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Information control and privacy ?

» Conventional measures

o Control access to information

o Control for what the purpose the information is used
» Measures for data release ?

> Anonymization

o Sanitization : perturbation, suppression, generalization

Information control measures are not satisfactory...



Privacy attacks



Reidentification attacks

» In 1997 Latanya Sweeney showed that gender, date of birth, and ZIP
code are sufficient to uniquely identify the vast majority of Americans
(up to 87%). She could even identify the Governor of Massachusetts
in a public anonymous hospital discharge records and sent him his own
personal health record to his office!

» In 2013 in and her team also identified the names of more than 40% of
a sample of anonymous participants in a high-profile DNA study, the
Personal Genome Project.



Reconstruction attacks
Netflix Challenge Re-identification (Narayanan & Shmatikov 2008)

» Data: X = ratings on Netflix e.g. sparse, categorical and high-dimensional
movie
» Adversary's input :
o S=subset of individual observations, possibly slightly distorted
o Y= public ratings on IMDB e.g auxiliary dataset Y containing informa-
tion on certain individuals in dataset S.
> Adversary's goal : identify individuals in X by matching their records to
those in Y.



Reconstruction attacks
Netflix Challenge Re-identification (Narayanan & Shmatikov 2008)

» Narayanan-Shmatikov Algorithm

1. Calculate score(Y, x;) for each x; € S as well as the standard deviation
& of the calculated scores.

2. Let 1 = x; and r; = X; be the records with the largest scores

3. If score(Y,n) — score(Y,r) > ¢&, output r, else output "no match
found”.

» The authors recommend to use a score of the form

1
score(Y, x) = min Z rd(y;j,xj),

where n is the number of individual records in Y, n; is the number of
users that rated movie j, and d(y;;, x;) is a distance between y; and x;.



Reconstruction attacks
Netflix Challenge Re-identification (Narayanan & Shmatikov 2008)

Narayanan and Shmatikov (2008, SP) strikingly shows how anonymization
fails even when combined with sanitization.

>

\4

Successfully de-anonymized Netflix data from individuals with public
ratings on IMDB. Only approximate ratings and dates sufficed to iden-
tify individuals.

They propose polynomial time algorithm that breaks privacy

Problem : auxiliary information and linkage attacks

This caused cancellation of second Netflix prize and resulted in a law-
suit.

We can't know what adversary knows or will know in the future.



Membership attacks

» Genome wide association studies (Homer et al. 2008, PLoS genetics)
> Release frequencies of SNP’s (individual positions)

o Determine whether individual "i" is in " case group” i.e. has a particular
disease



Membership attacks

» Genome wide association studies (Homer et al. 2008, PLoS genetics)
> Release frequencies of SNP’s (individual positions)

o Determine whether individual "i" is in " case group” i.e. has a particular
disease

» Microtargeted ads (Korolova 2011, J. Privacy and Confidentiality)

o Define a sufficiently narrow target profiles that allow to identify specific
individuals.

o Design k campaign adds on the likely unique subject that will see them
and record impressions over a reasonable time period to infer a specific
feature f; mentioned in ith add. This strategy was succesfully deployed to
figure out the age and sexual orientation of friends and friends' friends.
Could be used to extract other features.



Summary statistics can reveal individual information

» Homer et al. 2008 showed that commonly released minor allele frequen-
cies (MAFs) i.e. sample means are not private.

» The plots below are taken from Zhang & Zhang (2020). They illustrate
the problem with a heart disease data set consisting of 100 patients and

qvalue

347,019 SNPs.
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Differential privacy : properties and
basic algorithms
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Data & Privacy

Analytics data contains your computer’s hardware and
software specifications, including information about
devices connected to your Mac and the versions of the
operating system and apps you're using on your Mac.
Personal data is not logged at all in the reports
generated by your Mac, is subject to privacy preserving
techniques such as differential privacy, or is removed
from any reports before they're sent to Apple. If you
want to add a description of your actions when the
problem occurred, click the disclosure triangle and enter
your comments. Please do not provide personal
information.

Data can be sent automatically if one of these events
occurs:

« An app quits unexpectedly.

« You choose to force an app to quit.

« A system error occurs that causes your Mac to restart,
or requires you to restart your Mac.

If you agree, we may share your crash data with Apple’s

[ B RS S ORI s

Learn how your data is managed...
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Differential Privacy and the

2020 Census

The mission of the U.S. Census Bureau is to
provide quality data about the people and
economy of the United States. Protecting
privacy and ensuring accuracy are, and have
always been, core to this mission. The Census
Bureau is required by law (Title 13 of the

U.S. Code) to ensure that information about
any specific individual, household, or business
is never revealed, even indirectly, through our
published statistics. The quality and accuracy
of Census Bureau statistics depend on the
public’s trust and participation.

The Census Bureau is modernizing its
approach to privacy protection for the 2020
Census. We're using a statistical method called
differential privacy to mask information about
individuals while letting us share important
statistics about communities.

What is differential privacy?

information. That’s particularly true if you
live in a small area and are a different race or
ethnicity from your neighbors. It can be easier
to pick you out of a crowd. Serious threats to
privacy exist today that didn’t exist 10 years
ago during the last census. We must use new
techniques to continue to protect people’s
privacy. Given the scale of today’s privacy
threats, reusing the past methods would
require significantly larger distortions in the
published data, rendering much of the data
unfit for use.

Stakeholder feedback and er it is
key to ensuring that 2020 Census results
protect privacy while delivering the
detailed, useful statistics communities
need.

We are making hard but data-driven decisions
to balance the level of detail we can provide in

At nhlichad cbatictice nenariallhi far cmallare



Privacy definition (informal)

An analysis on the dataset D is private if Thibault knows almost no more
about Marco after the analysis than what he would have known had he

conducted the same analysis on an identical database with Marco's data
removed.



Framework

> Setting : a trusted curator holds a sensitive database constituted by n
individual rows.

> Goal : protect every individual row while allowing statistical analysis of
the database as a whole
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Definition
Dwork et al. (2006)

Definition. Let X1., = (X1,...,X,) € X" be some dataset. A randomized
function h: X" — RY is (¢, §)-differentially private if for all pairs of datasets
(X1.n, X1:n) With dy(X1.n, X1.0) = S0 1(X; # X!) = 1 and all measurable
subsets of outputs £ :

P(h(X1.n) € E) < eP(h(X1.n) € E) + 6.



Definition
Dwork et al. (2006)

Definition. Let X1., = (X1,...,X,) € X" be some dataset. A randomized
function h: X" — RY is (¢, §)-differentially private if for all pairs of datasets
(X1.n, X1:n) With dy(X1.n, X1.0) = S0 1(X; # X!) = 1 and all measurable
subsets of outputs £ :

P(h(X1.n) € E) < eP(h(X1.n) € E) + 6.

Remarks :

> Probabilities computed over randomness of the algorithms

» Ensures that one's participation in a survey will not in itself be disclosed, nor
will participation lead to disclosure of any specifics that one has contributed

to the survey.



Example : Bernoulli sample

Let x1.p = (x1,...,xn) € {0,1}". In this case we can construct a simple
randomized mean estimator
_ 1
m(x.p) =X+ —Z,
en

where x = 1 3™ | x; and Z is a r.v. with density function f(z) = %ef%lZI
z € R. Indeed, m(x1.p) is (¢,0)-DP.

Remarks :

> If x1., and x{., differ only at one entry, then |x — X'| = 1.
> For fixed x, the density function of m(x) is

EN _eni,_x
fm(x)(z)zie il |



Proposition (Laplace mechanism)
For f: X™ — RP the global sensitivity of a deterministic function f as

GSi(f):=  sup 1 (X1:n) — F(Xin) |1
Xt:n, Xt:n,dH(X1:n, X{.,)=1

Then, the following output is is (¢,0)-DP :
GS:(f)

Af(Xl:n) = f(Xl:n) + c

Lapp(1).




Proposition (Laplace mechanism)
For f: X™ — RP the global sensitivity of a deterministic function f as

GSl(f) = y sup y ||f(X1;n) - f()?l:n)Hl‘
X1:0sX1:0,dH (X1:0, X, ) =1

Then, the following output is is (¢,0)-DP :
GS:(f)

e

Af(Xi:n) = f(Xin) + Lapp(1).

v

Proof. Denote the densities of Af(Xi.,) and Af()?]_;n) by ga,(x) and B (%) Note
that as long as dy(X1.n, X1:n) = 1,

8a,)(y) _ exp(=lly — F(X1n)ll1¢/ GSi(f))

Eax)(Y)  exp(=lly — f(Xi.n)ll18/ GSi(f))

= exp( g gy Iy = FRun)l = lly = (X))
< o0l gy (1 OXan) = F(Ken)llo) < &

Hence, [, 8a0)(¥)dy < €° [ 8a,3)(¥)dy- O



Two important properties

Proposition (Postprocessing)

Let A: X" — R™ be a randomized algorithm that is (e, §)-differentially
private. Let f : R™ — R? be an arbitrary mapping. Then fo A: X" — RY
is (e, 0)-differentially private.




Two important properties

Proposition (Postprocessing)

Let A: X" — R™ be a randomized algorithm that is (e, §)-differentially
private. Let f : R™ — R? be an arbitrary mapping. Then fo A: X" — RY
is (e, 0)-differentially private.

v

Theorem (Composition)

Let Ay : X" — R™ be a (g1, 01)-differentially private algorithm, and let
Ay X" RY be a (g2, 6,)-differentially private algorithm. Then their
combination, defined to be Ay : X" — R™ X RY by the mapping
A12(x) = (A1(x), Aa(x)) is (e1 + €2, 81 + 62)-differentially private.




Example : Bounded data

Let x1.p = (x1,...,X%,) € [0, B]" and suppose we want to release private
estimators of the mean and the variance. Consider the noisy empirical mo-
ments :

. 1< B
My (x1:n) = n,Z;Xi + g—nZl and 2(x1:0) = ZX + —Zg,
1=
where Z; and Z; are standard independent Laplace.

» Both rfi1(x1:n) and ma(x1.n) are (¢,0)-DP by the Laplace mechanism.
» Releasing (M1(x1:n), M2(x1:n)) is (22,0)-DP by composition.

» Hence, releasing (i (x1.n), M2(x1:n) — nrin(x1.n)?) is (2¢,0)-DP by
post-processing.



Example : noisy histogram

Let x1.n = (X1,...,%n) € [0,1]". Partition [0, 1] in bins of equal bandwidth

h, s.t. k, = h,1is an integer. Let B; == [(j — 1)hn, jhn), j = 1,2,... kn.
The histogram density estimator is

K
1 <Rnj
fh, () = e E #R(X € B,
nJ:1
where nj :=>"", 1(x; € B)).



Example : noisy histogram

Let x1.n = (X1,...,%n) € [0,1]". Partition [0, 1] in bins of equal bandwidth
h, s.t. k, = h,1is an integer. Let B; == [(j — 1)hn, jhn), j = 1,2,... kn.
The histogram density estimator is

k
1 &K n;
fha (x) = h Z #R(X € B)),

j=1
where nj :=>"", 1(x; € B)).
» Noisy counts :
ﬁj = n;j + zj, Vj € {1,...,/(,,},

where the z;'s are i.i.d. 1Lap(1). k, is the total number of cells. Note
that GS(n;) = 1. So by Laplace mechanism 7; is (¢,0)-DP.



Example : noisy histogram

Let x1.n = (X1,...,%n) € [0,1]". Partition [0, 1] in bins of equal bandwidth
h, s.t. k, = h,1is an integer. Let B; == [(j — 1)hn, jhn), j = 1,2,... kn.
The histogram density estimator is
1 kn n;
fha(X) = /. Z o lx € By,
j=1
where nj :=>"", 1(x; € B)).
» Noisy counts :
ﬁj = n;j + zj, Vj € {1,...,/(,,},
where the z;'s are i.i.d. 1Lap(1). k, is the total number of cells. Note
that GS(n;) = 1. So by Laplace mechanism 7; is (¢,0)-DP.
» Noisy histogram :

1&g

Jj=1

fh(x) =

is (¢,0)-DP by post-processing. Releasing all f,, is (kne, 0)-DP.



Example : mean estimation with unbounded data

Suppose x = (x1,...,xn) € R". Perhaps the most popular approach trun-
cating the data as y; = sign(x;) max(|x;|, Bn) for i = 1,...,n and some

known bound B, < oo. Compute the (g,0)-DP mean estimator

R _ 2B
mBn(yl:n) =y+ EnnZ, (1)

where Z is a standard Laplace random variable.




Example : mean estimation with unbounded data

Suppose x = (x1,...,xn) € R". Perhaps the most popular approach trun-
cating the data as y; = sign(x;) max(|x;|, Bn) for i = 1,...,n and some
known bound B, < oo. Compute the (g,0)-DP mean estimator

R _ 2B
mB,,(Yl:n) =y+ .
en

Z, (1)
where Z is a standard Laplace random variable.

> If {X;} r N(u,0?), a natural bound is B, = Co+/log n for some C > 0

since the maximum of n normal random variables will lie in the interval

[1—20+v/Klog n, u+ 20+/K log n|, with probability at least 1 — ,%K for
a positive constant K

» g, (y1:n) is nice theoretically but in practice depends on the choice
of the unknown constants o and C. One could have some initial DP
estimates of these parameters or have an idea of the range of these
parameters (e.g. a known upper bound on o and a known interval
containing ).



DP mechanisms



Proposition (Laplace mechanism)
For f : X™ — RP the global sensitivity of f as

GSi(f) == sup 1 (X1:n) — F(Xen)| 1
Xl:m)?lznDlde(Xl:n,)?ll;n):]-

Then, the following output is is (¢,0)-DP :
GS:(f)

Af(Xl:n) = f(Xl:n) + c

Lapp(1).




Proposition (Laplace mechanism)
For f : X™ — RP the global sensitivity of f as

GSl(f) = sup Hf(Xl:n) — f()?l:n)Hl-
Xl:n,)?lan’7dH(X1:n,)?1/;n):1

Then, the following output is is (¢,0)-DP :
GS:(f)

e

Af(Xi:n) = f(Xin) + Lapp(1).

v

Proof. Denote the densities of Af(Xi.,) and Af()?]_;n) by ga,(x) and B (%) Note
that as long as dy(X1.n, X1:n) = 1,

8a,)(y) _ exp(=lly — F(X1n)ll1¢/ GSi(f))

Eax)(Y)  exp(=lly — f(Xi.n)ll18/ GSi(f))

= exp( g gy Iy = FRun)l = lly = (X))
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Proposition (Gaussian mechanism)
For f : X" — RP the global sensitivity of f as

CS:(f):=  sup [F(Xun) — F(Kun)]lo-
Xl:n:Xl:nde(Xl:mX{;,,):]-

Then, for e € (0,1) and 0 = \/WGSQ(” the following output is is
(¢,0)-DP :
Af(Xl:n) = f(Xl:n) + N(0,0'zl).




Proposition (Gaussian mechanism)
For f : X" — RP the global sensitivity of f as

CS:(f):=  sup [F(Xun) — F(Kun)]lo-
Xl:n:Xl:n:dH(Xl:mX{;n):]-

Then, for e € (0,1) and 0 = ¥ 2|n(1'2“2/5)G52(f) the following output is is
(e,6)-DP :

Af(Xl:n) = f(Xl:n) + N(O,O'2I).

Proof. Denote the densities of A¢(Xi.,) and Af()?l;n) by ga,(x) and 8a,(%) respec-
tively. Note that as long as dH(Xlzna)?ll-n) =1,

gax)(y) exp(— 2(;52 ||y f(Xea)l3)

gAf()?)(Y) exp(— 2(;52 ”y ()? )13

VANV

e® 4 4.

Hence, [, ga,x)(¥)dy < € [, 8a, (%)(¥)dy+0. (See Appendix A of book by Dwork
and Roth)



Exponential Mechanism

The following sampling procedure leads to (¢,0)-DP releases :

» Define a utility function v : X" x © — R, mapping database/output
pairs to utility scores. The higher the better for the user.
>
Au = max max u(x1.n,0) — u(X1.n, 0
06@ dH(Xl:ny)?l:n):]-| ( Lin ) ( L )|

> Select and output an element § € © with probability proportional to
eu(x1:n,0)
exp( 2Au )

Remark : in a statistical context, the utility function could be the likelihood
function or the square of the score function.



Weaker notions of sensitivity

For f : X" — RP the of fis

GSy(f) := sup | (x1:n) — F(X1:n)]|2-
X1, %10, dH (X1:0,%1:0) =1
The Laplace mechanism idea can be adapted for a notion of
For £ > 0, the of f at x1., is

SSc(f, x1:n) 1= sup {e‘éd”(xli”’)?l:”)L.Sg(f, >"<1:,,)},

X1:n

where
LSy(f, x1:n) == sup I f(x1:n) — f(X1:0)]|2

Xi:n,dH(X1:n,X1:n) =1



Weaker notions of sensitivity

For f: X" — RP the global sensitivity of f is

GS(f) == sup [ (x1:n) — £(X:n)l]2-

Xl:m)?l:n’dH (Xl:ny)?l:n)::l

The Laplace mechanism idea can be adapted for a notion of local sensitivity.
For £ > 0, the &-smooth sensitivity of f at xi., is

55g(f,X1:n) ‘= sup {e_gdH(XI:n,)?lzn)LSé(f’ ;q:n)}7

X1:n

where
LS (f,xan) = sup  [f(xun) = F(%un)ll2
)?l:nvdH(Xlzny)?lzn):]-

Choosing ¢ < a( , scaling the additive Gaussian noise with the &-

p+2|iog(2/(>'))
smooth sensitivity (in Euclidean norm) instead of GSy(f) guarantees (¢, 6)-

DP.



Smooth sensitivity : median

Suppose x = (x1,...,%,) € R” and let M(x1.n) = medi<i<n(x;i). Work
with truncated data y; = sign(x;) max(|x;|, Bs) for i = 1,...,n and some
known bound B, < oo. Note that GS(m) = 2B,
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Suppose x = (x1,...,%,) € R” and let M(x1.n) = medi<i<n(x;i). Work
with truncated data y; = sign(x;) max(|x;|, Bs) for i = 1,...,n and some
known bound B, < oo. Note that GS(rM) = 2B, .. .so the standard Laplace
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where § = m and Z is a standard normal random variable.



Smooth sensitivity : median

Suppose x = (x1,...,%,) € R” and let M(x1.n) = medi<i<n(x;i). Work
with truncated data y; = sign(x;) max(|x;|, Bs) for i = 1,...,n and some
known bound B, < oo. Note that GS(rM) = 2B, .. .so the standard Laplace
mechanism would add constant noise .. .consider instead

. o 2

(Y1) = (y1in) + =SSG)(v1n)Z, x € R,
where § = m and Z is a standard normal random variable.
Under mild conditions 5555) (y1:n) is small!

T

Cond. M Assume Xj has a unique median m and a density f in [m—r, m+-r].
Moreover, 3r, L such that f(u) > L, for all u € [m—r,m+r].



Smooth sensitivity : median

Suppose x = (x1,...,%,) € R” and let M(x1.n) = medi<i<n(x;i). Work
with truncated data y; = sign(x;) max(|x;|, Bs) for i = 1,...,n and some
known bound B, < oo. Note that GS(rM) = 2B, .. .so the standard Laplace
mechanism would add constant noise . . .consider instead

- . 2

m(y1:n) = m(y1:n) + 555553()/1:n)Z,X € Rna

where § = m and Z is a standard normal random variable.

Under mild conditions 55&53(}/1:,1) is small !

Cond. M Assume Xj has a unique median m and a density f in [m—r, m+-r].
Moreover, 3r, L such that f(u) > L, for all u € [m—r,m+r].

Lemma. Let Cond. M holds. Then, for 7 € (0, 1]. With probability at least
1—2r —2e n@—a)*/8,
2r

@)
55 (Yin) < eLp(n—1)

whereqy = F(m—r) and g2 = F(m+ r).

(log(v/n) + log(1/7)) + 2Te PV,



Propose-test-release : median

Idea : if the data is not in a bad configuration we could add less noise.
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x1:p = min{k > 0: 3x s.t. dy(x1:n, x1.,) < ky |M(X].,) — Bilxan)| > 1}



Propose-test-release : median

Idea : if the data is not in a bad configuration we could add less noise.
Suppose xi.p = (X1,...,Xn) € R" and let M(x1.p) = medi<i<n(x;).
A, :R" - {0,1,2,...,n}

x1:p = min{k > 0: 3x s.t. dy(x1:n, x1.,) < ky |M(X].,) — Bilxan)| > 1}

Let Z1, Z> be i.i.d. standard Laplace and define the randomized functions

A~

- 1
An(Xl:n) = An(Xlzn) + ng
and

~ ( ) L if AN'r](Xl:n) <1+ M
My (x1.p) =
I m(x1:n) + 22> otherwise.



Propose-test-release : median

Idea : if the data is not in a bad configuration we could add less noise.
Suppose xi.p = (X1,...,Xn) € R" and let M(x1.p) = medi<i<n(x;).
A, :R" - {0,1,2,...,n}

x1:p = min{k > 0: 3x s.t. dy(x1:n, x1.,) < ky |M(X].,) — Bilxan)| > 1}

Let Z1, Z> be i.i.d. standard Laplace and define the randomized functions

A~

- 1
An(Xl:n) = An(Xlzn) + ng

and .
1 if Ap(xi.n) < 14 8@/

£

r’ﬁn(xl:n) = {

m(x1:n) + 22> otherwise.

Prop. The estimator ri,(x1.p) is (2¢, 6)-DP and can be computed in O(nlog n)
time. Furthermore, if Cond. M holds and we choose 1 < 4CLT}f‘6 + 4|°§ﬁ/T),

then w. p. at least 1 — 7,

é(Xl:n) = é\(Xl:n) + 222




Some references

» Seminal paper : Dwork, McSherry, Nissim and Smith (TCC 2006) in-
troduced the definition of DP as well as Laplace and exponential me-
chanism.

» Smooth sensitivity : introduced in Nissim, Raskhonikova and Smith
(STOC 2007). They give a fast linear time algorithm for computing
the smooth sensitivity of the median.

> Propose-test-release : Dwork and Lei (STOC 2009) introduced this fra-
mework in the context of making robust statistics differentially private.



Some references

» Seminal paper : Dwork, McSherry, Nissim and Smith (TCC 2006) in-
troduced the definition of DP as well as Laplace and exponential me-
chanism.

» Smooth sensitivity : introduced in Nissim, Raskhonikova and Smith
(STOC 2007). They give a fast linear time algorithm for computing
the smooth sensitivity of the median.

> Propose-test-release : Dwork and Lei (STOC 2009) introduced this fra-
mework in the context of making robust statistics differentially private.

» Some recent work on refinements and variants of Propose-Test-Release
includes Avella-Medina and Brunel (2019), Bun and Steinke (NeurlPS
2019), Liu, Kong and Oh (COLT 2022), Wang et. al (NeurlPS 2022).

» Asi and Duchi (NeurlPS 2020) propose another local form of noise cali-
bration they call inverse sensitivity mechanism and has some optimality
properties.



Hypothesis testing view of DP
mechanisms



Differential privacy as hypothesis testing

Given two neighboring datasets X and X’, and a randomized algorithm A
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Differential privacy as hypothesis testing

Given two neighboring datasets X and X’, and a randomized algorithm A
test Hop: P=A(X) vs Hp:P=AX).

Theorem (Wasserman and Zhou (2010, JASA))

A is (¢,0)-DP iff for all neighboring data sets and s, t € X, any a-level
test for Hy : x; = s vs Hy : x; = t has power function bounded by
Bla) <1—max{0,1 -0 —e‘a,e 5(1—0—a)}.

1.0

kSintercept = &
N
\

Figure — Trade-off function plot
for (¢,0)-DP from Dong, Roth
and Su (2021, JRSS B).
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Gaussian differential privacy

Interpretation : telling whether someone is in the dataset is harder than
telling apart N(0,1) and N(u,1)

Definition (Dong, Roth and Su (2021, JRSS B))

Ais u-GDP iff for all neighboring data sets and s, t € X, any a-level test
for Hy : x; =t vs Hyi : x; = s has power 3(a) <1 — ®(d71(1 - a) — pu).
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Gaussian differential privacy

Interpretation : telling whether someone is in the dataset is harder than
telling apart N(0,1) and N(u,1)

Definition (Dong, Roth and Su (2021, JRSS B))

Ais u-GDP iff for all neighboring data sets and s, t € X, any a-level test
for Hy : x; =t vs Hyi : x; = s has power 3(a) <1 — ®(d71(1 - a) — pu).

» A mechanism is ;-GDP if and only if it is (¢,4d(¢))-DP for all ¢ > 0,
where e e
O SN S R o
3(e) = o(~= + 5) — o= = )
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Neyman-Pearson and Gaussian mechanism revisited

Let m: X" — R has a finite global sensitivity GS(m). Set o = %GS(m)
and consider the Gaussian mechanism

M(x1:n) = m(xw:n) + N(O, 02).

> If X ~ N(i',1), Neyman-Pearson Lemma shows that Likelihood Ratio Test
is the most powerful for testing Hp : i/ = 0 versus Hy : p/ = p. It has power
Bla) <1=0(07 (1 —a)—p)
> Let xq., be such that >_7 | 1{x; # x/} = 1. Given x., and x{.,,,
m(xn) ~ P = N(m(xin),0%) and  fi(x1,) ~ Q = N(m(x.,), ).

> Testing P = Q is equivalent to Hy : u = m(xy.,) versus Hy : u = m(xi.,).
For GS(m) > m(x{.,) — m(x1.n) > 0, the LRT has power
m(x!. ) — m(xq:n
ﬁ(a)zl—d)(zl_a— ( 1.n)0 ( 1: ))
m(Xl:n)/ - m(Xl:n)

GS(m)/n

=1- q)(Zl,a —

) <1l- d)(zlfa - M)'



Neyman-Pearson and Gaussian mechanism revisited

Indeed, consider Hy : X ~ N(6,02) versus Hy : X ~ N(¢',02). When
0 — 6 > 0, the likelihood ratio of N(#,52) and N(¢#',c?) is
/ (x—6')?
(p(%)/c _ e 2:2 0’79)(7%(9/2792)

= e
p(50))o

a monotone increasing function in x. So the LRT rejects if X > t and reject
otherwise.
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Neyman-Pearson and Gaussian mechanism revisited

Indeed, consider Hy : X ~ N(6,02) versus Hy : X ~ N(¢',02). When
0 — 6 > 0, the likelihood ratio of N(#,52) and N(¢#',c?) is
/ (x—6')?
(p(%)/c _ e 2:2 0’79)(7%(9/2792)

= e
p(50))o

a monotone increasing function in x. So the LRT rejects if X > t and reject
otherwise. The corresponding type | and type Il errors are

a(t) = Pry(X > ) = 1— o120,

g

Solving a for t gives t = c® (1 — o) + 0. Therefore
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Composition revisited

» Exact composition for Gaussian DP : suppose you K outputs, each of
them is ux-GDP for k = 1,..., K. The combined privacy guarantee is

/>y 112-GDP.

» Compositions comes from

K K
Hy: P ~ H N(0,1) versus Hi: P~ H N(pik, 1)
k=1 k=1

» The analogous statement we saw was that K-fold composition of (e, 0 )-
DP outputs is (Zle €k, Zszl 0x)-DP. This is in fact a loose bound...

» Advanced composition : to ensure (', Kd+0") after K-fold composition
E/

of (,9)-DP mechanisms, it suffices to take ¢ = 2/AKIn(1/5)



GDP and CLT for composition

The plot below shows the 1-GDP approximation to 10-fold composition of
(1/+/10,0)-DP mechanisms :
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GDP and CLT for composition

The plot below shows the 1-GDP approximation to 10-fold composition of
(1/+/10,0)-DP mechanisms :

10 1.0
feo —— 10 Composition
\ —— GDP from CLT
0873, 08 ---- Optimal DP bound

type IT error
o
o

type I1 error

e
=

o
©

o
o

02 04 06 08 10
type I error

=4
=3

Thm. Fix > 0 and let ¢ = p/v/K. There is a constant ¢ > 0 that only
depends on p satisfying

Cc C
¢(21,a,% - /’L) - = fs%K(a) < ¢(Z]_,a,% - :U’) + R’

=

foral K>1land ¢/K <a<1l-c/K.
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Idea : the composition of many mechanisms that can be interpreted as tests
of hypothesis can be approximated by u-GDP.



GDP and CLT for composition
Dong, Roth and Su (2021, JRSS B)

Idea : the composition of many mechanisms that can be interpreted as tests
of hypothesis can be approximated by u-GDP.

Def. Let h: X" — RP be a randomized function. We say that h is f-DP if
any a-level test between simple hypotheses of the form Hy : x; =t vs. Hj :
x;j = s has power function S(«) < 1—f(«), where f is a convex, continuous,
non-increasing function satisfying f(a) < 1 — « for all a € [0, 1].

Thm. Consider the K-fold composition of f,-DP mechanisms for k =
K. Let mi(fi) = — [y log |f/(x)|dx and ka(fi) = — [y log? |f(x)|dx
and suppose Eszl k1(fx) = p, maxi<k<k K1(fk) — 0 and Zk:l ro(fk) —

s2. Then,
lim A®AH® @ fx(a) = P(z1-a — 2u/s) = Gpyys(@),
K—o0

uniformly for all @ € [0, 1].



Some connections to robust
statistics



Using robust statistics ideas in differential privacy

» Influence Function : calibrating privacy inducing noise via the IF in
Avella-Medina (2021, JASA), builds particularly on ideas from Chaud-
huri and Hsu (2012, ICML)

» Finite sample breakdown point : non-asymptotic deviations analysis for
location estimators explored in Avella-Medina & Brunel (2020, ArXiv),
motivated by approach in Dwork and Lei (STOC, 2009)

> Convex optimization : noisy gradient descent and noisy Newton al-
gorithms in Avella-Medina, Bradshaw and Loh (2023, Ann. Statist.).
Builds on large literature on noisy optimization and work by many
people (Bassily, Chaudhuri, Duchi, Feldman, Jain, Smith, Talwar, Tha-
kurta ...)



Ingredient |

M-estimators

An M-estimator (Huber, 1964) is an estimate § = T(F,) defined by

5 o 1¢ .
0= argmigere Z p(zi,0) = argmingcge EF,[p(Z,0)],
i=1

or by an implicit equation as

LS Wz b) = £ [W(Z.) = 0.
i=1



Ingredient |l

Robust statistics tools

» The IF of a functional T(F) is a special (Gateaux) derivative given by

e Tyt TE)=T(F)

e—0 €

where F. = (1 — €)F + eAA; and A, is a mass point.

P It can be interpreted as limit of the sensitivity curve of the statistic
Th= T(Fp)

SC(zyz1y...yzp—1) = n(Tp(z1, ...y 2n—1,2) — Th_1(z1,- .-, Zn-1))

» For M-estimators the IF is proportional to W :

IF(z; F, T) = M~Y(z; T(F)).



Private M-estimation
Avella-Medina (JASA, 2021)

For an M-estimator
1 n
T(F)=0= i - i\ 0
(Fn) argmingcge n ; p(zi,0)
defined through a bounded function W, one can simply return

)5\/2 log(n)log(1/9)

en

AT(Fn) = T(Fn) +~(T, Fp

Np(0, 1)

where v(T, F,) = sup, [[IF(x; T, Fp)||.
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Private M-estimation
Avella-Medina (JASA, 2021)

For an M-estimator
1 n
T(F,)=0= argmin(,eRp; z;p(z,-, 0)
1=
defined through a bounded function W, one can simply return

)5\/2 log(n)log(1/9)

gn

AT(Fn) = T(Fn) +~(T, Fp

NP(O7 /)
where v(T, F,) = sup, [[IF(x; T, Fp)].

Theorem At is (g, d)-differentially private .. .for large n.



Proof idea

Noise calibration with smooth sensitivity
For f: X" — RP the global sensitivity of f is

GSy(f) = sup [ (x1:n) — £(X:n)l[2-

Xl:ny)?l:de (Xl:ny)?lzn):]-

The Laplace mechanism idea can be adapted for a notion of local sensitivity.
For € > 0, the &-smooth sensitivity of f at x1., is

SS¢(f, x1:n) 1= sup {e‘de(Xl:"’ili")LSQ(f, >”<1;,,)},
)?I:n
where
L52(faxl:n) = sup “f(xl:n) - f()?l:n)“2
)?l:nde(Xl:n,)?l:n):l
Choosing & < WM scaling the additive Gaussian noise with the &-

smooth sensitivity (in Euclidean norm) instead of GSy(f) guarantees (¢, 6)-
DP.



Proof idea
Our key insight
Let Co > 0, V|| < K, and || W] < L.

Lemma 1

S5(T,D(Fy)) < maX{zzn, CoKp exp < —¢ nloglgl/(S) +£> }

Lemma 2
log(1/6
< 2T ) (14 Gy PB4 L+ (T ) ).

Corollary. SS¢(T,D(F,)) < Lsup, [IF(x; T, Fp)|| = 24(T, Fy)

n



Remarks

A few technical points

» The smooth sensitivity is hard to compute!

» The above lemmas used

and hence a fixed scale versions of the influence function, i.e. for a fixed
p>0
T((1—€)F +eAy)— T(F)

€

IF(x; T(F)) :=

and
fYE(Ta F) .= sup ||/F€(X; T7 F)H



Remarks

A few technical points

» Our parameter estimates attain near minimax rates of convergence
under DP according to Cai, Wang and Zhang (2021, Ann. Statist.)

log(1/6
inf  sup  |A(F,) — 20<\/F+ F'Og(/)>
AcA, 5 PeP(a,p) n ne

» Any (e,6)-DP estimator has to be robust as there is a lower bound
depending on the gross-error sensitivity [Chaudhuri and Hsu (2012,
ICML) ; Avella-Medina (2021, JASA)]...

—_

ErEa|IA(Fn) = T(F)I] 2 29(TF)



Remarks

A few technical points

» Our parameter estimates attain near minimax rates of convergence
under DP according to Cai, Wang and Zhang (2021, Ann. Statist.)

nf s [JAGR) — ul 2 o2 2RO

AcA, 5 PeP(a,p) ne

» Any (e,6)-DP estimator has to be robust as there is a lower bound
depending on the gross-error sensitivity [Chaudhuri and Hsu (2012,
ICML) ; Avella-Medina (2021, JASA)]...

—_

ErEa|IA(Fn) = T(F)I] 2 29(TF)

» Qur DP estimator is asymptotically normally distributed but inference
is not immediate as we are not releasing variance estimates at this
point !



Related work

> Large CS/ML literature on differentially private estimation following
the seminal work of Dwork et al. (2006, TCC)

» Previous work related to M-estimation and robust statistics : Dwork
and Lei (2007, STOC), Lei (2011, NeurlPS), Smith (2011, STOC),
Chaudhuri and Hsu (2012, ICML)

> Statistical minimax rates : Wasserman and Zhou (2010, JASA), Duchi
et al. (2018, JASA), Cai et al. (2021, Ann. Statist.)

» Not much on inference on 2018 when | had a first draft on this : Sheffet
(2017, ICML), Barrientos et al. (2019, JCGS), Awan and Slavkovic
(2018, NeurlPS), Canone et al. (2019, STOC)



Private inference via noisy
optimization

Based on joint work with Casey Bradshaw and Po-Ling Loh



Private Stochastic Gradient Descent Algorithm

The canonical choice in practice

Algorithm 1 NoisySGD
1: Input: Dataset S = (z1,...,z,), loss function L(0, z).
Parameters: initial state 6y, learning rate 7, batch size m, time horizon T,
noise scale o, gradient norm bound C.

2: fort=1,...,T do
3: Subsampling:
Take a uniformly random subsample I; C {1,...,n} of size m > Sample,, in Section 4
4: for i € I; do
5: Compute gradient:
Utm — VgL(et,Ii)

6: Cllp gradlent
" v max {1, of? 2/ C}
7 Average, perturb, and descend
01 0, — m(% Dier, vt +N(O 4"202 )) > I is an identity matrix

8: Output 01




A remark on clipping

» Clipped likelihood as M-estimator
. 1< .
6 : n;hc (V log f(x;,@)) =0,

where h.(z) = zmin{1, m} is the multivariate Huber function.

Linear Regression Logistic Regression

8
1

2 4 6
1

[
|

-2
1

Estimate of 3; parameter
0
!
Estimate of 3, parameter
I

T T T T T T T T

. :
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sample size sample size



GD V. SGD

Let Xi,..

iterates

1.5

1.0

0.5

0.0

iid

., Xn ~ N(0,0?) and consider the Huber estimator.

location parameter

T T T T T
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number of iterations k

T
50
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-10

-15

abs gradient

GD
— SGD, b=5

—— SGD, b=20
— SGD, b=50

T T T T T T
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number of iterations k




Our contribution
joint work with Casey Bradshaw and Po-Ling Loh

> Global finite-sample convergence analysis of private gradient descent
and Newton method.

» The theory relies on local strong convexity and self-concordance.

> |dentify loss functions that avoid bounded data, bounded parameter
space and truncation arguments.

» Propose differentially private asymptotic confidence regions.



Related work

» DP and noisy optimization : Song et al. (2013), Bassily et al. (2014),
Duchi et al. (2018), Feldman et al. (2020), Cai et al. (2021) among
many many others...

» Self-concordance and statistics : Bach (2010), Karimireddy et al. (2019),
Sun and Tran-Dinh (2020), Ostrovskii and Bach (2021)

» Private confidence intervals : recent work including Wang, Kifer and
Lee (2019) proposes a similar technique. Other work Sheffet (2017),
Karwa and Vadhan (2017), Barrientos et al. (2019), Canonne et al.
(2019), Avella-Medina (2021)...



M-estimators

An M-estimator § = T(F,) of T(F) = 6y € RP (Huber, 1964) is defined as

5 . 1
0 = argmingcrp Ln(0) = argmingegp — z; p(z;,0),
=

or by an implicit equation as

% S (2, 8) = Er, [W(Z,0)] = 0.
i=1



M-estimators : properties

» For M-estimators the IF is proportional to W :
IF(z; F, T) = M(V, F)"'W(z; T(F))

i.e. bounded if W(z; T(F)) is bounded.

» M-estimators are asymptotically normal :
V(@ — 60) = N (0, V(V. F)).

where

V(W,F) = MV, F)LQ¥, F)M(V, F)!
M(V,F) = —%EF[W(Z,G)])GZT(F)
Q. F) = EF[W(Z,T(F)) - W(Z.T(F))'].



Noisy Gradient Descent

» Noisy gradient descent :

1 < 2sup | V]2 - VK
(D) — g0 — (=3 (x5, 0% 7
0 0 n(ni-l V(x;, 0\ + " P

{Zi} N(O, 1)



Noisy Gradient Descent

» Noisy gradient descent :

plk+1) — g(k) _ ( Zw k) 25UP V]2 - \/Rzk>
ny

{Z) N0, 1)

Theorem. Assuming local strong convexity, after K > C log n iterations of
NGD we have that

1. %) is u-GDP
2. 000 — 9 = 0 — 0 + O, (12
3. \f( K)_e )—)dN(O,V(\U,F))




Conditions for convergence analysis of NGD
Cond. 1 The gradient of the loss function is such that

sup  ||W(x,0)|]2 < B < .
XEX,0€0

Cond. 2 The loss L, is locally 71-strongly convex and 7»-smooth, i.e.,

La(01) — La(02) = (VLA(02), 01— 02) + 71|61 — 02]13, V61,0, € B,(6),

and

L,,(Gl) *E,,(Qz) < <VL,,(92),91 *92) +7’2||91 *92”%, V91,92 € 0 C RP.



Conditions for convergence analysis of NGD
Cond. 1 The gradient of the loss function is such that

sup  ||W(x,0)|]2 < B < .
XEX,0€0

Cond. 2 The loss L, is locally 71-strongly convex and 7»-smooth, i.e.,
La(01) — La(02) = (VLA(02), 01— 02) + 71|61 — 02]13, V61,0, € B,(6),
and

L(01) — Ln(02) < (VLA(02),01 — 02) + 1201 — 023, V01,6, € © C RP.
Key Lemma. With probability at least 1 — &,

[Zkll2 < {4v/p +2+/210g(K /€)},
for all k < K.



Convergence analysis of NGD |

For simplificity, assume 7y-strict convexity (not just local) and 7»-smoothness.
Consider

00+ = ) — v £, (09)) + N,

where ||Ni|| < r, for k = 1,..., K (holds with high probability by Key Lemma).
By Cauchy-Schwarz

1601 —6]13 = (109 — VLA (6%) — 6+ N3
< [16%) — v LH(0%0) = 0]13 + (/|6 — Bll2 + 2|V La(0M))|2)ra + -
Leveraging the inequality xy < s-x? + Zy? for arbitrary & > 0, we can take

arbitrary a > 0 and 8 > 0 to further upper bound the second term on the right
hand side of the last display to obtain

16 —6]13 < [0 — VL (6™) — 813 + |6 — 43

1 2
+ 20B| VLA (0M)|2 + ( i ?” n 1)



Convergence analysis of NGD |l

Note that mp-smoothness implies || V.L,(0())|13 < 475(L,(0%) — L,()). That and
Ty-strong convexity gives

0% — v L, (00 — )3

= (6% — 4|3 — 2(VL,(8X)), 0% — B) + n?|| VL, (60%)|]3

< (1= 29m)||0%) — 4[5 — 2n(La(09) — L4(0)) + 77V La(0%)]I3
< (1=2nm)[|0% — 6]3 — 2n(1 — 2nm2)(La(0%)) — L£,(0))

Note that 75-smoothness implies ||V £,(0())|13 < 47(L,(0%)) — L,(8)), we obtain

165D 93 < (1= 2nm + )69 — 93 + ( +2
—2n(1 —2nm 4+ 4871) (L, ( ) La(
§(1—2n71+a)||9<k)—é|§+< +—+1

)
)

The last inequality follows from the optimality of 6 and e



Convergence analysis of NGD Il

Therefore taking o« = iy and 8 = 2n we get
1
6049~ 13 < (1~ gm0 018 + (- +2)
nm

A 1 1
< (1 —nr)f 00 — 4|3 + — < + 2> r2

nT1 \N71
§2<1+2> >
nT \ N7

where the last inequality holds as long as

IOg(1/||9(°) —013) + log (55 (55 +2)r7)

N7 N7

log(1 —n71)

Conclusion : We need k > Clog(r2/||6(® — §|13) for some C > 0 to get
164D — 413 < O(r2).



Remark

Optimal minimax rates of convergence : under (&,d)-DP the optimal rates
of convergence are according to Cai, Wang and Zhang (2021, AoS)

log(1
inf sup EJJA(F,) - 09 2 g(\/f+ Pog(/5)>

A€A, s PeP(o,p) ne



Example : linear regression

> Consider a linear regression model

y,-:x,-T,B—i-u,- fori=1,...,n

x; € RP
up ~ N(0,0’z)
» We want to solve
P . 1 < p—— 1
(8,6) = argming , [; Zf’ﬁc(ylg’ﬁ) w(x;) + Skno

where w(x;) = min (1 ) and k is a Fisher consistency constant.

_1_
2
’ ||Xi||2



Example : linear regression

Parameter Estimate

00 02 04 06 0.8 1.0 1.2

Estimate of B,

—— private, u=0.5
—— private, u=2
—— non-private
T T T T T
20 40 60 80 100
Iteration

log(norm of gradient)

-2

-6

Gradient Estimate Trajectories

private, u=0.5
private, u=2
non-private

0 20

T T T
0 60 80 100

s 11

Iteration



Optimization : gradient descent and Newton's method

» Gradient descent iterations :

1 n
(k+1) — (k) _ = (k)
0 6 U ;_1 V(x;, 0)

» Newton iterations :

n -1 5
gk+1) — g(k) _ (Z \if(x,-,H(k))> ZW(Xi,9(k))

i=1



Optimization : gradient descent and Newton's method

Figure — Gradient descent iterates Figure — Newton's iterates



Noisy optimization : private iterations

Non-private Newton
Private Newton
Non-private GD
Private GD

log(norm of gradient)
4
|

T T T T T T I
0 20 40 60 80 100 120

Iteration



Noisy Newton

» Noisy Newton :

n

5 1
plt1) _ gk _ (L S W(x60) + 2BV2K W,
ni= 7 pn

(2wt o« 282K, )
i=1

7

where {Ny} and {Wj} are i.i.d. sequences of vectors and symmetric
matrices with i.i.d. standard normal components.

» Condition. Hessian of the form

n

V2L(0) = " alx 0)a(x.6)

i=1

where sup, ¢ [|a(x, 0) |3 < B < oo.



Noisy Newton theory

Non-private Newton
Private Newton
Non-private GD
Private GD

LT

log(norm of gradient)
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Noisy Newton theory

log(norm of gradient)

Iteration

Theorem. Assuming local strong convexity, a Liptschitz continuous Hessian
2
and ||[VL£, (0 < I}, after K > Cloglog n iterations of noisy Newton

1. 8K) is i-GDP is differentially private
K _p VK

2. 00K — 0y = — 6o+ O, (75)

3. /n(0%F) — 69) =4 N(O, V(V, F))



Damped Newton V. NGD

<
—— Gradient Descent

= Y —— Damped Newton
=
QL o
5 |
<
> Y -
ey
<]
E 9
<
)
g 9 -
=3
o ~ -

o

'

Iterations

» Pure Newton threshold :
2
o Local strong convexity : [|[VL,(0)|| < 7%

o Self-concordance : A—2(V2L,(0@)A(0©) < L

min 16+ °



Self-concordance

A univariate function f : R — R is (v, v)-self-concordant if
0 < (F7())"7,

for all x.



Loss

Self-concordance

A univariate function f : R — R is (v, v)-self-concordant if

()] < v (F(x))",

for all x. A multivariate function f : RP — R is (v V)—self—concordant if

[(V2FOIVIu, u)] < yllulZepgo IV IR F g IVIE

for all x,u,v € RP.

Example Loss Functions Loss Function Derivatives

e ] ~

N —— Smoothed Huber loss —— Smoothed Huber loss

— Huber loss — Huber loss

7S] — (3/c,2)-self concordant —— (8/c,2)-self concordant
-~ 7 —— (2/c,3)-self concordant T 7] — (2/c,3)-self concordant
= o -

o _| -

S '

e | o~

S b




Asymptotic variance

Let's go back to our robust regression example
AL . 1« —x! 3 1
(B8,6) = argming , [; Z opc (%) w(x;) + Emna}

where w(x;) = min (1, W) and k is a Fisher consistency constant.
ill2



Asymptotic variance

Let's go back to our robust regression example

5oy . 1< y,-inTﬁ 1
(B8,6) = argming , [E Zapc<g> w(x;) + Emna}

where w(x;) = min (1, W) and k is a Fisher consistency constant. The
ill2

formulas needed for estimating the variance of 5’ are :

Z¢C<y' %i 9>W(X, ) xix Zz,

where ||z;|| < B and ||| < B.



Private sandwich formula

1. Plug-in estimators M,(6(9)) and Q,(#)), where §(K) = (5(K) (X))
are not yet private.



Private sandwich formula

1. Plug-in estimators M,(6(9)) and Q,(#)), where §(K) = (5(K) (X))
are not yet private.

2. Matrix Gaussian mechanism : add symmetric matrix with i.i.d. Gaus-
sians in upper triangular part of the matrix. (Dwork et al. 2014, STOC)

V- (9K) (K) 2B 5 n(K) (K) 282
Ma(01)) = M, (0 )+EG1 and  Q,(07)) = Qn(6 HW@

3. Compute V,(0(9)) = M, (005 ~1Q,(0MF )M, (9(F))~1



Private sandwich formula

1. Plug-in estimators M,(6(9)) and Q,(#)), where §(K) = (5(K) (X))
are not yet private.

2. Matrix Gaussian mechanism : add symmetric matrix with i.i.d. Gaus-
sians in upper triangular part of the matrix. (Dwork et al. 2014, STOC)

V- (9K) (K) 2B 5 n(K) (K) 282
Ma(01)) = M, (0 )+EG1 and  Q,(07)) = Qn(6 HF@

3. Compute V,(0(9)) = M, (005 ~1Q,(0MF )M, (9(F))~1

Proposition. V,(6(9)) is v/3u-GDP and V,(§(K)) =, V(6(9).



GDP Confidence Interval Coverage

Corrected variance formula :

~ ~ 81°B°K
Va(0F)) = Vo(00) + ZL=00,
np
S
S o . ©
g o .
o © .
3 . .
o — L ° ° . .
5 .
5 g- -
o
@ . using true gradient
e * * * * ® corrected
o ® uncorrected
l\' —
o T T T T T T T T T T

200 300 400 500

625 750 1000 2000 3000 4000

sample size



GDP Confidence Interval Coverage

Corrected variance formula for noisy Newton :

where

- -1
Chewton = 772 {v2£n(9(k)) + Wk} (

95% CI coverage

06 07 08 09 10

0.5

Vn(e(K)) = Vn(G(K)) + nChewton;

2BvV2K

)2 {vzﬁn(g(k))+|/]'/k}_ )

un
° o ° L4 ° :
° .
.
.
.
.
o non-private stopping
® private stopping, corrected
® private stopping, no correction
T T T T T T T
250 500 750 1000 1500 2000 4000

sample size

1



Discussion

Why is our approach interesting ?

1. Algorithms are easy to implement and computationally efficient !

2. Importance of (local) strong convexity for optimal parametric rates of
convergence

3. General framework for differentially private parametric inference

4. Connections between optimization, differential privacy and robust sta-
tistics



Extension to local differential privacy

i ! T |
RUTIN 3 |
| ! - ean !
| N |
[Bob |y Raw LET L Frequensy |
! ! Dataset | /g ; B i
iy V7 £ i
| | 1= |
Client Server Public user

(a) Centralized differential privacy

(e J-i3 1
* /€ ") Perturbed ‘
1| Bob st erurbed i c—— Frequency | |
= U/ Dataset : 3

Client Server Public user

(b) Local differential privacy

Some key randomization ideas in local DP go back to Warner (JASA, 1965)
in the official statistics literature!



Extension to local differential privacy

P Interactive noisy gradient descent :

glk+1) — (k) _ Z( xi, 00)) 25UP|W|12'\/RZI(>

I

{Zi} N(O, )



Extension to local differential privacy

P Interactive noisy gradient descent :

glk+1) _ glk) _ Z ( xi, 00)) 4 2sup V]2 - \/Rzk>

!

{Zi} N(O, )

» Under local strong convexity and smoothness, after K iterations of
NGD iterations, with probability at least 1 — 7,

0%+ _ i, < 0 log(n) sup [|W]|2+/p +log(n/7) | |
B py/n




Extension to local differential privacy

P Interactive noisy gradient descent :

glk+1) _ glk) _ Z < xi, 00)) 4 2sup V]2 - \/Rzk>

!

{Zi} N(O, )

» Under local strong convexity and smoothness, after K iterations of
NGD iterations, with probability at least 1 — 7,

”mﬁn_mbgo<baMwmwm p+deﬂ>_

py/n

» See Duchi, Jordan and Wainwright (JASA, 2019) for minimax analysis
of various models under local DP.



Future work

There are many open problems in DP. In my opinion the following ones are
among the most obvious and perhaps urgent for practical data analysis :

ok =

High dimensional statistical inference
Hyperparameter tuning

DP methodology for longitudinal data
Model diagnostics and visualization tool

Better inference for local DP model
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