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Sparse spatial coverage of temperature measurements
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Regional observations: ~ 20,000,000 from daily timeseries over 160 years
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L S SPRE GMEF_Numerical Bavesian inference Scalingitup |
Overview (including parts not in this pdf)

m Spatial statistics (but perhaps not like you're used to if you've seen it before)

m From models to numerics with the help of Markov in space

m MCMC-free Bayesian inference with direct numerical approximations

m Assessing numerical and approximate methods; principled method assessment

m Scaling it up; Likelihood and covariance matrix for a 10" -dimensional vector? No thank you!

m Some R demonstrations (INLA, inlabru, excursions)

Finn Lindgren - finn.lindgren@ed.ac.uk Numerical computation for statistics



_______________________________Intro SPDE_GMRF_Numerical Bavesianinference Scalingitup |
Spatio-temporal modelling framework

Spatial statistics framework
m Spatial domain D, or space-time domain D x T, T C R.
m Random field u(s), s € D, oru(s,t), (s,t) € D x T.

m Observations y;. In the simplest setting, y; = u(s;) + ¢;, but more generally y; ~ GLMM, with u(-) as
a structured random effect.

m Needed: models capturing stochastic dependence on multiple scales

m Partial solution: Basis function expansions, with large scale functions and covariates to capture static and
slow structures, and small scale functions for more local variability

Two basic model and method components
m Stochastic models for w(-).

m Computationally efficient (i.e. avoid MCMC whenever possible) inference methods for the posterior
distribution of (-) given data y.
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______________________________intro SPDE_GMRF Numerical Bavesian inference Scalingitup |
Covariance functions and stochastic PDEs

The Matérn covariance family on R¢

1—v

ov{u uls :(722
Cov(u(0), u(s)) = 0* s

Scale k > 0, smoothness v > 0, variance o2 > 0

(slls))” Ko (x]1s]])

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are the stationary solutions to the SPDE
(52 =V -V)*? u(s) = W(s), a=v+d/2

W(-) white noise, V - V = Zl 1892’02:%
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Generalised Spectrum Markov

Gaussian random field (or Gaussian process)
A Gaussian random field u. : D + R is defined via
E(u(s)) = m(s),
Cov(u(s),u(s")) = K(s,s’), (covariance kernel)
[u(si),i = 1,...,n] ~N(m = [m(si),i = 1,...,n] ,
) = [K(s“sj),i,j = 1,...,n})
for all finite location sets {s1, ..., S, }, and K (-, -) symmetric positive definite.
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Generalised Spectrum Markov

Generalised random field

A generalised Gaussian random field v, : D — R is defined via a random measure,
(f,u)p =u*(f) : Hr(D) — R, R a covariance operator,

E((f,u)p) = (fm)p = /D f(s)m(s) ds,

Cov({f,u)p » (68 p) = (. Rg)p = / /D K (s.5)g(s) dsds’
() p ~ N((fam) p (F RS p)

forall f,g € Hr(D) ={f: D —R; (f,Rf)p < oco}.
This allows for singular covariance kernels K (-, -).
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_hio SPDE_GVRF_Numerical Bayesianinference Scalingituo  JEENCHITIEL L RELEEU RN TR
White noise vs independent noise

Gaussian white noise on continuous domains

Standard Gaussian white noise V() is a generalised random field, with

m(s) =0, K(S,S/) = 65(5/)’ <f7 W>D ~ N(Oa <fa f>D)a

forall f € Lo(D). Since (s, ds) , = oo foralls € D, W(-) does not have pointwise meaning. We can only
do calculus!

| A\

Independent Gaussian noise on continuous domains

Spatially independent Gaussian noise w(-) is a random field, with
m(s) =0, K(s,8') =1p—gy}, w(s)~N(0,1),
forall's,s’ € D. However, for every set A C D with | A|iepp) > 0,

P(iggw(s) =00) = P(Siggw(s) =—00) =1,

and the generalised calculus is not applicable.




_nio SPDE_GVRF_Numerical Bayesianinference Scalingituo  JENNCEITEIELLRELERUIL RETENEN
Spectral properties

Bochner’s theorem on R¢

A symmetric kernel K (s, s'), s,s’ € R is a positive (semi-)definite stationary covariance kernel if and only if
there exists a non-negative spectral measure S™(w) such that

K(s,s') = /Rd exp(i(s’ —s) - w) dS* (w)

If the measure has a density S'(w),

K(s,s') = ./Rd exp(i(s’ — s) - w)S(w) dw

1

S(w) = @) -/Rd exp(—is - w)K(0,s)ds

White noise on R has spectral density Sy (w) = 1/(27)%.

Finn Lindgren - finn.lindgren@ed.ac.uk Numerical computation for statistics



_nio SPDE_GVRF_Numerical Bayesianinference Scalingituo  JENNCEITEIELLRELERUIL RETENEN
Spectral properties

Spectral representation
Let Z*(w) be a complex Gaussian random measure on 1) = R% with independent increments and

A7+ (w) = dZ*(~w), E[dZ*(w)] =0, E [dZ*(w) dZ*(w)} = dS* (w).

Then

u(s) = /]Rd exp(is - w) dZ* (w)

is a stationary Gaussian random field with spectral measure S™*(w).

Lot (&) = (F)(@) = gy fw exp(—is - ) £(5) ds:
Informally, 7(w) dw = dZ* (w), and the spectral density is S, (w) = E(|u(w)|?).
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Spectral properties

Generalised Spectrum Markov

Spectra and linear differential operators

Differential operators can also be interpreted spectrally:
Lf | f Vf -V-Vf L[?f
LF=F(Lf) | F iwf lwIPf  |L1°2F

The rightmost column is a definition of a fractional operator!

Exercise: Use the spectral field representation to derive the middle two results above.
Exercise: What would happen on a different manifold, such as the sphere? Hint: the harmonic functions in the
Fourier transform are eigenfunctions of the Laplacian.
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_nio SPDE_GVRF_Numerical Bayesianinference Scalingituo  JENNCEITEIELLRELERUIL RETENEN
Spectral properties

For the Whittle-Matérn SPDE, informally,

4%

(K2 =V - V) %u(s s)

(
W(

)
(K + [lw]*)*?Ti(w) = W(w)
E(I(k2 + [|lw]*)*/*a@(w)|?) = E(IW(w)]?)
(K + [|lw]*)*Su(w) = Sw(w)
Su(w) = !

(2m)? (k% + [lw]|?)*

Whittle (1954, 1963) showed that K (s, s’) = (F15,(+))(s’ — s) is equal to the Matérn covariance (up to a
known scaling constant), with smoothness v = o« — d/2.

Finn Lindgren - finn.lindgren@ed.ac.uk Numerical computation for statistics



_nio SPDE_GVRF_Numerical Bayesianinference Scalingituo  JENNCEITEIELLRELERUIL RETENEN
Simple heat equation

For space-time fields, we write u(s, t), (s,t) € R? x R, and S, (k,w), (k,w) € R? x R.
We drive a heat equation with a noise process £ that is white noise in time and Matérn noise in space, with
parameters matching the heat operator:

ot
(K% =V, - V,)2E(s, 1) = W(s, t).

{'ya + K% =V, - Vs}u(s) = &(s, 1),

The Fourier domain version is
{iw + &2 + | k||*} Gk, w) = E(k,w),
(6% + k][22 (k. w) = Wk, w),
and

1

Su(k,W) = (27r)d+1(’72w2 + (KQ + HkH?)Q)(HQ + HkHQ)a

How differentiable are the realisations?
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_nio SPDE_GVRF_Numerical Bayesianinference Scalingituo  JENNCEITEIELLRELERUIL RETENEN
Simple heat equation (cont)

Using that, in the standardised Whittle-Matérn SPDE, the variance is

I'(v)
. i A —a—d/2
g F(a)ﬁ2”(47r)d/2’ v @ / ’

the marginal spatial spectrum for the heat model is

1 1
Su(k) = /]Rsu(k:,W) dw = m(2ﬂ_)d(n2 + Hk||2)a+15

which is a scaled Whittle spectrum for a Matérn covariance with smoothness v = o + 1 — d /2.

A generalised generalised case

If« = 0, d = 2, then v = 0, which is just outside of the allowed range of the Matérn family. However, for every
11

t,u(-,t) is a generalised random field with singular kernel K (s, s") = =5 Ko(x|s" — s|)).
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Simple heat equation (cont)

To help understand the temporal properties, take the Fourier transform in only the spatial directions:

0 9 9| ~ W(k,t)
— k kt)= ————— -
{’Yat + w5+ | Kl }“( t) (K2 + |[Kk|[2)/2’

so for each spatial frequency k, the temporal evolution of ﬂ(k, t) is an Ornstein-Uhlenbeck process with
covariance

1 ( |tf<&2+||k2)
exp | —|t|——— | .
Ay (w2 k) 7

There is one more property we need to understand: Markov in space
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First order Markov in time

Filtration o-algebras:

a € F oy =0(u(s),s<t), beFf . =o(u(s)s=1)
P(anb|u(t)) = P(a | u(®))P(b | u(t))

Higher order Markov on spatial and spatio-temporal domains

Let A, B, S C D, such that .S separates A and 3.

Fe=o(u(s),s€S), acFy, beFz,
Planb|Fg) =Pla| FGPO| F3)

A\

Markov for generalised random fields

‘Fg O-(<f7u>5af6HR(S))y CLEFZ, be./—‘g,
Planb | Fg) =P(a| FSP[® | FZ)
Numerical computation for statistics




_nio SPDE_GVRF_Numerical Bayesianinference Scalingituo  JENNCEITEIELLEELELUTU RN LY
Markov in space

Markov properties

S'is a separating set for A and B: u(A) L u(B) | u(S)
Solutions to

(k2 =V~ V)u/z u(s) = W(s)

are Markov when v is an integer.

More generally, when the reciprocal of the

spectral density is a polynomial, Rozanov, 1977

In graphs with no edges between A and B (Q = X~ '):
Qap=0

Qs =Qaa

Hajs,B = Ma — Q14Qas(us — pg)

Generally: Markov iff the precision operator Q = R~ Lislocal.
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Markov in space

Qan Qus O

Precision matrix block structure: | Qgs Qgs Qgp
0 Qps Qps
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A partial history of Markov random fields

Rozanov (1977)

Generally: Markov iff the precision operator Q = R~ is local.

Stationary case:
u(s) is stationary Markov <> S, (k) < P(k)~!
where P(k) > 0 is a symmetric polynomial

Matérn/Whittle is Markov for v = 1,2,3...: S, (k) o< (k% + || k[|?)

GMRF Covariance on R?

{SAR(U o k|jw Ky (k|jul)  Whitte (1954)

CAR(2)
CAR(1) 5= Ko(k|ul) Besag (1981)
ICAR(1) — 5= log(||ul]) Besag & Mondal (2005)

On lattices, classical CAR — Matérn models (limits of).
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N 1 = 1o = 3 ST o RPN PR S INRISM  Finite elements Examples Hierarchical Markov Example
Hilbert space approximation ("The SPDE approach” from Lindgren et al, 2011)

Can extend to (non-)stationary SPDE models on irregular triangulations.

From continuous to discrete

We want to construct finite dimensional approximations to the distribution of u() where

[(fi, (K2 =V -V)*2u(-)) pi=1,...,m] £ [(fu W())p,i=1,...,m]

for all finite collections of test functions f; € Hz (D).

A finite basis expansion
n
u(s) = > wi(s)u;
j=1

can only hope to achieve this for a subspace of size n.
Two main approaches:
m Galerkin: {f; = ¢, i=1,...,n}
m Leastsquares: {fi = (k> — V- V)24, i =1,...,n}
We use least squares for « = 1, Galerkin for o = 2, and a recursion for ov > 3.
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Stochastic Green’s first identity

On any sufficiently smooth manifold domain D,

<f7 =V ¢ v.g>D = <vfa v9>D - <f7 ang>6D

holds, even if either V f or —V - Vg are as generalised as white noise.

For now, we’ll impose deterministic Neumann boundary conditions, informally 8nu(s) = Oforalls € 9D. For
« = 2 and Galerkin,

<’(/Ji, (52 — V . V) ijuj>

=N "8 (i) p + (Vi Vi) p Yy
b
= (HQC +Gu

The covariance for the RHS of the SPDE is
[COV(W% W>D ) <’¢1j, W)p] = [<¢}1v ¢J>D] =C

by the definition of V.
Numerical computation for statistics



i D e O UCRI  Finite elements Examples Hierarchical Markov Example
We seek u ~ N(0, X) such that Var{(x*C + G)u} = C:
(R*C + E(K*C +G)=C
Y= (kC+G)'Cr’C+a)!

If 1); are piecewise linear on a triangulation of D, then C' and G are both very sparse, and in addition,
C = diag((1;, 1) ;) is a valid approximation. Then, the precision matrix is also sparse,

Q= (K’C+G)C ' (k*C +G)

and w is Markov on the adjacency graph given by the non-zero structure of Q.
Least squares and Galerkin recursion gives precisions forall v = 1,2, .. .
" Q= (R’C+G)
m Q, = (K’C +G)C ' (k’C + Q) = k*C 4+ 2r*G + GC™'G
" Q= (K*’C+@)C'Q, ,C '(k*C+G)
a Ay >0:Q, =C? {2 eC + G)C’W}a c'/?

(non-sparse for non-integer o)

Finn Lindgren - finn.lindgren@ed.ac.uk Numerical computation for statistics



N 1 = 1o = 3 ST o RPN PR S INRISM  Finite elements Examples Hierarchical Markov Example
Basis function representations for Gaussian Matérn fields

Basis definitions

Finite basis set (k: =1,...,n)
Karhunen-Lodve (k% — V- V) %, k(s) = Ae.k€r k(8)
Fourier —V - Ver(s) = Aex(s
Convolution (k2 =V -V)*2g,(s) = §(s)
General Vi(s)
Field u(s) Weights
Karhunen-Loéve o< ), e, i(s)zk 2k ~ N(0, Ap )
Fourier X Y ek(8)2k 2k ~ N(O, (k% + Ag)™%)
Convolution X Y p9r(8— 8Kz 2 ~ N(O, \cellk|)
General X Yo Vk(8)ug u~N(©0,Q.")

Note: Harmonic basis functions (as in the Fourier approach) give a diagonal @ ., but lead to dense posterior
precision matrices.
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Finite elements Examples Hierarchical Markov Example

SPDE/GMRF realisations and non-stationary models

Finn Lindgren - finn.lindgren@ed.ac.uk Numerical computation for statistics



Finite elements Examples Hierarchical Markov Example

SPDE/GMRF realisations and non-stationary models

(k2 exp(if) — V - V)u(s) = W(s), s € D, Re(u) independent of Im(u)
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Finite elements Examples Hierarchical Markov Example

Link to Sampson&Guttorp (1992) deformation non-stationarity

s » )

..} §

k(s)W(s), s€Q

Numerical computation for statistics
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N s V1o Qi )\ ;| BN B PN ERS UM RERMISM  Finite elements Examples Hierarchical Markov Example
Link to Sampson&Guttorp (1992) deformation non-stationarity

(k(s)2 — V- V)u(s) = k(s)W(s), seQ
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N 1 = 1o - | | ST o NP PR TSN AW Finite elements Examples Hierarchical Markov Example
Link to Sampson&Guttorp (1992) deformation non-stationarity

(R =V -V)u(3) =rW(3), 5€0
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N 1 = 1o - | | ST o NP PR TSN AW Finite elements Examples Hierarchical Markov Example
Link to Sampson&Guttorp (1992) deformation non-stationarity
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1 110 ;| SNV ERR I ST M LPRMISM Finite clements Examples Hierarchical Markov Example
SPDE/GMRF realisations and non-stationary models

(k2 =V -HV)u(s) =W(s), se€D
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Finite elements Examples Hierarchical Markov Example

SPDE/GMRF realisations and non-stationary models
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N 1 = 1o - | | ST o NP PR TSN AW Finite elements Examples Hierarchical Markov Example
SPDE/GMRF realisations and non-stationary models

(k2 =V -V)u(s) =W(s), se€D
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N s V1o Qi )\ ;| BN B PN ERS UM RERMISM  Finite elements Examples Hierarchical Markov Example
SPDE/GMRF realisations and non-stationary models

(k2 =V -V)u(s) =W(s), s€D

Finn Lindgren - finn.lindgren@ed.ac.uk Numerical computation for statistics



N s V1o Qi )\ ;| BN B PN ERS UM RERMISM  Finite elements Examples Hierarchical Markov Example
SPDE/GMRF realisations and non-stationary models

(k* =V -V)u(s) =W(s), seD=S§?
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N s V1o Qi )\ ;| BN B PN ERS UM RERMISM  Finite elements Examples Hierarchical Markov Example
SPDE/GMRF realisations and non-stationary models

(k* exp(if) — V - V)u(s) = W(s), s€ D=5
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N 1 = 1o - | | ST o NP PR TSN AW Finite elements Examples Hierarchical Markov Example
Markov does not mean that dependence is only local

(k(8)? =V - H(s)V)u(s) = k(s)W(s), s€Q
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1 110 ;| SNV ERR I ST M LPRMISM Finite clements Examples Hierarchical Markov Example
Covariances for four reference points
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S 11 o3l =M 1.1 | AT e PV PUR R RIS Finitc clements Examples Hierarchical Markov Example
Hierarchical models

Continuous Markovian spatial models (Lindgren et al, 2011)
Local basis: u(s) = >, ¥ (S)u, (compact, piecewise linear)
Basis weights: u ~ N(0,Q '), sparse Q based on an SPDE
Special case: (k2 — V - V)u(s) = W(s), s€Q
Precision: Q = k1C + 2k*°G + Gy (k* + 2k2|w|? + |w|%)

v

Conditional distribution in a jointly Gaussian model
u -~ N(l'l’ua Q;1)7 y"u’ ~ N(Aua Q;hlL) (AU = %(Sz))
uly ~ Ny, Q)
Quy =Qu + ATQy‘uA (~"Sparse iff 1/}, have compact support”)
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Finite elements Examples Hierarchical Markov Example

The computational GMRF work-horse
Cholesky decomposition (Cholesky, 1924)
Q= LL", L lower triangular (~ O(n(‘”l)/z) ford =1,2,3)

Q lx= LiTLfla;, via forward/backward substitution

logdet @ = 2logdet L = QZlog L;;

André-Louis Cholesky (1875-1918)

"He invented, for the solution of the condition equations in the method of least squares, a very
ingenious computational procedure which immediately proved extremely useful, and which most
assuredly would have great benefits for all geodesists, if it were published some day." (Euology
by Commandant Benoit, 1922)
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Example: 2D georeferenced data

(a) True field

10.0-

75-

> 50-

100-

10.0-

(b) Posterior mean

Finite elements

Examples Hierarchical Markov Example

(c) Posterior sample

observed

100~

> 50-

25-

0.0-
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1 110 ;| SNV ERR I ST M LPRMISM Finite clements Examples Hierarchical Markov Example
How to choose a triangulation mesh?

m SPDE solutions with Neumann boundary conditions are not stationary processes; there is a boundary
effect on the covariance structure; visible as inflated variance (factor 2 for straight boundaries)

m Easy workaround: extend the domain boundary
m Small triangles lead to good continuous function approximation properties
m Small triangles lead to expensive calculations

m Resolve the tradeoff by choosing the triangles to be small enough in relation to the correlation length. Need
intuition!

m Exercise: Given E(ug) = E(uy) = 0, Var(ug) = o, Var(uy) = 0%, and Cov(ug, u1) = pooo,
what is the variance of the linear interpolation (1 — 2)ug + zuq, z € [0,1]?

m When the triangle edge lengths decrease, the "p" values increase and the continuous/discrete model

discrepancy decreases. This can be visualised:
The interactive tool INLA: :meshbuilder () can help build intuition
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Laplace LGCP Method assessmen it Model assessment it

Part 2: Fast Bayesian inference & method and model assessment
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Laplace LGCP Method assessment Model assessment
Laplace approximations for non-Gaussian observations

Quadratic posterior log-likelihood approximation

pu|0) ~ N, Q,"), y|u,0~ply|u)
pa(u|y,0) ~ N Q )

0= V. {Inp(u| 6) + Inp(y | w)
Q=Q,— Vilnp(y|u

s

]

Direct Bayesian inference with INLA (r-inla.org & inlabru. org)

p(0)p(u | 0)p(y | u,6)
PG(U | Y, 0) u=pn

p(u; | y) /PGG(Ui |y, 0)p(0 | y)do

p(0 | y)

The main practical limiting factors for the INLA method are the number of latent variables and the number model
parameters.
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Numerical Bayesian inference Laplace LGCP Method assessment Model assessment

Example: Point process data
Log-Gaussian Cox processes
Point intensity:
_exp<Zb )Bi + u( ))

Inhomogeneous Poisson process log-likelihood:

np({yy} | A) = |D| - /D As)ds + 3 nA(y,)

k=1

The likelihood can be approximated numerically, e.g.
n

/D A(s)ds ~ Z)\(sj)wj,

j=1

where s are mesh nodes, and w; = (¢;,1)
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Numerical Bayesian inference Laplace LGCP Method assessment Model assessment

Example: Point process data (cont)

Discretised field and likelihood:

) = exp Zb )B; +Zwi
p({yek | A) ~ D] = A(s;)w; + me

Then, with Ap = [/\(SL)], Ap = [Q/JJ(SL)] , and AU = [wj (yi)],

Vulnp({y,} | A) = —A}], diag(w)Ap + A, 1
Vi lnp({y} | A) ~ —A}, diag(w) diag(Ap) Ap

and similarly for Vg, V%, and V, Vg.
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Numerical Bayesian inference Laplace LGCP Method assessment Model assessment

Concept illustration: rogue waves
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Mesh of the ocean subset of the globe

lindgren@ed.ac.uk

Laplace LGCP Method assessment Model assessment
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erical

Posterior mean of the log-intensity

Laplace LGCP Method assessmen it Model assessment it

4.0 4.5 5.0 55 6.0




Numerical Bayesian inference Laplace LGCP Method assessment Model assessment

Marginal posterior probabilities for exceeding a threshold

0.0
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Laplace LGCP Method assessment Nodel assessment
Bias and skewness improvement

m For skewed posteriors, the Normal approximation at the mode is biased

m Can use higher order derivatives at the mode to find better approximations

m Example: Match 2nd and 3rd order derivatives of the log-posterior density to a skew-Normal distribution, at
the posterior mode.

Skew-Normal distribution

Letz = (x —m)/s.
The skew-Normal density is defined by p(z:) = 26(2)®(az), where o € IR controls the skewness.

S
The first order derivative of the log-density is —z + Zg(zg .

Higher order derivatives are straightforward (but tedious) to derive.
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Laplace LGCP Method assessment Model assessment
Densities
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Laplace LGCP Method assessment Model assessment
Log-densities

le-02+4
Type

== Approx
=== Exact
1e-06 A == Prior

Approximation

Unnormalised density

= Normal

le-104 = SkewNormal
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Laplace LGCP Method assessment Model assessment
Cumulative distribution functions (CDF)
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Laplace LGCP Method assessment Model assessment
Bayesian method correctness assessment

Foreachk =1,..., K,

E Sample

0™ ~ p(6)
u® ~ p(u| 8F)
y ")~ ply | 08 ™)

HE The method being assessed has posterior density approximation p(h(6, u) |y(k>)

B Compute The CDF value w*) = F5(h(6,uly™) (h(O™), uk)))
If the method recovers the correct posterior distributions, then wk) ~ Unif(O, 1), independent over
k=1,...,K.

If the method does not recover the correct posterior distributions, then we expect to see some deviation from
Unif (O7 1).
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CDF comparison
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Laplace LGCP Method assessment Nodel assessment
Kolmogorov-Smirnov diagnostic plots
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Exact vs Approximate w
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Laplace LGCP Method assessment Model assessment
Prior vs Posterior w difference

0.004

-0.054

-0.101

Approx w — Exact w

-0.154

0.00 0.25 050 0.75 1.00
Prior w
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Laplace LGCP Method assessment Nodel assessment
Procedure for sampling based Bayesian methods

MCMC and other Monte Carlo methods do not provide CDF values, which then need to be estimated.

Posterior correctness assessment from samples

Generate samples (8, w(%) | y(¥)) from the full model, as before.
Foreachk = 1,..., K, generate .J samples from (/%) w10y ~ p(@, u | y™*).
Compute the approximate CDF value as an empirical CDF for the samples:

J
1 1
w® = = gUIF) 4Gk < (k) (L~
]Zi { u?) < RO, u )} 27

which is a normalised order statistic.

Notes:
m The assessment approach assumes we can sample exactly (and independently) from the prior model.
® MCMC methods capable of posterior samples are not necessarily good at generating from the prior.
m The null distribution for the K-S test now depends on both K and .J, as well as the dependence between
the Monte Carlo samples.
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Laplace LGCP Wethod assessment Model assessment
Model vs method vs implementation

m The Bayesian method correctness assessment method specifically targets the implementation of a method

B Model assessment based on output from a method implementation is meaningless if we we don’t have
some trust in the method and implementation

m Information criteria based on the full model likelihood are popular but are often hard to interpret

m Probabilistic predictions can be easier to interpret, and are often cheap to compute (in particular if one is
already doing expensive Bayesian inference)

m We let I denote the CDF of a probabilistic prediction of an observation y

m The context can be cross-validation or estimation/validation/test data splits
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Numerical Bayesian inference Laplace LGCP Method assessment Model assessment

m We want to quantify how well our predictions represent the test data.

m We define scores S(F), y) that in some way measure how well the prediction F' matched the actual value,
Y.
m The scores defined here are negatively oriented, meaning that the lower the score, the better.

Squared errors and log-likelihood scores

m Squared Error (SE): Sse(F,y) = (y — yr)?,
where @F is a point estimate under [, e.g. the expectation fif.

m Logarithmic/Ignorance score (LOG/IGN): S o (F, y) = — log f(y),
where f(+) is the predictive density.

m Dawid-Sebastiani (DS): Sps(F,y) = (y;# + log(c%).
F
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Laplace LGCP Wethod assessment Model assessment
Score expectations and proper scoring rules

m What functions of the predictive distributions are useful scores?

m We want to reward accurate (unbiased) and precise (small variance) predictions, but not at the expense of
understating true uncertainty.

m First, we define the expectation of a score under a true distribution GG as

S(F,G) = Eyc[S(F,y)]

Proper scores/scoring rules

A negatively oriented score is proper if it fulfils
S(F,G) > S(G,Q).

A proper score that has equality of the expectations only when F' and G are the same, F'(-) = G(-), is said to
be strictly proper.

The practical interpretation of this is that a proper score does not reward cheating; stating a lower (or higher)
forecast/prediction uncertainty will not, on average, give a better score than stating the truth.
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Laplace LGCP Method assessment Model assessment
Absolute error and CRPS

Absolute error and Continuous Ranked Probability Score

m Absolute Error (AE): Sae(F,y) = |y — UF
F~1(1/2).

m CRPS: Scres(F, y) = ]fooo My <z)-— F(x)]2 dx

, where - is a point estimate under F', e.g. the median
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Laplace LGCP Wethod assessment Model assessment
Average scores

Average score

Given a collection of prediction/truth pairs, { (F;, y;),7 = 1, ..., n}, define the average or mean score:

n

S{(F,yi),i=1,...,n}) = %ZS(mei)

i=1

m When comparing prediction quality, we often look at the difference in average scores across the test data
set.

m For modern, complex models with explicit spatial and temporal model components, the pairwise differences
may be useful: For two prediction methods, /" and F’,

SA(F;, Fl,y:) = S(Fi,yi) — S(F,y:)

3

—A . A .
We can have S~ = 0 at the same time as all | S| >> 0, if the two models/methods are both good, but
e.g. at different spatial locations.
m How can we assess whether the score differences are indistinguishable?
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Laplace LGCP Wethod assessment Model assessment
How good are confidence/prediction interval procedures?

Tradeoffs for Cls

Desired properties for methods generating Cls for a quantity Y:
El Appropriate coverage under the true distribution, G: Po(Y € CIp) > 1 — «

H Narrow intervals

= A wide prediction F helps with 1 but makes 2 difficult
m A narrow prediction F' helps with 2 but makes 1 difficult

A proper score for interval predictions

The Interval Score For a Cl (L, Ur) is defined by
2 2
Sni(Fyy) =Up — Lr + E(LF —y)l(y < Lp) + E(y —Ur)l(y > Ur)
It is a proper scoring rule, consistent for equal-tail error probability intervals:
S(F, @) is minimised for the narrowest C'I that has expected coverage 1 — .
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Laplace LGCP Method assessment Model assessment
Proper scores

See(F, G) = Eya[Sse(F, )] = Eyncl(y — 1r)?) = Eyncl(y — pa + pe — pr)?]
=Ey~cl(y — na)® +2(y — pe)(pe — pr) + (pe — pr)’]
= Eyncly — 16)°) + 2(uc — pr)Ey~cly — pal + (ne — pr)?
= o0&+ (pe — 1r)’

This is minimised when (1= = fi¢;. Therefore Sse(F, G) > Sse(G, G) = o2, so the score is proper. Is it
strictly proper?

Ey~cly — nr)?

SDS(F7 G) = EyNG[SDS(Fv y)] = o
F

+log(F)

0& + (he — pir)
2

OF

2
+log (o)

This is minimised when /- = ji and 0 = 0. Therefore Sps(F, G) > Sps(G, G) = 1 + log(c?), so
the score is proper. Is it strictly proper?
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Scaling it up

Part 3: Lessons from the EUSTACE project
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