., 2014):
Goal: assess whether a QTL and a GWAS signal in the same region are likely to share a causal SNP.

↑ Enables functional interpretation of GWAS loci and prioritisation of putative target genes.

↭ Mendelian randomisation (MR; Davey Smith and Ebrahim, 2003):
Goal: use SNPs as instruments to assess whether a biomarker (such as a gene or protein) causally affects an
outcome (trait or disease).

↑ Supports causal inference in observational studies by using SNPs as natural experiments.

↭ Phenome-wide association studies (PheWAS; Bush et al., 2016):
Goal: scan many phenotypes (from EHRs, registries) for association with a given SNP or risk score.

↑ Identifies pleiotropic effects across diverse phenotypes.
↑ Detects opportunities for drug repurposing through shared genetic architecture.
↑ Supports hypothesis generation about gene function or comorbidities.
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New directions in biomedical genomics

↭ Emerging modalities: Single-cell genomics, spatial transcriptomics, diagnostic imaging, longitudinal designs –
all require richer datasets with matched genotypes.

↭ Beyond traditional phenotypes: Leverage ML/AI to derive biologically relevant latent traits (e.g., brain
connectivity, immune profiles, mental health signatures).

↭ Knowledge-aware AI: Incorporate biological constraints into predictive models – e.g., structured priors, Bayesian
neural networks, constraint-based loss functions.

Image: Human Technopole.
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New directions in biomedical genomics (2)

↭ Big resources and biases: Biobanks (UKBB, FinnGen, etc.) enable broad studies, but raise concerns about
ancestry representation, selection bias and portability of findings.

↭ Scalability and privacy: Widespread use of summary statistics, emerging use federated learning and synthetic
data.

↭ From association to function: CRISPR screens and perturbation assays enable functional validation of genetic
findings at scale.

UK Biobank overview from its creation to 2019. Image: UKBB.
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Summary: Bayesian hierarchical models – beyond genomics

↭ Interpretability and generative insights:

↑ Reflect nested variation and generative processes → conceptual clarity and alignment with domain knowledge.
↑ Especially suited for scientific inference and mechanism-based reasoning.

↭ Information borrowing and adaptive shrinkage:

↑ Partial pooling enables principled information sharing across units (non-separability).
↑ Regularisation arises naturally via priors → stabilises inference under limited data or high dimensionality.

↭ Flexibility and modularity:

↑ Models can often be seamlessly extended to multi-level, spatio-temporal or latent structures.
↑ Structured priors and co-data can be integrated.

↭ Uncertainty propagation:

↑ Posteriors at all levels enable coherent interval estimation.
↑ Averaging over plausible configurations helps in collinear and missing-data settings.
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Thank you for your attention

Upcoming: 22nd Armitage Workshop and Lecture, 23 October 2025, Cambridge.
Topic: “Integration of data from multiple domains”. Keynote: Prof. Matthew Stephens, University of Chicago.

Registration (in-person/online):

https://www.mrc-bsu.cam.ac.uk/events/22nd-armitage-workshop-and-lecture
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