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Analysis of multivariate data

When faced with multivariate data, it is of interest to understand which
variables are ‘related’ to one another.

One approach: regard variables as related if they are dependent. Recall X
and Y are independent, written X ⊥⊥ Y if

P(X ∈ BX ,Y ∈ BY ) = P(X ∈ BX )P(Y ∈ BY )

for all measurable sets BX ,BY .
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Correlation

Recall that when (X ,Y ) ∈ R× R are jointly Gaussian, then X ⊥⊥ Y if and
only if Cov(X ,Y ) = 0.

Convenient measure of dependence is the correlation:

ρ := Corr(X ,Y ) :=
Cov(X ,Y )√
Var(X )Var(Y )

=
E[{X − E(X )}{Y − E(Y )}]√
E{X − E(X 2)}E{Y − E(Y 2)}

∈ [−1, 1].

Always have X ⊥⊥ Y =⇒ ρ = 0.

When (X ,Y ) are Gaussian, X ⊥⊥ Y ⇐⇒ ρ = 0.

Sample version ρ̂ replaces each expectation with an empirical average. This

coincides with the MLE in a Gaussian model.
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Independence tests

If (X1,Y1), . . . , (Xn,Yn) are i.i.d. copies of (X ,Y ) and X ⊥⊥ Y , then for any
permutation π : [n]→ [n], 

X1,Y1

X2,Y2

...
Xn,Yn

 d
=


Xπ(1),Y1

Xπ(2),Y2

...
Xπ(n),Yn

 .

Permutation test: Let T be some test statistic (e.g. |ρ̂|), and let T1, . . . ,TB be
test statistics calculated on permuted data. If U ∼ U[0, 1], then

U +
∑B

b=1 1{Tb≥T}

B + 1
∼ U[0, 1].
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Conditional independence

Statistical formalisms of (un)correlatedness or (in)dependence can be less useful.
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conditionally independent given ‘age’.
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Definitions and fundamental properties

Definition
We say random variables X and Y are conditionally independent given a random
variable Z , and write

X ⊥⊥ Y |Z ,

if for all measurable sets BX ,BY we have

P(X ∈ BX ,Y ∈ BY |Z ) = P(X ∈ BX |Z )P(Y ∈ BY |Z ).

If X and Y are not conditionally independent given Z , then they are conditionally
dependent, which we denote by X ⊥̸⊥ Y |Z .

Proposition

X ⊥⊥ Y |Z if and only if for all measurable B

P(X ∈ B |Y ,Z ) = P(X ∈ B |Z ).
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Fundamental properties

Informally: ‘Knowing Z renders Y irrelevant for learning about X ’.

If X ,Y and Z have a joint density with respect to Lebesgue measure, then

X ⊥⊥ Y |Z ⇐⇒ fXY |Z (x , y |z) = fX |Z (x |z)fY |Z (y |z)
⇐⇒ fX |YZ (x |y , z) = fX |Z (x |z).
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New conditional independencies from old ones

Weak union:

X ⊥⊥ Y ,Z =⇒

{
X ⊥⊥ Y |Z
X ⊥⊥ Z |Y .

‘If (Y ,Z ) are irrelevant for learning X , then Y remains unhelpful for learning
X even after knowing Z ’.

Contraction:
X ⊥⊥ Z

X ⊥⊥ Y |Z

}
=⇒ X ⊥⊥ Y ,Z

‘In seeking to learn X , if Z is irrelevant, and if Y is irrelevant after knowing
Z , then (Y ,Z ) must have been irrelevant to begin with.’

Intersection:
X ⊥⊥ Y |Z
X ⊥⊥ Z |Y

}
=⇒ X ⊥⊥ Y ,Z .

This holds when X ,Y ,Z ,W has a joint density and the marginal fYZW is
positive everywhere.
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Graphs

A graph is a pair G = (V ,E ) where

V = [p] is a set of vertices or nodes

E ⊆ V × V with (v , v) /∈ E for any v ∈ V is a set of edges.

Let j , k ∈ V .

We say there is an edge between j and k and that j and k are adjacent if
either (j , k) ∈ E or (k, j) ∈ E .

An edge (j , k) is undirected if also (k, j) ∈ E and we write j − k to indicate
this.

Otherwise it is directed and we write j → k to represent this. We say j is a
parent of k and k is a child of j . We write pa(k) for the set of parents of k.

If all edges in the graph are (un)directed we call it an (un)directed graph.
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Graphs

A path from j to k is a sequence j = j1, j2, . . . , jm = k of (at least two)
distinct vertices such that jl and jl+1 are adjacent.

It is a directed path if jl → jl+1 for all l . We then call k a descendant of j .
The set of descendants of j will be denoted de(j).

A directed cycle is (almost) a directed path but with the start and end points
the same.

A directed acyclic graph (DAG) is a directed graph containing no directed
cycles.
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Undirected graphical models

Notation:

For v ∈ Rp and S ⊆ [p], vS ∈ R|S| is the subvector of v whose components
are indexed by S .

−j and −jk in subscripts are shorthand for [p] \ {j} and [p] \ {j , k}
respectively.

When A,B ⊆ [p] are disjoint and S = ∅, for a random vector Z ∈ Rp, we
interpret ZA ⊥⊥ ZB |ZS as the (unconditional) independence relationship
ZA ⊥⊥ ZB .

Definition
The conditional independence graph of a distribution P on Rp with p ≥ 2 is the
undirected graph where given Z ∼ P, we have for all j , k ∈ [p] that

j − k ⇐⇒ Zj ⊥̸⊥ Zk |Z−jk .
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Undirected graphical models

A second approach relating graphs and conditional independencies asks for the
distribution to reflect further aspects of the structure of the graph through the
notion of graph separation:

Definition
Given disjoint sets A and B of vertices in a graph, we say a set of vertices S
separates A and B if every path between A and B contains a node in S .

Definition
A distribution P on Rp is global Markov with respect to an undirected graph G
with p vertices if whenever Z ∼ P and A, B and S are disjoint sets of vertices
such that S separates A from B, we have ZA ⊥⊥ ZB |ZS .
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Undirected graphical models

Theorem
If a distribution P on Rp is such that Z ∼ P satisfies the intersection property,
then it is global Markov with respect to its conditional independence graph.

Consider a regression setting with response–predictor pair (Y ,X ) and suppose
their joint distribution satisfies the intersection property.

S := {j : Y ⊥̸⊥ Xj |X−j}

is the Markov blanket of Y satisfying

Y ⊥⊥ XSc |XS .

‘XS contains all the information relevant for learning Y ’.

In this way, conditional independence gives a model-free way of formalising
variable significance.
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Structural causal models

Definition

A structural causal model (SCM) is a system of equations

Zj := hj(ZPj , εj)

where

ε1, . . . , εp are independent noise variables

Pj ⊆ [p] \ {j} are such that the graph with Pj = pa(j) is a DAG.

1

32 4 5

6 7

Every DAG has a permutation π : [p]→ [p]
known as a topological ordering where
k ∈ de(j) =⇒ π(k) > π(j).

Then Zj is a function of
επ−1(1), επ−1(2), . . . , επ−1(j), so the SCM gives a
recipe for generating Z .
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Interventions

E.g. Z1 = large kidney stones,
E.g. Z2 = large incision, Z3 = success.

Z1 = ε1, ε1 ∼ Bern(1/2),

Z2 = 1{ε2(1+2Z1)>3/4}, ε2 ∼ U[0, 1],

Z3 = 1{ε3(2−Z1+7Z2/4−3Z1Z2/2)>1/4}, ε3 ∼ U[0, 1].

Z3

Z1Z2

An SCM gives us a way of reasoning about how a joint distribution may change
after an intervention.

If we intervene by setting e.g. variable j to a ∈ R, then replacing the assignment
for Zj with Zj := a gives a new SCM, which determines a new joint distribution.

We denote expectations / probabilities w.r.t. the new distribution by adding
| do(Zj = a) e.g. E(· | do(Zj = a)).
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Interventions

do(Z2 = 1)

Z1 = ε1,

Z2 = 1{ε2(1+2Z1)>3/4},

Z3 = 1{ε3(2−Z1+7Z2/4−3Z1Z2/2)>1/4}.

do(Z2 = 1)

Z1 = ε1,

Z2 = 1,

Z3 = 1{ε3(15/4−5Z1/2)>1/4}, ε3.

P
(
Z3 = 1 | do(Z2 = 1)

)
> P

(
Z3 = 1 | do(Z2 = 0)

)
=⇒ ‘big incisions are preferred’

but naive conditioning ‘suggests’ the opposite conclusion

P(Z3 = 1 |Z2 = 1) < P(Z3 = 1 |Z2 = 0).

Why do we have this discrepancy here? The presence of large kidney stones
increases the chance of open surgery being performed, but also decreases the
chance of success of either treatment.

The example illustrates that the conclusions that may be drawn from an
SCM go far beyond those of its associated joint distribution.

The crucial additional piece of information included in the SCM is the causal
structure encoded by the associated DAG.
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do(Z2 = 1)

Z1 = ε1,

Z2 = 1,

Z3 = 1{ε3(15/4−5Z1/2)>1/4}, ε3.

P
(
Z3 = 1 | do(Z2 = 1)

)
> P

(
Z3 = 1 | do(Z2 = 0)

)
=⇒ ‘big incisions are preferred’

but naive conditioning ‘suggests’ the opposite conclusion

P(Z3 = 1 |Z2 = 1) < P(Z3 = 1 |Z2 = 0).

Why do we have this discrepancy here? The presence of large kidney stones
increases the chance of open surgery being performed, but also decreases the
chance of success of either treatment.

The example illustrates that the conclusions that may be drawn from an
SCM go far beyond those of its associated joint distribution.

The crucial additional piece of information included in the SCM is the causal
structure encoded by the associated DAG.
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Hidden confounders

We have assumed:

(i) an intervention in the real world corresponds to the mathematical process of
‘do calculus’;

(ii) the true data generating mechanism corresponds to a given SCM

These are strong assumptions.

A classical example of where (ii) would fail is when there are unobserved variables:

X Y

U

X Y

If U were unobserved, we might incorrectly postulate the causal DAG on the right.

The intervention distributions would then not be indicative of what could be
expected in the real world, where intervening on X should have no effect on Y .
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d-separation

Given a (not necessarily directed) path j1 j2 . . . jm−1 jm, we say jℓ is a collider
(relative to the path) if jℓ−1 → jℓ ← jℓ+1.

The path is blocked by a set of nodes S with j1, jm /∈ S if for some
ℓ ∈ {2, . . . ,m − 1} either:

jℓ is not a collider and jℓ ∈ S , or

jℓ is a collider and neither jℓ nor any of its descendants are in S .

1

32 4 5

6 7

Given disjoint subsets of nodes A, B and S ,
we say A and B are d-separated by S , and
write

A ⊥⊥G B |S ,

if every path between A and B is blocked by
S .

Rajen Shah (Cambridge) Conditional independence 2–5 Feb 2025 21 / 51



Global Markov property for DAGs

Definition
We say a distribution P on Rp is global Markov with respect to a DAG G on p
vertices if whenever Z ∼ P,

A ⊥⊥G B |S =⇒ ZA ⊥⊥ ZB |ZS

for all disjoint sets of vertices A,B and S .

Theorem
If a distribution P is generated by a structural causal model with DAG G, then P
is global Markov with respect to G.
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Causal structure learning

Edges in a conditional independence graph therefore have the following causal
interpretation:

Proposition

Let Z ∼ P. If Zj ⊥̸⊥ Zk |Z−jk for j , k ∈ [p], then any causal DAG that generates P
must either have j → k, j ← k or j → ℓ← k for some ℓ ∈ [p].

Proposition

If nodes j and k in a DAG G are not adjacent, then they are d-separated by pa(j)
or pa(k).

Consequently, if Zj ⊥̸⊥ Zk |ZA for every A ⊆ [p] \ {j , k}, then either Zj → Zk or
Zj ← Zk .
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Learning the whole DAG?

Given a complete list of conditional dependencies and independencies, is it
possible to pin down the exact causal DAG?

Problem 1: A distribution P for a random pair (X ,Y ) with X ⊥⊥ Y could be
generated via the SCM with equations

X = ε1, Y = 0× X + ε2,

where ε1 ⊥⊥ ε2, with DAG X → Y .

Solution 1: A distribution P satisfies causal minimality with respect to G if it is
global Markov with respect to G but not with respect to any proper subgraph of G
with the same nodes.

Problem 2: Two DAGs sharing the same skeleton and v-structures (j → ℓ← k
with j , k not adjacent) generate the same list of conditional independencies.

Solution 2: Only seek to learn the the skeleton and v -structures.
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Faithfulness

Consider the SCM with ε ∼ N3(0, I ) and

Z1 = ε1

Z2 = αZ1 + ε2

Z3 = βZ1 + γZ2 + ε3,

If β = −1, α = γ = 1, then β + αγ = 0, so Z1 ⊥⊥ Z3.

Z2 Z3

Z1

G
Z2 Z3

Z1

G̃

The SCM satisfies causal minimality w.r.t. both G and G̃.

A distribution on Rp is faithful to a DAG G if ZA ⊥⊥ ZB |ZS ⇐⇒ A ⊥⊥G B |S .
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Testing conditional independence

We have seen how conditional independence provides a compelling way to
formalise relatedness between variables. We would therefore like to test for
conditional dependence given data.

Null hypothesis P: the collection of distributions for (X ,Y ,Z ) absolutely
continuous with respect to Lebesgue measure where X ⊥⊥ Y |Z .
Alternative hypothesis Q: as above but with X ⊥̸⊥ Y |Z .
Data (xi , yi , zi )

n
i=1 i.i.d. copies of (X ,Y ,Z ).

ψn a potentially randomised test with ψn = 1 meaning “reject”.

α: significance level.

A “good” test ψn should have

sup
P∈P

PP(ψn = 1) ≤ α and PQ(ψn = 1)≫ α for many Q ∈ Q
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Testing conditional independence

Recall the total variation distance is given by

∥Q − P∥TV := sup
measurable A

|PP(W ∈ A)− PQ(W ∈ A)|

= sup
test ψ1

|PP(ψ1 = 1)− PQ(ψ1 = 1)|.

It is impossible to test whether the mean of a distribution is non-zero:

0 0

Setting of CI testing: There exists Q ∈ Q such that

inf
P∈P
∥Q − P∥TV ≥ 1/24.

Null and alternative hypotheses are “separated” in terms of KL divergence:

sup
Q∈Q

inf
P∈P

KL(P||Q) =∞ = sup
Q∈Q

inf
P∈P

KL(Q||P).

Rajen Shah (Cambridge) Conditional independence 2–5 Feb 2025 27 / 51



Testing conditional independence

Recall the total variation distance is given by

∥Q − P∥TV := sup
measurable A

|PP(W ∈ A)− PQ(W ∈ A)|

= sup
test ψ1

|PP(ψ1 = 1)− PQ(ψ1 = 1)|.

It is impossible to test whether the mean of a distribution is non-zero:

0 0

Setting of CI testing: There exists Q ∈ Q such that

inf
P∈P
∥Q − P∥TV ≥ 1/24.

Null and alternative hypotheses are “separated” in terms of KL divergence:

sup
Q∈Q

inf
P∈P

KL(P||Q) =∞ = sup
Q∈Q

inf
P∈P

KL(Q||P).

Rajen Shah (Cambridge) Conditional independence 2–5 Feb 2025 27 / 51



Testing conditional independence

Recall the total variation distance is given by

∥Q − P∥TV := sup
measurable A

|PP(W ∈ A)− PQ(W ∈ A)|

= sup
test ψ1

|PP(ψ1 = 1)− PQ(ψ1 = 1)|.

It is impossible to test whether the mean of a distribution is non-zero:

0 0

Setting of CI testing: There exists Q ∈ Q such that

inf
P∈P
∥Q − P∥TV ≥ 1/24.

Null and alternative hypotheses are “separated” in terms of KL divergence:

sup
Q∈Q

inf
P∈P

KL(P||Q) =∞ = sup
Q∈Q

inf
P∈P

KL(Q||P).

Rajen Shah (Cambridge) Conditional independence 2–5 Feb 2025 27 / 51



Hardness of conditional independence testing

Theorem (With great power comes... great Type I error [SP20])

Suppose ψn has size α. Then the power at each alternative Q ∈ Q is at most α.

Suppose ψn has power β at an alternative Q ∈ Q. Then there exists null
distribution P ∈ P such that PP(ψn = 1) ≥ β.

We can only hope to have type I error control over a strict subset of the null of
conditional independence.

Modelling assumptions must be imposed in order to restrict the null of conditional
independence.

We will focus on two strategies for restricting the null:

1 Imposing a parametric model (Gaussianity);

2 Requiring conditional expectations to be estimated sufficiently well.
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Normal conditionals

When considering conditional independencies, Gaussianity is a natural choice, not
just because of the ubiquity of Gaussianity throughout Statistics, but also because
it offers very simple characterisations of conditional independence.

Theorem

Let Z ∼ Np(µ,Σ) with Σ ∈ Rp×p positive definite, and let A,B ⊆ [p] be
non-empty. The conditional distribution of ZA given ZB = zB is

N|A|
(
µA +ΣA,BΣ

−1
B,B(zB − µB), ΣA,A − ΣA,BΣ

−1
B,BΣB,A

)
.

Notation: ΣA,B is the submatrix of Σ consisting of those rows and columns
indexed by A and B respectively.

Dependence on ZB is only in the conditional mean.

Conditional distribution is Gaussian. (Recall that in Gaussian distributions,
we have independence ⇐⇒ uncorrelatedness.)
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Nodewise regressions

Specialising to A = {k}, B = [p] \ {k}:

E(ZA |ZB) = µA +ΣA,BΣ
−1
B,B(ZB − µB).

Equivalently

Zk = µk − Σk,−kΣ
−1
−k,−kµ−k︸ ︷︷ ︸

intercept

+(Σ−1
−k,−kΣ−k,k)

⊤︸ ︷︷ ︸
coef. vector=:β

Z−k + ε︸︷︷︸
error

where ε |Z−k ∼ N (0,Σk,k − Σk,−kΣ
−1
−k,−kΣ−k,k).

Key point: If a component of β is zero, then the conditional distribution of Zk

given Z−k will not depend on that component of Z−k . I.e.

zeroes in β ⇐⇒ Conditional independencies

→ We seek a way to estimate the zeros in a sparse linear model.
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Digression: Ridge and Lasso

Consider a regression setting where Y ∈ Rn is a response vector and X ∈ Rn×p a
matrix of predictors.

If p is large, then the OLS solution β̂ := (X⊤
X )−1

X
⊤
Y can have high variance.

In a linear model Y = Xβ + ε where Cov(ε) = σ2I , we have

1

n
E∥Y − X β̂∥22 =

σ2p

n
.

Moreover when p ≫ n, X will not have full column rank and OLS is not unique.

Ridge regression: β̂R
λ := argmin

β∈Rp

{∥Y − Xβ∥22 + λ∥β∥22}.

Constrained form: If ∥β̂R
λ∥2 = s, then β̂R

λ also minimises

∥Y − Xβ∥22 subject to ∥β∥2 ≤ s.

Square root Lasso: β̂L
λ := argmin

β∈Rp

{ 1
2n∥Y − Xβ∥

2
2 + λ∥β∥1}.
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Ridge regression: β̂R
λ := argmin

β∈Rp

{∥Y − Xβ∥22 + λ∥β∥22}.

Constrained form: If ∥β̂R
λ∥2 = s, then β̂R

λ also minimises

∥Y − Xβ∥22 subject to ∥β∥2 ≤ s.

Square root Lasso: β̂sq
λ := argmin

β∈Rp

{ 1√
n
∥Y − Xβ∥2 + λ∥β∥1}.
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Lasso coefficients are sparse
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Figure: Contours of ∥Y − Xβ∥22 are ellipses centred at β̂.
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Lasso coefficients are sparse

Figure: Contours of ∥Y − Xβ∥22 are ellipses centred at β̂.
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Ridge regression coefficients are (almost) always non-zero
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ℓq balls

Consider penalty functions ∝ ∥β∥q =
(∑p

k=1 β
q
k

)1/q
and p = 2.
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Properties of the Lasso

Consider a (sparse) linear model

Y = Xβ + ε

where only s ≪ p of the components of β are non-zero and ε ∼ Np(0, σ
2I ).

While Lasso coefficients are sparse, they require relatively strong conditions
on X in order to select the correct coefficients with high probability.

Recall that if we applied OLS only on the variables with non-zero coefficients
(setting all others to zero), we would have

1

n
E∥X (β − β̂)∥22 =

σ2s

n
.

Under relatively mild conditions on X , the (square-root) Lasso achieves when
λ ≍

√
(log p)/n:

1

n
∥X (β − β̂sq

λ )∥22 ≤ const.× σ2s log p

n

∥β̂sq
λ − β∥1 ≤ const.× σs

√
log p√
n

.
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Back to nodewise regressions

Given Z1, . . . ,Zn
i.i.d.∼ Np(µ,Σ), set

Z :=

Z⊤
1
...

Z⊤
n

 :=
(
Z 1 | · · · |Z p

)
.

Recall:

Zero coefficients from a linear regression of Z j on Z−j

⇐⇒
conditional independencies.

Perform Lasso regression of Z j onto Z−j and obtain estimated indices of

non-zero coefficients Ŝj .

k ∈ Ŝj AND j ∈ Ŝk

j ∈ Ŝk OR j ∈ Ŝk

}
→ edge j − k in CIG.
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}
→ edge j − k in CIG.

Rajen Shah (Cambridge) Conditional independence 2–5 Feb 2025 38 / 51



Precision matrix and conditional independence

One way to resolve the ambiguity in using ‘AND’ or ‘OR’ rules involves using a
characterisation of conditional independence using the precision matrix Ω := Σ−1.

Recall that E(Zk |Z−k) = const. + (Σ−1
−k,−kΣ−k,k)

⊤Z−k .

Σ =

(
Σk,k Σk,−k

Σ−k,k Σ−k,−k

)
Ω =

 Ωk,k −Ωk,kΣk,−kΣ
−1
−k,−k

−Ωk,kΣ
−1
−k,−kΣ−k,k︸ ︷︷ ︸

=Ω−k,k

Ω−k,−k



Ωj,k = 0⇐⇒ Zj ⊥⊥ Zk |Z−jk .

→ Seek to estimate zeroes in Ω.
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Graphical Lasso

Let ℓ(µ,Ω) be the log-likelihood of Z1, . . . ,Zn
i.i.d.∼ Np(µ,Ω

−1).

The graphical Lasso performs

(µ̂, Ω̂) = argmin
µ∈Rp,Ω≻0

− ℓ(µ,Ω) + λ
∑
j,k

|Ωj,k |.

Can show µ̂ = Z̄ and

Ω̂ = argmin
Ω:Ω≻0

− log detΩ + tr(SΩ) + λ
∑
j,k

|Ωj,k |


where S is the empirical covariance matrix.

Often we omit the diagonal terms from the penalty as these are irrelevant for the
CIG.
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Partial correlation

Since Zk ,Zj |Z−jk has a Gaussian distribution, we have

Zj ⊥⊥ Zk |Z−jk ⇐⇒ Corr(Zj ,Zk |Z−jk) = 0.

Consider (X ,Y ,Z ) ∈ R× R× Rp jointly Gaussian.
Recall writing ξ := X − E(X |Z ) and ε := Y − E(Y |Z ), each of the conditional
expectations is linear and

Corr(X ,Y |Z ) = E(εξ)√
E(ε2)E(ξ2)

=: ρ.

Empirical version ρ̂ replaces population residuals with residuals from linear
regressions.

Rajen Shah (Cambridge) Conditional independence 2–5 Feb 2025 41 / 51



Testing using partial correlation

One can test ρ = 0 by comparing ρ̂ to its distribution under the null.

In fact we have

TOLS =
√

n − p − 1
ρ̂√

1− ρ̂2
,

where TOLS is the t-statistic for testing the significance of X in a linear model of
Y on (X ,Z ) (and an intercept term).

An interesting consequence is that TOLS is “double estimation-friendly” for testing

X ⊥⊥ Y |Z in the sense that TOLS
d→ N (0, 1) provided either

Y = Z⊤β + ε with ε ⊥⊥ (X ,Z ) or

X = Z⊤θ + ξ with ξ ⊥⊥ (Y ,Z ).
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Regularised partial correlation

What about testing conditional independence in the high-dimensional setting
where p ≫ n?

We can replace the each of the OLS regression involved in ρ̂ with (square-root)
Lasso regressions to obtain a regularised partial correlation ρ̃. [RSZZ15, SB23]

Suppose X ⊥⊥ Y |Z . Have Y = β⊤Z + ε where ε ∼ N (0, σ2) for some σ2 > 0.

Let sβ be the number of non-zeroes in β ∈ Rp.

Provided sβ log(p)/
√
n≪ 1, we will have

√
nρ̃ ≈ N (0, 1).

Symmetry of ρ̃ entails that we will have the same result if instead we have a
sparse linear model of X on Z .
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Beyond Gaussianity

The assumption that (X ,Y ,Z ) are jointly Gaussian is convenient, but may be
hard to defend for larger sample sizes.

Nevertheless, we have seen that some assumption is required as otherwise
X ⊥⊥ Y |Z is untestable.

In fact regression is famously ‘impossible’: there are no regression procedures with
risk converging uniformly to zero across all data generating processes [GKKW06].

However, we have many successful methods: Neural networks, random forests, boosted

trees, kernel ridge regression,...
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One way of restricting the null is via
models...

Black boxInput Predictions

...or we can phrase the subset of the
null where we want to control size as
one where user-chosen regression
methods perform sufficiently well.

Rajen Shah (Cambridge) Conditional independence 2–5 Feb 2025 44 / 51



Generalised Covariance Measure

Recall we always have X ⊥⊥ Y |Z =⇒ ECov(X ,Y |Z ) = 0, where

ECov(X ,Y |Z ) = E[{X − E(X |Z )︸ ︷︷ ︸
=:f (Z)

}{Y − E(Y |Z )︸ ︷︷ ︸
=:g(Z)

}].

Let (Xi ,Yi ,Zi ) be i.i.d. copies of (X ,Y ,Z ).
Empirical version:

1

n

n∑
i=1

{Xi − f̂ (Zi )}{Yi − ĝ(Zi )}︸ ︷︷ ︸
=:Li

.

We expect E(Li ) ≈ 0 under the null, which suggests the generalised covariance
measure (GCM) [SP20]:

TGCM :=
√
n

1
n

∑n
i=1 Li

1
n

∑n
i=1(Li − L̄)2

.
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‘Single machine learning’

In fact, we also have ECov(X ,Y , |Z ) = E[X{Y − E(Y |Z )}].

This suggests a simpler approach involving

Tsimp :=
1√
n

n∑
i=1

Xi{Yi − g(Zi )}︸ ︷︷ ︸
d→N (0,v)

+
1√
n

n∑
i=1

Xi{g(Zi )− ĝ(Zi )}︸ ︷︷ ︸
∆ (small?)

.

∆2
C–S
≤

(
1

n

n∑
i=1

X 2
i

)(
n∑

i=1

{g(Zi )− ĝ(Zi )}2
)
.

However, typically ∆ does not decay to zero.

Consequently Tsimp will not be asymptotically mean-zero under the null.
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Size control

Theorem

Let Ef :=
1

n

n∑
i=1

{f (Zi )− f̂ (Zi )}2, Eg :=
1

n

n∑
i=1

{g(Zi )− ĝ(Zi )}2, and suppose

1 n Ef Eg
p→ 0 and Ef

p→ 0, Eg
p→ 0;

2 0 < E(ε2ξ2) < ∞ and there exists σ2 > 0 such that Var(X |Z), Var(Y |Z) < σ2.

Then
sup
t∈R

|P(TGCM ≤ t)− Φ(t)| → 0.

Using two regressions (double machine learning [CCD+18]) gives product of biases.

Key condition n Ef Eg
p→ 0 satisfied in many nonparametric / high-dimensional

settings. E.g.

high-dimensional linear models with sX sY log(p)2/n → 0 (Z ∈ Rp) (stronger than
min(s2Y , s

2
X ) log(p)

2/n → 0.)

f , g lie in an RKHS and have bounded RKHS norm and reproducing kernel k
admits a Mercer decomposition.
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Multivariate case

Consider now X ∈ RdX , Y ∈ RdY .

Let Ljk ∈ Rn be the vector of products of residuals from regressing X j and
Y k on to Z respectively.

Can form GCM test statistic Tjk for each j = 1, . . . , dX , k = 1, . . . , dY based
on Ljk .
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Power

Can show the GCM has power against alternatives where
|ECov(X ,Y |Z )| ≥ const.× n−1/2.

But there are alternatives that it has no power against:

(X ,Y , ε) ∼ N3(0, I ) Y = X 2 + ε.

Then Cov(X ,Y |Z ) = 0 while X ⊥̸⊥ Y |Z . One can apply the GCM to X 2,Y ,Z to

get power.

In general can pre-transform by replacing X by any function of (X ,Z ) and
similarly for Y .

A

B

Hunt-and-test:

1 ‘Hunt’: Use Part A to determine which transformation of (X ,Z ) to
use

2 Test: Apply the GCM test to Part B using the transformed data.
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Looking beyond

More broadly, conditional independence testing and related topics remain highly
active research areas.

Things I did not talk about:

Hidden variables; instrumental variables...

Relationship to invariance and stability...

Causal effect estimation....

Semiparametric statistics...

Thank you for listening.
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