Robust statistics

Po-Ling Loh
University of Cambridge, Department of Pure Mathematics and Mathematical Statistics

CUSO Summer School
Jura, Switzerland

September 5-6, 2023

Po-Ling Loh (University of Cambridge) Robust statistics Sep 5-6, 2023

1/85



Introduction to robustness

@ Deals with deviations from ideal models and their dangers for
corresponding inference procedures

@ Goal: Develop procedures that are still reliable and reasonably
efficient under small deviations from the model (e.g., an
e-neighborhood of the assumed model)
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Qutlier rejection?

@ Might consider a two-step procedure which first “cleans” data, then
applies classical estimation procedure

@ However, outliers may be difficult to recognize without an initial
(somewhat) robust estimator

o Multiple outliers may “mask” each other so that none are rejected

o False rejections/false retentions may cause cleaned data to deviate
from normal assumptions, too
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Robustness desiderata

e Efficiency: Should have nearly(?) optimal efficiency under
uncontaminated distribution

o Stability: Small deviations from uncontaminated distribution should
only alter performance slightly
o Breakdown: Larger deviations from model should not be catastrophic
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Robustness desiderata

A Normal distribution

Using least-squares method

(a)

Using rejection of outliers

& -
S,
S arar o iv bl
i o 7 T

Figure 2. Various ways of analyzing data.
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utline

@ Huber's perspective
@ Minimax bias
@ Minimax variance

9 Hampel's perspective
@ Influence functions
@ Optimal B-robust estimators

© Extensions
@ Linear regression
@ Hypothesis testing

@ Modern perspectives
@ Adversarial contamination
@ Heavy-tailed distributions
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Outline

@ Huber's perspective
@ Minimax bias
@ Minimax variance
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Reference

@ Huber & Ronchetti, “Robust Statististics”
@ Huber, “Robust estimation of a location parameter,” 1964
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Location estimation

@ Our goal is to estimate the location parameter of a distribution in one
dimension:

X1, -+, Xn L F(t —&) = Fe(t),

where F(t) is a cdf

o If the distribution corresponding to F is symmetric around 0, then
Er, [xi] = £, so we could use the mean £ "7 ; x;—but what if the
model is contaminated?

Consider the class of distributions with cdfs in the set

P(Fo)={F:F=(1—¢)Fy+eH,He M},

where M is the set of all possible cdfs. This is known as (Huber's)
e-contamination model.
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Location estimation

e For F € P(Fp), we have
sup |F(t) = Fo(t)] = |(1 — €)Fo(t) + eH(t) — Fo()]
=¢-sup|H(t) - Fo(t)[ < ¢,

so F also lies in the e-neighborhood of Fy with respect to the
Kolmogorov distance

e If Ef[xi]] =0, we have

Er[x] = (1 — €)0 + eEp[x],

implying the mean could be arbitrarily biased

@ What about using the median?
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Breakdown point

let

b(mi X, To) = sup | To(X') = o).

where X, C R" is the set of all data sets differing from X by at most m

points. Then

(X, Th) : —1 max{m b(m; X, Tp) < oo}

is the breakdown point of T, at X.

Consider a data set X = {x1,...,x,} and an estimator T,(X). For m < n,
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Breakdown point

o Examples:
e The breakdown point of the mean is 0

o The breakdown point of the median is 1 - [ 25!

e The median achieves the highest possible breakdown point among all
translation-invariant estimators:

Tolxa+3a,...,xp+3) = Talxt,...,%:) + a,

for all {x1,...,x,} and a€ R

@ However, this is a very rough notion, and has nothing to do with the
distribution
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Asymptotic bias

@ Returning to the e-contamination model, suppose Fy is symmetric
(Fo = & for concreteness, though the arguments can be generalized)

@ What is a bound on the (asymptotic) bias of the median?

@ Clearly, worst case is when H concentrates all mass on one side of
origin; median of F € P, is the solution to

(1—e)d(b) = =

so maximum bias is bg = 1 (2(171_6))
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Minimax bias

@ Can we do better? Suppose { T,} is a sequence of estimators for a
parameter T(Fp), and define the asymptotic bias of a family of
estimators T = {T,} as

b(T,F)=b({T,},F)=1|lim Ee(T,) — T(Fo)
n—oo
@ Then study the minimax problem

i Tny, F),
i B 2T P

where we restrict T,, to the class 7 of translation-invariant estimators
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Minimax bias

@ An upper bound of by can be achieved by the median

@ To prove a lower bound, consider the distribution Fy € P,
constructed as follows (shifted and centered around by):

Exhibit 4.1 The distribution F.. least favorable with respect to bias.

@ Also consider the version F_ € P, centered around —bg
e We can show that for any {T,} C T, we have

max {b({ Tn}, F-), b({ Tn}, F1)} = bo

@ Thus, the median is minimax optimal
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Asymptotic variance

@ Why do we use the sample mean as a location estimator anyway?

Suppose the x;'s have density f(x;&). Under appropriate regularity
conditions, the maximum likelihood estimator

n
EMLE € arg mgin Z —log f(x;; &)
i=1

is asymptotically normal:

V€= %N (0.75)

Furthermore, the ratio IL is the minimum possible variance among all
asymptotically unbiased estimators of £.
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Minimax variance

@ However, the situation may be more complicated when samples are
from an e-ball around some distribution
@ Suppose /n(T, — T(F)) < N(0,A(T, F)), and consider the

minimax problem

i A({Tn}, F
rin g AT

o Motivated by nice results in MLE theory, we restrict our attention to
the class of M-estimators

Definition

Consider a (symmetric) function p. A minimizer T, = T,(x, ..., Xp) of
i1 p(xi — Ty) is an M-estimator with associated loss function p.
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Asymptotic theory

@ For the following result, suppose 1) = p’ is nondecreasing

Suppose there exists ty € R such that Ef[y(x; — to)] = 0. Assume the
function \(t) = Ep[y(x; — t)] is differentiable at ty and X' (tp) < 0. Also
suppose o2(t) := Eg[¢?(x; — t)] — \2(t) is finite, continuous, and nonzero
at ty. Then

0.2
Vn(To—to) S N (o, ﬁ) .
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Asymptotic theory

Corollary

Suppose p is a symmetric, convex function and the x;'s have a symmetric
distribution. Suppose the derivative

w(e)= A= gyt — o)

exists and o?(t) = Ep[¢?(x; — t)] is continuous in a neighborhood around
0. Also suppose Eg[1)?(x;)] < oo and E[¢'(x;)] > 0. Then

T, € arg mgin {Zp(x,— — §)}

i=1

satisfies

o (- Eelp2(x)
VT, 48 (0, g )
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Asymptotic theory

@ In the corollary, symmetry of p and F implies Ef[¢)(x;)] = 0, so we
can take tg = 0 in the theorem
@ In particular, we can apply the preceding results to derive asymptotic

normality of the sample mean (¢(t) = t) and sample median
(v(t) = sign(t)); due to non-differentiability, we have to use the

theorem in the case of the median
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Contaminated distributions

@ Now we consider e-neighborhoods: Suppose p(t) = %2 and
F =(1—¢€)® + eH, where H is the cdf of a symmetric distribution
satisfying the conditions of the corollary

@ Then

Ee[x7]

A(T,F) = = (1—€) + Ey[x?],

 Ef[1)2
which can be arbitrarily large

@ However, suppose we have a function 1 such that [|¢||~ < k for
some constant k; then

B0 _ (1= OBaly?(x)] + cEnly?(x)]
FAVOE (@ - el ()] + Bulv/(x)

(1 — )Eo[t?(x)] + ek
(1€ Eov/(x)]*

which is bounded as H ranges over different cdfs

<
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Huber loss

@ One example of such a function is ¥ corresponding to the Huber loss:

2 .
L, if [t] <k,
P(t):{z 2 g

klt| — &, if |t] > k

@ Then ¢(t) = min{k, max(—k, t)}
@ We could in theory try to minimize the upper bound with respect to
k, though the derivation is rather tedious
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Optimality of Huber loss

@ In fact, the Huber estimator is actually minimax over all possible 1)

@ The following result gives a constructive method for determining a
saddlepoint solution to a generalized minimax problem

Suppose G is the cdf of a log-concave symmetric distribution with twice
continuously differentiable pdf g.

(i) Then V(v, F) has a saddlepoint: there exists Fo € P.(G) and 1y € ¥
such that

Fmax V (%o, F) = V(¢o, Fo) = i V (4, Fo).

Hence, minycw maxgep, () V (¥, F) = V(vo, Fo), and 1o is minimax
optimal.
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Optimality of Huber loss

(i) Furthermore, we have the explicit expressions

f.b/
1/]0 - _?0)

(1 - €)g(x0)ek=0),if x < xo,
fo(x) = ¢ (1 — €)g(x), if xo < x < xi,
(1—€)g(x1)e k) ifx > xq,

where xg < xy are the endpoints of the interval where |g?/| < k (either
or both endpoints may be infinity), and k is related to e by

1 :/Xlg(x)derg(Xo)Jl:g(Xl).
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@ In the special case when g(x) = ¢(x), we can check that )y agrees
with the Huber estimator

e If instead G is the cdf of a (0, 02) distribution, we can derive

—k, if x < —ko?,
’([10(X) = ﬁ: if ’X| < k0.2’
k, if x > ko?
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Kolmogorov neighborhood

@ How much further can we push this theory? Consider the minimax
variance problem when PX(®) = {F : sup, |F(t) — ®(t)| < €}

o Recall that P.(®) C PK(®)

@ A rather sophisticated and ingenious construction due to Huber leads
to a density of the form

Cocos? (%), if 0 < x < xo,
fo(x) = fo(—x) = { (), if xo < x < xq,
Grexp(—A(x — x1)), if x> xq,

with corresponding 1 function

wtan(%), if 0 < x < xp,
Yo(x) = ¢ x, if xo < x < xq,
A, if x > x1

26 /
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Outline

9 Hampel's perspective
@ Influence functions
@ Optimal B-robust estimators
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Reference

@ Hampel, Ronchetti, Rousseeuw & Stahel, “Robust Statististics: The
Approach Based on Influence Functions”
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Hampel's approach

@ Huber's approach relied heavily on nice form of normal density and
symmetric contamination assumption; how can we “robustify” other
estimation procedures?

@ A second camp of robustness theory was developed by Hampel (1968)
in his PhD thesis: "“Contributions to the theory of robust estimation”
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Hampel's approach

@ Basic concepts are qualitative robustness (continuity of limiting
functional), influence function (effect of infinitesimal perturbations),
and breakdown point (distance to nearest singularity/asymptote)

Estimate T |
| Extrapolation
Actual value / | using influence
! function
|
|
|
Model distribution F, :
|
1
|
[
| |
0 [ Contamination
Breakdown
point
2. Extrapolation of a functional (esti ), using the infinitesimal approach. (Sym-

bolic, using the analogue of an ordinary one-dimensional function.)
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Influence functions

@ Suppose we have a sequence of estimators satisfying
To(x1, ..., %n) = T(F) when x; ~ F

Definition

The influence function IF(:; T, F) : R — R of a functional T at F is given
by

IF(x; T, F) o= lim LA = O)F + 80,) = T(F)

t—0 t

e This is a special case of a Gateaux derivative of T(F) in the direction
of A,

@ In particular, we are interested in bounding the gross-error sensitivity

Y (T,F) :=sup|lF(x; T, F)|
X

(analog of bounded derivative)
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Influence functions

o Other quantities of interest include the local-shift sensitivity:

IF(y; T,F) = IF(x; T, F
V(T F) o sup VFUT-F) ~ IF( T.F)
XZ£y ’y_X|

@ Rejection point:
P (T,F):=inf{r>0:IF(x; T,F)=0 when |x| > r}

@ Change of variance functional: CVF(x; T, F)
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Influence functions

@ The influence function also relates to the asymptotic variance of T,

@ Under appropriate regularity conditions, when x; i F, we have
V(T — T(F)) = Vn(T(F,) — T(F))
1 n
R — IF(x;; T, F
NG ; (x )
% N(0, AT, F)),

where A(T, F) = [ IF(x; T, F)?dF(x)
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@ Mean: We have

IF(; T F) = tim (1 Dbl £ 0 = Bl

=X—- EF[Xi]7

so when Ef[x;] = 0 (e.g., F corresponds to a symmetric distribution),
IF(x; T,F) =x
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@ Median: We have

F( T, F) = lim Fe (/2 = F1(1/2)

t—0 t ’

where F; := (1 — t)F + tA,, and differentiating the implicit equation

we can obtain

sign{x — F71(1/2)}

TR = e )
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o General M-estimators: Since T(F) is defined implicitly by

Er[y(xi — T(F))l =0,

we can generalize the argument for the median to obtain

A = T(F)
FOT ) = By — ()

@ In particular, recall the formula for the asymptotic variance of “nice”
M-estimators:
Er[(xi)?]
(Er[y'(x)])?*’
when F is the cdf of a symmetric random variable, which is exactly
[IF(x, T, F)2dF(x)

@ Thus, the influence function is bounded if ||?]|c0 < 00

A(T,F)=
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Optimality

@ Hampel also derived optimality results with respect to the influence
function

o Consider a family of distributions parametrized by 6, and suppose the
functional T(Fp) is defined implicitly by

/ by, T(F))dFo(y) =0

(the special case of M-estimators is a family of distributions with
location parameter 6, and ¥(y,0) = ¥(y — 0))
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Optimality

@ One can show that

- _ ¥(x, T(Fo))
/F(X, T, F@) - fl/}(y,Q)S(y,Q)dFa(y)’
where
K
s(y,0) = 889(|0g f(y)) = 8%’?)(/))’)

is the score function

@ Hampel studied the problem of minimizing the asymptotic variance
[IF(x; T, F)2dF(x), subject to an upper bound on the gross error
sensitivity v*(T, F) = sup, |IF(x; T, F)|
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Optimality

Suppose F = Fy (for a fixed §) and I(F) = [ s(x,0)?dF(x) > 0 (this is
the Fisher information). For any b > 0, there exists a € R such that

b(y) = [s(y,0) — a]%,

(truncated function ) satisfies [ ¥(y)dF(y) = 0 and
d:= f¢) ,0)dF(y) > 0. Furthermore, ¢ uniquely minimizes
JIF(y; T, F) dF( ) among all mappings 1) satisfying
) fw(y)dF(y) =0,
(i) [¥()sly,0)dF(y) # 0,
(iii) and v* (T F) <c:=

Qo
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Optimality

@ The condition [ (y)dF(y) =0 is known as “Fisher consistency”: for
location M-estimators, we have ¥y(y) = ¥(y — ), so this is the
condition Ef, [¢(x; — 0)] =0

@ Estimators that minimize the asymptotic variance subject to a bound
on GES are optimal B-robust estimators (the B stands for “bias,”
whereas there are also V-robust estimators)

e Estimators such that v*(T, F) < oo are B-robust
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Location M-estimators

@ In this case,

Zhly)  Zfly—0) —f(y—0)
_90'0 _ 90 _
W= T =0 fh-0)

@ By the theorem, the optimal B-robust estimator at # = 0 is given by

=[5,
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Location M-estimators

o If F=®, we have ff((%/) =y, and we can take a = 0; this reduces to
the Huber estimator with parameter b: ¢(y) = V],

o The finite-sample version solves "7, [x; — 0]°, =0

@ Hence, the Huber estimator is also the optimal M-estimator for the

location of a normal family with respect to B-robustness—different
Huber parameters correspond to different bounds on ~*
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Scale M-estimators

@ We can also consider a family of distributions parametrized by scale:

fo(x)

)

(for instance, consider the N(0,6?) family, where 6 is unknown)

@ We can compute

s(y.0) =

wly) _

fo(y)

so according to the theorem, the optimal B-robust estimator is

1’/;1()/) = [

—yf'(y)
f(y)

b
—1—a]
—b

Po-Ling Loh (University of Cambridge)
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Scale M-estimators

@ When F = &, this becomes

dily) = y? —1-a°,,

for an appropriate value of a, which generally depends on b

@ The (finite-sample) optimal B-robust M-estimator then solves
n X2> :| b
-] —-1-a =0
216 L

(truncation of MLE expression, above or below, depending on the
value of b)
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Most B-robust estimators

@ Recall the optimality of the median according to Huber theory:

i b({Tn}, F),
T 5y 2T )

where Fg is a symmetric, unimodal distribution

@ We now provide an alternative result on optimality of the median
according to Hampel's framework
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Most B-robust estimators

@ Assume F has a twice-differentiable density f which is symmetric
around 0, log-concave, and satisfies f(x) > 0 for all x

@ We restrict our attention to location M-estimators, where 1) ranges
over a “nice” class of functions W (smooth, except for a finite set of

jumps C(v))
@ Hampel: "“to our knowledge, W covers all 1-functions ever used for
this estimation problem”

Definition

An estimator minimizing v* := sup,cp\ ¢y [1IF (x; ¥, F)| (for a fixed F,
over a class of estimators W) is called a most B-robust estimator.
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Most B-robust estimators

The median is the most B-robust estimator in V. For all 1) € WV, we have
v (¢, F) > %(m, and equality holds if and only if 1) is the median
estimator.
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Reconciling Huber's and Hampel’s approaches

@ Minimax bias problem can be rephrased as

min sup |T(G)— T(F)]
Y GeP.(F)

@ For small ¢, we make the approximation

sup_[T(G) — T(F)| =sup | T((1 = )F + eH) — T(F),
GEP(F) H

(gsup e/IF(X;v,/J, F)dH(x)
H
=e€-sup|IF(x; %, F)|

267*(¢»F)
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Reconciling Huber's and Hampel’s approaches

@ Where (a) holds because
T(1—€e)F +eAy) — T(F)=e-IF(x;4, F),
and if T is linear, we can write

T((1— F + eH) — T(F) ze-/lF(x;w, FYdH(x)

@ Hence, finding optimal v for minimax bias problem is (approximately)
equivalent to solving

mdin v (¥, F)

(resulting in median)
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Reconciling Huber's and Hampel’s approaches

@ A connection can also be drawn between optimal B-robust and
minimax variance estimators using influence function approximations

@ Requires approximating the change-of-variance function, which is the

change in asymptotic variance V/(1, F) when perturbed by a small
mass at (—x, x):

v <¢, (1—)F +¢ @AX v ;A_X>) — VW, F) ~ ¢ - CVF(x; ), F)
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Outline

© Extensions
@ Linear regression
@ Hypothesis testing
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Robust linear regression

@ Analysis of multidimensional estimators becomes more complicated,;
however, results from the univariate case translate more easily into
the context of linear regression

@ Linear model:

p
y,:Zx,-J-9j+u;, v1<i<n,

j.id. i.i.d. , . ,
where x; "~ K and u; "~ G, where u;'s are independent of x;'s
and o is scale parameter of error distribution
@ Joint distribution is

_XT
foo(x:y) = FO)F(yIx) = k(x) %g <ye)

g

@ MLE would correspond to maximizing

Sn{le (1)
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Robust linear regression

o When G, is cdf of A(0,02), MLE corresponds to ordinary least
squares, but OLS is not robust to deviations from normality

@ To achieve robustness, consider regression M-estimator
n
. T
min Z; p(yi = x70)
1=

(for now, assume o is known)

o Estimating equation is

> Wy —xT0)x =0
i=1
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Influence functions

o By differentiating the implicit equation

0 = Bl = X T(EDs] = [ 0y = T T(F)xef(x.).
we can compute the influence function

IF(XanO; T7 F) = M_1¢(y0 - X(;r T(F))X07

M= /w'(u)dG(u)- (/xdeK(x)>

@ Thus, we can guarantee boundedness of /F in response direction if 1)
is bounded (this is not the case for OLS)

where
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Asymptotic normality

@ For fixed p and when n — oo, asymptotic covariance matrix is
V(T,F)= / IF(x,y; T, F)(IF(x,y; T, F))TdF(x,y)

=3 ([ 0y XTI dF () )

e (/ wz(u)dG(u)> (/ xdeK(x)> M1

g )

@ Minimizing V/(T, F) over the class of 1 functions then reduces to the

familiar univariate problem of choosing 1 to minimize G[[qf,((”ﬁ]z

@ When G = &, Huber M-estimator is again minimax optimal
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@ Hampel's theory is more complicated, due to the fact that we have to
extract real-valued measures from vectors/matrices

o For instance, we can define gross error sensitivity

Y(T,F)=sup|[IF(x,y; T,F)|2
X7.y

@ Since

V(T Fo) = sup { [y = xT0)| - [ M~ x]l2 } = ox,
Xy

optimality theory focuses on slightly broader class of M-estimators
defined by

B uyr | w(x) - ¢ (i = X T(F) - v()) x| =0
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@ We can compute

IF (%0, 0, T, F) = w(xa)¥ ((vo = xJ T(F)) - v(x0)) Mo,

where M is an appropriately defined population-level matrix
e In particular, if w(x)x is a bounded function of x (e.g., w(x) = HA:>l<||2)
and 1 is bounded, we can guarantee that v*(T, Fp) < oo

@ For this family of M-estimators, we have the lower bound

T 1
7 (T, Fy) = p\f- T
2 Ef|x]2]
when G = ¢
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@ Assuming radial symmetry of K, equality is achieved when
¥(x) = sign(x), w(x) = m and v(x) = 1, giving the most
B-robust estimator

@ In the radially symmetric case, the optimal B-robust estimator
corresponds to the Hampel-Krasker estimator, with
v(x) = ||Ax]]2 = W(lx) and 1 equal to the Huber function
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Unknown scale

@ So far, we have ignored the question of estimating the scale
parameter o

@ Back to the MLE when x, Ld "K and u; iofd- G,, we want to
maximize . .
1 —x;'0
{00 e (5 |
i=1
or

RN yi—x'0
melnz (p <0> + IOga) )

where p = —log g

e If p is quadratic, we can ignore g; however, if p is not quadratic, e.g.,
Huber loss, fixing a value of ¢ and minimizing only over 6 could lead
to large loss in efficiency if o is chosen poorly
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Some approaches

o Joint optimization: We could jointly optimize the objective with
respect to (6, 0), but even if p is convex, the objective is generally
nonconvex

o A clever idea by Huber is to jointly optimize

n . -T9
min (p <y,x,> + a> o,
0,0 P o

where a € R is an appropriately chosen constant to make the
resulting estimators consistent; in particular, this function is jointly
convex in (6,0) when p is convex

@ However, nonconvex p may lead to better robustness properties such
as high breakdown point/finite rejection point
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Some approaches

o MM-estimators:
© Compute initial consistent estimate 6 (e.g., using OLS or LAD)
@ Compute robust scale estimate & based on {y; — X,-Té\o},'-’zl (e.g., using
M-estimator of scale)
© Minimize .7 p (y"fg"Te) with respect to 0
@ Much of theory focuses on obtaining estimators with high breakdown
point and bounded influence function

@ Asymptotic theory depends on assumption that o is sufficiently close
to true scale parameter
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Some approaches

o Least trimmed squares (LTS): Optimize

lan]
> ()%,
i=1

where r;(8) = y; — x.1 0
@ However, the objective function is highly nonconvex and theoretical
properties of optimum are largely unknown

@ OQutput can also be used to obtain initial scale estimate & for
MM-estimation algorithm
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Robust hypothesis testing

@ Suppose we are interested in performing a parametric hypothesis test

of the form

Ho: 6=20g

Hi: 6 >0y (ortwo-sided version),
based on a test statistic T,(xi, ..., Xp)

@ Also suppose
P

Tn(X17 e ,X,,) - T(F)v
when x; ihid. F
@ We will define an influence function of a test, which is related to the
influence function of the test statistic

Po-Ling Loh (University of Cambridge) Robust statistics Sep 5-6, 2023 63 /85



Influence functions

@ Our discussion of Hampel's optimality theory used the fact that our
functionals were Fisher consistent: T(Fy) =6

@ However, test statistics may not be Fisher consistent (e.g., test of
variance for the N(0,02) family is a y?-test based on sample
variance, but scale parameter is o)

@ Define a map £ : © — R such that £(0) = T(Fp), and define the
functional U(F) = £71(T(F)), so that

U(Fo) = €7(T(Fo)) = £1(&(0)) = 0

@ Also assume ¢ is strictly monotone with nonvanishing derivative, so
¢ 1 is well-defined

Definition
The test influence function of T at F is defined by

IFiest(x; T, F) = IF(x; U, F).
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Influence functions

@ In fact, by the chain rule, we can derive

1
IFiest(x; T, Fg) = w “IF(x; T, Fy)
@ We are interested in both:

e Robustness of validity: Stability of level of test under small deviations
from null hypothesis

e Robustness of efficiency: Stability of power of test under small
deviations from alternative hypothesis

@ We show how to characterize such types of stability using /Fiest
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Level and power

o Let 0, =10y + %, where A > 0 is a constant

o The asymptotic level of the test is

a(U, F) = nli_U;on)o(Un > kn(a)),

where kn() is the critical threshold and U, := £71(T,)

o Similarly, the asymptotic power is
B(U,F) = ILm Py, (Un > kn())

@ Now define the perturbations

t tA
FP = (1—-—)F +—=
n,t,x ( \/ﬁ> 0n+ \/Ev
tA

Fhoo=(1- F
fie ( ﬁ> Wt n
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Level and power

o Finally, define the level influence function

d
LIF(x; U,F) := lim —tL,,tx

n—oo d 7 =0
where L ¢y = F,ftX(U,, > kn(a))
@ And the power influence function
PIF(x; U, F,A li d P
(Xv 9 ) ) _nL}ngoF n,t,x t:O’

where Pty = Fl (Un > k(@)

@ It turns out that these influence functions are both multiples of
IFtest(X; T, F)
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Level and power

We have

LIF(X; Uv F) = E(Ta F)‘P()‘l—a)lFtest(X; T, F);
PIF(x; U, F,A) = /E(T, F)p <)\1_a ~ AVE(T, F)) IFrest(x; T, F),

where Ao = "1(1 — a) and E(T,F) := ([ IF2(y; T, Fa,)dFa,(v))

@ Ensuring robustness of validity corresponds to bounding the LIF,

whereas ensuring robustness of efficiency corresponds to bounding the
PIF

@ Optimality theory concerns maximizing the asymptotic power of a
test, subject to bounds on L/IF and PIF

@ Gives rise to tests based on truncated test statistics, censored
likelihood ratio tests, etc.
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Outline

@ Modern perspectives
@ Adversarial contamination
@ Heavy-tailed distributions
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Adversarial contamination

@ Thus, far we assumed that contaminated data are drawn from an
i.i.d. mixture (1 —€)F + eH
@ However, what if we instead draw n i.i.d. data points {x;}7_; from F,

and then arbitrarily contaminate en data points to obtain the final set
{xi}"_, of observations?
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Adversarial contamination

@ We will work in the (nonasymptotic) probably approximately correct
(PAC) framework: Given ¢ > 0, obtain an estimator ji(x1,...,X,) of
= Efp[x;] satisfying

Pl — pll2 < t(n,0,€)) 21 =34,

where t(n, d, €) is as small as possible

@ The sample mean fails catastrophically in this framework: If € > %
the adversary can always choose X, such that ||z — pl|2 is
deterministically larger than any value

@ Are medians any better? Yes!—and optimal
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Lower bound

@ We first give a lower bound for location estimation in one dimension

Let F, = N(u, 1), and suppose § < c. Any location estimator ji must
satisfy

sup Py <5UP|/7(>~<1,---7>~<,7) —pul>C <e+ —IOg(’i/d))) > 5.

HER {xi}

where the probability is taken with respect to x; g F, and {x;}!_; are an
(adversarial) e-perturbation of {X;}7_;.

@ This is easily proven to be achievable by a median estimator
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Upper bound

@ In d > 1 dimensions, simplest idea is to take coordinatewise medians,

but this gives O(ev/d) error; we can achieve O (e + ﬁ) error using

more complicated notions of medians

Definition
The Tukey median of a data set {x;}7_; is defined as
i = arg max,cga D(p, {xi}}_;), where

D ’ i?— = - 1 T i ZO
o Ga¥) s=  jof 23 CUCEIEY]

is the Tukey depth function.

@ The Tukey depth at p looks at all halfspaces cutting the recentered
data set and takes the one which cuts off the fewest points; the

Tukey median maximizes this depth over all
Sep 5-6, 2023 74 /85
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Upper bound

Suppose F = N(pu, l4), the contamination level satisfies € < %, and the
sample size is large enough so 2C+/ w < %. The Tukey median

satisfies
t(n,d,€) < ot (% +2e+2C w> .

@ However, computing the Tukey median is also difficult in high
dimensions, with computational complexity O(n?=1)
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Alternative methods

@ Ongoing research tries to match error rate of Tukey median in general
distributional families, without computational barriers
o Filtering algorithm (Diakonikolas et al.):

o lteratively flags outliers based on projections onto maximal principal
components

o For contaminated Gaussians, achieves O(ey/log(1/¢) error with
n = Q(d log d) samples
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Alternative methods

@ Trimmed means algorithm:
e In one dimension: First split sample into two parts, one of which is
used to determine trimming parameters («a, 3) according to quantiles
o Then take Y71 ¢a,5(yi), where

B ify >3,
baply) =3y fa<y<s,
a fy<a

e Extension to multiple dimensions is somewhat complicated, but roughly
seeks an estimator which is close to trimmed mean of projected data in
any direction v € R?
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@ Median of means (MOM) estimator:

o Divide sample into k blocks, and compute sample mean within each
block; then aggregate k values by taking a median

e In high dimensions, correct notion of median is also not so
straightforward (coordinatewise medians/geometric medians do not
yield provable dimension-free rates for adversarial contmination)

o Estimator with optimal rates can be obtained by finding an estimator
close to the MOM estimator of the projected data in any direction
v € RY, as in the case of the trimmed mean, but is again
computationally intractable
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Heavy-tailed distributions

@ Interestingly, the same types of estimators used for adversarial
contamination can often be used for optimal estimation, w.h.p., for
i.i.d. data drawn from heavy-tailed distributions

@ Going back to the PAC framework, we want to find an estimator
which achieves the minimal function t(n,¢) in the bound

P(Ii — pll> < t(n,6)) > 1 -3,

where the probability holds for i.i.d. data {x;}7_; drawn from an
appropriate class of distributions

o If x; ~ N(u,?), we can take t(n,§) = Coy/ w, and the bound
is tight
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Heavy-tailed distributions

@ What if we consider classes of distributions which only satisfy the
condition that the variance is bounded by ¢?

@ In one dimension, Chebyshev's inequality guarantees that the mean

1 ].XI

(and the bound can also be shown to be tight, e.g., when x; is drawn
from a distribution which is supported on {—a, 0, a})

@ But this rate (n,0) is far worse than the rate of Gaussian variables
when ¢ is small

@ We will just give a flavor of results in 1 dimension
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Median-of-means estimator

Suppose {x;}7_; are drawn i.i.d. from a distribution with mean p and
variance . Then the MOM estimator with k = [8log(1/d)] bins satisfies

Poﬁ_MSU ﬂﬂ%&ﬁﬂ)zl_d

n

@ A multivariate version of the MOM estimator based on geometric
medians does not quite yield optimal error rates in d
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Catoni's Mestimator

@ Returning to the framework of classical M-estimation, take a
parameter a > 0 and define ji as the solution to the estimating
equation

n
> (a(x — €)) =0,
i=1
where 1 is a nondecreasing function satisfying
2 2

—Iog(l—t—}-g)S¢(t)§|og<1+t+t2>, VteR

@ The Huber v function does not quite satisfy these bounds
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Catoni's M-estimator

Theorem

Suppose {x;}?_; are drawn i.i.d. from a distribution with mean p and

variance 0. Suppose § > 0 and n > 2log(2/8). Then Catoni's
M-estimator with parameter

2log(2/9)

2log(2/9 ’
no? (1 T2 i(g(/z/)a)>

-~ [202 l0g(2/5)
P<|#—M| < n—2|og(2/6)> >1-4.

@ The proof proceeds by using Chernoff bounds and bounding mgfs
@ A disadvantage is that o depends on o, although adaptive choices of
« exist when an upper bound on &2 is known a priori

@ Multivariate versions of Catoni's M-estimator have also been derived
Po-Ling Loh (University of Cambridge)
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@ Huber’s perspective: Deriving minimax optimal estimators in an
e-ball around true distribution (asymptotic bias, asymptotic variance)

o Hampel’s perspective: Deriving optimal estimators involving
quantities related to influence functions (minimum GES, minimum
asymptotic variance subject to bound on GES)

@ Extensions to linear regression and hypothesis testing

@ Modern perspectives: Nonasymptotic guarantees, new
contamination models, computational feasibility in high dimensions
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Thank youl!

ing Loh (University of Cambridge) Robust statistics Sep 5-6, 2023 85 /85



	Huber's perspective
	Minimax bias
	Minimax variance

	Hampel's perspective
	Influence functions
	Optimal B-robust estimators

	Extensions
	Linear regression
	Hypothesis testing

	Modern perspectives
	Adversarial contamination
	Heavy-tailed distributions


