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Information control and privacy ?

▶ Conventional measures
⋄ Control access to information

⋄ Control for what the purpose the information is used

▶ Measures for data release ?
⋄ Anonymization

⋄ Sanitization : perturbation, suppression, generalization

Information control measures are not satisfactory...



Privacy attacks



Reidentification attacks

▶ In 1997 Latanya Sweeney showed that gender, date of birth, and ZIP
code are sufficient to uniquely identify the vast majority of Americans
(up to 87%). She could even identify the Governor of Massachusetts
in a public anonymous hospital discharge records and sent him his own
personal health record to his office !

▶ In 2013 in and her team also identified the names of more than 40% of
a sample of anonymous participants in a high-profile DNA study, the
Personal Genome Project.



Reconstruction attacks
Netflix Challenge Re-identification (Narayanan & Shmatikov 2008)

▶ Data : X = ratings on Netflix e.g. sparse, categorical and high-dimensional
movie

▶ Adversary’s input :
⋄ S=subset of individual observations, possibly slightly distorted

⋄ Y= public ratings on IMDB e.g auxiliary dataset Y containing informa-
tion on certain individuals in dataset S.

▶ Adversary’s goal : identify individuals in X by matching their records to
those in Y.



Reconstruction attacks
Netflix Challenge Re-identification (Narayanan & Shmatikov 2008)

▶ Narayanan-Shmatikov Algorithm

1. Calculate score(Y , xi ) for each xi ∈ S as well as the standard deviation
σ̂ of the calculated scores.

2. Let r1 = xi and r2 = xj be the records with the largest scores

3. If score(Y , r1) − score(Y , r2) > ϕσ̂, output r1, else output ”no match
found”.

▶ The authors recommend to use a score of the form

score(Y , x) = min
i

∑
j∈[n]

1

log |nj |
d(yij , xj),

where n is the number of individual records in Y , nj is the number of
users that rated movie j , and d(yij , xj) is a distance between yj and xj .



Reconstruction attacks
Netflix Challenge Re-identification (Narayanan & Shmatikov 2008)

Narayanan and Shmatikov (2008, SP) strikingly shows how anonymization
fails even when combined with sanitization.

▶ Successfully de-anonymized Netflix data from individuals with public
ratings on IMDB. Only approximate ratings and dates sufficed to iden-
tify individuals.

▶ They propose polynomial time algorithm that breaks privacy

▶ Problem : auxiliary information and linkage attacks

▶ This caused cancellation of second Netflix prize and resulted in a law-
suit.

▶ We can’t know what adversary knows or will know in the future.



Membership attacks

▶ Genome wide association studies (Homer et al. 2008, PLoS genetics)
⋄ Release frequencies of SNP’s (individual positions)

⋄ Determine whether individual ”i” is in ”case group” i.e. has a particular
disease

▶ Microtargeted ads (Korolova 2011, J. Privacy and Confidentiality)
⋄ Define a sufficiently narrow target profiles that allow to identify specific
individuals.

⋄ Design k campaign adds on the likely unique subject that will see them
and record impressions over a reasonable time period to infer a specific
feature fi mentioned in ith add. This strategy was succesfully deployed to
figure out the age and sexual orientation of friends and friends’ friends.
Could be used to extract other features.
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Summary statistics can reveal individual information

▶ Homer et al. 2008 showed that commonly released minor allele frequen-
cies (MAFs) i.e. sample means are not private.

▶ The plots below are taken from Zhang & Zhang (2020). They illustrate
the problem with a heart disease data set consisting of 100 patients and
347,019 SNPs.

Figure – Standard q-score Figure – DP q-scores



Differential privacy : properties and
basic algorithms











Privacy definition (informal)

An analysis on the dataset D is private if Thibault knows almost no more
about Marco after the analysis than what he would have known had he
conducted the same analysis on an identical database with Marco’s data
removed.



Framework

▶ Setting : a trusted curator holds a sensitive database constituted by n
individual rows.

▶ Goal : protect every individual row while allowing statistical analysis of
the database as a whole



Definition
Dwork et al. (2006)

Definition. Let X1:n = (X1, . . . ,Xn) ∈ X n be some dataset. A randomized
function h : X n → Rd is (ε, δ)-differentially private if for all pairs of datasets
(X1:n, X̃1:n) with dH(X1:n, X̃1:n) =

∑n
i=1 1(Xi ̸= X ′

i ) = 1 and all measurable
subsets of outputs E :

P(h(X1:n) ∈ E) ≤ eεP(h(X̃1:n) ∈ E) + δ.

Remarks :

▶ Probabilities computed over randomness of the algorithms

▶ Ensures that one’s participation in a survey will not in itself be disclosed, nor
will participation lead to disclosure of any specifics that one has contributed
to the survey.
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Example : Bernoulli sample

Let x1:n = (x1, . . . , xn) ∈ {0, 1}n. In this case we can construct a simple
randomized mean estimator

m(x1:n) = x̄ +
1

εn
Z ,

where x̄ = 1
n

∑n
i=1 xi and Z is a r.v. with density function f (z) = 1

2e
− 1

2
|z|,

z ∈ R. Indeed, m(x1:n) is (ε, 0)-DP.

Remarks :

▶ If x1:n and x ′1:n differ only at one entry, then |x̄ − x̄ ′| = 1
n .

▶ For fixed x , the density function of m(x) is

fm(x)(z) =
εn

2
e−

εn
2 |z−x̄|



Proposition (Laplace mechanism)

For f : X n → Rp the global sensitivity of a deterministic function f as

GS1(f ) := sup
X1:n,X̃1:n,dH(X1:n,X̃ ′

1:n)=1

∥f (X1:n)− f (X̃1:n)∥1.

Then, the following output is is (ε, 0)-DP :

Af (X1:n) = f (X1:n) +
GS1(f )

ε
Lapp(1).

Proof. Denote the densities of Af (X1:n) and Af (X̃1:n) by gAf (X ) and gAf (X̃ ). Note

that as long as dH(X1:n, X̃1:n) = 1,

gAf (X )(y)

gAf (X̃ )(y)
=

exp(−∥y − f (X1:n)∥1ε/GS1(f ))
exp(−∥y − f (X̃1:n)∥1ε/GS1(f ))

= exp(
ε

GS1(f )
(∥y − f (X̃1:n)∥1 − ∥y − f (X1:n)∥1)

≤ exp(
ε

GS1(f )
(∥f (X1:n)− f (X̃1:n)∥1) ≤ eε.

Hence,
∫
O
gAf (X )(y)dy ≤ eε

∫
O
gAf (X̃ )(y)dy . □
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Two important properties

Proposition (Postprocessing)

Let A : X n 7→ Rm be a randomized algorithm that is (ε, δ)-differentially
private. Let f : Rm 7→ Rd be an arbitrary mapping. Then f ◦ A : X n 7→ Rd

is (ε, δ)-differentially private.

Theorem (Composition)

Let A1 : X n 7→ Rm be a (ε1, δ1)-differentially private algorithm, and let
A2 : X n 7→ Rd be a (ε2, δ2)-differentially private algorithm. Then their
combination, defined to be A1,2 : X n 7→ Rm × Rd by the mapping
A1,2(x) = (A1(x),A2(x)) is (ε1 + ε2, δ1 + δ2)-differentially private.
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Example : Bounded data

Let x1:n = (x1, . . . , xn) ∈ [0,B]n and suppose we want to release private
estimators of the mean and the variance. Consider the noisy empirical mo-
ments :

m̂1(x1:n) =
1

n

n∑
i=1

xi +
B

εn
Z1 and m̂2(x1:n) =

1

n

n∑
i=1

x2i +
B2

εn
Z2,

where Z1 and Z2 are standard independent Laplace.

▶ Both m̂1(x1:n) and m̂2(x1:n) are (ε, 0)-DP by the Laplace mechanism.

▶ Releasing (m̂1(x1:n), m̂2(x1:n)) is (2ε, 0)-DP by composition.

▶ Hence, releasing (m̂1(x1:n), m̂2(x1:n) − nm̂1(x1:n)
2) is (2ε, 0)-DP by

post-processing.



Example : noisy histogram

Let x1:n = (x1, . . . , xn) ∈ [0, 1]n. Partition [0, 1] in bins of equal bandwidth
hn s.t. kn = h−1

n is an integer. Let Bj := [(j − 1)hn, jhn), j = 1, 2, . . . , kn.
The histogram density estimator is

fhn(x) =
1

hn

kn∑
j=1

nj
n
1(x ∈ Bj),

where nj :=
∑n

i=1 1(xi ∈ Bj).

▶ Noisy counts :
n̂j = nj + zj , ∀j ∈ {1, . . . , kn},

where the zj ’s are i.i.d. 1
εLap(1). kn is the total number of cells. Note

that GS(nj) = 1. So by Laplace mechanism n̂j is (ε, 0)-DP.

▶ Noisy histogram :

f̂hn(x) =
1

hn

kn∑
j=1

n̂j
n
1(x ∈ Bj)

is (ε, 0)-DP by post-processing. Releasing all f̃hn is (knε, 0)-DP.
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Example : mean estimation with unbounded data

Suppose x = (x1, . . . , xn) ∈ Rn. Perhaps the most popular approach trun-
cating the data as yi = sign(xi )max(|xi |,Bn) for i = 1, . . . , n and some
known bound Bn <∞. Compute the (ε, 0)-DP mean estimator

m̂Bn(y1:n) = ȳ +
2Bn

εn
Z , (1)

where Z is a standard Laplace random variable.

▶ If {Xi}
iid∼ N(µ, σ2), a natural bound is Bn = Cσ

√
log n for some C > 0

since the maximum of n normal random variables will lie in the interval
[µ− 2σ

√
K log n, µ+2σ

√
K log n], with probability at least 1− 2

nK
for

a positive constant K

▶ m̂Bn(y1:n) is nice theoretically but in practice depends on the choice
of the unknown constants σ and C . One could have some initial DP
estimates of these parameters or have an idea of the range of these
parameters (e.g. a known upper bound on σ and a known interval
containing µ).
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DP mechanisms



Proposition (Laplace mechanism)

For f : X n → Rp the global sensitivity of f as

GS1(f ) := sup
X1:n,X̃1:nD′,dH(X1:n,X̃ ′
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∥f (X1:n)− f (X̃1:n)∥1.

Then, the following output is is (ε, 0)-DP :

Af (X1:n) = f (X1:n) +
GS1(f )

ε
Lapp(1).
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Proposition (Gaussian mechanism)

For f : X n → Rp the global sensitivity of f as

GS2(f ) := sup
X1:n,X̃1:n,dH(X1:n,X̃ ′

1:n)=1

∥f (X1:n)− f (X̃1:n)∥2.

Then, for ε ∈ (0, 1) and σ =

√
2 ln(1.25/δ)GS2(f )

ε the following output is is
(ε, δ)-DP :

Af (X1:n) = f (X1:n) + N(0, σ2I ).

Proof. Denote the densities of Af (X1:n) and Af (X̃1:n) by gAf (X ) and gAf (X̃ ) respec-

tively. Note that as long as dH(X1:n, X̃
′
1:n) = 1,

gAf (X )(y)

gAf (X̃ )(y)
=

exp(− ε2

2GS2(f )2)
∥y − f (X1:n)∥22)

exp(− ε2

2GS2(f )2)
∥y − f (X̃1:n)∥22)

≤ . . .

≤ eε + δ.

Hence,
∫
O
gAf (X )(y)dy ≤ eε

∫
O
gAf (X̃ )(y)dy+δ. (See Appendix A of book by Dwork

and Roth)
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Exponential Mechanism

The following sampling procedure leads to (ε, 0)-DP releases :

▶ Define a utility function u : X n × Θ 7→ R, mapping database/output
pairs to utility scores. The higher the better for the user.

▶
∆u = max

θ∈Θ
max

dH(x1:n,x̃1:n)=1
|u(x1:n, θ)− u(x̃1:n, θ)|

▶ Select and output an element θ ∈ Θ with probability proportional to
exp( εu(x1:n,θ)2∆u ).

Remark : in a statistical context, the utility function could be the likelihood
function or the square of the score function.



Weaker notions of sensitivity

For f : X n → Rp the global sensitivity of f is

GS2(f ) := sup
x1:n,x̃1:n,dH(x1:n,x̃1:n)=1

∥f (x1:n)− f (x̃1:n)∥2.

The Laplace mechanism idea can be adapted for a notion of local sensitivity.
For ξ > 0, the ξ-smooth sensitivity of f at x1:n is

SSξ(f , x1:n) := sup
x̃1:n

{
e−ξdH(x1:n,x̃1:n)LS2(f , x̃1:n)

}
,

where
LS2(f , x1:n) := sup

x̃1:n,dH(x1:n,x̃1:n)=1
∥f (x1:n)− f (x̃1:n)∥2

Choosing ξ ≤ ε
4(p+2 log(2/δ)) , scaling the additive Gaussian noise with the ξ-

smooth sensitivity (in Euclidean norm) instead of GS2(f ) guarantees (ε, δ)-
DP.
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Smooth sensitivity : median

Suppose x = (x1, . . . , xn) ∈ Rn and let m̂(x1:n) = med1≤i≤n(xi ). Work
with truncated data yi = sign(xi )max(|xi |,Bn) for i = 1, . . . , n and some
known bound Bn <∞. Note that GS(m̂) = 2Bn

. . .so the standard Laplace
mechanism would add constant noise . . .consider instead

m̃(y1:n) = m̂(y1:n) +
2

ε
SS

(β)
m̂T

(y1:n)Z , x ∈ Rn,

where β = ε
4{1+log(2/δ)} and Z is a standard normal random variable.

Under mild conditions SS
(β)
m̂T

(y1:n) is small !

Cond. M Assume X1 has a unique median m and a density f in [m−r ,m+r ].
Moreover, ∃r , L such that f (u) ≥ L, for all u ∈ [m − r ,m + r ].

Lemma. Let Cond. M holds. Then, for τ ∈ (0, 1]. With probability at least
1− 2τ − 2e−n(q2−q1)2/8,

SS
(β)
m̂ (Y1:n) ≤

2r

eLβ(n − 1)

(
log(

√
n) + log(1/τ)

)
+ 2Te−β

√
n,

whereq1 = F (m − r) and q2 = F (m + r).



Smooth sensitivity : median

Suppose x = (x1, . . . , xn) ∈ Rn and let m̂(x1:n) = med1≤i≤n(xi ). Work
with truncated data yi = sign(xi )max(|xi |,Bn) for i = 1, . . . , n and some
known bound Bn <∞. Note that GS(m̂) = 2Bn . . .so the standard Laplace
mechanism would add constant noise . . .consider instead
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ε
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Propose-test-release : median

Idea : if the data is not in a bad configuration we could add less noise.

Suppose x1:n = (x1, . . . , xn) ∈ Rn and let m̂(x1:n) = med1≤i≤n(xi ).

Âη : Rn → {0, 1, 2, . . . , n}
x1:n 7→ min{k ≥ 0 : ∃x ′ s.t. dH(x1:n, x ′1:n) ≤ k, |m̂(x ′1:n)− m̂(x1:n)| > η}.

Let Z1,Z2 be i.i.d. standard Laplace and define the randomized functions

Ãη(x1:n) = Âη(x1:n) +
1

ε
Z1

and

m̃η(x1:n) =

{
⊥ if Ãη(x1:n) ≤ 1 + log(2/δ)

ε

m̂(x1:n) +
η
εZ2 otherwise.

Prop. The estimator m̃η(x1:n) is (2ε, δ)-DP and can be computed in O(n log n)

time. Furthermore, if Cond. M holds and we choose η ≤ 4Cτ,ε,δ

Ln + 4 log(2/τ)
3Ln ,

then w. p. at least 1− τ ,

θ̃(x1:n) = θ̂(x1:n) +
η

ε
Z2.
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⊥ if Ãη(x1:n) ≤ 1 + log(2/δ)

ε

m̂(x1:n) +
η
εZ2 otherwise.

Prop. The estimator m̃η(x1:n) is (2ε, δ)-DP and can be computed in O(n log n)

time. Furthermore, if Cond. M holds and we choose η ≤ 4Cτ,ε,δ

Ln + 4 log(2/τ)
3Ln ,

then w. p. at least 1− τ ,

θ̃(x1:n) = θ̂(x1:n) +
η

ε
Z2.



Some references

▶ Seminal paper : Dwork, McSherry, Nissim and Smith (TCC 2006) in-
troduced the definition of DP as well as Laplace and exponential me-
chanism.

▶ Smooth sensitivity : introduced in Nissim, Raskhonikova and Smith
(STOC 2007). They give a fast linear time algorithm for computing
the smooth sensitivity of the median.

▶ Propose-test-release : Dwork and Lei (STOC 2009) introduced this fra-
mework in the context of making robust statistics differentially private.

▶ Some recent work on refinements and variants of Propose-Test-Release
includes Avella-Medina and Brunel (2019), Bun and Steinke (NeurIPS
2019), Liu, Kong and Oh (COLT 2022), Wang et. al (NeurIPS 2022).

▶ Asi and Duchi (NeurIPS 2020) propose another local form of noise cali-
bration they call inverse sensitivity mechanism and has some optimality
properties.
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Hypothesis testing view of DP
mechanisms



Differential privacy as hypothesis testing

Given two neighboring datasets X and X ′, and a randomized algorithm A
test H0 : P = A(X ) vs H1 : P = A(X ′).

Theorem (Wasserman and Zhou (2010, JASA))

A is (ε, δ)-DP iff for all neighboring data sets and s, t ∈ X , any α-level
test for H0 : xi = s vs H1 : xi = t has power function bounded by
β(α) ≤ 1−max{0, 1− δ − eεα, e−ε(1− δ − α)}.

Figure – Trade-off function plot
for (ε, δ)-DP from Dong, Roth
and Su (2021, JRSS B).
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Gaussian differential privacy

Interpretation : telling whether someone is in the dataset is harder than
telling apart N(0, 1) and N(µ, 1)

Definition (Dong, Roth and Su (2021, JRSS B))

A is µ-GDP iff for all neighboring data sets and s, t ∈ X , any α-level test
for H0 : xi = t vs H1 : xi = s has power β(α) ≤ 1− Φ(Φ−1(1− α)− µ).
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Neyman-Pearson and Gaussian mechanism revisited

Let m : X n 7→ R has a finite global sensitivity GS(m). Set σ = 1
µGS(m)

and consider the Gaussian mechanism

m̃(x1:n) = m(x1:n) + N(0, σ2).

▶ If X ∼ N(µ′, 1), Neyman-Pearson Lemma shows that Likelihood Ratio Test
is the most powerful for testing H0 : µ′ = 0 versus H1 : µ′ = µ. It has power
β(α) ≤ 1− Φ(Φ−1(1− α)− µ)

▶ Let x ′1:n be such that
∑n

i=1 1{xi ̸= x ′i } = 1. Given x1:n and x ′1:n,

m̃(x1:n) ∼ P = N(m(x1:n), σ
2) and m̃(x ′1:n) ∼ Q = N(m(x ′1:n), σ

2).

▶ Testing P = Q is equivalent to H0 : µ = m(x1:n) versus H1 : µ = m(x ′1:n).
For GS(m) ≥ m(x ′1:n)−m(x1:n) ≥ 0, the LRT has power

β(α) = 1− Φ(z1−α − m(x ′1:n)−m(x1:n)

σ
)

= 1− Φ(z1−α − m(x1:n)
′ −m(x1:n)

GS(m)/µ
) ≤ 1− Φ(z1−α − µ).



Neyman-Pearson and Gaussian mechanism revisited

Let m : X n 7→ R has a finite global sensitivity GS(m). Set σ = 1
µGS(m)

and consider the Gaussian mechanism

m̃(x1:n) = m(x1:n) + N(0, σ2).

▶ If X ∼ N(µ′, 1), Neyman-Pearson Lemma shows that Likelihood Ratio Test
is the most powerful for testing H0 : µ′ = 0 versus H1 : µ′ = µ. It has power
β(α) ≤ 1− Φ(Φ−1(1− α)− µ)

▶ Let x ′1:n be such that
∑n

i=1 1{xi ̸= x ′i } = 1. Given x1:n and x ′1:n,

m̃(x1:n) ∼ P = N(m(x1:n), σ
2) and m̃(x ′1:n) ∼ Q = N(m(x ′1:n), σ

2).

▶ Testing P = Q is equivalent to H0 : µ = m(x1:n) versus H1 : µ = m(x ′1:n).
For GS(m) ≥ m(x ′1:n)−m(x1:n) ≥ 0, the LRT has power

β(α) = 1− Φ(z1−α − m(x ′1:n)−m(x1:n)

σ
)

= 1− Φ(z1−α − m(x1:n)
′ −m(x1:n)

GS(m)/µ
) ≤ 1− Φ(z1−α − µ).



Neyman-Pearson and Gaussian mechanism revisited

Let m : X n 7→ R has a finite global sensitivity GS(m). Set σ = 1
µGS(m)

and consider the Gaussian mechanism

m̃(x1:n) = m(x1:n) + N(0, σ2).

▶ If X ∼ N(µ′, 1), Neyman-Pearson Lemma shows that Likelihood Ratio Test
is the most powerful for testing H0 : µ′ = 0 versus H1 : µ′ = µ. It has power
β(α) ≤ 1− Φ(Φ−1(1− α)− µ)

▶ Let x ′1:n be such that
∑n

i=1 1{xi ̸= x ′i } = 1. Given x1:n and x ′1:n,

m̃(x1:n) ∼ P = N(m(x1:n), σ
2) and m̃(x ′1:n) ∼ Q = N(m(x ′1:n), σ

2).

▶ Testing P = Q is equivalent to H0 : µ = m(x1:n) versus H1 : µ = m(x ′1:n).
For GS(m) ≥ m(x ′1:n)−m(x1:n) ≥ 0, the LRT has power

β(α) = 1− Φ(z1−α − m(x ′1:n)−m(x1:n)

σ
)

= 1− Φ(z1−α − m(x1:n)
′ −m(x1:n)

GS(m)/µ
) ≤ 1− Φ(z1−α − µ).



Neyman-Pearson and Gaussian mechanism revisited

Let m : X n 7→ R has a finite global sensitivity GS(m). Set σ = 1
µGS(m)

and consider the Gaussian mechanism

m̃(x1:n) = m(x1:n) + N(0, σ2).

▶ If X ∼ N(µ′, 1), Neyman-Pearson Lemma shows that Likelihood Ratio Test
is the most powerful for testing H0 : µ′ = 0 versus H1 : µ′ = µ. It has power
β(α) ≤ 1− Φ(Φ−1(1− α)− µ)

▶ Let x ′1:n be such that
∑n

i=1 1{xi ̸= x ′i } = 1. Given x1:n and x ′1:n,

m̃(x1:n) ∼ P = N(m(x1:n), σ
2) and m̃(x ′1:n) ∼ Q = N(m(x ′1:n), σ

2).

▶ Testing P = Q is equivalent to H0 : µ = m(x1:n) versus H1 : µ = m(x ′1:n).
For GS(m) ≥ m(x ′1:n)−m(x1:n) ≥ 0, the LRT has power

β(α) = 1− Φ(z1−α − m(x ′1:n)−m(x1:n)

σ
)

= 1− Φ(z1−α − m(x1:n)
′ −m(x1:n)

GS(m)/µ
) ≤ 1− Φ(z1−α − µ).



Neyman-Pearson and Gaussian mechanism revisited

Indeed, consider H0 : X ∼ N(θ, σ2) versus H1 : X ∼ N(θ′, σ2). When
θ′ − θ ≥ 0, the likelihood ratio of N(θ, σ2) and N(θ′, σ2) is

φ( x−θ′

σ )/σ

φ( x−θ
σ )/σ

=
e−

(x−θ′)2

2σ2

e−
(x−θ)2

2σ2

= e
θ′−θ
σ

x− 1
2σ2 (θ

′2−θ2),

a monotone increasing function in x . So the LRT rejects if X > t and reject
otherwise.

The corresponding type I and type II errors are

α(t) = PH0(X > t) = 1− Φ(
t − θ

σ
), β(t) = PH1(X ≤ t) = Φ(

t − θ′

σ
).

Solving α for t gives t = σΦ−1(1− α) + θ. Therefore

β(α) = Φ(z1−α − (θ′ − θ)

σ
)
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Composition revisited

▶ Exact composition for Gaussian DP : suppose you K outputs, each of
them is µk -GDP for k = 1, . . . ,K . The combined privacy guarantee is√∑

k=1 µ
2
k -GDP.

▶ Compositions comes from

H0 : P ∼
K∏

k=1

N(0, 1) versus H1 : P ∼
K∏

k=1

N(µk , 1)

▶ The analogous statement we saw was that K-fold composition of (εk , δk)-
DP outputs is (

∑K
k=1 εk ,

∑K
k=1 δk)-DP. This is in fact a loose bound...

▶ Advanced composition : to ensure (ε′,Kδ+δ′) after K-fold composition
of (ε, δ)-DP mechanisms, it suffices to take ε = ε′

2
√

2K ln(1/δ′)
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GDP and CLT for composition

The plot below shows the 1-GDP approximation to 10-fold composition of
(1/

√
10, 0)-DP mechanisms :

Thm. Fix µ > 0 and let ε = µ/
√
K . There is a constant c > 0 that only

depends on µ satisfying

Φ(z1−α− c
K
− µ)− c

K
≤ f ⊗K

ε,0 (α) ≤ Φ(z1−α− c
K
− µ) +

c

K
,

for all K ≥ 1 and c/K ≤ α ≤ 1− c/K .
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GDP and CLT for composition
Dong, Roth and Su (2021, JRSS B)

Idea : the composition of many mechanisms that can be interpreted as tests
of hypothesis can be approximated by µ-GDP.

Def. Let h : X n → Rp be a randomized function. We say that h is f -DP if
any α-level test between simple hypotheses of the form H0 : xi = t vs. H1 :
xi = s has power function β(α) ≤ 1−f (α), where f is a convex, continuous,
non-increasing function satisfying f (α) ≤ 1− α for all α ∈ [0, 1].

Thm. Consider the K -fold composition of fk -DP mechanisms for k =
1, . . . ,K . Let κ1(fk) = −

∫ 1
0 log |f ′k(x)|dx and κ2(fk) = −

∫ 1
0 log2 |f ′k(x)|dx

and suppose
∑K

k=1 κ1(fk) → µ, max1≤k≤K κ1(fk) → 0 and
∑K

k=1 κ2(fk) →
s2. Then,

lim
K→∞

f1 ⊗ f2 ⊗ · · · ⊗ fK (α) = Φ(z1−α − 2µ/s) = G2µ/s(α),

uniformly for all α ∈ [0, 1].
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Some connections to robust
statistics



Using robust statistics ideas in differential privacy

▶ Influence Function : calibrating privacy inducing noise via the IF in
Avella-Medina (2021, JASA), builds particularly on ideas from Chaud-
huri and Hsu (2012, ICML)

▶ Finite sample breakdown point : non-asymptotic deviations analysis for
location estimators explored in Avella-Medina & Brunel (2020, ArXiv),
motivated by approach in Dwork and Lei (STOC, 2009)

▶ Convex optimization : noisy gradient descent and noisy Newton al-
gorithms in Avella-Medina, Bradshaw and Loh (2023, Ann. Statist.).
Builds on large literature on noisy optimization and work by many
people (Bassily, Chaudhuri, Duchi, Feldman, Jain, Smith, Talwar, Tha-
kurta . . .)



Ingredient I
M-estimators

An M-estimator (Huber, 1964) is an estimate θ̂ = T (Fn) defined by

θ̂ = argminθ∈Rp

1

n

n∑
i=1

ρ(zi , θ) = argminθ∈RpEFn [ρ(Z , θ)],

or by an implicit equation as

1

n

n∑
i=1

Ψ(zi , θ̂) = EFn [Ψ(Z , θ̂)] = 0.



Ingredient II
Robust statistics tools

▶ The IF of a functional T (F ) is a special (Gâteaux) derivative given by

IF (z ;F ,T ) = lim
ϵ→0

T (Fϵ)− T (F )

ϵ
,

where Fϵ = (1− ϵ)F + ϵ∆z and ∆z is a mass point.

▶ It can be interpreted as limit of the sensitivity curve of the statistic
Tn = T (Fn)

SC (z ; z1, . . . , zn−1) = n(Tn(z1, . . . , zn−1, z)− Tn−1(z1, . . . , zn−1))

▶ For M-estimators the IF is proportional to Ψ :

IF (z ;F ,T ) = M−1Ψ(z ;T (F )).



Private M-estimation
Avella-Medina (JASA, 2021)

For an M-estimator

T (Fn) = θ̂ = argminθ∈Rp

1

n

n∑
i=1

ρ(zi , θ)

defined through a bounded function Ψ, one can simply return

AT (Fn) = T (Fn) + γ(T ,Fn)
5
√

2 log(n) log(1/δ)

εn
Np(0, I )

where γ(T ,Fn) = supx ∥IF(x ;T ,Fn)∥.

Theorem AT is (ε, δ)-differentially private . . .for large n.
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Proof idea
Noise calibration with smooth sensitivity

For f : X n → Rp the global sensitivity of f is

GS2(f ) := sup
x1:n,x̃1:n,dH(x1:n,x̃1:n)=1

∥f (x1:n)− f (x̃1:n)∥2.

The Laplace mechanism idea can be adapted for a notion of local sensitivity.
For ξ > 0, the ξ-smooth sensitivity of f at x1:n is

SSξ(f , x1:n) := sup
x̃1:n

{
e−ξdH(x1:n,x̃1:n)LS2(f , x̃1:n)

}
,

where
LS2(f , x1:n) := sup

x̃1:n,dH(x1:n,x̃1:n)=1
∥f (x1:n)− f (x̃1:n)∥2

Choosing ξ ≤ ε
4(p+2 log(2/δ)) , scaling the additive Gaussian noise with the ξ-

smooth sensitivity (in Euclidean norm) instead of GS2(f ) guarantees (ε, δ)-
DP.



Proof idea
Our key insight

Let C0 > 0, ∥Ψ∥ ≤ Kn and ∥Ψ̇∥ ≤ Ln.

Lemma 1

SSξ(T ,D(Fn)) ≤ max

{
2Γn
n
,C0Kn exp

(
− ξ

√
n log(1/δ)

p
+ ξ

)}
.

Lemma 2

Γn ≤ 2γ(T ,Fn)

(
1 + C0

√
p log(1/δ)

n

(
C1 + Ln + C2γ(T ,Fn)

))
.

Corollary. SSξ(T ,D(Fn)) ≲ 1
n supx ∥IF (x ;T ,Fn)∥ = 1

nγ(T ,Fn)



Remarks
A few technical points

▶ The smooth sensitivity is hard to compute !

▶ The above lemmas used

Γn := sup

{
γ1/n(T ,G ) : d∞(Fn,G ) ≤ C

√
p log(1/δ)

n

}
and hence a fixed scale versions of the influence function, i.e. for a fixed
ρ > 0

IFϵ(x ;T (F )) :=
T ((1− ϵ)F + ϵ∆x)− T (F )

ϵ

and
γϵ(T ,F ) := sup

x
∥IFϵ(x ;T ,F )∥



Remarks
A few technical points

▶ Our parameter estimates attain near minimax rates of convergence
under DP according to Cai, Wang and Zhang (2021, Ann. Statist.)

inf
A∈Aε,δ

sup
P∈P(σ,p)

∥A(Fn)− µ∥ ≳ σ

(√
p

n
+

p
√
log(1/δ)

nε

)
▶ Any (ε, δ)-DP estimator has to be robust as there is a lower bound

depending on the gross-error sensitivity [Chaudhuri and Hsu (2012,
ICML) ; Avella-Medina (2021, JASA)]...

EFnEA

[
∥A(Fn))− T (F )∥

]
≳

1

ε
γ(T ,F )

▶ Our DP estimator is asymptotically normally distributed but inference
is not immediate as we are not releasing variance estimates at this
point !
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Related work

▶ Large CS/ML literature on differentially private estimation following
the seminal work of Dwork et al. (2006, TCC)

▶ Previous work related to M-estimation and robust statistics : Dwork
and Lei (2007, STOC), Lei (2011, NeurIPS), Smith (2011, STOC),
Chaudhuri and Hsu (2012, ICML)

▶ Statistical minimax rates : Wasserman and Zhou (2010, JASA), Duchi
et al. (2018, JASA), Cai et al. (2021, Ann. Statist.)

▶ Not much on inference on 2018 when I had a first draft on this : Sheffet
(2017, ICML), Barrientos et al. (2019, JCGS), Awan and Slavkovic
(2018, NeurIPS), Canone et al. (2019, STOC)



Private inference via noisy
optimization

Based on joint work with Casey Bradshaw and Po-Ling Loh



Private Stochastic Gradient Descent Algorithm
The canonical choice in practice



A remark on clipping

▶ Clipped likelihood as M-estimator

θ̃ :
1

n

n∑
i=1

hc
(
∇ log f (xi ; θ̃)

)
= 0,

where hc(z) = z min{1, c
∥z∥2 } is the multivariate Huber function.



GD V. SGD

Let X1, . . . ,Xn
iid∼ N(θ, σ2) and consider the Huber estimator.
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Our contribution
joint work with Casey Bradshaw and Po-Ling Loh

▶ Global finite-sample convergence analysis of private gradient descent
and Newton method.

▶ The theory relies on local strong convexity and self-concordance.

▶ Identify loss functions that avoid bounded data, bounded parameter
space and truncation arguments.

▶ Propose differentially private asymptotic confidence regions.



Related work

▶ DP and noisy optimization : Song et al. (2013), Bassily et al. (2014),
Duchi et al. (2018), Feldman et al. (2020), Cai et al. (2021) among
many many others...

▶ Self-concordance and statistics : Bach (2010), Karimireddy et al. (2019),
Sun and Tran-Dinh (2020), Ostrovskii and Bach (2021)

▶ Private confidence intervals : recent work including Wang, Kifer and
Lee (2019) proposes a similar technique. Other work Sheffet (2017),
Karwa and Vadhan (2017), Barrientos et al. (2019), Canonne et al.
(2019), Avella-Medina (2021)...



M-estimators

An M-estimator θ̂ = T (Fn) of T (F ) = θ0 ∈ Rp (Huber, 1964) is defined as

θ̂ = argminθ∈RpLn(θ) = argminθ∈Rp

1

n

n∑
i=1

ρ(zi , θ),

or by an implicit equation as

1

n

n∑
i=1

Ψ(zi , θ̂) = EFn [Ψ(Z , θ̂)] = 0.



M-estimators : properties

▶ For M-estimators the IF is proportional to Ψ :

IF (z ;F ,T ) = M(Ψ,F )−1Ψ(z ;T (F ))

i.e. bounded if Ψ(z ;T (F )) is bounded.

▶ M-estimators are asymptotically normal :

√
n(θ̂ − θ0)

D−→ N (0,V (Ψ,F )),

where

V (Ψ,F ) = M(Ψ,F )−1Q(Ψ,F )M(Ψ,F )−1

M(Ψ,F ) = − ∂
∂θEF [Ψ(Z , θ)]

∣∣∣
θ=T (F )

Q(Ψ,F ) = EF [Ψ(Z ,T (F )) ·Ψ(Z ,T (F ))⊤].



Noisy Gradient Descent

▶ Noisy gradient descent :

θ(k+1) = θ(k) − η

(
1

n

n∑
i=1

Ψ(xi , θ
(k)) +

2 sup ∥Ψ∥2 ·
√
K

nµ
Zk

)
{Zk}

iid∼N(0, Ip)

Theorem. Assuming local strong convexity, after K ≥ C log n iterations of
NGD we have that

1. θ(K) is µ-GDP

2. θ(K) − θ0 = θ̂ − θ0 + Op

(√
Kp
µn

)
3.

√
n(θ(K) − θ(0)) →d N(0,V (Ψ,F ))
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Conditions for convergence analysis of NGD

Cond. 1 The gradient of the loss function is such that

sup
x∈X ,θ∈Θ

∥Ψ(x , θ)∥2 ≤ B <∞.

Cond. 2 The loss Ln is locally τ1-strongly convex and τ2-smooth, i.e.,

Ln(θ1)−Ln(θ2) ≥ ⟨∇Ln(θ2), θ1− θ2⟩+ τ1∥θ1− θ2∥22, ∀θ1, θ2 ∈ Br (θ
(0)),

and

Ln(θ1)−Ln(θ2) ≤ ⟨∇Ln(θ2), θ1− θ2⟩+ τ2∥θ1− θ2∥22, ∀θ1, θ2 ∈ Θ ⊆ Rp.

Key Lemma. With probability at least 1− ξ,

∥Zk∥2 ≤ {4√p + 2
√
2 log(K/ξ)},

for all k < K .
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Convergence analysis of NGD I

For simplificity, assume τ1-strict convexity (not just local) and τ2-smoothness.
Consider

θ(k+1) = θ(k) − η∇Ln(θ
(k)) + Nk ,

where ∥Nk∥ ≤ rn for k = 1, . . . ,K (holds with high probability by Key Lemma).
By Cauchy-Schwarz

∥θ(t+1) − θ̂∥22 = ∥θ(k) − η∇Ln(θ
(k))− θ̂ + Nk∥22

≤ ∥θ(k) − η∇Ln(θ
(k))− θ̂∥22 + (∥θ(k) − θ̂∥2 + 2η∥∇Ln(θ

(k))∥2)rn + r2n .

Leveraging the inequality xy ≤ 1
2αx

2 + α
2 y

2 for arbitrary α > 0, we can take
arbitrary α > 0 and β > 0 to further upper bound the second term on the right
hand side of the last display to obtain

∥θ(t+1) − θ̂∥22 ≤ ∥θ(k) − η∇Ln(θ
(k))− θ̂∥22 + α∥θ(k) − θ̂∥22

+ 2ηβ∥∇Ln(θ
(k))∥22 +

(
1

α
+

2η

β
+ 1

)
r2n .



Convergence analysis of NGD II

Note that τ2-smoothness implies ∥∇Ln(θ
(k))∥22 ≤ 4τ2(Ln(θ

(k))−Ln(θ̂)). That and
τ1-strong convexity gives

∥θ(k) − η∇Ln(θ
(k))− θ̂∥22

= ∥θ(k) − θ̂∥22 − 2η⟨∇Ln(θ
(k)), θ(k) − θ̂⟩+ η2∥∇Ln(θ

(k))∥22
≤ (1− 2ητ1)∥θ(k) − θ̂∥22 − 2η(Ln(θ

(k))− Ln(θ̂)) + η2∥∇Ln(θ
(k))∥22

≤ (1− 2ητ1)∥θ(k) − θ̂∥22 − 2η(1− 2ητ2)(Ln(θ
(k))− Ln(θ̂))

Note that τ2-smoothness implies ∥∇Ln(θ
(k))∥22 ≤ 4τ2(Ln(θ

(k))−Ln(θ̂)), we obtain

∥θ(t+1) − θ̂∥22 ≤ (1− 2ητ1 + α)∥θ(k) − θ̂∥22 +
(
1

α
+

2η

β
+ 1

)
r2n

− 2η(1− 2ητ2 + 4βτ2)(Ln(θ
(k))− Ln(θ̂))

≤ (1− 2ητ1 + α)∥θ(k) − θ̂∥22 +
(
1

α
+

2η

β
+ 1

)
r2n .

The last inequality follows from the optimality of θ̂ and η ≤ 1
2τ2

.



Convergence analysis of NGD III

Therefore taking α = ητ1 and β = 2η we get

∥θ(k+1) − θ̂∥22 ≤ (1− ητ1)∥θ(k) − θ̂∥22 +
(

1

ητ1
+ 2

)
r2n

≤ (1− ητ1)
k+1∥θ(0) − θ̂∥22 +

1

ητ1

(
1

ητ1
+ 2

)
r2n

≤ 2

ητ1

(
1

ητ1
+ 2

)
r2n ,

where the last inequality holds as long as

k ≥ 1 +
log(1/∥θ(0) − θ̂∥22) + log

(
1
ητ1

( 1
ητ1

+ 2)r2n
)

log(1− ητ1)
.

Conclusion : We need k ≥ C log(r2n/∥θ(0) − θ̂∥22) for some C > 0 to get

∥θ(k+1) − θ̂∥22 ≤ O(r2n ).



Remark

Optimal minimax rates of convergence : under (ε, δ)-DP the optimal rates
of convergence are according to Cai, Wang and Zhang (2021, AoS)

inf
A∈Aε,δ

sup
P∈P(σ,p)

E∥A(Fn)− θ(0)∥ ≳ σ

(√
p

n
+

p
√
log(1/δ)

nε

)



Example : linear regression

▶ Consider a linear regression model

yi = xTi β + ui for i = 1, . . . , n

xi ∈ Rp

ui ∼ N(0, σ2)

▶ We want to solve

(β̂, σ̂) = argminβ,σ

[1
n

n∑
i=1

σρc

(yi − xTi β

σ

)
w(xi ) +

1

2
κnσ

]

where w(xi ) = min
(
1, 1

∥xi∥22

)
and κ is a Fisher consistency constant.



Example : linear regression



Optimization : gradient descent and Newton’s method

▶ Gradient descent iterations :

θ(k+1) = θ(k) − η
1

n

n∑
i=1

Ψ(xi , θ
(k))

▶ Newton iterations :

θ(k+1) = θ(k) −

(
n∑

i=1

Ψ̇(xi , θ
(k))

)−1 n∑
i=1

Ψ(xi , θ
(k))



Optimization : gradient descent and Newton’s method

Figure – Gradient descent iterates Figure – Newton’s iterates



Noisy optimization : private iterations



Noisy Newton

▶ Noisy Newton :

θ(k+1) = θ(k) −
(
1

n

n∑
i=1

Ψ̇(xi ,θ
(k)) +

2B̄
√
2K

µn
Wk

)−1

·
(
1

n

n∑
i=1

Ψ(xi , θ
(k)) +

2B
√
2K

µn
Nk

)
where {Nk} and {Wk} are i.i.d. sequences of vectors and symmetric
matrices with i.i.d. standard normal components.

▶ Condition. Hessian of the form

∇2Ln(θ) =
1

n

n∑
i=1

a(xi , θ)a(xi , θ)
⊤,

where supx ,θ ∥a(x , θ)∥22 ≤ B̄ <∞.



Noisy Newton theory

Theorem. Assuming local strong convexity, a Liptschitz continuous Hessian

and ∥∇Ln(θ
(0))∥ ≤ τ21

L , after K ≥ C log log n iterations of noisy Newton

1. θ(K) is µ-GDP is differentially private

2. θ(K) − θ0 = θ̂ − θ0 + Op

(√
K
µ

p
n

)
3.

√
n(θ(K) − θ0) →d N(0,V (Ψ,F ))
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2. θ(K) − θ0 = θ̂ − θ0 + Op
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K
µ
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n
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Damped Newton V. NGD

▶ Pure Newton threshold :
⋄ Local strong convexity : ∥∇Ln(θ

(0))∥ ≤ τ 2
1

L

⋄ Self-concordance : λ
−1/2
min (∇2Ln(θ

(0)))λ(θ(0)) ≤ 1
16γ .



Self-concordance

A univariate function f : R → R is (γ, ν)-self-concordant if

|f ′′′(x)| ≤ γ
(
f ′′(x)

)ν/2
,

for all x .

A multivariate function f : Rp → R is (γ, ν)-self-concordant if∣∣⟨∇3f (x)[v ]u, u⟩
∣∣ ≤ γ∥u∥2∇2f (x)∥v∥

ν−2
∇2f (x)

∥v∥3−ν
2 ,

for all x , u, v ∈ Rp.



Self-concordance

A univariate function f : R → R is (γ, ν)-self-concordant if

|f ′′′(x)| ≤ γ
(
f ′′(x)

)ν/2
,

for all x . A multivariate function f : Rp → R is (γ, ν)-self-concordant if∣∣⟨∇3f (x)[v ]u, u⟩
∣∣ ≤ γ∥u∥2∇2f (x)∥v∥

ν−2
∇2f (x)

∥v∥3−ν
2 ,

for all x , u, v ∈ Rp.



Asymptotic variance

Let’s go back to our robust regression example

(β̂, σ̂) = argminβ,σ

[1
n

n∑
i=1

σρc

(yi − xTi β

σ

)
w(xi ) +

1

2
κnσ

]

where w(xi ) = min
(
1, 1

∥xi∥22

)
and κ is a Fisher consistency constant.

The

formulas needed for estimating the variance of β̂ are :

Qn(θ) =
1

n

n∑
i=1

ψ2
c

(yi − xTi θ

σ

)
w(xi )

2xix
⊤
i =

1

n

n∑
i=1

ziz
⊤
i

Mn(θ) =
1

nσ

n∑
i=1

ψ̇c

(yi − x⊤i θ

σ

)
w(xi )xix

⊤
i =

1

n

n∑
i=1

z̃i z̃
⊤
i

where ∥zi∥ ≤ B and ∥z̃i∥ ≤ B̄.



Asymptotic variance

Let’s go back to our robust regression example

(β̂, σ̂) = argminβ,σ

[1
n

n∑
i=1

σρc

(yi − xTi β

σ

)
w(xi ) +

1

2
κnσ

]

where w(xi ) = min
(
1, 1

∥xi∥22

)
and κ is a Fisher consistency constant. The

formulas needed for estimating the variance of β̂ are :

Qn(θ) =
1

n

n∑
i=1

ψ2
c

(yi − xTi θ

σ

)
w(xi )

2xix
⊤
i =

1

n

n∑
i=1

ziz
⊤
i

Mn(θ) =
1

nσ

n∑
i=1

ψ̇c

(yi − x⊤i θ

σ

)
w(xi )xix

⊤
i =

1

n

n∑
i=1

z̃i z̃
⊤
i

where ∥zi∥ ≤ B and ∥z̃i∥ ≤ B̄.



Private sandwich formula

1. Plug-in estimators Mn(θ
(K)) and Qn(θ

(K)), where θ(K) = (β(K), σ(K))
are not yet private.

2. Matrix Gaussian mechanism : add symmetric matrix with i.i.d. Gaus-
sians in upper triangular part of the matrix. (Dwork et al. 2014, STOC)

M̃n(θ
(K)) = Mn(θ

(K))+
2B̄

µn
G1 and Q̃n(θ

(K)) = Qn(θ
(K))+

2B2

µn
G2

3. Compute Vn(θ
(K)) = M̃n(θ

(K))−1Q̃n(θ
(K))M̃n(θ

(K))−1

Proposition. Vn(θ
(K)) is

√
3µ-GDP and Ṽn(θ

(K)) →p V (θ(0)).
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GDP Confidence Interval Coverage

Corrected variance formula :

V̂n(θ
(K)) = Ṽn(θ

(K)) +
8η2B2K

nµ2
I .



GDP Confidence Interval Coverage

Corrected variance formula for noisy Newton :

V̂n(θ
(K)) = Ṽn(θ

(K)) + nCNewton,

where

CNewton := η2
{
∇2Ln(θ

(k)) + W̃k

}−1
(
2B

√
2K

µn

)2 {
∇2Ln(θ

(k)) + W̃k

}−1
.



Discussion
Why is our approach interesting ?

1. Algorithms are easy to implement and computationally efficient !

2. Importance of (local) strong convexity for optimal parametric rates of
convergence

3. General framework for differentially private parametric inference

4. Connections between optimization, differential privacy and robust sta-
tistics



Extension to local differential privacy

Some key randomization ideas in local DP go back to Warner (JASA, 1965)
in the official statistics literature !



Extension to local differential privacy

▶ Interactive noisy gradient descent :

θ(k+1) = θ(k) − η
1

n

n∑
i=1

(
Ψ(xi , θ

(k))+
2 sup ∥Ψ∥2 ·

√
K

µ
Zk

)
{Zk}

iid∼N(0, Ip)

▶ Under local strong convexity and smoothness, after K iterations of
NGD iterations, with probability at least 1− τ ,

∥θ(k+1) − θ̂∥2 ≤ O

(
log(n) sup ∥Ψ∥2

√
p + log(n/τ)

µ
√
n

)
.

▶ See Duchi, Jordan and Wainwright (JASA, 2019) for minimax analysis
of various models under local DP.



Extension to local differential privacy

▶ Interactive noisy gradient descent :

θ(k+1) = θ(k) − η
1

n

n∑
i=1

(
Ψ(xi , θ

(k))+
2 sup ∥Ψ∥2 ·

√
K

µ
Zk

)
{Zk}

iid∼N(0, Ip)

▶ Under local strong convexity and smoothness, after K iterations of
NGD iterations, with probability at least 1− τ ,

∥θ(k+1) − θ̂∥2 ≤ O

(
log(n) sup ∥Ψ∥2

√
p + log(n/τ)

µ
√
n

)
.

▶ See Duchi, Jordan and Wainwright (JASA, 2019) for minimax analysis
of various models under local DP.



Extension to local differential privacy

▶ Interactive noisy gradient descent :

θ(k+1) = θ(k) − η
1

n

n∑
i=1

(
Ψ(xi , θ

(k))+
2 sup ∥Ψ∥2 ·

√
K

µ
Zk

)
{Zk}

iid∼N(0, Ip)

▶ Under local strong convexity and smoothness, after K iterations of
NGD iterations, with probability at least 1− τ ,

∥θ(k+1) − θ̂∥2 ≤ O

(
log(n) sup ∥Ψ∥2

√
p + log(n/τ)

µ
√
n

)
.

▶ See Duchi, Jordan and Wainwright (JASA, 2019) for minimax analysis
of various models under local DP.



Future work

There are many open problems in DP. In my opinion the following ones are
among the most obvious and perhaps urgent for practical data analysis :

1. High dimensional statistical inference

2. Hyperparameter tuning

3. DP methodology for longitudinal data

4. Model diagnostics and visualization tool

5. Better inference for local DP model
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