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Introduction to robustness

Deals with deviations from ideal models and their dangers for
corresponding inference procedures

Goal: Develop procedures that are still reliable and reasonably
efficient under small deviations from the model (e.g., an
ε-neighborhood of the assumed model)
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Outlier rejection?

Might consider a two-step procedure which first “cleans” data, then
applies classical estimation procedure

However, outliers may be difficult to recognize without an initial
(somewhat) robust estimator

Multiple outliers may “mask” each other so that none are rejected

False rejections/false retentions may cause cleaned data to deviate
from normal assumptions, too
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Robustness desiderata

Efficiency: Should have nearly(?) optimal efficiency under
uncontaminated distribution

Stability: Small deviations from uncontaminated distribution should
only alter performance slightly

Breakdown: Larger deviations from model should not be catastrophic

Po-Ling Loh (University of Cambridge) Robust statistics Sep 5-6, 2023 4 / 85



Robustness desiderata

Hampel et al., Robust Statistics
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Reference

Huber & Ronchetti, “Robust Statististics”

Huber, “Robust estimation of a location parameter,” 1964
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Location estimation

Our goal is to estimate the location parameter of a distribution in one
dimension:

x1, . . . , xn
i .i .d .∼ F (t − ξ) = Fξ(t),

where F (t) is a cdf

If the distribution corresponding to F is symmetric around 0, then
EFξ

[xi ] = ξ, so we could use the mean 1
n

∑n
i=1 xi—but what if the

model is contaminated?

Definition

Consider the class of distributions with cdfs in the set

Pε(F0) = {F : F = (1− ε)F0 + εH,H ∈M},

where M is the set of all possible cdfs. This is known as (Huber’s)
ε-contamination model.
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Location estimation

For F ∈ Pε(F0), we have

sup
t
|F (t)− F0(t)| = |(1− ε)F0(t) + εH(t)− F0(t)|

= ε · sup
t
|H(t)− F0(t)| ≤ ε,

so F also lies in the ε-neighborhood of F0 with respect to the
Kolmogorov distance

If EF0 [xi ] = 0, we have

EF [xi ] = (1− ε)0 + εEH [xi ],

implying the mean could be arbitrarily biased

What about using the median?
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Breakdown point

Definition

Consider a data set X = {x1, . . . , xn} and an estimator Tn(X ). For m ≤ n,
let

b(m;X ,Tn) = sup
X ′∈Xm

|Tn(X ′)− Tn(X )|,

where Xm ⊆ Rn is the set of all data sets differing from X by at most m
points. Then

ε∗(X ,Tn) :=
1

n
·max
m≥0
{m : b(m;X ,Tn) <∞}

is the breakdown point of Tn at X .
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Breakdown point

Examples:
The breakdown point of the mean is 0
The breakdown point of the median is 1

n · b
n−1

2 c
The median achieves the highest possible breakdown point among all
translation-invariant estimators:

Tn(x1 + a, . . . , xn + a) = Tn(x1, . . . , xn) + a,

for all {x1, . . . , xn} and a ∈ R
However, this is a very rough notion, and has nothing to do with the
distribution
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Asymptotic bias

Returning to the ε-contamination model, suppose F0 is symmetric
(F0 = Φ for concreteness, though the arguments can be generalized)

What is a bound on the (asymptotic) bias of the median?

Clearly, worst case is when H concentrates all mass on one side of
origin; median of F ∈ Pε is the solution to

(1− ε)Φ(b) =
1

2
,

so maximum bias is b0 = Φ−1
(

1
2(1−ε)

)
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Minimax bias

Can we do better? Suppose {Tn} is a sequence of estimators for a
parameter T (F0), and define the asymptotic bias of a family of
estimators T = {Tn} as

b(T ,F ) = b({Tn},F ) =
∣∣∣ lim
n→∞

EF (Tn)− T (F0)
∣∣∣

Then study the minimax problem

min
{Tn}⊆T

max
F∈Pε

b({Tn},F ),

where we restrict Tn to the class T of translation-invariant estimators
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Minimax bias

An upper bound of b0 can be achieved by the median

To prove a lower bound, consider the distribution F+ ∈ Pε
constructed as follows (shifted and centered around b0):
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Also consider the version F− ∈ Pε centered around −b0

We can show that for any {Tn} ⊆ T , we have

max {b({Tn},F−), b({Tn},F+)} ≥ b0

Thus, the median is minimax optimal
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Asymptotic variance

Why do we use the sample mean as a location estimator anyway?

Theorem

Suppose the xi ’s have density f (x ; ξ). Under appropriate regularity
conditions, the maximum likelihood estimator

ξ̂MLE ∈ arg min
ξ

n∑
i=1

− log f (xi ; ξ)

is asymptotically normal:

√
n(ξ̂ − ξ)

d→ N

(
0,

1

I (ξ)

)
.

Furthermore, the ratio 1
I (ξ) is the minimum possible variance among all

asymptotically unbiased estimators of ξ.
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Minimax variance

However, the situation may be more complicated when samples are
from an ε-ball around some distribution

Suppose
√
n(Tn − T (F ))

d→ N(0,A(T ,F )), and consider the
minimax problem

min
{Tn}

max
F∈Pε

A({Tn},F )

Motivated by nice results in MLE theory, we restrict our attention to
the class of M-estimators

Definition

Consider a (symmetric) function ρ. A minimizer Tn = Tn(x1, . . . , xn) of∑n
i=1 ρ(xi − Tn) is an M-estimator with associated loss function ρ.
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Asymptotic theory

For the following result, suppose ψ = ρ′ is nondecreasing

Theorem

Suppose there exists t0 ∈ R such that EF [ψ(xi − t0)] = 0. Assume the
function λ(t) = EF [ψ(xi − t)] is differentiable at t0 and λ′(t0) < 0. Also
suppose σ2(t) := EF [ψ2(xi − t)]− λ2(t) is finite, continuous, and nonzero
at t0. Then

√
n(Tn − t0)

d→ N

(
0,

σ2(t0)

(λ′(t0))2

)
.
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Asymptotic theory

Corollary

Suppose ρ is a symmetric, convex function and the xi ’s have a symmetric
distribution. Suppose the derivative

λ′(t) =
∂EF [ψ(xi − t)]

∂t
= −EF [ψ′(xi − t)]

exists and σ2(t) = EF [ψ2(xi − t)] is continuous in a neighborhood around
0. Also suppose EF [ψ2(xi )] <∞ and E[ψ′(xi )] > 0. Then

Tn ∈ arg min
ξ

{
n∑

i=1

ρ(xi − ξ)

}

satisfies
√
nTn

d→ N

(
0,

EF [ψ2(xi )]

EF [ψ′(xi )]2

)
.
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Asymptotic theory

In the corollary, symmetry of ρ and F implies EF [ψ(xi )] = 0, so we
can take t0 = 0 in the theorem

In particular, we can apply the preceding results to derive asymptotic
normality of the sample mean (ψ(t) = t) and sample median
(ψ(t) = sign(t)); due to non-differentiability, we have to use the
theorem in the case of the median
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Contaminated distributions

Now we consider ε-neighborhoods: Suppose ρ(t) = t2

2 and
F = (1− ε)Φ + εH, where H is the cdf of a symmetric distribution
satisfying the conditions of the corollary

Then

A(T ,F ) =
EF [x2

i ]

EF [1]2
= (1− ε) + εEH [x2

i ],

which can be arbitrarily large

However, suppose we have a function ψ such that ‖ψ‖∞ < k for
some constant k ; then

EF [ψ2(xi )]

EF [ψ′(xi )]2
=

(1− ε)EΦ[ψ2(xi )] + εEH [ψ2(xi )](
(1− ε)EΦ[ψ′(xi )] + εEH [ψ′(xi )]

)2

≤ (1− ε)EΦ[ψ2(xi )] + εk2

(1− ε)2EΦ[ψ′(xi )]2
,

which is bounded as H ranges over different cdfs
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Huber loss

One example of such a function is ψ corresponding to the Huber loss:

ρ(t) =

{
t2

2 , if |t| ≤ k ,

k |t| − k2

2 , if |t| > k

Then ψ(t) = min{k ,max(−k , t)}
We could in theory try to minimize the upper bound with respect to
k , though the derivation is rather tedious
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Optimality of Huber loss

In fact, the Huber estimator is actually minimax over all possible ψ

The following result gives a constructive method for determining a
saddlepoint solution to a generalized minimax problem

Theorem

Suppose G is the cdf of a log-concave symmetric distribution with twice
continuously differentiable pdf g.

(i) Then V (ψ,F ) has a saddlepoint: there exists F0 ∈ Pε(G ) and ψ0 ∈ Ψ
such that

max
F∈Pε(G)

V (ψ0,F ) = V (ψ0,F0) = min
ψ∈Ψ

V (ψ,F0).

Hence, minψ∈Ψ maxF∈Pε(G) V (ψ,F ) = V (ψ0,F0), and ψ0 is minimax
optimal.
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Optimality of Huber loss

Theorem

(ii) Furthermore, we have the explicit expressions

ψ0 = − f ′0
f0
,

and

f0(x) =


(1− ε)g(x0)ek(x−x0), if x ≤ x0,

(1− ε)g(x), if x0 < x < x1,

(1− ε)g(x1)e−k(x−x1), if x ≥ x1,

where x0 < x1 are the endpoints of the interval where |g
′|
g ≤ k (either

or both endpoints may be infinity), and k is related to ε by

1

1− ε
=

∫ x1

x0

g(x)dx +
g(x0) + g(x1)

k
.
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Examples

In the special case when g(x) = ϕ(x), we can check that ψ0 agrees
with the Huber estimator

If instead G is the cdf of a N (0, σ2) distribution, we can derive

ψ0(x) =


−k, if x ≤ −kσ2,
x
σ2 , if |x | < kσ2,

k , if x ≥ kσ2
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Kolmogorov neighborhood

How much further can we push this theory? Consider the minimax
variance problem when PK

ε (Φ) = {F : supt |F (t)− Φ(t)| < ε}
Recall that Pε(Φ) ⊆ PK

ε (Φ)

A rather sophisticated and ingenious construction due to Huber leads
to a density of the form

f0(x) = f0(−x) =


C0 cos2

(
ωx
2

)
, if 0 ≤ x < x0,

ϕ(x), if x0 ≤ x ≤ x1,

C1 exp(−λ(x − x1)), if x > x1,

with corresponding ψ function

ψ0(x) =


ω tan

(
ωx
2

)
, if 0 ≤ x < x0,

x , if x0 ≤ x ≤ x1,

λ, if x > x1
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Reference

Hampel, Ronchetti, Rousseeuw & Stahel, “Robust Statististics: The
Approach Based on Influence Functions”
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Hampel’s approach

Huber’s approach relied heavily on nice form of normal density and
symmetric contamination assumption; how can we “robustify” other
estimation procedures?

A second camp of robustness theory was developed by Hampel (1968)
in his PhD thesis: “Contributions to the theory of robust estimation”
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Hampel’s approach

Basic concepts are qualitative robustness (continuity of limiting
functional), influence function (effect of infinitesimal perturbations),
and breakdown point (distance to nearest singularity/asymptote)42 1. INTRODUCTION AND MOTIVATION 

Estimate T 

Breakdown 
point 

Figure 2. Extrapolation of a functional (estimator), using the infinitesimal approach. (Sym- 
bolic, using the analogue of M ordinary onedimensional function.) 

distance from the model distribution beyond which the statistic becomes 
totally unreliable and uninformative (cf. Subsection 2.2a for the formal 
definition). For example, the arithmetic mean and the median have break- 
down points 0 and +, and the a-trimmed mean, which first takes away the 
an smallest and the an largest values before taking the mean (cf. Example 3 
of Subsection 2.2b), has breakdown point a. In general, the breakdown 
point can lie between 0 and 1; a positive breakdown point is closely related 
to, though not identical with, qualitative robustness. An empirical rule of 
thumb, at least for M-estimators in simple location models, says that the 
linear extrapolation by means of the influence function tends to be quite 
accurate for distances up to onequarter of the breakdown point, and it still 
seems to be quite usable for distances up to one-half of the breakdown 
point. Apart from these helpful indications, the breakdown point measures 
directly the- global reliability of a statistic, one of its most important 
robustness aspects. 

Huber (1972) likened these three robustness concepts to the stability 
aspects of, say, a bridge: (1) qualitative robustness-a small perturbation 
should have small effects; (2) the influence function measures the effects of 
infinitesimal perturbations; and (3) the breakdown point tells us how big the 
perturbation can be before the bridge breaks down. 

There arc a number of fine points, which have often led to misunder- 
standings, about the relation of the influence function, which is not a proper 
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Influence functions

Suppose we have a sequence of estimators satisfying

Tn(x1, . . . , xn)
P→ T (F ) when xi ∼ F

Definition

The influence function IF (·;T ,F ) : R→ R of a functional T at F is given
by

IF (x ;T ,F ) := lim
t→0

T ((1− t)F + t∆x)− T (F )

t
.

This is a special case of a Gâteaux derivative of T (F ) in the direction
of ∆x

In particular, we are interested in bounding the gross-error sensitivity

γ∗(T ,F ) := sup
x
|IF (x ;T ,F )|

(analog of bounded derivative)
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Influence functions

Other quantities of interest include the local-shift sensitivity:

λ∗(T ,F ) := sup
x 6=y

|IF (y ;T ,F )− IF (x ;T ,F )|
|y − x |

,

Rejection point:

ρ∗(T ,F ) := inf {r > 0 : IF (x ;T ,F ) = 0 when |x | > r}

Change of variance functional: CVF (x ;T ,F )
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Influence functions

The influence function also relates to the asymptotic variance of Tn

Under appropriate regularity conditions, when xi
i .i .d .∼ F , we have

√
n(Tn − T (F )) ≈

√
n(T (Fn)− T (F ))

≈ 1√
n

n∑
i=1

IF (xi ;T ,F )

d→ N(0,A(T ,F )),

where A(T ,F ) =
∫
IF (x ;T ,F )2dF (x)
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Examples

Mean: We have

IF (x ;T ,F ) = lim
t→0

((1− t)EF [xi ] + tx)− EF [xi ]

t
= x − EF [xi ],

so when EF [xi ] = 0 (e.g., F corresponds to a symmetric distribution),
IF (x ;T ,F ) = x
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Examples

Median: We have

IF (x ;T ,F ) = lim
t→0

F−1
t (1/2)− F−1(1/2)

t
,

where Ft := (1− t)F + t∆x , and differentiating the implicit equation

Ft

(
F−1
t

(
1

2

))
=

1

2
,

we can obtain

IF (x ;T ,F ) =
sign{x − F−1(1/2)}

2F ′(F−1(1/2))
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Examples

General M-estimators: Since T (F ) is defined implicitly by

EF [ψ(xi − T (F ))] = 0,

we can generalize the argument for the median to obtain

IF (x ;T ,F ) =
ψ(x − T (F ))

EF [ψ′(xi − T (F ))]

In particular, recall the formula for the asymptotic variance of “nice”
M-estimators:

A(T ,F ) =
EF [ψ(xi )

2]

(EF [ψ′(xi )])2
,

when F is the cdf of a symmetric random variable, which is exactly∫
IF (x ,T ,F )2dF (x)

Thus, the influence function is bounded if ‖ψ‖∞ <∞
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Optimality

Hampel also derived optimality results with respect to the influence
function

Consider a family of distributions parametrized by θ, and suppose the
functional T (Fθ) is defined implicitly by∫

ψ(y ,T (Fθ))dFθ(y) = 0

(the special case of M-estimators is a family of distributions with
location parameter θ, and ψ(y , θ) = ψ(y − θ))
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Optimality

One can show that

IF (x ;T ,Fθ) =
ψ(x ,T (Fθ))∫

ψ(y , θ)s(y , θ)dFθ(y)
,

where

s(y , θ) :=
∂

∂θ
(log fθ(y)) =

∂
∂θ fθ(y)

fθ(y)

is the score function

Hampel studied the problem of minimizing the asymptotic variance∫
IF (x ;T ,F )2dF (x), subject to an upper bound on the gross error

sensitivity γ∗(T ,F ) = supx |IF (x ;T ,F )|

Po-Ling Loh (University of Cambridge) Robust statistics Sep 5-6, 2023 38 / 85



Optimality

Theorem

Suppose F = Fθ (for a fixed θ) and I (F ) =
∫
s(x , θ)2dF (x) > 0 (this is

the Fisher information). For any b > 0, there exists a ∈ R such that

ψ̃(y) := [s(y , θ)− a]b−b

(truncated function) satisfies
∫
ψ̃(y)dF (y) = 0 and

d :=
∫
ψ̃(y)s(y , θ)dF (y) > 0. Furthermore, ψ̃ uniquely minimizes∫

IF (y ;T ,F )2dF (y) among all mappings ψ satisfying

(i)
∫
ψ(y)dF (y) = 0,

(ii)
∫
ψ(y)s(y , θ)dF (y) 6= 0,

(iii) and γ∗(T ,F ) ≤ c := b
d .
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Optimality

The condition
∫
ψ(y)dF (y) = 0 is known as “Fisher consistency”: for

location M-estimators, we have ψθ(y) = ψ(y − θ), so this is the
condition EFθ

[ψ(xi − θ)] = 0

Estimators that minimize the asymptotic variance subject to a bound
on GES are optimal B-robust estimators (the B stands for “bias,”
whereas there are also V -robust estimators)

Estimators such that γ∗(T ,F ) <∞ are B-robust
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Location M-estimators

In this case,

s(y , θ) =
∂
∂θ fθ(y)

fθ(y)
=

∂
∂θ f (y − θ)

f (y − θ)
=
−f ′(y − θ)

f (y − θ)

By the theorem, the optimal B-robust estimator at θ = 0 is given by

ψ̃(y) =

[
−f ′(y)

f (y)
− a

]b
−b
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Location M-estimators

If F = Φ, we have −f
′(y)

f (y) = y , and we can take a = 0; this reduces to

the Huber estimator with parameter b: ψ̃(y) = [y ]b−b!

The finite-sample version solves
∑n

i=1[xi − θ]b−b = 0

Hence, the Huber estimator is also the optimal M-estimator for the
location of a normal family with respect to B-robustness—different
Huber parameters correspond to different bounds on γ∗
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Scale M-estimators

We can also consider a family of distributions parametrized by scale:

fθ(x) =
1

θ
f
(x
θ

)
(for instance, consider the N(0, θ2) family, where θ is unknown)

We can compute

s(y , θ) =
∂
∂θ fθ(y)

fθ(y)
=

1
θ f
′ ( y

θ

) (−y
θ2

)
− 1

θ2 f
( y
θ

)
1
θ f
( y
θ

) ,

so according to the theorem, the optimal B-robust estimator is

ψ̃1(y) =

[
−yf ′(y)

f (y)
− 1− a

]b
−b
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Scale M-estimators

When F = Φ, this becomes

ψ̃1(y) = [y2 − 1− a]b−b,

for an appropriate value of a, which generally depends on b

The (finite-sample) optimal B-robust M-estimator then solves

n∑
i=1

[(
x2
i

θ2

)
− 1− a

]b
−b

= 0

(truncation of MLE expression, above or below, depending on the
value of b)
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Most B-robust estimators

Recall the optimality of the median according to Huber theory:

min
{Tn}

max
F∈Pε(F0)

b({Tn},F ),

where F0 is a symmetric, unimodal distribution

We now provide an alternative result on optimality of the median
according to Hampel’s framework
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Most B-robust estimators

Assume F has a twice-differentiable density f which is symmetric
around 0, log-concave, and satisfies f (x) > 0 for all x

We restrict our attention to location M-estimators, where ψ ranges
over a “nice” class of functions Ψ (smooth, except for a finite set of
jumps C (ψ))

Hampel: “to our knowledge, Ψ covers all ψ-functions ever used for
this estimation problem”

Definition

An estimator minimizing γ∗ := supx∈R\C(ψ) |IF (x ;ψ,F )| (for a fixed F ,
over a class of estimators Ψ) is called a most B-robust estimator.

Po-Ling Loh (University of Cambridge) Robust statistics Sep 5-6, 2023 46 / 85



Most B-robust estimators

Theorem

The median is the most B-robust estimator in Ψ. For all ψ ∈ Ψ, we have
γ∗(ψ,F ) ≥ 1

2f (0) , and equality holds if and only if ψ is the median
estimator.
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Reconciling Huber’s and Hampel’s approaches

Minimax bias problem can be rephrased as

min
ψ

sup
G∈Pε(F )

|T (G )− T (F )|

For small ε, we make the approximation

sup
G∈Pε(F )

|T (G )− T (F )| = sup
H

∣∣∣T ((1− ε)F + εH)− T (F )
∣∣∣

(a)
≈ sup

H

∣∣∣ε∫ IF (x ;ψ,F )dH(x)
∣∣∣

= ε · sup
x
|IF (x ;ψ,F )|

= ε · γ∗(ψ,F )
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Reconciling Huber’s and Hampel’s approaches

Where (a) holds because

T ((1− ε)F + ε∆x)− T (F ) ≈ ε · IF (x ;ψ,F ),

and if T is linear, we can write

T ((1− ε)F + εH)− T (F ) ≈ ε ·
∫

IF (x ;ψ,F )dH(x)

Hence, finding optimal ψ for minimax bias problem is (approximately)
equivalent to solving

min
ψ
γ∗(ψ,F )

(resulting in median)
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Reconciling Huber’s and Hampel’s approaches

A connection can also be drawn between optimal B-robust and
minimax variance estimators using influence function approximations

Requires approximating the change-of-variance function, which is the
change in asymptotic variance V (ψ,F ) when perturbed by a small
mass at (−x , x):

V

(
ψ, (1− ε)F + ε

(
1

2
∆x +

1

2
∆−x

))
− V (ψ,F ) ≈ ε · CVF (x ;ψ,F )

Po-Ling Loh (University of Cambridge) Robust statistics Sep 5-6, 2023 50 / 85



Outline

1 Huber’s perspective
Minimax bias
Minimax variance
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Influence functions
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Heavy-tailed distributions
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Robust linear regression

Analysis of multidimensional estimators becomes more complicated;
however, results from the univariate case translate more easily into
the context of linear regression
Linear model:

yi =

p∑
j=1

xijθj + ui , ∀1 ≤ i ≤ n,

where xi
i .i .d .∼ K and ui

i .i .d .∼ Gσ, where ui ’s are independent of xi ’s
and σ is scale parameter of error distribution
Joint distribution is

fθ,σ(x , y) = f (x)f (y |x) = k(x) · 1

σ
g

(
y − xT θ

σ

)
MLE would correspond to maximizing

n∑
i=1

log

{
1

σ
g

(
yi − xTi θ

σ

)}
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Robust linear regression

When Gσ is cdf of N (0, σ2), MLE corresponds to ordinary least
squares, but OLS is not robust to deviations from normality

To achieve robustness, consider regression M-estimator

min
θ

n∑
i=1

ρ(yi − xTi θ)

(for now, assume σ is known)

Estimating equation is

n∑
i=1

ψ(yi − xTi θ)xi = 0
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Influence functions

By differentiating the implicit equation

0 = E(xi ,yi )∼F [ψ(yi − xTi T (F ))xi ] =

∫
ψ(y − xTT (F ))xdF (x , y),

we can compute the influence function

IF (x0, y0;T ,F ) = M−1ψ(y0 − xT0 T (F ))x0,

where

M =

∫
ψ′(u)dG (u) ·

(∫
xxTdK (x)

)
Thus, we can guarantee boundedness of IF in response direction if ψ
is bounded (this is not the case for OLS)
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Asymptotic normality

For fixed p and when n→∞, asymptotic covariance matrix is

V (T ,F ) =

∫
IF (x , y ;T ,F )(IF (x , y ;T ,F ))TdF (x , y)

= M−1

(∫
ψ2(y − xTT (F ))xxTdF (x , y)

)
M−1

= M−1

(∫
ψ2(u)dG (u)

)(∫
xxTdK (x)

)
M−1

=

∫
ψ2(u)dG (u)(∫
ψ′(u)dG (u)

)2

(∫
xxTdK (x)

)−1

Minimizing V (T ,F ) over the class of ψ functions then reduces to the

familiar univariate problem of choosing ψ to minimize EG [ψ2(u)]
EG [ψ′(u)]2

When G = Φ, Huber M-estimator is again minimax optimal
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B-robustness

Hampel’s theory is more complicated, due to the fact that we have to
extract real-valued measures from vectors/matrices

For instance, we can define gross error sensitivity

γ∗(T ,F ) = sup
x ,y
‖IF (x , y ;T ,F )‖2

Since

γ∗(T ,Fθ) = sup
x ,y

{
|ψ(y − xT θ)| · ‖M−1x‖2

}
=∞,

optimality theory focuses on slightly broader class of M-estimators
defined by

E(xi ,ui )∼F

[
w(xi ) · ψ

(
(yi − xTi T (F )) · v(xi )

)
xi

]
= 0
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B-robustness

We can compute

IF (x0, y0,T ,F ) = w(x0)ψ
(

(y0 − xT0 T (F )) · v(x0)
)
M−1x0,

where M is an appropriately defined population-level matrix

In particular, if w(x)x is a bounded function of x (e.g., w(x) = 1
‖Ax‖2

)

and ψ is bounded, we can guarantee that γ∗(T ,Fθ) <∞
For this family of M-estimators, we have the lower bound

γ∗(T ,Fθ) ≥ p

√
π

2
· 1

E[‖x‖2]

when G = Φ
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Assuming radial symmetry of K , equality is achieved when
ψ(x) = sign(x), w(x) = 1

‖x‖2
, and v(x) = 1, giving the most

B-robust estimator

In the radially symmetric case, the optimal B-robust estimator
corresponds to the Hampel-Krasker estimator, with
v(x) = ‖Ax‖2 = 1

w(x) and ψ equal to the Huber function
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Unknown scale

So far, we have ignored the question of estimating the scale
parameter σ

Back to the MLE when xi
i .i .d .∼ K and ui

i .i .d .∼ Gσ, we want to
maximize

n∏
i=1

{
k(xi ) ·

1

σ
g

(
yi − xTi θ

σ

)}
,

or

min
θ

n∑
i=1

(
ρ

(
yi − xTi θ

σ

)
+ log σ

)
,

where ρ = − log g

If ρ is quadratic, we can ignore σ; however, if ρ is not quadratic, e.g.,
Huber loss, fixing a value of σ and minimizing only over θ could lead
to large loss in efficiency if σ is chosen poorly
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Some approaches

Joint optimization: We could jointly optimize the objective with
respect to (θ, σ), but even if ρ is convex, the objective is generally
nonconvex

A clever idea by Huber is to jointly optimize

min
θ,σ

n∑
i=1

(
ρ

(
yi − xTi θ

σ

)
+ a

)
σ,

where a ∈ R is an appropriately chosen constant to make the
resulting estimators consistent; in particular, this function is jointly
convex in (θ, σ) when ρ is convex

However, nonconvex ρ may lead to better robustness properties such
as high breakdown point/finite rejection point
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Some approaches

MM-estimators:
1 Compute initial consistent estimate θ̂0 (e.g., using OLS or LAD)
2 Compute robust scale estimate σ̂ based on {yi − xTi θ̂0}ni=1 (e.g., using

M-estimator of scale)

3 Minimize
∑n

i=1 ρ
(

yi−xT
i θ

σ̂

)
with respect to θ

Much of theory focuses on obtaining estimators with high breakdown
point and bounded influence function

Asymptotic theory depends on assumption that σ̂ is sufficiently close
to true scale parameter
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Some approaches

Least trimmed squares (LTS): Optimize

bαnc∑
i=1

(r(θ))2
(i),

where ri (θ) = yi − xTi θ

However, the objective function is highly nonconvex and theoretical
properties of optimum are largely unknown

Output can also be used to obtain initial scale estimate σ̂ for
MM-estimation algorithm
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Robust hypothesis testing

Suppose we are interested in performing a parametric hypothesis test
of the form

H0 : θ = θ0

H1 : θ > θ0 (or two-sided version),

based on a test statistic Tn(x1, . . . , xn)

Also suppose

Tn(x1, . . . , xn)
P→ T (F ),

when xi
i .i .d .∼ F

We will define an influence function of a test, which is related to the
influence function of the test statistic
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Influence functions

Our discussion of Hampel’s optimality theory used the fact that our
functionals were Fisher consistent: T (Fθ) = θ

However, test statistics may not be Fisher consistent (e.g., test of
variance for the N(0, σ2) family is a χ2-test based on sample
variance, but scale parameter is σ)

Define a map ξ : Θ→ R such that ξ(θ) = T (Fθ), and define the
functional U(F ) = ξ−1(T (F )), so that

U(Fθ) = ξ−1(T (Fθ)) = ξ−1(ξ(θ)) = θ

Also assume ξ is strictly monotone with nonvanishing derivative, so
ξ−1 is well-defined

Definition

The test influence function of T at F is defined by

IFtest(x ;T ,F ) = IF (x ;U,F ).
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Influence functions

In fact, by the chain rule, we can derive

IFtest(x ;T ,Fθ) =
1

ξ′(θ)
· IF (x ;T ,Fθ)

We are interested in both:

Robustness of validity: Stability of level of test under small deviations
from null hypothesis
Robustness of efficiency: Stability of power of test under small
deviations from alternative hypothesis

We show how to characterize such types of stability using IFtest
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Level and power

Let θn = θ0 + ∆√
n

, where ∆ > 0 is a constant

The asymptotic level of the test is

α(U,F ) = lim
n→∞

Pθ0(Un ≥ kn(α)),

where kn(α) is the critical threshold and Un := ξ−1(Tn)

Similarly, the asymptotic power is

β(U,F ) = lim
n→∞

Pθn(Un ≥ kn(α))

Now define the perturbations

FP
n,t,x :=

(
1− t√

n

)
Fθn +

t∆x√
n
,

F L
n,t,x :=

(
1− t√

n

)
Fθ0 +

t∆x√
n
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Level and power

Finally, define the level influence function

LIF (x ;U,F ) := lim
n→∞

d

dt
Ln,t,x

∣∣∣
t=0

,

where Ln,t,x = F L
n,t,x(Un ≥ kn(α))

And the power influence function

PIF (x ;U,F ,∆) := lim
n→∞

d

dt
Pn,t,x

∣∣∣
t=0

,

where Pn,t,x = FP
n,t,x(Un ≥ kn(α))

It turns out that these influence functions are both multiples of
IFtest(x ;T ,F )
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Level and power

Theorem

We have

LIF (x ;U,F ) =
√
E (T ,F )ϕ(λ1−α)IFtest(x ;T ,F ),

PIF (x ;U,F ,∆) =
√
E (T ,F )ϕ

(
λ1−α −∆

√
E (T ,F )

)
IFtest(x ;T ,F ),

where λ1−α = Φ−1(1− α) and E (T ,F ) :=
(∫

IF 2
test(y ;T ,Fθ0)dFθ0(y)

)−1
.

Ensuring robustness of validity corresponds to bounding the LIF ,
whereas ensuring robustness of efficiency corresponds to bounding the
PIF

Optimality theory concerns maximizing the asymptotic power of a
test, subject to bounds on LIF and PIF

Gives rise to tests based on truncated test statistics, censored
likelihood ratio tests, etc.
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Adversarial contamination

Thus, far we assumed that contaminated data are drawn from an
i.i.d. mixture (1− ε)F + εH

However, what if we instead draw n i.i.d. data points {xi}ni=1 from F ,
and then arbitrarily contaminate εn data points to obtain the final set
{x̃i}ni=1 of observations?
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Adversarial contamination

We will work in the (nonasymptotic) probably approximately correct
(PAC) framework: Given δ > 0, obtain an estimator µ̂(x̃1, . . . , x̃n) of
µ = EF [xi ] satisfying

P (‖µ̂− µ‖2 ≤ t(n, δ, ε)) ≥ 1− δ,

where t(n, δ, ε) is as small as possible

The sample mean fails catastrophically in this framework: If ε ≥ 1
n ,

the adversary can always choose x̃n such that ‖µ̂− µ‖2 is
deterministically larger than any value

Are medians any better? Yes!—and optimal
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Lower bound

We first give a lower bound for location estimation in one dimension

Theorem

Let Fµ = N(µ, 1), and suppose δ < c. Any location estimator µ̂ must
satisfy

sup
µ∈R

Pµ

(
sup
{x̃i}
|µ̂(x̃1, . . . , x̃n)− µ| > C

(
ε+

√
log(1/δ)

n

))
> δ,

where the probability is taken with respect to xi
i .i .d .∼ Fµ and {x̃i}ni=1 are an

(adversarial) ε-perturbation of {x̃i}ni=1.

This is easily proven to be achievable by a median estimator
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Upper bound

In d > 1 dimensions, simplest idea is to take coordinatewise medians,

but this gives O(ε
√
d) error; we can achieve O

(
ε+

√
d
n

)
error using

more complicated notions of medians

Definition

The Tukey median of a data set {xi}ni=1 is defined as
µ̂ = arg maxµ∈Rd D(µ, {xi}ni=1), where

D(µ, {xi}ni=1) := inf
‖u‖2=1

1

n

n∑
i=1

1
{
uT (xi − µ) ≥ 0

}
is the Tukey depth function.

The Tukey depth at µ looks at all halfspaces cutting the recentered
data set and takes the one which cuts off the fewest points; the
Tukey median maximizes this depth over all µ
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Upper bound

Theorem

Suppose F = N(µ, Id), the contamination level satisfies ε < 1
8 , and the

sample size is large enough so 2C
√

d+log(1/δ)
n ≤ 1

4 . The Tukey median
satisfies

t(n, δ, ε) ≤ Φ−1

(
1

2
+ 2ε+ 2C

√
d + log(1/δ)

n

)
.

However, computing the Tukey median is also difficult in high
dimensions, with computational complexity O(nd−1)
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Alternative methods

Ongoing research tries to match error rate of Tukey median in general
distributional families, without computational barriers

Filtering algorithm (Diakonikolas et al.):

Iteratively flags outliers based on projections onto maximal principal
components
For contaminated Gaussians, achieves O(ε

√
log(1/ε) error with

n = Ω(d log d) samples
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Alternative methods

Trimmed means algorithm:

In one dimension: First split sample into two parts, one of which is
used to determine trimming parameters (α, β) according to quantiles
Then take

∑n
i=1 φα,β(yi ), where

φα,β(y) =


β if y > β,

y if α ≤ y ≤ β,
α if y < α

Extension to multiple dimensions is somewhat complicated, but roughly
seeks an estimator which is close to trimmed mean of projected data in
any direction v ∈ Rd
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Alternative methods

Median of means (MOM) estimator:

Divide sample into k blocks, and compute sample mean within each
block; then aggregate k values by taking a median
In high dimensions, correct notion of median is also not so
straightforward (coordinatewise medians/geometric medians do not
yield provable dimension-free rates for adversarial contmination)
Estimator with optimal rates can be obtained by finding an estimator
close to the MOM estimator of the projected data in any direction
v ∈ Rd , as in the case of the trimmed mean, but is again
computationally intractable
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Heavy-tailed distributions

Interestingly, the same types of estimators used for adversarial
contamination can often be used for optimal estimation, w.h.p., for
i.i.d. data drawn from heavy-tailed distributions

Going back to the PAC framework, we want to find an estimator
which achieves the minimal function t(n, δ) in the bound

P (‖µ̂− µ‖2 ≤ t(n, δ)) ≥ 1− δ,

where the probability holds for i.i.d. data {xi}ni=1 drawn from an
appropriate class of distributions

If xi ∼ N(µ, σ2), we can take t(n, δ) = Cσ
√

log(1/δ)
n , and the bound

is tight
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Heavy-tailed distributions

What if we consider classes of distributions which only satisfy the
condition that the variance is bounded by σ2?

In one dimension, Chebyshev’s inequality guarantees that the mean
satisfies

P

(∣∣∣∣∣1n
n∑

i=1

xi − µ

∣∣∣∣∣ ≤ σ
√

1

nδ

)
≥ 1− δ

(and the bound can also be shown to be tight, e.g., when xi is drawn
from a distribution which is supported on {−a, 0, a})
But this rate (n, δ) is far worse than the rate of Gaussian variables
when δ is small

We will just give a flavor of results in 1 dimension
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Median-of-means estimator

Theorem

Suppose {xi}ni=1 are drawn i.i.d. from a distribution with mean µ and
variance σ2. Then the MOM estimator with k = d8 log(1/δ)e bins satisfies

P

(
|µ̂− µ| ≤ σ

√
4d8 log(1/δ)e

n

)
≥ 1− δ.

A multivariate version of the MOM estimator based on geometric
medians does not quite yield optimal error rates in d
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Catoni’s Mestimator

Returning to the framework of classical M-estimation, take a
parameter α > 0 and define µ̂ as the solution to the estimating
equation

n∑
i=1

ψ(α(xi − ξ)) = 0,

where ψ is a nondecreasing function satisfying

− log

(
1− t +

t2

2

)
≤ ψ(t) ≤ log

(
1 + t +

t2

2

)
, ∀t ∈ R

The Huber ψ function does not quite satisfy these bounds
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Catoni’s M-estimator

Theorem

Suppose {xi}ni=1 are drawn i.i.d. from a distribution with mean µ and
variance σ2. Suppose δ > 0 and n > 2 log(2/δ). Then Catoni’s
M-estimator with parameter

α =

√√√√ 2 log(2/δ)

nσ2
(

1 + 2 log(2/δ)
n−2 log(2/δ)

) ,
satisfies

P

(
|µ̂− µ| ≤

√
2σ2 log(2/δ)

n − 2 log(2/δ)

)
≥ 1− δ.

The proof proceeds by using Chernoff bounds and bounding mgfs
A disadvantage is that α depends on σ, although adaptive choices of
α exist when an upper bound on σ2 is known a priori
Multivariate versions of Catoni’s M-estimator have also been derived
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Summary

Huber’s perspective: Deriving minimax optimal estimators in an
ε-ball around true distribution (asymptotic bias, asymptotic variance)

Hampel’s perspective: Deriving optimal estimators involving
quantities related to influence functions (minimum GES, minimum
asymptotic variance subject to bound on GES)

Extensions to linear regression and hypothesis testing

Modern perspectives: Nonasymptotic guarantees, new
contamination models, computational feasibility in high dimensions
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Thank you!
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