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École Polytechnique

Fall 2024

Mathieu Rosenbaum Rough volatility 1



Table of contents

1 Some elements about volatility modeling

2 Building the Rough FSV model

3 Application of the RFSV model : Volatility prediction

4 The microstructural foundations of rough volatility

5 More microstructural foundations

6 An important application : The rough Heston formula

7 No arbitrage implies rough volatility and the square root law

8 Rough volatility and Zumbach effect

9 Quadratic rough Heston model and the VIX market

10 On the universality of the volatility formation process

Mathieu Rosenbaum Rough volatility 2



Table of contents

1 Some elements about volatility modeling

2 Building the Rough FSV model

3 Application of the RFSV model : Volatility prediction

4 The microstructural foundations of rough volatility

5 More microstructural foundations

6 An important application : The rough Heston formula

7 No arbitrage implies rough volatility and the square root law

8 Rough volatility and Zumbach effect

9 Quadratic rough Heston model and the VIX market

10 On the universality of the volatility formation process

Mathieu Rosenbaum Rough volatility 3



Main classes of volatility models

Prices are often modeled as continuous semi-martingales of the form

dPt = Pt(µtdt + σtdWt).

The volatility process σs is the most important ingredient of the model.
Practitioners consider essentially three classes of volatility models :

Deterministic volatility (Black and Scholes 1973),

Local volatility (Dupire 1994),

Stochastic volatility (Hull and White 1987, Heston 1993, Hagan et al.
2002,...).

In term of regularity, in these models, the volatility is either very smooth or
with a smoothness similar to that of a Brownian motion.
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Fractional Brownian motion (I)

To allow for a wider range of smoothness, we can consider the fractional
Brownian motion in volatility modeling.

Definition

The fractional Brownian motion (fBm) with Hurst parameter H is the only
process WH to satisfy :

Self-similarity : (WH
at )

L
= aH(WH

t ).

Stationary increments : (WH
t+h −WH

t )
L
= (WH

h ).

Gaussian process with E[WH
1 ] = 0 and E[(WH

1 )2] = 1.
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Fractional Brownian motion (II)

Proposition

For all ε > 0, WH is (H − ε)-Hölder a.s.

Proposition

The absolute moments of the increments of the fBm satisfy

E[|WH
t+h −WH

t |q] = Kqh
Hq.

Proposition

If H > 1/2, the fBm exhibits long memory in the sense that

Cov[WH
t+1 −WH

t ,W
H
1 ] ∼ C

t2−2H
.
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Fractional Brownian motion

Mandelbrot-van Ness representation

We have

WH
t =

∫ t

0

dWs

(t − s)
1
2
−H

+

∫ 0

−∞

( 1

(t − s)
1
2
−H
− 1

(−s)
1
2
−H

)
dWs .
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About option data

Classical stochastic volatility models generate reasonable dynamics for
the volatility surface.

However they do not allow to fit the volatility surface, in particular
the term structure of the ATM skew :

ψ(τ) :=

∣∣∣∣ ∂∂k σBS(k , τ)

∣∣∣∣
k=0

,

where k is the log-moneyness and τ the maturity of the option.
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About option data : the volatility skew

The black dots are non-parametric estimates of the S&P ATM volatility
skews as of June 20, 2013 ; the red curve is the power-law fit
ψ(τ) = A τ−0.4.
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About option data : fractional volatility

The skew is well-approximated by a power-law function of time to
expiry τ . In contrast, conventional stochastic volatility models
generate a term structure of ATM skew that is constant for small τ .

Models where the volatility is driven by a fBm generate an ATM
volatility skew of the form ψ(τ) ∼ τH−1/2, at least for small τ .
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Intraday volatility estimation

We are interested in the dynamics of the (log)-volatility process. We use
two proxies for the spot (squared) volatility of a day.

A 5 minutes-sampling realized variance estimation taken over the
whole trading day (8 hours).

A one hour integrated variance estimator based on the model with
uncertainty zones (Robert and R. 2012).

Note that we are not really considering a “spot” volatility but an
“integrated” volatility. This might lead to some slight bias in our
measurements (which can be controlled).

From now on, we consider realized variance estimations on the S&P over
3500 days, but the results are fairly “universal”.
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The log-volatility

Figure – The log volatility log(σt) as a function of t, S&P.
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Measure of the regularity of the log-volatility

The starting point of this work is to consider the scaling of the moments
of the increments of the log-volatility. Thus we study the quantity

m(∆, q) = E[| log(σt+∆)− log(σt)|q],

or rather its empirical counterpart.

The behavior of m(∆, q) when ∆ is close to zero is related to the
smoothness of the volatility (in the Hölder or even the Besov sense).
Essentially, the regularity of the signal measured in lq norm is s if
m(∆, q) ∼ c∆qs as ∆ tends to zero.
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Scaling of the moments

Figure – log(m(q,∆)) = ζq log(∆) + Cq. The scaling is not only valid as ∆
tends to zero, but holds on a wide range of time scales.
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Monofractality of the log-volatility

Figure – Empirical ζq and q → Hq with H = 0.14 (similar to a fBm with Hurst
parameter H).
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Distribution of the log-volatility increments

Figure – The distribution of the log-volatility increments is close to Gaussian.
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A geometric fBm model

The RFSV model

These empirical findings suggest we model the log-volatility as a fractional
Brownian motion :

σt = σeνW
H
t .
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Multiscaling in finance

An important property of volatility time series is their multiscaling
behavior, see Mantegna and Stanley 2000 and Bouchaud and Potters
2003.

This means one observes essentially the same law whatever the time
scale.

In particular, there are periods of high and low market activity at
different time scales.

Very few models reproduce this property, see multifractal models.
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Figure – Empirical volatility over 10, 3 and 1 years.
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Our model on different time intervals

Figure – Simulated volatility over 10, 3 and 1 years. We observe the same
alternations of periods of high market activity with periods of low market activity.
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Apparent multiscaling in our model

Let LH,ν be the law on [0, 1] of the process eνW
H
t .

Then the law of the volatility process on [0,T ] renormalized on [0, 1] :

σtT/σ0 is LH,νT
H

.

If one observes the volatility on T = 10 years (2500 days) instead of
T = 1 day, the parameter νTH defining the law of the volatility is
only multiplied by 2500H ∼ 3.

Therefore, one observes quite the same properties on a very wide
range of time scales.

The roughness of the volatility process (H = 0.14) implies a
multiscaling behavior of the volatility.
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Prediction of a fractional Brownian motion

There is a nice prediction formula for the fractional Brownian motion.

Proposition (Nuzman and Poor 2000)

For H < 1/2

E[WH
t+∆|Ft ] =

cos(Hπ)

π
∆H+1/2

∫ t

−∞

WH
s

(t − s + ∆)(t − s)H+1/2
ds.
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Our prediction formula

We apply the previous formula to the prediction of the log-volatility :

E
[
log σ2

t+∆|Ft

]
=

cos(Hπ)

π
∆H+1/2

∫ t

−∞

log σ2
s

(t − s + ∆)(t − s)H+1/2
ds

or more precisely its discrete version :

E
[
log σ2

t+∆|Ft

]
=

cos(Hπ)

π
∆H+1/2

N∑
k=0

log σ2
t−k

(k + ∆ + 1/2)(k + 1/2)H+1/2
.

We compare it to usual predictors using the criterion

P =

∑N−∆
k=1 ( ̂log(σ2

k+∆)− log(σ2
k+∆))2∑N−∆

k=1 (log(σ2
k+∆)− E[log(σ2

t+∆)])2
.
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AR(5) AR(10) HAR(3) RFSV
SPX2.rv ∆ = 1 0.317 0.318 0.314 0.313
SPX2.rv ∆ = 5 0.459 0.449 0.437 0.426

SPX2.rv ∆ = 20 0.764 0.694 0.656 0.606
FTSE2.rv ∆ = 1 0.230 0.229 0.225 0.223
FTSE2.rv ∆ = 5 0.357 0.344 0.337 0.320

FTSE2.rv ∆ = 20 0.651 0.571 0.541 0.472
N2252.rv ∆ = 1 0.357 0.358 0.351 0.345
N2252.rv ∆ = 5 0.553 0.533 0.513 0.504

N2252.rv ∆ = 20 0.875 0.795 0.746 0.714
GDAXI2.rv ∆ = 1 0.237 0.238 0.234 0.231
GDAXI2.rv ∆ = 5 0.372 0.362 0.350 0.339

GDAXI2.rv ∆ = 20 0.661 0.590 0.550 0.498
FCHI2.rv ∆ = 1 0.244 0.244 0.241 0.238
FCHI2.rv ∆ = 5 0.378 0.373 0.366 0.350

FCHI2.rv ∆ = 20 0.669 0.613 0.598 0.522
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Regression window and horizon

After a simple change of variable, the prediction of the log-volatility can be
written :

E[log(σ2
t+∆)|Ft ] ∼

cos(Hπ)

π

∫ 1

0

log(σ2
t−∆u)

(u + 1) uH+1/2
du.

The only time scale that appears in the above regression is the horizon ∆.

As it is known by practitioners :

If trying to predict volatility one week ahead, one should essentially look at
the volatility over the last week. If trying to predict the volatility one
month ahead, one should essentially look at the volatility over the last
month.
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Conditional distribution of the fractional Brownian motion
and prediction of the variance

Proposition (Nuzman and Poor 2000)

In law,
WH

t+∆|Ft = N (E[WH
t+∆|Ft ], c∆2H)

with

c =
sin(π(1/2− H))Γ(3/2− H)2

π(1/2− H)Γ(2− 2H)
.

Therefore, our predictor of the variance writes :

E[σ2
t+∆|Ft ] = eE[log(σ2

t+∆)|Ft]+2ν2c∆2H
.
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AR(5) AR(10) HAR(3) RFSV
SPX2.rv ∆ = 1 0.520 0.566 0.489 0.475
SPX2.rv ∆ = 5 0.750 0.745 0.723 0.672

SPX2.rv ∆ = 20 1.070 1.010 1.036 0.903
FTSE2.rv ∆ = 1 0.612 0.621 0.582 0.567
FTSE2.rv ∆ = 5 0.797 0.770 0.756 0.707

FTSE2.rv ∆ = 20 1.046 0.984 0.935 0.874
N2252.rv ∆ = 1 0.554 0.579 0.504 0.505
N2252.rv ∆ = 5 0.857 0.807 0.761 0.729

N2252.rv ∆ = 20 1.097 1.046 1.011 0.964
GDAXI2.rv ∆ = 1 0.439 0.448 0.399 0.386
GDAXI2.rv ∆ = 5 0.675 0.650 0.616 0.566

GDAXI2.rv ∆ = 20 0.931 0.850 0.816 0.746
FCHI2.rv ∆ = 1 0.533 0.542 0.470 0.465
FCHI2.rv ∆ = 5 0.705 0.707 0.691 0.631

FCHI2.rv ∆ = 20 0.982 0.952 0.912 0.828
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Understanding rough volatility

Summary of what we have seen and objectives

We know that : Volatility is rough !

On any asset, using any reasonable volatility proxy/statistical method
(realized volatility, realized kernels, uncertainty zones, Garman-Klass,
implied volatility, power variations, autocorrelations, Whittle,...), one
concludes that volatility is rough.

It cannot be just coincidence...

We want to show that typical behaviors of market participants at the
high frequency scale naturally lead to rough volatility.

Our modeling tool : Hawkes processes.
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Definition

Hawkes process

A Hawkes process (Nt)t≥0 is a self-exciting point process, whose
intensity at time t, denoted by λt , is of the form

λt = µ+
∑

0<Ji<t

φ(t − Ji ) = µ+

∫
(0,t)

φ(t − s)dNs ,

where µ is a positive real number, φ a regression kernel and the Ji are
the points of the process before time t.

These processes have been introduced in 1971 by Hawkes in the
purpose of modeling earthquakes and their aftershocks.
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Definition

Order flow and volatility

Thus, it is nowadays classical to model the order flow (number of
trades) thanks to Hawkes processes.

It is known from financial economics theory (see for example
Madhavan, Richardson and Roomans (97)) that the order flow is
essentially the same thing as the integrated volatility (variance) if the
time scale is large enough :

Nt ≈
∫ t

0
σ2(s)ds.
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Popularity of Hawkes processes in finance

Two main reasons for the popularity of Hawkes processes

These processes represent a very natural and tractable extension of
Poisson processes. In fact, comparing point processes and
conventional time series, Poisson processes are often viewed as the
counterpart of iid random variables whereas Hawkes processes play
the role of autoregressive processes.

Another explanation for the appeal of Hawkes processes is that it is
often easy to give a convincing interpretation to such modeling. To do
so, the branching structure of Hawkes processes is quite helpful.

Mathieu Rosenbaum Rough volatility 34



Hawkes processes as a population model

Poisson cluster representation

Under the assumption ‖φ‖1 < 1, where ‖φ‖1 denotes the L1 norm of
φ, Hawkes processes can be represented as a population process where
migrants arrive according to a Poisson process with parameter µ.

Then each migrant gives birth to children according to a non
homogeneous Poisson process with intensity function φ, these children
also giving birth to children according to the same non homogeneous
Poisson process, see Hawkes (74).

Now consider for example the classical case of buy (or sell) market
orders. Then migrants can be seen as exogenous orders whereas
children are viewed as orders triggered by other orders.
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Stability condition

The condition ‖φ‖1 < 1

The assumption ‖φ‖1 < 1 is crucial in the study of Hawkes processes.

If one wants to get a stationary intensity with finite first moment,
then the condition ‖φ‖1 < 1 is required (similar condition as for the
AR(1) process).

This condition is also necessary in order to obtain classical ergodic
properties for the process.

For these reasons, this condition is often called stability condition in
the Hawkes literature.
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‖φ‖1 in practice

Degree of endogeneity of the market

From a practical point of view, a lot of interest has been recently
devoted to the parameter ‖φ‖1.

For example, Hardiman, Bercot and Bouchaud (13) and Filimonov
and Sornette (12,13) use the branching interpretation of Hawkes
processes on midquote data in order to measure the so-called degree
of endogeneity of the market, defined by ‖φ‖1.
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‖φ‖1 in practice

Degree of endogeneity of the market

The parameter ‖φ‖1 corresponds to the average number of children of
an individual, ‖φ‖2

1 to the average number of grandchildren of an
individual,. . . Therefore, if we call cluster the descendants of a
migrant, then the average size of a cluster is given by∑

k≥1 ‖φ‖k1 = ‖φ‖1/(1− ‖φ‖1).

Thus, the average proportion of endogenously triggered events is
‖φ‖1/(1− ‖φ‖1) divided by 1 + ‖φ‖1/(1− ‖φ‖1), which is equal to
‖φ‖1.
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‖φ‖1 in practice

Unstable Hawkes processes

This branching ratio can be measured using parametric and
non-parametric estimation methods for Hawkes processes, see Ogata
(78,83) for likelihood based methods and Reynaud-Bouret and
Schbath (10) and Al Dayri et al. (11) for functional estimators of the
function φ.

In Hardiman, Bercot and Bouchaud (13), very stable estimations of
‖φ‖1 are reported for the E-mini S&P futures between 1998 and
2012, the results being systematically close to one.

This is also the case for Bund and Dax futures in Al Dayri et al. (11)
and various other assets in Filimonov and Sornette (12).

Mathieu Rosenbaum Rough volatility 39



Aim of our study

Limiting behavior of Hawkes processes

Our aim is to study the behavior at large time scales of so-called
nearly unstable Hawkes processes, which correspond to these
estimations of ‖φ‖1, close to 1.

This will give us insights on the properties of the integrated volatility.

Furthermore, we want to take into account another stylized fact : The
function φ has typically a power law tail :

φ(x) ∼
x→+∞

K

x1+α
,

with α of order 0.5-0.7.

This memory effect is likely due to metaorders splitting.
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The model

Sequence of Hawkes processes

We consider a sequence of Hawkes processes (NT
t )t≥0 indexed by

T →∞ with

λTt = µT +

∫ t

0
φT (t − s)dNT

s .

For some sequence aT < 1, aT → 1, K > 0 and α ∈ (0, 1) :

φT (t) = aTφ(t), αxα
(
1− F (x)

)
→

x→+∞
K ,

with ‖φ‖1 = 1 and

F (x) =

∫ x

0
φ(s)ds.
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Non-degenerate limit for nearly unstable Hawkes processes

Martingale process

Let MT be the martingale process associated to NT , that is, for
t ≥ 0,

MT
t = NT

t −
∫ t

0
λTs ds.

We also set ψT the function defined on R+ by

ψT (t) =
∞∑
k=1

(φT )∗k(t).

We can show that

λTt = µT +

∫ t

0
ψT (t − s)µTds +

∫ t

0
ψT (t − s)dMT

s .
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Non-degenerate limit for nearly unstable Hawkes processes

Rescaling

We rescale our processes so that they are defined on [0, 1]. To do
that, we consider for t ∈ [0, 1]

λTtT = µT +

∫ tT

0
ψT (Tt − s)µTds +

∫ tT

0
ψT (Tt − s)dMT

s .

For the scaling in space, a natural multiplicative factor is
(1− aT )/µT . Indeed, in the stationary case,

E[λTt ] = µT/(1− ‖φT‖1).

Thus, the order of magnitude of the intensity is µT (1− aT )−1. This
is why we define

CT
t = λTtT (1− aT )/µT .
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Non-degenerate limit for nearly unstable Hawkes processes

Decomposition of CT
t

Then we easily get :

CT
t = (1− aT ) +

∫ t

0
T (1− aT )ψT (Ts)ds

+

√
T (1− aT )

µT

∫ t

0
ψT (T (t − s))

√
CT
s dBT

s ,

with

BT
t =

1√
T

∫ tT

0

dMT
s√
λTs

.
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Non-degenerate limit for nearly unstable Hawkes processes

The function ψT

The asymptotic behavior of CT
t is closely linked to that of ψT .

Remark that the function defined for x ≥ 0 by

ρT (x) = T
ψT (Tx)

‖ψT‖1

is the density of the random variable

XT =
1

T

IT∑
i=1

Xi ,

where the (Xi ) are iid random variables with density φ and IT is a
geometric random variable with parameter 1− aT .
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Non-degenerate limit for nearly unstable Hawkes processes

The function ψT

The Laplace transform of the random variable XT , denoted by ρ̂T ,
satisfies :

ρ̂T (z) =
φ̂( z

T )

1− aT
1−aT (φ̂( z

T )− 1)
,

where φ̂ denotes the Laplace transform of X1.

Due to the assumptions on φ, we have

φ̂(z) = 1− K
Γ(1− α)

α
zα + o(zα).
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Non-degenerate limit for nearly unstable Hawkes processes

The function ψT

Set δ = K Γ(1−α)
α and vT = δ−1Tα(1− aT ).

Using that aT and φ̂( z
T ) both tend to 1 as T goes to infinity, ρ̂T (z)

is equivalent to
vT

vT + zα
.

The function whose Laplace transform is equal to this last quantity is
given by

vT x
α−1Eα,α(−vT xα),

with Eα,β the (α, β) Mittag-Leffler function.
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Non-degenerate limit for nearly unstable Hawkes processes

Expected limit for CT
t

Putting everything together, we can expect (for α > 1/2)

CT
t ∼ vT

∫ t

0
sα−1Eα,α(−vT sα)ds

+ γT vT

∫ t

0
(t − s)α−1Eα,α(−vT (t − s)α)

√
CT
s dBT

s ,

with

γT =
1√

µTT (1− aT )
.

The process BT can be shown to converge to a Brownian motion B.
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Non-degenerate limit for nearly unstable Hawkes processes

Expected limit for CT
t

We need that both vT and γT converge to positive constants so we
assume :

Tα(1− aT )→ λδ, T 1−αµT → µ∗δ−1.

Passing to the limit, we obtain (for α > 1/2)

C∞t ∼ λ
∫ t

0
sα−1Eα,α(−λsα)ds

+

√
λ

µ∗

∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α)

√
C∞s dBs .
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Non-degenerate limit for nearly unstable Hawkes processes

Limit theorem

For α > 1/2, the sequence of renormalized Hawkes processes converges to
some process which is differentiable on [0, 1]. Moreover, the law of its
derivative V satisfies

Vt = Fα,λ(t) +
1√
µ∗λ

∫ t

0
f α,λ(t − s)

√
VsdB

1
s ,

with B1 a Brownian motion and

f α,λ(x) = λxα−1Eα,α(−λxα).
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Non-degenerate limit for nearly unstable Hawkes processes

Rough Heston model

Using fractional integration, we easily get that the equation for Vt on the
preceding slide is equivalent to

Vt =
1

Γ(α)

∫ t

0
(t − s)α−1λ(1− Vs)ds +

1

Γ(α)

√
λ

µ∗

∫ t

0
(t − s)α−1

√
VsdBs .

Now recall Mandelbrot-van-Ness representation :

WH
t =

∫ t

0

dWs

(t − s)
1
2
−H

+

∫ 0

−∞

( 1

(t − s)
1
2
−H
− 1

(−s)
1
2
−H

)
dWs .

Therefore we have a rough Heston model with H = α− 1/2. Furthermore,
for any ε > 0, Y has Hölder regularity α− 1/2− ε.
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Agent based explanation for rough volatility

Microstructural foundations for the RFSV model

It is clearly established that there is a linear relationship between
cumulated order flow and integrated variance.

Consequently the “derivative” of the order flow corresponds to the
spot variance.

Thus endogeneity of the market together with order splitting lead to a
superposition effect which explains (at least partly) the rough nature
of the observed volatility.

Near instability together with a tail index α ∼ 0.6 correspond to
H ∼ 0.1.
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Building the model

Necessary conditions for a good microscopic price model

We want :

A tick-by-tick model.

A model reproducing the stylized facts of modern electronic markets
in the context of high frequency trading.

A model helping us to understand the rough dynamic of volatility
from the high frequency behavior of market participants.
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Building the model

Stylized facts 1-2

Markets are highly endogenous, meaning that most of the orders have
no real economic motivations but are rather sent by algorithms in
reaction to other orders, see Bouchaud et al., Filimonov and Sornette.

Mechanisms preventing statistical arbitrages take place on high
frequency markets, meaning that at the high frequency scale, building
strategies that are on average profitable is hardly possible.
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Building the model

Stylized facts 3-4

There is some asymmetry in the liquidity on the bid and ask sides of
the order book. In particular, a market maker is likely to raise the
price by less following a buy order than to lower the price following
the same size sell order.

A large proportion of transactions is due to large orders, called
metaorders, which are not executed at once but split in time.
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Building the model

Hawkes processes

Our tick-by-tick price model is based on Hawkes processes in
dimension two.

A two-dimensional Hawkes process is a bivariate point process
(N+

t ,N
−
t )t≥0 taking values in (R+)2 and with intensity (λ+

t , λ
−
t ) of

the form :(
λ+
t

λ−t

)
=

(
µ+

µ−

)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
dN+

s

dN−s

)
.
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Building the model

The microscopic price model

Our model is simply given by

Pt = N+
t − N−t .

N+
t corresponds to the number of upward jumps of the asset in the

time interval [0, t] and N−t to the number of downward jumps. Hence,
the instantaneous probability to get an upward (downward) jump
depends on the location in time of the past upward and downward
jumps.

By construction, the price process lives on a discrete grid.

Statistical properties of this model have been studied in details.
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Encoding the stylized facts

The right parametrization of the model

Recall that(
λ+
t

λ−t

)
=

(
µ+

µ−

)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
dN+

s

dN−s

)
.

High degree of endogeneity of the market→ L1 norm of the largest
eigenvalue of the kernel matrix close to one (nearly unstable regime).

No arbitrage→ ϕ1 + ϕ3 = ϕ2 + ϕ4.

Liquidity asymmetry→ ϕ3 = βϕ2, with β > 1.

Metaorders splitting→ ϕ1(x), ϕ2(x) ∼
x→∞

K/x1+α, α ≈ 0.6.
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Rough Heston model

Limit theorem

After suitable scaling in time and space, the long term limit of our price
model satisfies the following rough Heston dynamics :

Pt =

∫ t

0

√
VsdWs −

1

2

∫ t

0
Vsds,

Vt = V0 +
1

Γ(α)

∫ t

0
(t − s)α−1λ(θ − Vs)ds +

λν

Γ(α)

∫ t

0
(t − s)α−1

√
VsdBs ,

with

d〈W ,B〉t =
1− β√

2(1 + β2)
dt.

The Hurst parameter H satisfies H = α− 1/2.
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An even deeper result

No-arbitrage implies rough volatility and power law market impact

We have shown that combining typical behaviours of market
participants at the high frequency scale automatically generates rough
volatility.

We can actually prove that only assuming no-statistical arbitrage
implies rough volatility.

The key phenomenon to obtain this result is the market impact.
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Deriving the characteristic function of the rough Heston
model

Strategy

From our last theorem, we are able to derive the characteristic
function of our high frequency Hawkes-based price model.

We then pass to the limit.
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Characteristic function of rough Heston models

We write :

I 1−αf (x) =
1

Γ(1− α)

∫ x

0

f (t)

(x − t)α
dt, Dαf (x) =

d

dx
I 1−αf (x).

Theorem

The characteristic function at time t for the rough Heston model is given
by

exp
(∫ t

0
g(a, s)ds +

V0

θλ
I 1−αg(a, t)

)
,

with g(a, ) the unique solution of the fractional Riccati equation :

Dαg(a, s) =
λθ

2
(−a2 − ia) + λ(iaρν − 1)g(a, s) +

λν2

2θ
g2(a, s).
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Comments on the theorem

The rough Heston formula

The formula is the very same as the celebrated Heston formula, up to
the replacement of a classical time derivative by a fractional
derivative.

This formula allows for fast derivatives pricing and risk management.

Thanks to this approach, we can derive the infinite dimensional
Markovian structure underlying rough Heston models, leading to
explicit hedging formulas.
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Market impact

Some definitions

Market impact is the link between the volume of an order (either
market order or metaorder) and the price moves during and after the
execution of this order.

We focus here on the impact function of metaorders, which is the
expectation of the price move with respect to time during and after
the execution of the metaorder.

We call permanent market impact of a metaorder the limit in time of
the impact function (that is the average price move between the start
of the metaorder and a long time after its execution).
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Market impact in practice

Figure – Market impact curves.

Mathieu Rosenbaum Rough volatility 68



Market impact

Linear permanent impact

Let Pt be the asset price at time t. Consider a metaorder with total
volume V .

PMI (V ) = lim
s→+∞

E[Ps − P0|V ].

Price manipulation is a roundtrip with negative average cost.

From Huberman and Stanzl and Gatheral : Only linear permanent
market impact can prevent price manipulation : PMI (V ) = kV .
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Dynamics

Assumptions

All market orders are part of metaorders.

Let [0,S ] be the time during which metaorders are being executed
(which can be thought of as the trading day). Let vai (resp. vbi ) be
the volume of the i-th buy (resp. sell) metaorder and Na

S (resp. Nb
S )

be the number of buy (resp. sell) metaorders up to time S . Finally,
write V a

S and V b
S for cumulated buy and sell order flows up to time S .

We assume

PS = P0 + k
( Na

S∑
i=1

vai −
Nb
S∑

i=1

vbi
)

+ ZS = P0 + k(V a
S − V b

S ) + ZS ,

with Z a martingale term that we neglect.
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Dynamics

Martingale assumption

We furthermore assume that the price Pt is a martingale. We obtain

Pt = P0 + E
[
k(V a

S − V b
S )|Ft

]
.

We suppose that lim
S→+∞

E
[
k(V a

S −V b
S )|Ft

]
is well defined. This means

E
[
(V a

S+h − V b
S+h)− (V a

S − V b
S )|Ft

]
→ 0,

that is the order flow imbalance between S and S + h is
asymptotically (in S) not predictable at time t.
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Dynamics

Price dynamics

Under the preceding assumptions, we finally get

Pt = P0 + k lim
S→+∞

E
[
(V a

S − V b
S )|Ft

]
.

Martingale price.

Linear permanent impact, independent of execution mode.

The price process only depends on the global market order flow and
not on the individual executions of metaorders. We thus do not need
to assume that the market sees the execution of metaorders as it is
usually done.

Market orders move the price because they change the anticipation
that market makers have about the future of the order flow.
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Hawkes specification

Hawkes propagator

We now assume that buy and sell order flows are modeled by
independent Hawkes processes Na and Nb with same parameters µ
and φ. All orders have same unit volume.

Later on we will consider an asymptotic setting so that the flows are
defined on [0,T ] with T → +∞.

To be very general, we allow the parameters to depend on T (but do
not assume they do). So we write Na,T , Nb,T , µT , φT = aTφ with
aT < 1 and

∫
φ = 1 (stability condition).

Note that the average intensity of our processes is essentially
βT = µT (1− aT )−1 (stationary case).
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Price dynamic under Hawkes specification

Price equation

In this case, the general equation above rewrites as the following
propagator dynamic

Pt = P0 +

∫ t

0
ζT (t − s)(dNa,T

s − dNb,T
s ),

with ζT (t) =
(
1 +

∫ +∞
t ψT (u)−

∫ t
0 ψ

T (u − s)φT (s)dsdu
)
.

The propagator kernel compensates the correlation of the order flow
implied by the Hawkes dynamics to recover a martingale price. Note
that the kernel does not tend to 0 since there is permanent impact.
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Adding our own transactions

Labeled order

In the above framework, Na,T and Nb,T are the flows of anonymous
market orders.

Now assume we arrive on the market, executing our own (buy)
metaorder. Our flow is a Poisson process n on [0,T ] (can be
generalized) with intensity IT = γβT , γ < 1 (proportion γ of the
total flow).

According to the propagator approach, we get

Pt = P0 +

∫ t

0
ζT (t − s)(dNa,T

s − dNb,T
s ) +

∫ t

0
ζT (t − s)dns .
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Impact function

Explicit market impact

We get that the impact function of a metaorder executed between 0
and T is for 0 ≤ t ≤ T

MI (t) := E[Pt − P0] = IT
∫ t

0
ζT (t − s)ds.

We define

MI
T

(t) =
MITtT
TβT

=

∫ t

0
χT (t − s)ds,

with

χT (s) = γ
ζT (Ts)

1− aT
.

Mathieu Rosenbaum Rough volatility 76



Decomposing the impact

Transient and permanent market impact

We have

MI
T

(t) =

∫ t

0
χT (t − s)ds,

χT (s) = γ
(
1 + (1− aT )−1

∫ +∞

Ts
φ
)
.

The market impact kernel is the sum of a linear market impact
representing the permanent component and of a transient term
vanishing after the metaorder completion.

Existence of transient part is equivalent (asymptotically) to the
existence of a limit for (1− aT )−1

∫ t
0

∫ +∞
T (t−s) φ(u)duds.
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Shape of the market impact

Power-law market impact

Assume the transient part of the market impact exists. Then for t < 1,

lim
T→+∞

MI
T

(t)− γt = γKt1−α

for some K > 0 and α ∈ (0, 1). Furthermore, we necessarily have aT → 1
(highly endogenous market) and the tail of the Hawkes kernel is power-law
of order x−(1+α).

Note that the celebrated square-root law corresponds to α = 1/2.
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Market impact decomposition

Figure – Permanent and temporary market impact
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Limiting price process

Emergence of (hyper-)rough processes

Let P̄T
t = 1

TβT P
T
t and assume µT (1− aT )T tends to δ. As T goes to

infinity, the limit Pt of P̄T
t satisfies

Pt = BXt ,

Xt =
2

δ

∫ t

0
Fα,λ(s)ds +

1

δ
√
λ

∫ t

0
Fα,λ(t − s)dWXs ,

where B and W are Brownian motions, λ = KΓ(1− α)−1 and
Fα,λ(t) =

∫ t
0 f α,λ(s)ds with f α,λ the density of the Mittag-Leffler

distribution. Furthermore, X has Hölder regularity min(2α, 1)− ε.
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The case α > 1/2

Rough Heston limit

When α > 1
2 , the rescaled price process variance is almost surely

differentiable. Furthermore

Pt =

∫ t

0

√
YsdBs ,

Yt =
λ

Γ(α)

( ∫ t

0
(t − s)α−1(

2

δ
− λYs)ds +

1

δ
√
λ

∫ t

0
(t − s)α−1

√
YsdWs

)
.

Therefore we have a rough Heston model with H = α− 1/2.
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Summary

From no-arbitrage to volatility

We made two assumptions : Linear permanent impact and martingale
price.

Only modeling assumption : Hawkes dynamics for the order flow
(reasonable...).

This leads to rough volatility.
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Further aspects of volatility

Zumbach effect (Zumbach et al.) : description

Feedback of price returns on volatility.

Price trends induce an increase of volatility.

In the literature (notably works by J.P. Bouchaud and co-authors), a
way to reinterpret the Zumbach effect is to consider that the
predictive power of past squared returns on future volatility is
stronger than that of past volatility on future squared returns.

To check this on data, one typically shows that the covariance
between past squared price returns and future realized volatility (over
a given duration) is larger than that between past realized volatility
and future squared price returns.

We refer to this version of Zumbach effect as weak Zumbach effect.
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Further aspects of volatility

Weak and strong Zumbach effect

It is shown in Gatheral et al. that the rough Heston model reproduces
the weak form of Zumbach effect.

However, it is not obtained through feedback effect, which is the
motivating phenomenon in the original paper by Zumbach. It is only
due to the dependence between price and volatility induced by the
correlation of the Brownian motions driving their dynamics.

In particular in the rough Heston model, the conditional law of the
volatility depends on the past dynamic of the price only through the
past volatility.

We speak about strong Zumbach effect when the conditional law of
future volatility depends not only on past volatility trajectory but also
on past returns.
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A convenient microscopic model encoding Zumbach effect

Quadratic Hawkes processes

Inspired by Blanc et al., we model high frequency prices using
quadratic Hawkes processes.

Jump sizes of the price Pt are i.i.d taking values −1 and 1 with
probability 1/2 and jump times are those of a point process Nt with
intensity

λt = µ+

∫ t

0
φ(t − s)dNs + Z 2

t , with Zt =

∫ t

0
k(t − s)dPs .

The component Zt is a moving average of past returns.

If the price has been trending in the past, Zt is large leading to high
intensity. On the contrary if it has been oscillating, Zt is close to zero
and there is no feedback from the returns on the volatility. So Zt is a
(strong) Zumbach term.
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One particular scaling limit

Quadratic rough Heston model

dSt = St
√

VtdWt , Vt = a(Zt − b)2 + c,

where a, b and c some positive constants and Zt follows

Zt =

∫ t

0
f α,λ(t − s)θ0(s)ds +

∫ t

0
f α,λ(t − s)

√
VsdWs ,

with α ∈ (1/2, 1), λ > 0 and θ0 a deterministic function.

Zt is path-dependent : a weighted average of past returns.

c : minimal instantaneous variance.

b > 0 : asymmetry of the feedback effect.

a : sensitivity of the volatility feedback.

A log-normal rough volatility model with strong Zumbach
effect.
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The Volatility Index

Definition of the VIX

Introduced in 1993 by the CBOE.

VIX is the square root of the price of a specific basket of options on
the S&P 500 Index (SPX) with maturity ∆ = 30 days such that

VIXt =
2

∆

√
−E[log(St+∆/St)|Ft ]× 100,

with S the SPX index.

VIX futures and VIX options exist.
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The joint calibration problem

VIX options

More than 500,000 VIX options traded each day.

Quite wide spreads for VIX options : non-mature market.

VIX is by definition a derivative of the SPX, any reasonable
methodology must necessarily be consistent with the pricing of SPX
options.

Designing a model that jointly calibrates SPX and VIX options prices
is known to be extremely challenging.

This problem is sometimes considered to be the holy grail of volatility
modeling.

We simply refer to it as the joint calibration problem.
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The joint calibration problem

Attempts to solve the joint calibration problem

Theoretical approch by J. Guyon : the joint calibration problem is
interpreted as a model-free constrained martingale transport problem.
Perfect calibration of VIX options smile at time T1 and SPX options
smiles at T1 and T2 = T1 + 30 days. Hard to be extended to any set
of maturities and high computational cost.

Models with jumps : most of them fail to reproduce VIX smiles for
maturities shorter than one month.

Continuous models : Unsuccessful so far. Interpretation : the very
large negative skew of short-term SPX options, which in continuous
models implies a very large volatility of volatility, seems inconsistent
with the comparatively low levels of VIX implied volatilities
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The VIX conjecture

The joint calibration problem and continuous models

“So far all the attempts at solving the joint SPX/VIX smile
calibration problem [using a continuous time model] only produced
imperfect, approximate fits”.

“Joint calibration seems out of the reach of continuous-time models
with continuous SPX paths”.

Investigating Guyon’s work one can realise the following : a necessary
condition for a continuous model to fit simultaneously SPX and VIX
smiles is the inversion of convex ordering between volatility and the
local volatility implied by option prices.

The intuition behind this condition could be reinterpreted as some
kind of strong Zumbach effect.

Natural for us to investigate the ability of super-Heston rough
volatility models to solve the joint calibration problem.
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Calibration for one day in history 19 May 2017

Parameters calibration with Deep Learning
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Figure – Implied volatility on SPX options for 19 May 2017. Blue and red points
are bid and ask of market implied volatilities. Model implied volatility smiles from
the model are in green. Strikes are in log-moneyness, maturity in year.
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Calibration for one day in history 19 May 2017

Parameters calibration with Deep Learning
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Figure – Implied volatility on VIX options for 19 May 2017. Blue and red points
are bid and ask of market implied volatilities. Model implied volatility smiles from
the model are in green. Strikes are in log-moneyness, maturity in year.
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Take home message for the joint calibration problem

Thanks to the quadratic rough Heston model

6 parameters.

VIX smiles in the bid-ask spread.

Global shape of the implied volatility surface of the SPX very well
reproduced

Very accurate SPX skews of orders -1.5 (shortest maturites), -1
(longer maturities), as for market data.
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Forecasting devices for next day realized volatility

Parametric methods

AR(p) :

σ̂t = α0 +

p∑
j=1

βjσt−j ,

HAR :

σ̂t = α0 + β1σt−1 + β2
1

5

5∑
j=1

σt−j + β3
1

22

22∑
j=1

σt−j ,

RFSV (d log σt = νdWH
t ) :

l̂og σt =
cos(Hπ)

π

∫ t−1

−∞

log σs
(t − s + 1)(t − s)H+1/2

ds ,

σ̂t = c exp(l̂og σt).
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Forecasting devices for daily realized volatility

A universal non-parametric method

LSTM recurrent neural network, with similar weights for each asset,
trained on a pooled dataset.

Inputs are xt = (σ2
t ) or xt = (σ2

t , rt), where rt is the daily return at
time t, with variable length for history.

Linear layer

LSTM LSTM LSTM

+

Figure – Structure of an LSTM cell (left) and simplified computational graph of
the network based on LSTM (right).
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Dataset

Description

5-minutes intraday prices of Russell 1000 and STOXX Europe 600
constituents, for years between 2010 and 2020.

862 names from the US market and 503 names from the European
market.

Scaling for each stock :

σt =
σt√
〈σ2

t 〉
, rt =

rt − 〈rt〉√
〈(rt − 〈rt〉)2〉

.

We focus mostly on the US market. The data of the European market
is used for an out-of-sample double-check.

We use the pooled dataset of 862 stocks over years 2010 - 2015 to
train the LSTM network. The period 2016 - 2020 is used for
out-of-sample evaluation.
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Evaluation metric

Relative mean square error

MSE(σ, σ̂) =
1

T

T∑
t=1

(σ̂t − σt)2,

where T is the number of trading days of the out-of-sample period.

We focus on each model’s relative performance compared to that of
the HAR model so that we compute instead (MSEm/MSEHAR), for
m ∈ {AR(22),RFSV, LSTM}.
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Capturing universality with LSTM
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Figure – Empirical distribution of the estimated Hurst parameters inside each
sector.
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Capturing universality with LSTM

Parametric vs non-parametric

AR(22) RFSV LSTMus
var LSTMus
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Figure – Boxplot showing each model’s out-of-sample MSE relative to the HAR
model for the stocks of the US market.
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Capturing universality with LSTM

Parametric vs non-parametric

AR(22) underperforms the HAR model (overfitting).

RFSV outperforms the HAR model. It is remarkable as it involves
essentially no parameters (H = 0.055, c = 1.03).

LSTMus
var and LSTMus

ret outperform the other parametric models,
especially when we incorporate past returns data. This indicates that
the potential universal volatility formation mechanism across assets,
relating past volatilities and returns to current volatilities, allows us to
calibrate a universal model based on all assets, where the risk of
overfitting is reduced due to enriched realized scenarios.

We check for potential sector/stock (transfer learning)/market
specific or time dependent component in the volatility formation
process but consistently found that our universal network could not
be significantly improved.
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Uncovering the universal volatility formation process

A quadratic rough Heston inspired forecast

Following the idea on Zumbach effect in the QRH model, we propose
the following forecasting device :

σ̂2
t = a(Zt−1 − b)2 + c

with Zt =
∫ t
−∞

(t−s)H− 1
2

Γ(H+ 1
2

)
σsdWs .

We finally consider the following forecast

(1− λ)σ̂RFSV + λσ̂QRH ,

with H = 0.055, c = 1.03, a = 0.043, b = 0.74, c = 0.55.
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Uncovering the universal volatility formation process

= 0.0 = 0.05 = 0.1 = 0.2 = 0.3
85%

90%

95%

100%

105%

110%

115%

Figure – Out-of-sample performance of the forecast (1− λ)σ̂RFSV + λσ̂QRH

relative to LSTMeu
ret in the EU market.
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Conclusion

Universality of the volatility formation process

The universal LSTM network, trained on a pooled dataset of
hundreds of stocks, outperforms consistently the asset-specific
parametric models based on past volatilities.

Similar superior performances hold on assets that are not part of the
training set, even on those of a different market. Fine-tuning the
universal model with the data of each stock does not help improve
the performance.

These observations suggest the existence of a universal volatility
formation mechanism from a nonparametric perspective.

A simple combination of the RFSV and QRH forecasts with fixed
parameters perform similarly to our LSTM network.

From a parametric perspective, this shows that the main features of
this universal volatility formation process can be well described by the
rough volatility paradigm boosted with Zumbach effect.
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