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1. HEAVY TAILS IN REAL-LIFE DATA

1.1. Finance.
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Ficure 1. Plot of 9558 S¢P500 daily log-returns from January 2, 1953, to December 31, 1990. The
year marks indicate the beginning of the calendar year.
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Ficure 2. Left: Density plot of the Sé&/P500 data. The limits on the x-axis indicate the range of the
data. QQ-plot of the S€&P500 data against the normal distribution.
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Ficure 3. Hill plot (dotted line) for the SEP500 data with 95% asymptotic confidence bounds. The
Hill estimator approximates the tail index « in the model P(X > x) ~ cx™® as a function of the
m upper order statistics in the return sample.
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Ficure 4. Hill estimates of the upper and lower tail indices (gains and losses) for the 500 time series
of the S&9P500 index.



1.2. Insurance.
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Ficure 5. Danish fire insurance data losses.
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Ficure 6. Histogram of the logarithmic Danish fire insurance losses.



2. EXTREMAL DEPENDENCE/INDEPENDENCE IN REAL-LIFE DATA

2.1. Independence in insurance data.
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Ficure 7. Scatterplot of one day-lag US fire insurance losses - independence.
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2.2. Extremal dependence in financial data.
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Ficure 8. Scatterplot of 5 minute foreign exchange rate log-returns, USD-DEM against USD-FRF.
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3. EXTREME VALUE THEORY FOR AN IID UNIVARIATE SEQUENCE RESNICK

(1987, 2007), EMBRECHTS, KLUPPELBERG, MIKOSCH (1997), DE HAAN, FERREIRA (2006)

3.1. Max-stable distributions (extreme value distributions).
e A random variable X and its distribution F' are max-stable if
for every n > 2 there exist ¢, > 0, d,, € R, such that for iid
copies (X;) of X,

cgl(Mn —d,) = c_l( max X; — dn) 4

n .
1=1,....n

X.
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e Any max-stable distribution belongs to the location/scale

family of one of the three standard max-stable distributions:

—

b () = , >0, a>0 Fréchet
Uo(x) =e %, <0, a>0 Weibull
Alx) = e © . x€R, Gumbel

e The max-stable distributions are the only possible
non-degenerate weak limits for standardized maxima of an iid

sequence (Fisher-Tippett Theorem 1928, Gnedenko (1943)).
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3.2. Maximum domains of attraction (MDA).
e The distribution F' of X is in the maximum domain of
attraction of the max-stable distribution G € {®,, ¥, A}

(F' € MDA(G)) if there exist constants a,, > 0, b,, € R such that

lim P(a,'(M, —b,) <z) > G(z), =z €R.

n—oo
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e Examples:
MDA (®,): Student with o degrees of freedom,
Cauchy (o = 1),
infinite variance a-stable distributions,
Pareto F(z) = 7%, = > 1,
log-gamma distribution.

MDA (¥, ): uniform, B-distribution.

MDA (A): log-normal distribution,
Weibull F(z) =e @,z >0, T > 0,
gamma distribution,

normal distribution.



e ' € MDA (®,): Regular variation of the right tail
Fx)=1—F(zx)=P(X >z) =z *°L(z), x>0,
for a slowly varying function L:
L(xy)/L(x) — 1, x — oo, for every y > 0.
Then moments of order a« — 4, 6 > 0, are finite, and o + 9,

0 > 0, are infinite.

15
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4. UNIVARIATE REGULAR VARIATION

4.1. Definition and properties. The random variable X and its
distribution F' are regularly varying with (tail) index a > 0,

X € RV(a), if

L(x)

:L'O"

]P)(:I:X>ZE)NP:|: r — OO,

where L is slowly varying and p, + p_ = 1.



e Equivalently,
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. P(£X > cx) B
1Im =S C
eooo P(|1X| > xz)  F

(81

orfor0<a<b

o P(x~'X € (a,b)])

s P(IX| > @)

_ P(@'X € (—b, —a))
lim
=500 P(|X| > x)

for every ¢ > 0.

p+(a™™ —b7%)

p_(a™* —b"7%).
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e Eiquivalently,

lim nP(+X > ca,) = prc © for every ¢ > 0,

Tr—r o0

for some sequence a, — oo satisfying n P(| X| > a,) — 1,

e.8. a, = Fx (1 —1/n),

and FF € MDA(®,):
lim P(a,'M, < ) — ®2+(x), = €R.

n—o0




4.2. Operations on regularly varying random variables.

4.2.1. Convolution.
e Assume X € RV («a) and
—either Y is independent of X and Y € RV («a)
—or P(|Y| > ) = o(P(|X| > x)) as & — oo.
Then

19

Feller’s convolution lemma

PX+Y >z)~P(X >z)+PY >x),

r — 0.
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e Example

X; iid, X € RV(«a) and pyp_ > 0. Then for all n > 2,

P(+(X1+---+X,) >z) ~nP(£X > z), r — 00 .

e Example
If P(]Y| > «) = o(P(|X| > «)) then

P(E(X4+Y)>2) ~P(£X > x), T — 00.
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e Example
— Assume (Z;) iid with Z € RV («) for some o« > 0, E[Z] = 0 (if
expectation exists) and real (7;) such that ) . wi/\(a—s) < 00.

— Then the strictly stationary linear process
Xt:Z'ijZt—ja t ez

is well defined and by Feller’s lemma

P(X >2) ~ > P2 > )
§=0

~ P12 > @) Y [P ()] + P ()7]
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— For example, (X;) is AR(1):
Xy = X411+ Zy, t ez, ] < 1.

Then X; = Z;io ©’ Z;_; and

P(X >a) ~P(12] > ) 3 [P+ (#)F +p- (¢)2].
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The single big jump heuristics for a linear process with X
Zj %Zj Mikosch, W. (2023+)

lim P(|J 42| > 2 | 1X] > ) =1,

T—00 .
JEZL

1im P J {1¢5 %] > @, v Zil > 2} | |X| > @) =0.
j£kETZ
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FIGURE 9. Visualization of a sample path of an AR(1) process Xy = ¢ Xy—1 + Z, t = 1,...,400 (blue) with ¢ = —0.9
(top) and ¢ = 0.9 (bottom). The sample path of the noise (Z¢)¢=1,...,.400 (red) comes from a Student(2) distribution and is
the same in both graphs.



4.2.2. Multiplication. Assume X, X5 > 0 independent, X; € RV ()

for some o« > 0

e If in addition
—either X, € RV ()
—or P(X3 > x) = o(P(X1 > x))
then X; X, € RV(a).

e If in addition E[XJ ] < co for some & > 0 then

Breiman’s lemma
P(X: X2 > z) ~ E[XJ|P(X1 > ), T — 00.
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e Example
— Consider a strictly stationary positive volatility process (o)
independent of the iid sequence (Z;) with Z € RV («a).

— The stochastic volatility process
Xy = 04 4y, teZ,

is strictly stationary.

—If E[c“"¢] < oo for some € > 0 then by Breiman

P(£X: > x) ~ E[oc®]|P(£Z > o), T — 00 .

— The latter result holds for a log-normal o, e.g.
logat:Z'@bjnt—ja te’Z,
§=0

with ) . ¢]2. < oo and iid standard normal (7);).



e Example
— Consider (Z;) iid standard normal.
— Assume the affine stochastic recurrence equation for the
squared volatility sequence (o) has a strictly stationary

solution for suitable positive o, o, Blzﬂ

0't2:a0—|—(alztz_1—|—,81)0'3_1, tEZ.

The strictly stationary process given by
Xy = oy 4y t €z,
is a GARCH(1, 1) process Bollerslev (1986).]

AGeneralized Auto Regressive Conditionally Heteroscedastic process of order (1,1).

2A positive solution exists iff E[log(ay Z% 4+ 31)] < 0 and o > 0.
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The equation E[(a; Z% + 31)%/?] = 1 has a unique positive

solution « and for some ¢y, > 0,

The Kesten-Goldie Theorem|[| Kesten (1973), Goldie (1991)

Ploy > x) ~ cox™ @, xr — 00.

aSee also Buraczewski, Damek, Mikosch (2016)

and by Breiman’s lemma

P(£X: > x) = P(+ot Z: > x) ~ E[(Z1)Y]| P(o > x),

r — 0.




15 20 25
s s s

Volatility
10
s

0 5 100 180 20

Time

Noise

0 5 100 180 20

Time

10
s

SV model
o

—10 -5
L s

0 Ll 100 180 20

Time

FIGURE 10. Visualization of a stochastic volatility process (X¢)1<¢<200 (bottom) with Student noise (Z;) with 2 degrees of
freedom (middle) and the corresponding volatility process (o) (top). The processes (Z;) and (o) are independent. The
log-volatility process is an AR(1) process given by the difference equation log oy = 0.9 log ot—1 + ¢, t € Z, with iid centered
exponential noise (1) with mean 1/4. An application of Breiman’s result shows that P(o0 > x) ~ cz™* as £ — co. We see
that the extreme values of (Z;) trigger the extremes of (X¢).

29
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F1cure 11. Visualization of a stochastic volatility process (X¢)1<t<200 (bottom) with Student noise (Z;) with 8 degrees of
freedom (middle) and the corresponding volatility process (o) (top). The processes (Z;) and (o) are independent. The
log-volatility process is an AR(1) process given by the difference equation log oy = 0.9 log or—1 + 1, t € Z, with iid centered
exponential noise (1) with mean 1/4. An application of Breiman’s result shows that P(o0 > x) ~ cz™* as £ — co. We see
that the extreme values of (o¢) follow the same patterns as the extremes of (X¢). Compare with Figure in the latter case
the innovation dominated the volatility.
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5. POINT PROCESSES AND THEIR WEAK CONVERGENCE REsNick (1987,2007)

5.1. Preliminaries.

A point process is a random counting measure on some state
space E]

e For random vectors &; € F,
M
N(A) =) e (A)=#{i<M:{,€ A}, ACE,
i=1
for M finite or infinite, €, Dirac measure at .

e N (A) is finite for compact subsets A of F.
aWe typically assume E C R%.
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5.2. Binomial and Poisson processes.

Binomial point process
M
N =) e, (&) iid, M finite
i=1

Then
M

N(A) =) 1(& € A) ~ Bin(M,P(¢ € A))

1=1
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Poisson process or Poisson random measure with mean measure

i on (E, £), PRM(p) f
e N(A) ~ Poisson(u(A)) for A € €£.

olf Ay,..., A,, € £ are disjoint then N(A;),...,N(A,,) are
independent.

@ is Radon on E.
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e Homogeneous Poisson process on E C R%:
= ALeb on E, A is the intensity On E = R, , the HPP has

representation

oo

N = Zé‘ria I'i=FE +---+ E;, (Eg) iid Exp(A)
i=1
e Assume A = 1. The process

N, = Zeri—l/a
is PRM () on R, with p,a(:,loo) —x % x > 0, since
Ny(z,00) = #{i > 1:T;"/* > z}
=#{1>1: <z} =N(0,27%,

and N (0,z~“] ~ Poisson(xz™%).

Note: IP)(I‘l_l/a <z)=e " = d,(x).



5.3. Operations acting on Poisson processes.

35

Transformation of the points of a PRM

If N = > 2 e is PRM(p) on E C R*and f : E — E' C
R% is measurable and such that p;(A) = u(f'(A)) is finite for
compact A C E’ then

Nf == Zé‘f(gi) ~Y PRM(;LJ:) on E’.

=1

Marking of a PRM
If N =5 7 e is PRM(u) on E C R* and (V;) is an iid S-valued

sequence independent of (&;) then

Nev =) egv, ~ PRM(u x Fy) on E X S.

=1
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5.4. Max-stable process with Fréchet marginals.

e Mark PRM N,: for iid V; > 0,
N = Zer,;l/a,vi ~ PRM(pq X Fy)
i=1

e For y > 0 define A, = {(z,v) € R : zv > y}.
o If E[V“] < co then

(e ®F)(4) = [ ([ azdz) Fu(do

=0 :y/'v

= [ /o) Fu(do) = y BV



e But

N(A,) = Zel“;l/a,%(Ay)
~ i)_oisson((ua X Fy)(Ay))

— Poisson(y " *E[V?]).

e Hence

1>1

= exp (— E[N(4,)])

= exp (— y *E[V?]) = &V (y).
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Max-stable process de Haan (1984)

Let (V;) be iid positive stochastic processes on 7' = 7Z or
T C R® and E[V*(t)] < oo for all t € T. The process

E(t) =supl; /O Vi(t), teT
1 >1

is max-stable with Fréchet marginals:

PE®) <y) =2 Yy, y>o0.

e Brown-Resnick process:

Vi(t) = exp(W;(t) — 0.51), t>0,
where (W;) are iid standard Brownian motions on 7" = R. The

BR process is a stationary process; see Kabluchko (2009), Kabluchko,

Schlather, de Haan (2009), Stoev (2008), Stoev, Taqqu (2005).
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5.5. Weak convergence of binomial processes to a Poisson process.

(NN,,) point processes on E converge in distribution to a point

process N on E (N, 4 N) if VA, € € with N(0A;) =0 a.s. and
m > 1,

(No(A1) ey Nou(An)) = (N(A1), ..., N(An))

e For each n, let (X,,;)i—12,.. be an iid sequence. Then

N, = >  ex,. is binomial.

Binomial processes converge weakly to Poisson process

N, % N ~ PRM(p)
if and only if for any p-continuity set A C E ] Resnick (2007)

E[Na(A)] = nP(Xn € A) = pn(A) — u(A) = E[N(A)].
(5.1)

aSee also p. [109]
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5.6. Vague convergence of measures Resnick (1987, 2007).

A limit relation of the type (5.1

is called

vague convergence of (p,) to p: ftn — f.

e Here it is assumed that pu,,, ;o are finite on compact sets A C E:

Radon measures.

e Vague convergence i, — & can often be verified on particular

subsets of F, for example on the p-continuous rectangles

(a,b] C E.

e Example: Weak convergence of maxima in MDA (®,).

— Assume (X;) iid, F € MDA (®,): F(z) = L(z)z~%, > 0.

— Choose (a,,) such that nP(X > a,) — 1.
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— Regular variation and the definition of (a,) imply for any
(C, d] C R_|_:
pin(c, d] = nP(aX € (c,d])
P(X >anc) P(X >a,d)
P(X > ay,) P(X > a,)
— ¢ —d = pulc,d].

Y

Note: Every interval (c,d| is a p,-continuity set.
— The relations p,(c,d] — po(c,d] for 0 < ¢ < d imply
unﬂuaonE:RJﬂ

_ -1
— Hence, for X,; = a, "X,

N, = ieaglxi 4 N, = iepw ~ PRM (p4) -
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FIGURE 12. Left: The exceedances larger than the 20th order statistic of an iid sample with Pareto(3) distribution, i.e., P(X >
x) = (x/10)~3, £ > 10. This order statistic corresponds to the red line. The stippled blue lines define the layers corresponding

to &1 = 80, x2 = 100, ...x7 = 200. Right: Counts of the point process Nn in the distinct layers (z1, 2], ..., (¢, x7].



— Joint convergence of order statistics

Let X(,) < --- < X(1) be the order statistics of X;y,...,X,,.

Then for 1 > x5 > ... > x4,
IP’(a,;lX(l) < xTi,... ,ang(k) < :Bk,)
— P(Nn(wl,oo) =0, Np(x2,00) < 1,...,Np(xp,00) < k — 1)
— P(N(2z1,00) =0, N(z2,00) <1,...,N(zg,00) < k—1)

= P(T7Y* < aqyen., T < )

— This means

43

a_l(X(l), S X(k)) —d) (Fl_l/a, S oo I‘,:l/a) -

n
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F1cuRE 13. Top: The 20 largest order statistics of an iid rescaled sample X;/ay, of size n = 1000 with Pareto(3) distribution,
ie, P(X > x) = (£/10)73, £ > 10, and a,, defined by P(X > a,) = 1/1000 (blue bars). The 20 largest points 1"2._1/3 of
the limit point process (pink bars). The stippled blue lines define the layers corresponding to 1 = 0.3, z2 = 0.4, ..., 7y = 1.
Bottom left: Counts of the point process N, in the distinct layers (x1, x2], ..., (x6, x7]. Bottom right: Counts of the point

process Ng_, in the distinct layers (x1, x2], ..., (e, 7]. Compare also with the unscaled point process IN,, in Figure



6. CONVERGENCE OF COMPONENT-WISE MAXIMA

e Consider an iid sequence (X;) of R?-valued random vectors.

e Assume for the moment that the components of X have
identical distribution and P(X(") > 2) = 2 “L(«) for some
a > 0 and a slowly varying function L.

e Choose (a,) such that nP(X; > a,) — 1.

e For a sample X,,...,X,, define the componentwise maxima:

M, = ( max Xz-(j)> .
j=1,...,d

1=1,...,n

e In particular, for each 3 =1,...,d,

P(a;l max Xi(j) < az) — Py(x), xr € R.

1=1,...,n

® When do the components of M,, converge jointly?

45
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e For x = (x,...,xy) > 0 the distribution function of M,, is

d
P(a,'M,, <x) = ( ﬂ {a,El max Xz-(g) < :133})

— IP’( ﬁ ﬁ{a;lXi(j) < :13]})

i=1j=1

_ 1@( 6{(1,;1}(@- c [o,x]})

= [P(a,'X € [0,x])]"
B nP(a 'X € [O,X]C)}n |

n

— |1

e The right-hand side converges to a non-degenerate distribution

function H (x) for all but countably many x if and only if

(6.1) pn([0,%]%) = nP(a,'X € [0,x]°) — p([0,x]°)
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e 11([0, x]) is non-zero for some x > 0 and

H(x) = exp (— u([0,x]), x>0

has Fréchet ®,-marginals:

H is a multivariate Fréchet distribution.

u([O x|¢), x > 0, can be extended to a Radon measure p on

= RY\{0}:

the exponent or tail measure of H.
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(6.1) can be extended to any p-continuity set A C R4 o bounded
away from zero:

pn(A) = nP(a'X € A) = pu(A) <= pn = p.

e We observe for any £ > 0 and p-continuity set A,H

pn(t A) ~ t7% [nt*P(age X € A)]
— t7u(A).

On the other hand, p,(t A) — u(tA).

The exponent measure p is homogeneous:

for any Borel set A C Ri’oz

p(tA) =t7*u(A), t>0.

3(ay,) is a regularly varying sequence: a,, = n'/*L(n).



7. MULTIVARIATE REGULAR VARIATION

7.1. Definition and equivalences.

49

The R%valued random vector X and its distribution are

regularly varying

if |X| is regularly varying and there exists a non-null Radon mea-
sure 1 on RS = R\ {0} such that
Pz~ X e€-) ,
P(|X| > =)

> (e r — 00 .

e Equivalently, for any sequence (a,,) such that

nP(|X| > an) — 1,

(7.1) nP(a 'X € +) = p(+)
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® /1 is homogeneous: since for any small ¢ > 0

P(|X| > tx)
P(IX[ > =)

»p({x: x| >t}) >0, = — oo,

regular variation calculus Bingham, Goldie, Teugels (1987) yields that
the limit is proportionnal to £~ for some o > 0.

® Therefore as * — o0

Pz~ 'X € t A)
P(|X] > =)

> n(tA),

P(x='X €tA) P((tx)'X € A)P(|X]| > tx)
P(IX|>=z)  P(X|>tz) P(X|> )
— u(A)t™
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Homogeneity of pu: p(t:) =t u(-), t > 0, for some o > 0.

We write: X € RV (a, ).

e Regular variation in spherical coordinates: for any fixed norm

|- | and t > 0,
X
P('X'”“’w—me‘) . «
PIX| S o) > u({x: || >t,m € })

X

= o p({x: x| > 1,

=: t7P(O € ).

c})

x|

P(® € .) is the spectral distribution/measure or angular measure

of X on the unit sphere S9! = Sﬁl_l.
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Assume o > 0. Then X € RV (a, ) if and only if as x — oo

P(('il , I§|> € - ‘ X| > z) 5 P((Y,0) € )

for independent Y, ©, Pareto(«)-distributed Y: P(Y > y) = y~“.

From (7.1)) on p. 49 and (5.1) on p. 39 we have:

Assume a > 0 and n P(|X| > a,,) — 1.
Then X € RV (a, ) if and only if

N,=) e, 1y - N~PRM(p), n—oco.
1=1




7.2. Operations on regularly varying random vectors.

7.2.1. Convolution. Assume

e X € RV(a, pux), o > 0,

e there is ¢y > 0 such that
. P(Y] > x)
lim —
r—o0 P(|X| > x)
eif also cg > 0,Y € RV(a, py) and X, Y are independent.

Co »

Then
PX+Ye:) Co
. px(-) +
P(IX + Y| > x) 1+ ¢ 1+ ¢
and for px.,y-continuity sets A,

py (+)
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Multivariate Feller’s lemma

Pz '(X+Y)e A) ~P(z'X € A) +P(z'Y € A), T — 0.
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7.2.2. Multiplication. Assume
e X € RV (o, pux) for some a > 0,
e the d’ X d random matrix A and X € R? are independent,
o £|[|A]|*"¢] < co for some € > 0.

Then

Multivariate Breiman’s lemma Basrak, Davis, Mikosch (2002)

Px~'!AX €-) ,

T R e EEE

o If E[ux(A~'.)] is non-null then AX € RV («, pax) where

() = Elx(AT]
Elux({x + [Ax] > 13)]




e Example: Regularly varying AR(1) process

® Assume X; = pX; 1+ Z;, t € Z, (Z;) iid, Z € RV(«), and
| < 1.

e Then for h > 0,

X = (Xoy -+ » Xn) = Xo (1,05 - -5 0"

+(0,Z1, Zo + @ Z1y e ooy Z + 9 Zp1 + " Z4)
1 0 0
AR o)
=Xo | @ | +Z:i| o et Zy |
: : 0
\ #" / \ ") \1)
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e Feller’s lemma:
P(iﬂ_lxh S ) ~ ]P)(w_1X0 (17 Poyeeen ‘Ph) € )
h
+) P(z7'Z(0,...,0,1,¢,... o"7) € )
i=1
P(£Xo > ) . P(xZ > x)

P(Z| >=z) 7 P(Z] > =)
pz(dz) = (pr1(z > 0) +p_1(z < 0))alz|~* ' dz,

® Breiman’s lemma: > D+

px(dz) = (Bpl(x > 0) +p_1(x < 0))alz| " da,

P(z~'X € )

P(|Z| > x) >MX({y€R:’y(1,cp,...,go ) € })

h
—I_Z”Z({y ER:y(0,...,0,1,¢,... goh—’i) c })

=1



® The case h = 1.
1 . (1 o
P(@ ( a‘P) ) _ p—|-|( 990)|

(_Il(l,so))l 1~+||((11,sc;)|la

I S R = b\, “

O="war) = 1510

PO = (0,+1) = ;o
p_

P(@ — (07 _1)) —

1+ |(17‘70)|a
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Ficure 14. Scatterplot of AR(1) process X; = 0.8X;_1 + Z; with iid student(2) (Z;). Compare with Figure 2.2
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e Ekxample: The stochastic volatility model

e Assume
- Xy =01 Zs, t € 7, is iid with Z € RV ().
— (o) is positive stationary and E[oc*"¢| < co for some € > 0.
— (o¢) and (Z;) are independent.

e We already know by Breiman: P(+X > z) ~ E[c®| P(£Z > x),
ie. X € RV(a).

e We have by Markov’s inequality

P(Xg > d0x, Xy > dx) = P(Xog A Xp > dx)

S E[(UO Vv Uh)a+€] E[(ZO AN Zh)a—|—e] (6 w)—(a—l—e)
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e Therefore, choosing the Euclidean norm | - |, and

Xh — (X(), oo oo Xh_|_1),

P( min(|Xol,...,|Xn|) > d) - P( min(|Xol,...,|Xn|) > d)
P(|Xnlz > ) - P(| Xo| > x)
— 0, Tr — 00.

If X;, € RV (a, pp,) we would have p,((6, 0c0)" ™) = 0 for all

0 > 0, and pj, would be concentrated on the axes only.

e For any Borel sets Aj,..., A;, such that B = A; X --- X A}, is
bounded away from zero,
h k—1
pn(B) = ) ] e0(A) pa(As) H co(A4;) 5
k=0 =0 1=k+1

where (. (dz) = (py.1(xz > 0) +p_1(x < 0)) || L.
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Ficure 15. Scatterplot of stochastic volatility processes X; = o44; with innovations dominating

(black) and volatility dominating (red).
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If X € RV(a, px) and px is supported on the axes then we say

that components of X are asymptotically independent.
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8. REGULARLY VARYING TIME SERIES

8.1. Definition and preliminaries. .

An R%valued stationary time series is regularly varying with
index a > 0 if for any h > 0, Y}, = (Xg,...,Xp) € RV(a, pup):

IP(a:_th - ) v
P(|X| > =)

>:uh(°)7 T —r OO.

e We note that P(|Y,| > =) /P(|X| > ) — ¢, > 0.
e The normalization with P(|X| > ) instead of P(|Y,| > =)

ensures that the family (u,) is consistent:

prp1t(RY X 2) = ppga (- X RY) = pp(-) -
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e General regularly varying time series were studied first in Davis,
Hsing (1995).

e Before 1995, EVT for regularly varying linear processes was
considered by Rootzén (1978,1986); Davis, Resnick (1985,1986); and for
solutions to stochastic recurrence equation by de Haan, Resnick,
Rootzén, de Vries (1989).

e In recent years there has been proposed two alternative
definitions of stationary regularly varying time series, the one
based on the tail process Basrak, Segers (2009) and the one on the

tail measure Kulik, Soulier (2020).



8.2. The tail process Basrak, Segers (2009). Let Y be Pareto(a)

distributed: P(Y > y) =y~ %, y > 1.
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An R%valued stationary sequence (X;) is regularly varying with
index o« > 0 if and only if one of the following conditions holds:

(1) There exist a Pareto(a) random variable Y and an R%valued
sequence (©;);>¢ such that Y, (©;);>( are independent and

P(xz™' (Xoy...,Xn) € - | |Xo| > ) = P(Y (Op,...,04) € -).

(2) There exist a Pareto(«) random variable Y and an R%valued
sequence (©;);<o such that Y, (0,;);<¢ are independent and

Pz (X_py...r Xo) €| |Xo| >z) = P(Y (O_p,y...,0) € -).
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(3) There exist a Pareto(a) random variable Y and an R%valued
sequence (O;):cy such that Y, (0,);cz are independent and

Pz ' (X_pyoo s Xn) €| |Xo| >2z) = P(Y (O_p,y...,0p) € ).

The processes (O;)icr with T = {0,1,...,},{...,—1,0},7Z are
the respective

e forward spectral tail process,
e backward spectral tail process,

e spectral tail process of (X;).

The processes (Y;)icr = Y (©;)cr are the corresponding tail pro-
cesses of (Xy).

O € S ! has the spectral distribution of X,,.
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A proof of sufficiency for h = 1 Assume (X;) is regularly varying

with index o > 0. Then

P(x~1(Xo,X;) € A, |71 Xy > 1)
P(|Xo| > =)

— pi({x € A: |z > 1)

Pz (Xp, X)) €A | |Xo| >x) =

— P((Yo, Yl) E A),

and |Y| is Pareto(a) since for ¢ > 1,
P(z~!Xo| € (¢,00))

P(|Xo| > )
Write Y = |Yy| and (Y, Y:) =Y (Op,0;). Then

s 7% = P(|Yo| > t) .

(%0,%1) /Y - B)

%0/ Y]
(X07 Xl)

|Xo

P(Y >y, (©0,©1) € B) = pu((x0,x1) : [xo/y| > 1,

=y “ /1'1((X07 X1) ¢ |xo| > 1, - B)

= P(Y > y)P((©¢,©,1) € B)
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e Example: Regularly varying AR(1) process; see p. |55].

® Assume X; = pX; 1+ Z;, t € Z, (Z;) iid, Z € RV(«), and
o] < 1.
® Then for h > 0,

Xn = (X0 es Xn) = Xo (L, @s ..o, ")
+(0,Z1, Zo + pZ1y ooy Zin+ 0 Zpn1 + "1 Zy)

1 0 0
YT o
=Xo | & | +Z:1| o +eeo+ 2| ¢
0

o) ey 1)

X0(19§07°°°990h)+Q(Z)'




e Note that for 6 > 0,

P(lz7'Q(Z)| > & | |Xol > 2) = P(l27'Q(2)| > §) — 0.

e Hence for a continuity set A with respect to the limit,
P(z™'X, € A | | Xo| > x)
= Pz 'Xo (1, 0,...,0") +0p(1) € A | | Xo| > )
— P(Y O (1,p,...,¢") € A),

where P(©y = +1) = p..
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The forward spectral tail process of an AR(1) process:

(©0y--+»Oh) = O (1,0, .., ¢"
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e Example: The extremogram Davis, Mikosch (2009, 2012)
e For an R%valued stationary regularly varying sequence (X;)
and Borel sets A, B bounded away from zero the extremogram

is the limit function

pap(h) = lim P(z7'X;, € B | 27'X, € A), hez.
r—r o0

By regular variation of (X;) it is well defined.



e For A = B, pa4 is the autocorrelation function of some
stationary process:
corr(1(z~'X; € A),1(z7'X, € A))

cov(l(z™'X, € A),1(z7'X, € A))
P(z—'X), € A)P(z—'X, € A)]"/?

P(e—1X, € A, Xy € 4)  [Pa—'X, € A)]’
P(QZ_lXO & A) IP)(CB_1XO & A)

= Pz 'Xp € A | 27Xy € A) +0(1).

The limit function is non-negative definite, hence the

autocorrelation function of a stationary process.
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e One can use the notions of time series analysis to describe the
extremal dependence structure in a stationary sequence, e.g.
long/short range dependence or time series spectral

distribution for extremal events.

e For d =1 and A = (1, 00),

paa(h) = lim Plz7'X, > 1| Xo> x)

= P(Y Or>1)

— / Ply®, > 1)ay > 'dy
1

E[(®n A 1)I]



e For the AR(1) process and h > 1,
paa(h) = E[(©¢¢")"]

_{ﬁ+90ahv 906(091)9
|*"[p4 1(h even) +p_1(h odd)], ¢ € (~1,0).

e Recall: corr(Xy, X;,) = ", h > 1.
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Ficure 16. Top left: Sample extremogram for 5-minute GE log-returns. Boxplots at lags 1, 79, 158
using permutations (top right) and stationary bootstrap with mean block size 50 and 200 (bottom).
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Ficure 17. (Left) Ratio sample extremogram with A = B = (1, 00) for 5 minute returns of USD-
DEM foreign exchange rates; see also Figure on p.[I0}] The extremogram alternates between large
values at even lags and small ones at odd lags. This is an indication of AR behavior with negative
leading coefficient. (Right) Ratio sample extremogram for the daily log-returns of the SP500 index.
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8.3. Examples. Take A = B = (1, 00).

® The extremogram of a GARCH(1, 1) process is not very
explicit, but v, 4(h) decays exponentially fast to zero. This is in
agreement with the geometric -mixing property of GARCH.
Short serial extremal dependence

e The stochastic volatility model with stationary Gaussian
(log ;) and iid regularly varying (Z;) with index a > 0 has
extremogram v 4(h) = 0 as in the iid case.

No serial extremal dependence

e Recall: corr(Xy, X;) =0, h > 1.
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Ficure 18. Ratio sample extremogram with A = B = (1, co) for simulations of GARCH(1,1) and SV
models. GARCH(1, 1) process X; = (0.0001 4+ 0.1X2 | 4+ 0.902 ,)°*Z, for iid standard normal
(Z;). Stochastic volatility process X oy Z; for iid student (Z;) with 4 degrees of freedom,
Gaussian ARMA(1,1) process log oy = 0.5log oy—1 + 0.31¢—1 + 1¢.
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Take-home messages

® One can use the extremogram to justify the selection of a
particular time series model.

e For example, the autocorrelation functions of a GARCH(1,1)
process and a stochastic volatility model can be very similar,
the extremogram of a stochastic volatility model vanishes while
it is not the case for a GARCH(1,1) process.

® One could define long/short range dependence in some
meaningful way or the spectral distribution for extremal events

in a strictly stationary sequence.



8.4. The sample extremogram.

e Let (X;) be strongly mixing (possibly vector-valued) regularly
varying.
e Assume m = m,, — oo and m,,/n — 0, and a,, — oo satisfies

P(|Xp| > am) ~ m~1. Then

m n
P, (C) = . Z Itx,/amecy

t=1

iIs a consistent estimator of

ui(C) = lim m P(Xo/anm € C).
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e In particular,

EP,(C) — m(C),
var(Pu(C)) ~ Po*(C) = ™| n(0) +2 3 m(©)

h=1
for

Th(C) = pni1(C x RID 0.

e For p-continuity sets C bounded away from zero,

(m)l/2 [P(C) — m P(a;,;'Xo € C)] 5 N(0,0%(C)).

(pre-asymptotic central limit theorem).

e An analogous result holds for finitely many sets Cj,...

. C),.



e The ratio sample extremogram

m n—h
n Zt:l I{a;}XHhEB,aﬁletEA}

n D i1 I{a,,_anteA}

n—hyp | —1

_ t=1 fzam XH_hEB,am XtEA} : h Z 0 :
> L {am X €A}
estimates
pap(h) = lim P(a;'X, € B|a_'X, € A)
—d(h—1
phi1(A X RO( ) X B)

= — , h>0.
pri1(A X Ry)
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e Pre-asymptotic limit theory for the ratio estimator follows

from the previous central limit theory
n. 1/2/ ~ : : d
()*(Pan(i) = panm(i)) 5 N(O,3),
m 1=0,...,h

where pap.m(h) = P(a'X, € B|a 'X, € A).
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PROBLEMS

(1) The central limit theorem for the ratio sample estimator is
pre-asymptotic. (For applications, the pre-asymptotic centering
pap:m(h) = P(a;'X, € B|a;'X, € A) is more relevant than
its limit pap(h).)

(2) The asymptotic variance-covariance structure of the ratio
sample estimator depends on expressions which are unknown.

Two methods to overcome (2):

random permutations and stationary bootstrap.
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Question for experts in empirical processes.

For practical reasons we would prefer

L P— :
t=1 "{X](py Xt+n€B,[X](  Xt€A}

. h>0,

pap(h) = n
D te1 I{|X|(_n}L)Xt€A}

where |X|(,,) is the m-th largest order statistic. Under mixing and

anti-clustering (see below) condition one can easily show that
1 X (m)/Wn/m 51 ,m — oo,m/n — 0.
For using uniform CLT on triangular arrays we would need to

control the entropy of classes
{xA: x€(1—€e,1+¢)}

for every fixed set A that is a pu;-continuity set.
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9. THE EXTREMAL INDEX OF A STATIONARY PROCESS

9.1. Generalities.
e Assume (X;) real-valued stationary, X ~ F, with right
endpoint zy = sup{x € R: F(x) < 1}, and write
aniirllilz;nXi, n>1.

® Newell (1964), Loynes (1965), O’Brien (1974) observed for numerous

examples and suitable sequences u,, T £ that
for numbers 6x € (0, 1].

® Leadbetter (1983) made this fact preciseﬁ

4See also the monograph Leadbetter, Lindgren, Rootzén (1983)
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Ficure 20. A sequence of iid random variables Y; (Top) with distribution function v F', where F' is
standard exponential. Bottom: the sequence of pairwise maxima max(Y;, Y;y1) with distribution
F. By construction, extremes appear in clusters of size 2. The extremal index is 0x = 1/2.
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9.2. Leadbetter’s condition D and definition of extremal index.

e Idea 1: Split the sample X,,..., X, into k,, = [n/r,| smaller

blocks of length or size r = r,, — oo while k,, — oc:

CXh . °7Xr@9:Xrn—|—17 c e 9X2r@7 <o 7:X(kn—1)rn—|—1a . w)(knrf,3 .

Block 1 Block 2 Block k,,

e Idea 2: Approximate these k, dependent blocks by k,, iid
copies of the first block (X;)i<;<,,: the blocks method s.n.

Bernstein (1926), some kind of mixing.
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For ¢ € N define

IP’( max X; < un) — P(maxXt < un) IP’(maXXt < un)

Opy¢y =— INaAX
i teAUA teAy tEAy

A1,A2
where the maximum is taken over all sets A;, A, C {1,....,n}
such that A; and A, consist of integers 1 < ¢; < --- < 7, and
J1 < -+ < Jq, respectively, with the property j;, — 7, = £.

9

Condition D(u,) holds if o, ,, — 0 for some integer sequence
£, = o(n).

Asymptotic independence of block maxima under D (u,).

Assume the stationary sequence (X)) satisfies D(u,) and
(n F'(uy,)) is bounded. Then

P(M, < u,) = [P(M,, < u,)]" +0(1), n— oo,

for any block sizes r,, — oo and, in the notation used in formu-
lating D(u,,), such that ¢,,/r, — 0 and k,, o, 4, — O.
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Leadbetter’s theorem

Assume
(1) for any 7 > 0 there exists ((u, (7)) such that n F(u,(7)) — 7

(2) D(u,(7)) holds for any 7 > 0

(3) limy, 00 P(M,, < up(T))
exists.

Then there exists Ox € [0, 1] such that this limit coincides with
—Ox T
e :

The extremal index of a stationary sequence
Assume (1), (2) and
(9.1) lim P(M,, < u,(71)) = e X7

n—oo
for any 7 > 0 and some Ox € [0,1]. Then 6x is the extremal

index of (X3).
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e For an iid sequence (X;), (9.1) with Ox = 1 <= n F(u,) — T.

e ' ¢ MDA(H) holds <= n F(a, = + d,) — log H(x), Vx, for
suitable a,, > 0,d,, € R.
o If Ox > 0 exists: P(a ' (M, —d,) < z) - H*(x), Vo, and HX

is of the same type as H.



92

9.3. The extremal index as reciprocal of the expected cluster size

above high thresholds.

® What is an extremal cluster?

e Folklore: Ox is the reciprocal of the expected cluster size above

high thresholds
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e An adhoc statistical answer:

Blocks method:
CXl’ 000 g eracxrn—i—la 000 0 X2r@7 000 7:X(kn—1)rn—|—17 000G )(knrf,3 .

VvV VO V.

Block 1 Block 2 Block k,,

An extremal cluster in the sample X;,..., X, a block if there is
at least one exceedance of u = u,, T r in this block.

e By stationarity of (X;) the expected cluster size in one block is
given by

n P(Xt > Ug, . Mr > ’u,n)

E[ 1(X; > up) | M, > un} _
; ; P(M, > u,)

— P(M, > uy,)

ran P(X > un)
P(M, > u,) "
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® Leadbetter (1983): under mild regularity conditions on (X;) and if

u, T xr the limit

P(M, > up,
0 — lim 6, — lim ¢ un) < (0,1]

exists and 60 = Ox.

For this reason, the extremal index 0x is often referred to as

the reciprocal of the expected extremal cluster size above high
thresholds.
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Assume

e V7 > 0 there exists u,, = u, (7) such that n F(u,) — 7.
e Anticlustering condition (AC){]

lim lim sup P(Mk,rn >u, | Xo > un) =0.

k—oco  n—oo
e Mixing condition (M)
P(M, < un) = [P(M,, < u,)]™ +o(1).
Then
e If (AC) holds then
lim lim sup ‘en _P(My, < un | Xo > u)

k—oco  p—oo
and lim inf,, ... 6,, > 0.
e If also (M) holds and 6 = lim,, ., 0,, exists then 0y exists and
0 = Ox.

OM: = maxs<i<t X; for s < t.
bSatisfied if conditions on p. (89 hold.

=0,
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e (AC) is easily verified when (X;) is m-dependent or W-mixing.
Then also (M) holds.
e Example: Regularly varying AR(1) process. Assume
Xy =X 1+ Zsy || <1, (Z;) iid and Z € RV (),
nP(|X| > a,) — 1.
Recall that X; = ¢' X, + Q+(Z) and max;<,, |Q:(Z)| = Op(1) as
t — oco. Then for a Pareto(a)-distributed Y,

P(Mir, > an | Xo> an)
< eP(a;|Xol llf + 0s(1) > 1 | [Xo| > an)

_)P(Y|90|k>1)7 n — oo,

— 0, k — oo.



e (AC) is much weaker than Leadbetter’s D’(u,) condition:
[n/4]
lim lim sup Z P(X: > u, | Xo > uy) =0.

£— 00
n—oo 7

Under D(u,), D'(u,), for a stationary Gaussian sequence (X3)
with standard normal marginals, with n ®(d,,) ~ 1,
u, = x/d, + d,, and corr(Xy, Xp) = o(1/log h): Leadbetter,

Lindgren, Rootzén (1983)

d,(M, —d,) > G~A and 0x =1

97

No extremal clustering for all reasonable Gaussian sequences.
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e Example: The extremal index of a regularly varying sequence
Assume
— (X}) stationary and non-negative.
— (AC) holds for u,, = a,.

Then 6 = lim,, ... 0,, > 0 exists and has representation

0 = IP(Y sup 0; < 1> — E[(l - sup@f) }
t>1 t>1 +

= E[sup OF — sup@ta} .
>0 t>1

If also (M) holds for uw,, = x a,, > 0, then 0x exists and
Ox = 0.

e Proof. By regular variation, for fixed k,

P(My < an | Xo > an) — IP(Y ‘max 0, < 1)



But if (AC) holds,

lim limsup |0, — P(My < u, | Xo> up)| =

k—oco  p—oo

and liminf,, ... 6, > 0. Hence

6 = lim 6,

n—oo

= lim ]P’(Y max O, < 1)

k— oo t=1,...,k

IP(Y sup 0, < 1> .
t>1

and 6 > 0.

If also (M) holds, 6 = 0x .

99
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e ixample: Assume asymptotic independence. Then ®; = 0 a.s.

for t 2 0. Hence
0 = IP(Y sup O, < 1)
t>1

= 1(0<1)=1,

andH:9X

(W)
t

Q




10. TIME-CHANGE PROPERTIES OF THE SPECTRAL TAIL PROCESS BASRAK,

SEGERS (2009)
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Change of measure

For any process (W)
PX(W € )

we denote

- | O
TR )

— rl_L
LE ||©4]“]
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The spectral tail process (0;) of an R%valued regularly varying

stationary sequence has the time-change properties:
1. For any t € Z,
E[|©4]] = P(©_; # 0).

2. For any t € 7Z such that P(©®_; # 0) > 0, and any h > 0,

(@t—ha ) @t-l—h) c ) .

P((@—hw"a@h) E. | @—t¢0) — Pta( |@ |
t
Moreover, E[|O;|“] = 1 if and only if for any h > 0,

P(©_p,y...,04) € ) = P?((@t_h,|.é;|, Ot1n) c ) .
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e Eixample: Stationary solution to stochastic recurrence equation.
o X; = A Xy 1+ By, ((A¢; By))tez, A, B > 0, and
—the conditions of Kesten-Goldie hold, in particular E[A%] =1
for some o > 0,
e Then (X;) is regularly varying with index o and the forward

spectral tail process is given for h > O,H

(@0,...,@h):(1,H1,...,Hh), Hh:Al"'Ah.

SProof is similar to an AR(1) process; see p. .
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e The backward spectral tail process for h > 0, t = h, by

time-change:

P((®-hy.--,On) €| O_p #0)
= P((®-p,-..,0On) € )

_ I{D}O‘L((@O"”’@%) c .)
Oy,
_ o[ T 1((1,H1,...,H2h) e)}
LE[II%] 11,
R Iy | P} I2p
= [ (o, L, e Ty
: 11, 11, 11, I1;

since E[I1?] = (E[A%])” = 1 and P(©_;, # 0) = E[O}] = 1.
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e Write for 7 > 1,

i —1
I, = e, Si:ZIOgAt, S_; = ZlogAt.

t=1 t=—1

e Then

P((©_pn,...,0_1) € C1,(Op,...,04) € Cy)
— E{eaShl((e_Sh,... ,eSh-175n) ¢ )
1 ((1, eSni1=Sh_ . eSm—Sh) ¢ Czﬂ
- E{eas—hl((e_s—h,... e S-1) ¢ C’l)}
P((l,esl, ...,e%) ¢ Cg)}
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Forward and backward spectral processes are independent.

Recall: pI‘OVGd by de Haan, Resnick, Rootzén, de Vries (1989)

ox = E[(1-supog) | —E[(1 - suprr) |.

t>1 t>1

e Ox can also be written as (Sy; = 0)

Ox = ]P’a< — min S; < O)P(min S < O) ;
t<—1 t<—1

where P*(A_; € -) = E[AJ1(A: € +)], t > 1.

e For A; = exp(+/2N; — 1) we have o = 1, and Chang, Peres (1997)
2 1 ¢(0.5)
)~z (

0« zP(minSt <0

) ~ 0.2792.
t<—1
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L*-properties of the spectral tail process Jansen (2019)

Denote ||x||o the £%-norm of any sequence x = (x;);cz € (R?)Z:

Il = el

teZ
We have the equivalence between the assertions:

o ®;, —0ast — oo a.s.,

o O, —0ast —> —o0 a.s.,

e |O|, < co a.s.
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11. POINT PROCESS CONVERGENCE FOR STATIONARY REGULARLY

VARYING SEQUENCES Davis, HSING (1995), BASRAK, SEGERS (2009)

11.1. Point process convergence.

e The Laplace functional of a point process N on E C Rd:ﬂ

Un(f) =EBexp(— [ faN),  feck,
E
determines the distribution of INV.
e N, % N on E if and only if Un (f) — ¥n(f) for a suitable

class of functions f, e.g. f € (C}L{.

e Example: N =) " e, . Then

Un(f) = E|exp (- i_oj f€))]-

6@}'} consists of the continuous functions f > 0 on E with compact support.
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Example: (X,,;) triangular array of row-wise iid random vectors
and nP(X,; € -) = u(-) for some Radon measure ;. on F.

Then for N,, = > | €x ., Resnick (2007)

U, (f) = E[exp(—if(xm))}

= (Elexp(—f(Xa)))"
_ (1 Cn(1l- E[e—f(an)])n

n

(1 — Ju (1~ e_f(x)) nP(X, € dx)| >n

n

— exp ( - /E (1-— e_f(“’))u(dx)) — U (f).

e Uy is the Laplace functional of a PRM(u).
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o If (X;) iid, X € RV (e, pux), Xyt = a, 'Xy, then
nP(X,; €+) =nPla'X € ) — ux on E = R? and

& d
N, =) e,-1x, — N ~ PRM(ux).
t=1
e Now consider an R%valued regularly varying stationary
sequence (X¢).

e Recall the blocks method: for »,, — oo, k, = [n/r,],

‘\Xla c e 9X’r@9CX'rn—l—19 c e 7X2fr@a c e a;X(k:n—l)rn—Hv oo ,an,,@ .

~"~ "~ ~"~
Block 1 Block 2 Block k.,
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Mixing condition (MC) for point processes.

Assume nP(|X| > a,) — 1 and for f € Cj,
Un,(f) = (Tg, ()" +o(1), n— oo,

where N, = > ", €,-1x,

o (P ( f))"’ is the Laplace functional of

N, — Z N, ;, (N, ), i =1,...,k, iid copies of N,,.
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Anticlustering condition (AC){]
lim limsup P(M > a, | [Xo| > a,) = 0.

k—oo nsoo

x| _
GM ;' = maxX<i<t | X|; for s < .

Remark the same anticlustering condition as for the existence of

the extremal index for the threshold u,, = a,,.



113

Point process convergence
Davis, Hsing (1995), Basrak, Segers (2009) Assume

e (X;) is an R%valued regularly varying stationary process (X;)
with index o« > 0

e (AC) and (MC)

o nP(|X| > a,) — 1.

Then N, i) N where
Un(f) = exp ( _ / E[e_ 2= fy @t)(l — o fly @o))] d(—y_a)) )
0

The process IN is a Poisson cluster process:

© @) © @)
N:ZZ&:I‘._UO‘QZ-]-’ n— oo,

?

i=1 j=1
where
e (I';) are the points of a unit rate homogeneous Poisson process
on (0, c0)

e independent of the iid sequence (Q;;);cz versions of the spec-
tral cluster process

©
1©]la

Q:
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11.2. The spectral cluster process Buritic4, Meyer, Mikosch, W. (2021).

o If ©; = 0 a.s. for t # 0 (asymptotic independence) then

N=) Sro1/ag,, ™ PRM (px) -

=1

Then Q = © = (...,0,0,,0,...)

(W)
1

Q
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e (X;) a stationary AR(1), X; = ¢ X;_1 + Z; with ¢ € (0,1), and
(Z;) iid satisfying RV,
i =0,/0lla = O +1t>0)(1— ¢V,

J independent of ©F, P(J = j) = (1 — ¢%)¢p?*,5 > 0.

(W)
1

Q
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e (X;) a stationary AR(1), X; = ¢ X;_1 + Z; with ¢ € (0,1), and
(Z;) iid satisfying RV,

@ = ©0,/Ola = @OF1(J+t>0)(1— ")/,

J independent of ©F, P(J = j) = (1 — ¢%)¢p?*,5 > 0.

()
1

Q
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® (X;) causal solution to SRE, X; = A; X; | + By, ((As, By))
positive iid and ((A, B)) satisfies Kesten-Goldie theory then

©, = A¢--- A1, t20,

and ©; — 0 a.s. since E[log(A;)] < 0 holds.

()

t

Q

We take A; = e™:~1/2 such that (IVy) is iid gaussian noise, and we follow Example 6.1. in
Janflen and Segers (2014) where ®_;, = A_;--- A_4, for t < 0.



118

e (X;) causal solution to SRE, X; = A; X; | + By, ((A, By))
positive iid and ((A, B)) satisfies Kesten-Goldie theory then

©, = A¢--- A, t20,

and ©; — 0 a.s. since E[log(A;)] < 0 holds.

()

t

Q

o.......v..[.rTIHT.......

0

We take A; = e™:~1/2 such that (IVy) is iid gaussian noise, and we follow Example 6.1. in
Janflen and Segers (2014) where ®_;, = A_;--- A_4, for t < 0.
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® (X;) causal solution to SRE, X; = A; X; | + By, ((As, By))
positive iid and ((A, B)) satisfies Kesten-Goldie theory then

©, = A¢--- A1, t20,

and ©; — 0 a.s. since E[log(A;)] < 0 holds.

()

t

Q

o—....o..TIT.TTXTT‘I'?.....oo

0

We take A; = e™:~1/2 such that (IVy) is iid gaussian noise, and we follow Example 6.1. in
Janflen and Segers (2014) where ®_;, = A_;--- A_4, for t < 0.
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e (X;) causal solution to SRE, X; = A; X; | + By, ((A, By))
positive iid and ((A, B)) satisfies Kesten-Goldie theory then

©, = A¢--- A, t20,

and ©; — 0 a.s. since E[log(A;)] < 0 holds.

()

t

Q

o—o..To?.I..?.IT?oTTTvo....

0

We take A; = e™:~1/2 such that (IVy) is iid gaussian noise, and we follow Example 6.1. in
Janflen and Segers (2014) where ®_;, = A_;--- A_4, for t < 0.
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11.3. Extremal index of (|Xy|).
Let (X.) satisfy the conditions of Theorem. For x > 0, denoting
MIXl = max(|X4],...,|Xx|), we have

lim P(M,, < xa,)

n—o0

= lim P(N,((z,00)) = 0)

n—0o0

= P(N((x,00)) = 0)

_ ]P( /e S < )
max I'; 7" max |Qyj| < «

P(0< oY/ (p-t <1>
< max ;2™ max |Qyl) <

— exp ( - m_aE[I?gzx |Qj|o‘]) ,

because A = {x € R%: |x| > z} is a continuity set.

Ox| = Elmax;cz |Q¢|“] € (0,1] is the extremal index of (|X;|).
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12. LARGE DEVIATIONS HuLT, LINDSKOG, MIKOSCH, SAMORODNITSKY (2005)
12.1. Heavy-tailed large deviations in R, A.V. Nagaev (1969), S.V. Nagaev
(1979), Cline, Hsing (1998).
e Z, iid positive, regularly varying with index a > 0,

Sp=Z1+---+Z,) — by, b, =nE[Z] for a > 1, =0 for a < 1.

olf \, =+vanlognanda>aoa—2, a> 2,

PA'S, > x)
sup — 1| — 0.
2>\, | M P(Z1 > @)
e Equivalently, for pu(x, 00) = =<,
P(\1S, € (x,00
sup G (@, ))—u(az,oo) — 0.
x>1 nP(Z1 > An)

e Analogous results exist for a > 2 and general regularly varying

L.
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12.2. Extensions to stationary sequences.
® Davis, Hsing (1995) for certain mixing sequences, o < 2
® Mikosch, Samorodnitsky (2000) for linear processes.
® Konstantinides, Mikosch (2004) for solution to stochastic recurrence

equations
X = Ay Xy + By,
where (A;, B;) are iid pairs, B; regularly varying with index
a >0, E|A|*° < oo
® Mikosch, W. (2013) for general Markov chains, including the

stochastic recurrence equation where E[A] = 1.
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Large deviation and cluster index
Bartciewicz, Jakubowski, Mikosch, W. (2011), Mikosch, W. (2014), Buritica, Mikosch, W.
(2023+)
Assume
e (X;) is an R -valued regularly varying stationary process (X;)
with index o > 0,
e the anti-clustering condition (AC),
e the vanishing-small-values condition (CS;): for all § > 0

L PO o (X 1( Xy < eXy) — E[Xi1( X < edp)] > 0 A\,)
lim lim sup
=0 pnooo ’I’LP(X > >\n)

=0.
Then the large deviation principle holds
PALS, > A)

If ¢(1) < oo then c¢(1) = E{(Ztez |Qt|)a} is called the cluster
index.

>»c(1) > 0.




125

Remark that
e If c(1) is finite then c(1) = E[||Q||{] whereas 0x = E[||Q[|]-
The cluster index shares with the extremal index a similar
simple expression with respect to (Q;).
® ¢(1) = oo is possible when 6x > 0.
e The temporal dependence is responsible for:
- a negative dependence in the tail of the maxima and partial
sums (a < 1) that are smaller than in the iid case because
Ox <1l,a>0,and c¢(1) < 1, a < 1,
- a positive dependence in the tail of the partial sums (a > 1)

that are larger than in the iid case becasue c(1) > 1.
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12.3. Heavy-tailed large deviations for stochastic processes.
e X" € R? satisfies a large deviation principle if there exist
Yns An — 00 and a non-null Radon measure u such that
T PA'X™ € 1) = p(-) .
e X" € D = (D([0,1],R%), J;) satisfies a large deviation principle if
there exist ~v,,\,, — o0 and a non-null boundedly finite

measure m such that

Yo POTIX™ € 4) B m(-) .



e This convergence can be expressed in terms of the
finite-dimensional distributions and tightness analogous to
regular variation of stochastic processes. Hult and Lindskog (2005).

e The continuous mapping theorem holds:
Yn P(R(X'X™) € +) & mo h= ().
for a.e. continuous mappings h : D\{0} — E ensuring that
h~!(B) is bounded in D\ {0} for bounded B C E.

e The temporal extremal dependence for stochastic processes is

an active research topic Basrak, Planinic and Soulier (2018), Soulier (2022).
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Example: Regularly varying random walks in R?

e 7Z,, € R? iid regularly varying with index a > 0 and limiting

measure g in R\ {0}
So=0, S, =Zi+-+Z,, n>1.

® The corresponding random walk process in D) (Donsker process)
Sn(t):S[nt]7 0<t<1.
Assume A 'S, %, 0 and in addition

An/VnlTT — oo for some v > 0 if a = 2

An/y/m logn — oo if a > 2
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e Then in D\{0}
> m(-) .
n P(|Z.| > \,)
® The measure m satisfies

m({xeD:x=ylyy,v €[0,1],y € R"\{0}}*) = 0.
e This supports the idea of heavy-tailed large deviation
heuristics: The random walk S™ reaches the rare set
AnA C R {0} by one jump due to exactly one extraordinarily

large step size Z;.
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12.4. Ruin probabilities in R.
e Z, iid positive regularly varying with index o > 1.
e Then forc>0,S5, =21+:--+ 242, —nEZ;, as u — 00, Embrechts,

Veraverbeke (1982)

1 1
u:P(sup(Sn—Cn) >u> ~ — uP(Zy > u).
n>1 ca—1

e In an insurance context, the random walk with negative drift

S,, — cn describes the cash balance between arriving claims and

linearly growing premium income.
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Random walk with drift, n=500 Random walk with drift, n=5000
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FIGURE 21. Random walk based on iid Pareto(2) step sizes (X;) with expectation E[X] = 2. The graphs show the random walk
(T3)i=1,...,n, With negative drift based on the step sizes Y; = X; — (E[X] + §) = X; — 2.005 for different n. Top: n = 5 x 102
(left), n = 5 x 103 (right). Bottom: n = 5 x 10% (left), n = 5 x 10° (left).
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Ruin probability and cluster index
Mikosch, W. (2014)
Assume
e (X;) is an R -valued regularly varying stationary process (X;)
with index o > 1,
e the anti-clustering condition (AC),
e the vanishing-small-values condition (CS,),
ec(l) < oo.
Then forc¢ > 0,5, =21+ :--+ Z, —nEZ;, as u — oo,

1 1
¢u=P<Sup(Sn—cn)>u>~C( ) uP(Zy > u).
n>1 c aoa—1

In this setting we have ¢(1) > 1 and ¢(1) = 1 in the asymptotically

independent case only.




13. THE POINT PROCESS OF EXCEEDANCES

13.1. The point process with time stamps.

Consider the point process with time stamps

No=) Cuiixyim> "1,
1=1
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Condition A(a,,)

For all sets B; x A; C R* x (0,1], j =1,...,k, k > 1, such that
A;j = (sj,tj] for 0 < 51 <t < -+ < s, <t <1and Bj is any
finite union of rectangles of the type (a,b] bounded away from
zero, we have

k
E[e” 2= Nn(Bix4)] _ TTE[e MBi*4)] 0, n — oco.

J=1
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Convergence of the point process with time stamps

We assume the conditions of the point process convergence The-
orem and A(a,). Then, on the state space R? x (0,1], we have

Nn i) N = Z Z €(Fi_1/aQijan)

1=1 j=—00
where (U;) is an iid U(0,1) sequence independent of (I';);>1,
(Qij)iz1,jez-

Remark that the limiting mean measure is diffuse:

p®A({(x,t)}) = 0.
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13.2. The point process of exceedances.

Following Hsing (1993), for & > 0 consider the point process of

exceedances with state space (0, 1]:

Mne(s) = No({y : ly| > 2} x ) = Zei/n(°) 1(|Xs] > zay).

Under the previous assumptions, using a continuity argument we

obtain

Me(r) = na(-) == N({y : ly| >} x )

=)D 1(T; Q| > ) ev,(+) -

i=1 jEZ
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Then

E[exp (= [ fwma(w))]

1 o0
— exp ( — / / E[l _ e ) X 1(y|Qj|>CL’)} du d(—y_a))
0 0

1 o0
0 0

We recognize the Laplace tranform of a compound Poisson

process.
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One can rewrite the limit as

where

e N, is a Poisson process on (0, 1] with intensity x~¢,

e for an iid sequence (Y;) of Pareto(a)-distributed random

variables which is also independent of (Q;),
& =) 1(Y%1Qyl > 1),
JEL
e N, (&) are independent.
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13.3. Probability of exceedances.
We deduce the relations, using the order statistics

1Ql1) = |Q|2) = - -+ of the tail cluster process,
o P(&1 > 0) = P(Y maxeez [Qi > 1) = E[|Q|(})] = Ox),
o P& = j) = E[QI%, — Q%)) = 7.

The expression of the statistic m;, 7 > 1, in terms of Q is simple.
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FIGURE 22. We consider the log-returns of the Bit Coin USD stock prices from 17 September 2014 until 8 January 2021. Top:
Graphs (¢/n,1(|X;| > q)), @ = 1,...,n, for the 97% (left) and 99% (right) empirical quantiles of the absolute values of
the sample. The extremal clusters of high level exceedances are well visible. Bottom: The corresponding graphs for the cluster
lengths of the exceedances of the 97% (left) and 99% (right) empirical quantiles of the absolute values of the sample.
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In practice we only observe the &; given that & > 0. We have

E[é: | & > 0] = ) P(Y;|Qq| > 1] & > 0)

JEZ
ED ez 1Qu 17
P& >0)
1
O

Similarly

P(51=j|£1>0)=%-

The statistic 7;/6x| can be understood as the probability of

recording a cluster of length j.
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14. CLUSTER INFERENCE

We observe a sample (Xy,...,X,) from a stationary regularly

varying time series (X;) of order o« > 0.

14.1. Large deviations of £*-blocks Buritic4, Mikosch, W. (2023+).

For inference purposes, let r, — oo, k, := [n/r,| — oco.
X[l,n] — (X[l,rn] ’ zc[Tnj—flﬁrnla IR gc[n—:f—l—l,nl)'
Blﬂ“n B2,7“n Bkn,rn

In the following we use a Peak Over Threshold method over blocks

with large

1Biralla = (> 1%l
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Large deviations for £*-norms of blocks

Assume (X;) and (x,) satisfy AC, CS,,

- PO i1 (X “1(|1Xe|* < exyy) > dxy)
lim lim sup =0,
e=0 00 ’I’LIP)(X > An)

and (| By, || > ,,) — 0.
e Then,

P(>[[Brrnlla > @r,) / (raP(|Xo] > ®r,)) — (),

where c(a) = E[[|Q||2] = 1.
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e Moreover,
P(IBirlla > Y Ers 1B, |l Brr, € « | 1 Brrylla > 2r,)
—y *P(Qe-), n — oo,
and the convergence holds for a family of shift-invariant

£*-continuity sets.
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14.2. Bias - variance analysis.
Let r, — oo, k, := [n/r,| — oo.

X[1,n]

) * zc[n—rn—l—l,ni)-

Bl,'r‘n BZ,’rn Bkn,’l"n

(Xi1rn] » Xrpt1,2r,)

Aim:
Infer E[f(Y Q)] for suitable cluster functionals f : £* — R.

We propose to estimate the statistic f@ = E[f(Y Q)] by

kn

Z f(Bt/”Bt||a,(m+1))1(||Bt||a > ”Bt”a,(erl))a
t=1

where ||B||o,1) 2> -+ 2 ||Bl||a,k,) and m = m,, — oo.

fa.— L
m
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Asymptotic normality Buritica, W. (2023+), Kulik, Soulier (2020), Cissokho, Kulik
(2021)

Assume AC, CS,, and further mixing and bias conditions. There

exists m = m,, — oo, k,/m, — oo, such that for suitable

f 0% = R,

V(e — 9 4 N(0,var(£(YQ))),
with m = m, = |[k.P(||Bis,|la > z.)].
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(1) The asymptotic variance var(f(Y Q)) can be degenerate to 0

for simple spectral tail processes (Q;),

(2) We promote the use of order statistics of a-norm blocks such

that
1Bllasiomy /@, > 1.
where m,, = [k, P(||Bi,[la > 2:,)],
(3) The a-cluster approach allows to choose r, achieving a good

bias-variance trade-off using the estimator FQ and the

estimation of the asymptotic variance var(f(Y Q)).
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Heuristic on the number of extreme blocks:

For iid sequence, using the single big jump principle
myp = (kn]P)(”Bl,Tn”a > '/'B'rn)—l ~ nP(|Xo| > zr,) .
By the large deviation principle (because c(a) = 1!) we also have

my ~ knP(”Bl,'rn”a > xr,) ~ nP(|Xo| > x,).

The tuning parameter r,, does not dependent on the underlying

time dependencies within the £“-block!
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14.3. Cluster-based inference Buritics, W. (2023+).

Extremal index inference.

If fo(xe) = |[(xe) |2 /1] () |5 then,
Q= E[Qla] = 01x)-
New estimator of the extremal index based on extremal ¢*-blocks:

%) kn 1Bl
Oxia = mim iz 1(Billa > [1Bllaymin)s

For linear processes, ||Q||- is deterministic and the asymptotic

variance is null

var(f(Y Q)) = var(||Q[|S) = 0.
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Recall the relation

ER ez 1(YQ™| > 1)) = O,

yielding the estimator, for large threshold wu,
k
~ 21 (B[ oo > u)
Oixl,00(u) = S50

23;1 1(| Xt > u) .
The so-called blocks estimator of Hsing (1993) is defined letting

u = |X|(m+1).

We use a better variant replacing the threshold u = |X|(,,;1) with
u = || Bt||oo,(m+1)

. " —1
Oxlo0 = (rrmt 1UXel > [1Billoo,mt1))) -
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Cluster index inference.

If f o () = ([ () 19711 (<) [ then,
o= E[Qls] = e

New estimator of the extremal index based on extremal ¢“-blocks:

NTh [IBellT
c(1)y = Z 1B ”1 L([[Btlla > [IBlla,@m+1)) -
t

Using a version of Cissokho and Kulik (2021) with a block dependent

threshold we also consider the alternative
kn
) = St 1B > Bl onin)
> (X > [|B| ooy (mt1))
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14.4. Numerical experiments.

Simulation setup

e We simulate 1000 AR(1) trajectories (X)¢=1....n,
X = X1+ Z;, for n = 3 000.
e We fix m = m,, = [n/r?] and we use that
My, ~ n/r,P(||Billa > @) = o(n/ry).
e The a-cluster based approach requires the estimation of a. We

use the estimator from de Haan, Mercadier, Zhou (2016).
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Simulation results

Extremal index inference.

Oix, Oix,

0.594—----- T == - - =3 -

02524 - == === = = = e s

block length block length

FIGURE 23. Boxplots of estimates §|X|,a (blue) and §|X|,°o (white), from observations (X¢)¢=1,
with student(a) noise, @ = 1.3 and ¢ = 0.8 (left), ¢ = 0.5 (right), such that n = 3 000.

n from a causal AR(1) model

coey
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Cluster index inference.

2 A 8 16 b 2 4 8 16 3
block length block length

049Jﬁ|i B 0.626-—1_-[—---%'1'---;4-':1-- i l
: lTT%éH{ T TTTeT

6

ceey

model with student(a) noise, a = 1.3 and ¢ = 0.8 (left), ¢ = 0.5 (right), such that n = 3 000.
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15. CONCLUSIONS

e Motivated by risk analysis it is mandatory to better
understand extremal dependence in time.

e Recent advances in applied probability clarify the objects of
interest.

e A book in collaboration with T. Mikosch is almost finished...

e Many statistical problems remain open!

Thanks for your attention!
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