Convex Optimization for Statistics and
Machine Learning

Part |l: First-Order Methods

Ryan Tibshirani

Depts. of Statistics & Machine Learning
Carnegie Mellon University

http://www.stat.cmu.edu/~ryantibs/talks/
cuso-part2-2019.pdf

http://www.stat.cmu.edu/~ryantibs/talks/cuso-part2-2019.pdf
http://www.stat.cmu.edu/~ryantibs/talks/cuso-part2-2019.pdf

Outline for Part Il

Part A. Gradient descent
Part B. Subgradients

Part C. Proximal methods
Part D. Stochastic methods

Part |l: First-order methods
A. Gradient descent

Gradient descent

Consider unconstrained, smooth convex optimization
min f(x)
€T

That is, f is convex and differentiable with dom(f) = R"™. Denote
optimal criterion value by f* = min, f(z), and a solution by z*

Gradient descent: choose initial point (?) € R™, repeat:
) = =1 g Vf(x(k_l)), k=1,2,3,...

Stop at some point

IHANAE

LY

FEERRANERAR]

Gradient descent interpretation

At each iteration, consider quadratic
approximation:

f) = f@)+ Vi) (y—z)+
1 2
- o

Note the Hessian V2 f(z) is replaced
by %I

Minimizing the quadratic approxima-
tion over y gives

T =2 —tVf(2)

Fixed step size

Simply take ¢, =t for all k =1,2,3, ..., can diverge if ¢ is too big.
Consider f(x) = (1022 + 22)/2, gradient descent after 8 steps:

20
|

10

-10

-20

-20 -10 0 10 20

Can be slow if t is too small. Same example, gradient descent after
100 steps:

o .
«

10

0
|

-10

-20

-20 -10 0 10 20

Converges nicely when t is “just right”. Same example, 40 steps:

20

10
|

-10
|

-20

-20 -10 0 10 20

Convergence analysis later will give us a precise idea of “just right”

10

Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

e First fix parameters 0 < f < 1land 0 < o < 1/2

e At each iteration, start with ¢ = t;n;:, and while

fl@ =tV f(x)) > f(x) = at|Vf(2)]3
shrink ¢t = t. Else perform gradient descent update

T =2 —tVf(x)

Simple and tends to work well in practice (further simplification:
just take a = 1/2)

11

Backtracking interpretation

fz +tAz)

f(@) +tVf(x)T Az flx) +atVf(x)T Az

1 t
t=0 to

For us Ax = =V f(x)

12

Setting o = 8 = 0.5, backtracking picks up roughly the right step
size (12 outer steps, 40 steps total),

o
N

10
|

0
|

-10

-20

-20 -10 0 10 20

Convergence analysis

Assume that f convex and differentiable, with dom(f) = R", and
additionally that V f is Lipschitz continuous with constant L > 0,

IVf(z) = Vf)lla < Lllz —ylla for any z,y

(Or when twice differentiable: V2 f(x) < LI)

Theorem: Gradient descent with fixed step size ¢t < 1/L satisfies

|z © — 2*|13

(k)y _ p*
f@™) = fr < ST

and same result holds for backtracking, with ¢ replaced by 5/L

We say gradient descent has convergence rate O(1/k). That is, it
finds e-suboptimal point in O(1/€) iterations

14

Analysis for strong convexity

Reminder: strong convexity of f means f(z) — %[z||3 is convex
for some m > 0 (when twice differentiable: V2f(x) = mI)

Assuming Lipschitz gradient as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t < 2/(m + L)
or with backtracking line search search satisfies

L
F@®) = f* <5 - 273

where 0 < v <1

Rate under strong convexity is O(y*), exponentially fast! That is,
it finds e-suboptimal point in O(log(1/¢)) iterations

15

10*

102

=y

Called linear convergence, éw"
because looks linear on a =

semi-log plot 1079

“.exact Ls.

backtracking l.s.

_4l L
1079 50 100 150 200
k

(From B & V page 487)

Important note: contraction factor ¢ in rate depends adversely on
condition number L/m: higher condition number = slower rate

Affects not only our upper bound ... very apparent in practice too

16

Can we do better?

Gradient descent has O(1/¢€) convergence rate over problem class
of convex, differentiable functions with Lipschitz gradients

First-order method: iterative method, which updates z(*) in

20 4+ Span{Vf(x(O))’ Vf(a;(l)), o Vf(x(kﬂ))}

Theorem (Nesterov): For any k < (n — 1)/2 and any starting
point 2(?), there is a function f in the problem class such that
any first-order method satisfies

3L||z* — a3

(k)y _ px
f®) = £ 2 32(k + 1)2

Can attain rate O(1/k?), or O(1/+/€)? Answer: yes (we'll see)!

17

Analysis for nonconvex case

Assume f is differentiable with Lipschitz gradient as before, but
now nonconvex. Asking for optimality is too much. So we'll settle
for x such that ||V f(x)|2 < e, called e-stationarity

Theorem: Gradient descent with fixed step size ¢t < 1/L satisfies

) (0)y — f*
i_noﬁnk IV (D)2 < \/Q(f(xo)f)

t(k+1)

=U,...,

Thus gradient descent has rate O(1/vk), or O(1/€?), even in the
nonconvex case for finding stationary points

This rate cannot be improved (over class of differentiable functions
with Lipschitz gradients) by any deterministic algorithm?!

1Carmon et al. (2017), “Lower bounds for finding stationary points I

Gradient boosting

The Annals of Statistics
2001, Vol. 29, No. 5, 1189-1232

1999 REITZ LECTURE

GREEDY FUNCTION APPROXIMATION:
A GRADIENT BOOSTING MACHINE!

By JEROME H. FRIEDMAN
Stanford University

Function estimation/approximation is viewed from the perspective of
numerical optimization in function space, rather than parameter space. A
connection is made between stagewise additive expansions and steepest-
descent minimization. A general gradient descent “boosting” paradigm is
developed for additive expansions based on any fitting criterion. Specific
algorithms are presented for least-squares, least absolute deviation, and
Huber-M loss functions for regression, and multiclass logistic likelihood
for classification. Special enhancements are derived for the particular case
where the individual additive components are regression trees, and tools
for interpreting such “TreeBoost” models are presented. Gradient boost-
ing of regression trees produces competitive, highly robust, interpretable
procedures for both regression and classification, especially appropriate for
mining less than clean data. Connections between this approach and the
boosting methods of Freund and Shapire and Friedman, Hastie and Tib-
shirani are discussed.

Given responses y; € R and features z; e RP, i =1,...,n

Want to construct a flexible (nonlinear) model for response based
on features. Weighted sum of trees:

Each tree T inputs x;, outputs predicted response. Typically trees
are pretty short

20

Pick a loss function L to reflect setting. For continuous responses,

e.g., could take L(y;,u;) = (y;i — u;)?

Want to solve

mln ZL(yZ’ZBJ x;))

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge.
Space is simply too big to optimize

Gradient boosting: basically a version of gradient descent that is
forced to work with trees

First think of optimization as min,, f(u), over predicted values u,
subject to u coming from trees

21

Start with initial model, a single tree u(9) = Tj. Repeat:

o Compute negative gradient d at latest prediction u(*~1),

OL(vy;, u;
di:—[(y““Z)H Ci=1,....n
Ouy; B
e Find a tree T}, that is close to a, i.e., according to
n
min (di — T'(z;))?

trees T 4
i=1

Not hard to (approximately) solve for a single tree

o Compute step size oy, and update our prediction:
u®) = %= 4oy T

Note: predictions are weighted sums of trees, as desired

22

Part Il: First-order methods
B. Subgradients

23

Subgradients
Recall that for convex and differentiable f,
fly) = fx) + V@) (y—=) forall z,y
That is, linear approximation always underestimates f
A subgradient of a convex function f at x is any g € R" such that

fy) = fl@)+g"(y—x) forall y

o Always exists?
e If f differentiable at z, then g = V f(z) uniquely

e Same definition works for nonconvex f (however, subgradients
need not exist)

20n the relative interior of dom(f)

24

Examples of subgradients

Consider f: R = R, f(x) = |z|

15 2.0

f(x)
1.0

0.5

0.0

-0.5
|

e For x # 0, unique subgradient g = sign(z)
e For =0, subgradient g is any element of [—1,1]

25

|2ll2 < 1}

X1

B T
]
27

][2

N

N

N
N
K
\
N
N

N

N

N

0, subgradient g is any element of {z

R" - R, f(z)

e For x # 0, unique subgradient g = z/||x||2

Consider f
e Forx

26

R™ =R, f(z) = =]

Consider f

=
AN
’ NN
/ﬂﬂﬂﬂﬂ%////mﬂ?,

N\

AT §T
NN

T hRhnahhat

W s, N
2 AN

N

N
N

(¥

X1

()

0, ith component g; is any element of [—1, 1]

sign

i =

ith component g

, unique

e Forz; #0

e For x;

27

Consider f(x) = max{fi(z), fo(x)}, for fi1, fa : R™ — R convex,
differentiable

2(x), unique subgradient g = V fi(x)

e For fi(z) > fa(x),

e For fo(x) > fi(x), unique subgradient g = V fa(x)

e For fi(z) = fa(x), subgradient g is any point on line segment
between V f1(z) and V fa(x)

28

Subdifferential

Set of all subgradients of convex f is called the subdifferential:

Of(x) ={g € R": g is a subgradient of f at =}

Nonempty (only for convex f)

Of(x) is closed and convex (even for nonconvex f)
If f is differentiable at x, then 0f(z) = {V f(z)}
If 0f(z) = {g}, then f is differentiable at = and Vf(z) =g

29

Connection to convex geometry

Convex set C' C R"™, consider indicator function I : R™ — R,

0 ifzeC

IC(:L‘):I{xGC}:{OO frdC

For z € C, dIc(x) = Ne(z), the normal cone of C at z is, recall
Ne(z) ={g e R": g7z > gTy for any y € C}
Why? By definition of subgradient g,

Io(y) > Io(z) +¢" (y—) forall y

e Fory ¢ C, Ic(y) = o0
e For y € O, this means 0 > ¢ (y — z)

30

31

Subgradient calculus

Basic rules for convex functions:
e Scaling: d(af) =a-0f provided a > 0
e Addition: 9(f1 + f2) = 0f1 + 9fa
e Affine composition: if g(z) = f(Ax + b), then

dg(x) = ATOf(Axz +b)
e Finite pointwise maximum: if f(z) = max;—1,. _m fi(x), then
of (x) = conv< U sz(x)>
i-fi(w)=f(z)

convex hull of union of subdifferentials of active functions at =

32

e General pointwise maximum: if f(z) = maxsecg fs(x), then
of(x) 2 Cl{conv(U afs(:n))}
s:fs(x)=Ff(z)
Under some regularity conditions (on S, fs), we get equality

e Norms: important special case, f(x) = ||z|[,. Let ¢ be such
that 1/p+1/q = 1, then

|z]|, = max z'z
T llEllest

And

Of (z) = argmax 27
1zllg<1

33

Optimality condition

For any f (convex or not),

fl) =min fz) < 0€0f()

That is, * is a minimizer if and only if O is a subgradient of f at
x*. This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y
fy) = f(a*) + 0" (y —a*) = f(a¥)

Note the implication for a convex and differentiable function f,

with f(x) = {V f(z)}

34

Derivation of first-order optimality

Example of the power of subgradients: we can use what we have
learned so far to derive the first-order optimality condition. Recall

min f(x) subject to z € C
is solved at x, for f convex and differentiable, if and only if
Vi) '(y—2z)>0 forall yeC

Intuitively: says that gradient increases as we move away from .
How to prove it? First recast problem as

ngn f(x) + Ic(x)

Now apply subgradient optimality: 0 € 9(f(x) + Ic(x))

35

Observe

0e 8(f(x) + Ic

—~

0€{Vf(x)}+Nco(x)

— Vf(S Nc(x)

—Vf(x) 'z >-Vfx) 'y forall ye C
Vi) '(y—x)>0foral yeC

z)
z)

1ol

as desired

Note: the condition 0 € df(x) + N¢(x) is a fully general condition
for optimality in convex problems. But it's not always easy to work
with (KKT conditions, later, are easier)

36

Example: lasso optimality conditions

Given y € R", X € R"*P, lasso problem can be parametrized as
1 2
min -y — X85 + Al 81
B 2
where A > 0. Subgradient optimality:

1 2
0 (5lly - XBI3 + N8l)
= 0e-X"(y—Xp)+29|Blh
— XT(y—XpB)=v
for some v € 9||8]1, i.e.,
{1} if 6; >0

v; € {_1} |f/81<07 Z:va
1.1 if Bi=0

37

Write X1, ..., X, for columns of X. Then our condition reads:

X[y —XB)=X-sign(B) if B; #0
X (y— XB)| < A if ;=0

Note: subgradient optimality conditions don’t lead to closed-form
expression for a lasso solution ... however they do provide a way to
check lasso optimality

They are also helpful in understanding the lasso estimator; e.g., if
|XT(y — XB)| < A, then B; = 0 (used by screening rules, later?)

38

Example: soft-thresholding

Simplfied lasso problem with X = I:
i *1 ly — ||2 AllBI
min Bl5 + M| 5
59) 2 1

This we can solve directly using subgradient optimality. Solution is
B = Sx(y), where S} is the soft-thresholding operator:

yi— A ity > A
[Sx(y)]li = {0 if —A<y; <\, i=1,...,n
yi+ A ity <=

Check: from last slide, subgradient optimality conditions are

yi — Bi = A-sign(B;) if B #0
lyi — Bil <A if B; =0

39

Now plug in § = S\(y) and check these are satisfied:
e Wheny, >\, Bi=y; —A>0,s0y; —Bi=A=A-1
e When y; < —A, argument is similar
e When |y;| < X, 8; =0, and |y; — Bi| = |yi] < A

1.0

0.5

Soft-thresholding in
one variable:

0.0
1

-0.5
1

-1.0

-1.0 -05 0.0 0.5 1.0

40

Subgradient method
Now consider f convex, having dom(f) = R"™, but not necessarily
differentiable

Subgradient method: like gradient descent, but replacing gradients
with subgradients. Initialize (%), repeat:

) = (=1 _ (7 g(k_l), k=1,2,3,...
where ¢*=1 € 9 f(x*~1), any subgradient of f at z(*~1

Subgradient method is not necessarily a descent method, so we
keep track of best iterate :ngz)st among (@, ... z(®) so far, i.e.,

flal)= min f(z®)

0,..k

41

Step size choices

o Fixed step sizes: tp =t all k=1,2,3,...
e Diminishing step sizes: choose to meet conditions

(o] (o]
Zt% < 00, Ztk = 00,
k=1 k=1

i.e., square summable but not summable. Important here that
step sizes go to zero, but not too fast

There are several other options too, but key difference to gradient
descent: step sizes are pre-specified, not adaptively computed

42

Convergence analysis

Assume that f convex, dom(f) = R", and also that f is Lipschitz
continuous with constant G > 0, i.e.,

[f(z) = f(y)| < Glle —yll2 forall 2,y

Theorem: For a fixed step size ¢, subgradient method satisfies
hm f(xbest) < f*+G*)/2.
For diminishing step sizes, subgradient method satisfies

. (k) \ _ ex
Jm f(apeg) = f

(Lipschitz condition can be removed with diminishing step sizes)

43

Convergence rate

The proof of these results tells us that after k steps, we have

RQ+GQZ, Lt

Fa®) - far) <

2 Zz 1 tl
With fixed step size t, this gives
2 2
(k) R G-t
o) = 1 < g

For this to be < ¢, let's make each term < ¢/2. So we can choose
t=¢/G? and k = R?/t-1/e = R?G?/¢?

That is, subgradient method has convergence rate O(1/¢2) ... this
is slower than O(1/¢) rate of gradient descent

44

Example: regularized logistic regression

Given (x;,y;) € RP x {0,1} for i = 1,...,n, the logistic regression
loss is
n
78) =3 (= a8+ log(1 + exp(a 5)))
i=1
This is a smooth and convex, with

n

VB = (v — pi(B)) i

=1

where p;(8) = exp(z!' 8)/(1 + exp(z'B)), i = 1,...,n. Consider
the regularized problem:

min f(B) +A-P(5)

where P(3) = ||8||3, ridge penalty; or P(3) = ||B]|1, lasso penalty

45

Ridge: use gradients; lasso: use subgradients. Example here has
n = 1000, p = 20:

Gradient descent Subgradient method
— t=0.001 s | — t=0.001
b=} N — t=0.001/k
T -
] 4
g 3 -
ql) — o
P - P
S 8 o
2 o~ Rz
L 9 Lo©
Q
— -
] 8 |
b IS
-
o
(32} o 4
. [S
. T T T T T T T T T
0 50 100 150 200 0 50 100 150 200
k k

Step sizes hand-tuned to be favorable for each method (of course
comparison is imperfect, but it reveals the convergence behaviors)

46

Can we do better?

Nonsmooth first-order methods: iterative methods updating z(*) in

2O + span{g®, g, ... g~}

(k1)

where subgradients ¢(©, ¢ ... ¢ come from weak oracle

Theorem (Nesterov): For any k < n—1 and starting point (%),
there is a function in the problem class such that any nonsmooth
first-order method satisfies

Wy _ s G
J@) =1 2 0+ VhED)

In words, we cannot do better than the O(1/€?) rate of subgradient
method (unless we go beyond nonsmooth first-order methods) ...
so we will focus on f = g+ h, where g is smooth and h is “simple”

Part |l: First-order methods
C. Proximal methods

48

Composite functions

Suppose
f(@) = g(x) + h(z)

e g is convex, differentiable, dom(g) = R"

e h is convex, not necessarily differentiable

If f were differentiable, then gradient descent update would be:
zt =2t -Vf(n)

Recall motivation: minimize quadratic approximation to f around
z, replace V2 f(z) by 11,

1
T =argmin f(z)+ Vf(x) ' (z —z) + %Hz —z||3

fi(2)

49

In our case f is not differentiable, but f = g + h, g differentiable.
Why don't we make quadratic approximation to g, leave h alone?

That is, update
o7 = argmin §;(2) + h(2)
1
= argmin g(x) + Vg(x)T(z —x)+ sz — 2|3 + h(2)

—argmln —Hzf (z —tVg(x) H2 h(z)

prox,(z)

We call prox,(-) the proximal mapping

50

Proximal gradient descent

Proximal gradient descent: choose initialize (), repeat:
) = prox;, (:c(kfl) — thg(ac(k*l))), k=1,2,3,...
To make this update step look familiar, can rewrite it as

2® — 2D g G, (2D)

where Gy(z) = :C_pmxt(gg_tvg(‘r)) is called the generalized gradient

Notes:
e Mapping prox,(-) doesn’'t depend on g at all, only on h
e Smooth part g can be complicated, we only need to compute
its gradients

51

Example: ISTA

Given y € R", X € R™*P, recall lasso criterion:

1
F(8) = 5lly = XBI3 + A8l

Prox mapping is now

1
prox;(3) = argmin ﬂHﬂ — 2|3 + Allz[|1
= Sx(B)

where Sy () is the soft-thresholding operator,

ﬁi—)\ if,@i>)\

[Sx(B)]i =<0 if —A<B <\, i=1,...

Bi+>\ ifﬂi<—)\

52

Recall Vg(B) = —XT(y — X3), hence proximal gradient update is:

BT =S (B+tXT(y — XB))

Often called the iterative soft-thresholding algorithm (ISTA).3 Very
simple algorithm

0.50
I

0.20
I

Example of proximal
gradient (ISTA) vs.
subgradient method
convergence rates

f-fstar
0.10
I

0.05
I

—— Subgradient method
—— Proximal gradient

T T T T T T

0 200 400 600 800 1000

0.02
I

k

3Beck and Teboulle (2008), “A fast iterative shrinkage-thresholding

algorithm for linear inverse problems”
53

Backtracking line search

Backtracking for prox gradient descent works similar as before (in
gradient descent), but operates on g and not f

Choose parameter 0 < 8 < 1. At each iteration, start at t = tj,it,
and while

g(z —tGe()) > g(z) — tVg(x)" Ge(x) + %IIGt(x)H%

shrink ¢t = f3t, for some 0 < 3 < 1. Else perform proximal gradient
update

(Alternative formulations exist that require less computation, i.e.,
fewer calls to prox)

54

Convergence analysis

For criterion f(z) = g(z) + h(z), we assume:
e g is convex, differentiable, dom(g) = R", and Vg is Lipschitz
continuous with constant L > 0

e h is convex, prox,(x) = argmin,{||z — z||3/(2t) + h(z)} can
be evaluated

Theorem: Proximal gradient descent with fixed step size t <
1/L satisfies
0) _ ..%x||2
(k)Y _ * < || z*[|3
Fa®) - <

and same result holds for backtracking, with ¢ replaced by 5/L

Proximal gradient descent has convergence rate O(1/k) or O(1/e).

Same as gradient descent! (But remember, prox cost matters ...)

55

Example: matrix completion

Given a matrix Y € R™*", and only observe entries Y;;, (i,) € (2.
Suppose we want to fill in missing entries (e.g., for a recommender
system), so we solve a matrix completion problem:
1 9
min o > (¥ — Bij)” + AlIB|lu
(3,5)€Q

Here || B||¢; is the trace (or nuclear) norm of B,
T
1Bllw =) 0i(B)
i=1

where 7 = rank(B) and 01(X) > ... > 0,(X) > 0 are the singular

values

56

Define Pq, projection operator onto observed set:

[Pa(B)lij = {O (i) ¢ 0

Then the criterion is

£(B) = L 1Pa(Y) — Pa(B) [+ AlBlw

N——
9(B) h(B)

Two ingredients needed for proximal gradient descent:

e Gradient calculation: Vg(B) = —(Pq(Y) — Pa(B))

e Prox function:

o1
prox,(B) = argmin o5 - Z|IE + M Z |

Fact: prox,(B) = Syt(B), matrix soft-thresholding at the level .
Here S)(B) is defined by

S\(B) =Ux\VT
where B =UXV7T is an SVD, and (X,);; = max{Z; — \,0}
Hence proximal gradient update step is:
B = Sy (B+t(Pa(Y) ~ Pa(B)))
Note that Vg(B) is Lipschitz with L = 1, so we can take ¢ = 1:
BT = 8,(Pa(Y) + Pg(B))

where Po(B) + Pg(B) = B. This is the soft-impute algorithm*

*Mazumder et al. (2011), “Spectral regularization algorithms for learning
large incomplete matrices”

58

Special cases

Proximal gradient descent also called composite gradient descent,
or generalized gradient descent

Why “generalized”? This refers to the several special cases, when
minimizing f = g + h:

e h = (: gradient descent

e h = Ic: projected gradient descent

e g = 0: proximal minimization algorithm

Therefore these algorithms all have O(1/¢) convergence rate

59

Projected gradient descent

Given closed, convex set C € R",

min g(zr) <= m:gn g(x) + Ic(x)

zeC
0 eC
where Io(x) = v is the indicator function of C
o z¢C

Hence

1
prox,(z) = argmin Q—tH:U — 2|13 + Ic(2)
z

= argmin ||z — z||3
zeC

That is, prox,(xz) = Pc(x), projection operator onto C'

60

Therefore proximal gradient update step is:
at = Po(z —tVg(x))

That is, perform usual gradient update and then project back onto
C. Called projected gradient descent

10 15

0.5

-15 -10 -05 00

-15 -10 -05 00 05 10 15

61

Acceleration

Turns out we can accelerate proximal gradient descent in order to
achieve the optimal O(1/1/€) convergence rate. Four ideas (three
acceleration methods) by Nesterov:

e 1983: original acceleration idea for smooth functions

e 1988: another acceleration idea for smooth functions

e 2005: smoothing techniques for nonsmooth functions, coupled
with original acceleration idea

e 2007: acceleration idea for composite functions®

We will follow Beck and Teboulle (2008), an extension of Nesterov
(1983) to composite functions®

®Each step uses entire history of previous steps and makes two prox calls
Each step uses information from two last steps and makes one prox call

62

Accelerated proximal gradient method

As before, consider:
min g(z) + h(x)

where g convex, differentiable, and h convex. Accelerated proximal
gradient method: choose initial point z(9) = z(=1) € R, repeat:

k—2
_ (k=1) e (k=1) L (k-2)
v=u + i 1(1‘ x)

k) = prox;, (v —t:Vg(v))

x(

fork=1,2,3,...
o First step k = 1 is just usual proximal gradient update
o After that, v = z(*=1 4+ i—ﬁ(az(k_l) — 2(k=2)) carries some
“momentum” from previous iterations

e h =0 gives accelerated gradient method

63

Momentum weights:

0T

(T -+ -

S'0-

40 60 80 100

20

64

Back to lasso example: acceleration can really help!

o
o
3
o
o
o
Q
o
o
wn
L. 27
g o
2
I o
N
S 4
o
[Te)
[=3
8
° —— Subgradient method
~ —— Proximal gradient
S —— Nesterov acceleration
o

T T T T T T
0 200 400 600 800 1000

Note: accelerated proximal gradient is not a descent method

65

Convergence analysis

For criterion f(x) = g(x) + h(z), we assume as before:
e g is convex, differentiable, dom(g) = R", and Vg is Lipschitz
continuous with constant L > 0

e h is convex, prox,(z) = argmin, {||z — z||3/(2t) + h(2)} can
be evaluated

Theorem: Accelerated proximal gradient method with fixed step
size t < 1/L satisfies

2]z — a*|3

(K)y _
fE) = 1 < =y

and same result holds for backtracking, with ¢ replaced by 5/L

Achieves optimal rate O(1/k?) or O(1/+/€) for first-order methods

66

FISTA

Back to lasso problem:
1 2
min 1y — XBI3 + A8l

Recall ISTA (lterative Soft-thresholding Algorithm):
B8 = Sy, (B* Y 46, X T (y — XpHEDY), k=1,2,3,...

Sx(+) being vector soft-thresholding. Applying acceleration gives us
FISTA (F is for Fast):” for k =1,2,3,...,

kE—2
_ plk=1) M “rn(k=-1) _ p(k-2)

ﬂ(k) = Sx, (7) + thT(y — XU)),

"Beck and Teboulle (2008) actually call their general acceleration technique
(for general g, h) FISTA, which may be somewhat confusing

67

Lasso regression: 100 instances (with n = 100, p = 500):

le-01 le+00
|

f(k)-fstar
1le-02

(92

?

Q

—

< — ISTA

? | — FISTA

Q

— T T T T T T
0 200 400 600 800 1000

Lasso logistic regression: 100 instances (n = 100, p = 500):

le-01 le+00
|

f(k)-fstar
1le-02

(92

?

Q

—

< — ISTA

? | — FISTA

Q

— T T T T T T
0 200 400 600 800 1000

Part Il: First-order methods
D. Stochastic methods

70

Stochastic gradient descent

Consider minimizing an average of functions
L
min — ; fi(z)
As VY, filx) = > Vfi(z), gradient descent would repeat:

20 — pb=1) g va =1y k=1,2,3,...

In comparison, stochastic gradient descent or SGD (or incremental
gradient descent) repeats:

2®) = k=D g g (*YY E=1,2,3,...

where i, € {1,...,m} is some chosen index at iteration k

71

Two rules for choosing index iy at iteration k:

e Randomized rule: choose i;, € {1,...,m} uniformly at
random
e Cyclic rule: choose iy, =1,2,...,m,1,2,...,m,...

Randomized rule is more common in practice. For randomized rule,

note that
E[Vfi(z)] = Vf(z)

so we can view SGD as using an unbiased estimate of the gradient
at each step
Main appeal of SGD:

e lteration cost is independent of m (number of functions)

e Can also be a big savings in terms of memory useage

72

Example: stochastic logistic regression

Given (x;,y;) € RP x {0,1}, i =1,...,n, recall logistic regression:

min (3) = 3,3 (il + log(1 + explal)

fi(B)

Gradient computation Vf£(3) = 13" | (y; — pi(8))a; is doable

n
when n is moderate, but not when n is huge

Full gradient (also called batch) versus stochastic gradient:
e One batch update costs O(np)
¢ One stochastic update costs O(p)

Clearly, e.g., 10K stochastic steps are much more affordable

73

Small example with n = 10, p = 2 to show the “classic picture” for
batch versus stochastic methods:

g4/ : %2#%
Blue: batch steps, O(np)
Red: stochastic steps, O(p)
Rule of thumb for stochastic
methods:

10

e generally thrive far
from optimum

-10

o generally struggle close
8 to optimum

-20 -10 0 10 20

74

Step sizes

Standard in SGD is to use diminishing step sizes, e.g., tx = 1/k

Why not fixed step sizes? Here's some intuition. Suppose we take
cyclic rule for simplicity. Set ¢ = t for m updates in a row, we get:

x(k—O—m) _ ﬂj(k) ¢ Z Vfi($(k+i_1))

=1

Meanwhile, full gradient with step size mt would give:

(k+1 _thfz

The difference here: ¢ 37" | [V f;(z*+=1) — V f;(x*))], and if we
hold ¢ constant, this difference will not generally be going to zero

75

Convergence rates

Recall: for convex f, gradient descent with diminishing step sizes
satisfies

fa®) = £ =0(1/Vk)

When f is differentiable with Lipschitz gradient, we get for suitable
fixed step sizes

F@®)y — = 0(1/k)

What about SGD? For convex f, SGD with diminishing step sizes
satisfies®

E[f(z®™)] - f* = 0(1/Vk)

Unfortunately this does not improve when we further assume f has
Lipschitz gradient

8For example, Nemirosvki et al. (2009), “Robust stochastic optimization
approach to stochastic programming”

76

Even worse is the following discrepancy!

When f is strongly convex and has a Lipschitz gradient, gradient
descent satisfies

F@®) — = 0"

where 0 < v < 1. But under same conditions, SGD gives us

E[f(@™)] - f* = O(1/k)

9

So stochastic methods do not enjoy the linear convergence rate of
gradient descent under strong convexity

What can we do to improve SGD?

°For example, Nemirosvki et al. (2009), “Robust stochastic optimization
approach to stochastic programming”

77

Mini-batches

Also common is mini-batch stochastic gradient descent, where we

choose a random subset I}, C {1,...,m}, |Ix| = b < m, repeat:
2 = gk=1) va@ =1y k=1,2,3,...
Zelk

Again, we are approximating full gradient by an unbiased estimate:
1
E|;) Vhi)| = V1
el

Using mini-batches reduces variance by a factor 1/b, but is also b
times more expensive. Theory justifies this, but only to an extent:
under Lipschitz gradient, rate goes from O(1/v'k) to O(1/v/bk)*®

©For example, Dekel et al. (2012), “Optimal distributed online prediction
using mini-batches”

Back to logistic regression, let's now consider a regularized version:

. 1 n T A
mﬁm - E <—yi$z’Tﬁ+10g(1+emi 6)) +§HBH§
i=1

Write the criterion as

- T A
FB) =S FB), Si(B) =yl B+ log(1 +eF) + J 813
=1

Full gradient computation is Vf(8) = %Z?Zl (yz —pi(ﬁ))xi + 8.

Comparison between methods:
e One batch update costs O(np)
¢ One mini-batch update costs O(bp)
e One stochastic update costs O(p)

79

Example with n = 10,000, p = 20, all methods use fixed step sizes:

— Full
—— Stochastic
—— Mini-batch, b=10
Mini-batch, b=100
n
©
S
X
ha o
c o
2 o
g
o
n
LO_ —
o
(=]
n
S

0 10 20 30 40 50

Iteration number k

What's happening? Now let's parametrize by flops:

Criterion fk

0.65

0.60

0.55

0.50

ull

tochastic
ini-batch, b=10
ini-batch, b=100

le+02

T
1le+04

Flop count

1e+06

81

Finally, looking at suboptimality gap (on log scale):

[se]
?
[}
-
I
k4]
T
£ ©
=% C|> _
5 3
c
ke
g
o
(o2}
9
(%}
—
Full
—— Stochastic
—— Mini-batch, b=10
N —— Mini-batch, b=100
é I T T T T T

0 10 20 30 40 50

Iteration number k

82

End of the story?

Short story:

e SGD can be super effective in terms of iteration cost, memory
e But SGD is slow to converge to high accuracy solutions, can’t
adapt to strong convexity

e And mini-batches seem to be a wash in terms of flops (though
they can still be useful in practice)

Is this the end of the story for SGD?

For a while, the answer was believed to be yes. Slow convergence
for strongly convex functions was believed inevitable, as Nemirovski
and others established matching lower bounds ... but this was for a
more general stochastic problem, where f(z) = [F(z,&) dP(§)

83

Variance reduction

New wave of “variance reduction” work shows we can modify SGD

to converge much faster for finite sums, f(z) = = Y™, fi(z): see

SAG, SDCA, SVRG, S2GD, SAGA, etc. Here we describe SAGA:11
e Maintain table, containing gradient g; of f;, i=1,...,n
o At steps k =1,2,3,..., pick random i; € {1,...n}, then let

gi(f) = Vfik (Qj‘(k_l)) (most recent gradient of f;,)

(k) (k—=1)

Set all other g, =g, , @ # i, i.e., these stay the same

e Update

k) _ (k-1 (k) (k-1) , 1 - (k—1)
L0 — o >_t,€.<gik — g +nz;g,-)

"Defasio et al. (2014), “SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives’. This paper also gives a
nice literature review on variance reduction

84

Notes on SAGA

SAGA uses gradient estimate: g(k) — gzk + ZZ_ (k 2
Its predecessor, SAG, uses: Hggk) — Lokl - Ly~ gik 2

g
nJig
Common footing for both: consider family of estimators

0o = (X —Y) +E(Y)
for E(X), where a € [0,1], and X, Y are correlated. We have
E(0y) = aE(X) + (1 — a)E(Y)
Var(0,) = o (Var(X) + Var(Y) — 2Cov(X,Y))

SAGA uses « = 1: unbiased, SAG uses o = 1/n: biased

Remarkably, both SAG and SAGA restore convergence rates of
full gradient! For Lipschitz gradient: O(1/k), and additionally
strong convexity: O(y¥)

85

Our logistic regression example with 30 runs of SGD, SAG, SAGA:

s, — SG
S - ~— SAG
S 0| 2 sAca
it
o
= 0o
8 o
5 8
. o
X
X
o |
[
o
5§ o
2 8
L s 7
5 o©
IN
=}
3
S
5]

0 500 1000 1500 2000

Iteration number k

SGD in large-scale ML

SGD has really taken off in large-scale machine learning

In many ML problems we don’t care about optimizing to high
accuracy, it doesn’t pay off in terms of statistical performance

Thus (in contrast to what classic theory says) fixed step sizes
are commonly used in ML applications

One trick is to experiment with step sizes using small fraction
of training before running SGD on full data set ... many other
heuristics are common??

SGD in the continuous, nonconvex world is extremely popular
but poorly undestood

Many variants currently being explored: momentum, adaptive
step sizes, averaging, early stopping, etc.

2For example, Bottou (2012), “Stochastic gradient descent tricks”

87

References and further reading

Part A:

e S. Boyd and L. Vandenberghe (2004), “Convex optimization”,
Chapter 9

* Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 2

Part B:

* Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 3

e B. Polyak (1987), “Introduction to optimization”, Chapter 5
e R. T. Rockafellar (1970), “Convex analysis", Chapters 23-25

88

Part C:
e A. Beck and M. Teboulle (2008), “A fast iterative
shrinkage-thresholding algorithm for linear inverse problems”

e Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 2

Part D:

e D. Bertsekas (2010), “Incremental gradient, subgradient, and
proximal methods for convex optimization: a survey”

o A. Defasio and F. Bach and S. Lacoste-Julien (2014), "SAGA:
A fast incremental gradient method with support for
non-strongly convex composite objectives”

e A. Nemirovski and A. Juditsky and G. Lan and A. Shapiro
(2009), “Robust stochastic optimization approach to
stochastic programming’”

89

