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Lecture 1: Markov processes and
stochastic kinetic models



Introduction

Markov processes form a rich class of stochastic models suitable for
modelling in a range of application areas. They are particularly appropriate for
modelling stochastic processes that arise naturally in the physical and life
sciences, and biological modelling in particular. We therefore need a basic
grounding in the theory and practice of modelling with Markov processes
before we can proceed further.

A stochastic process is a random variable which evolves through time. The
state may be continuous or discrete, and it can evolve through time in a
discrete or continuous way. A Markov process is a stochastic process which
possesses the property that the future behaviour depends only on the current
state of the system. Put another way, given information about the current
state of the system, information about the past behaviour of the system is of
no help in predicting the time-evolution of the process.



Finite discrete time Markov chains

Introduction

The set {θ(t)|t = 0,1,2, . . .} is a discrete time stochastic process. The
state-space S is such that θ(t) ∈ S, ∀t and may be discrete or continuous.

A (first-order) Markov chain is a stochastic process with the property that the
future states are independent of the past states given the present state.
Formally, for A ⊆ S, t = 0,1,2, . . ., we have

P
(
θ(t+1) ∈ A|θ(t) = x, θ(t−1) = xt−1, . . . , θ

(0) = x0

)
= P

(
θ(t+1) ∈ A|θ(t) = x

)
, ∀x, xt−1, . . . , x0 ∈ S.

The past states provide no information about the future state if the present
state is known. The behaviour of the chain is therefore determined by
P(θ(t+1) ∈ A|θ(t) = x). In general, this depends on t, A and x. However, if
there is no t dependence, so that

P
(
θ(t+1) ∈ A|θ(t) = x

)
= P(x,A) , ∀t,

then the Markov chain is said to be (time) homogeneous, and the transition
kernel, P(x,A) determines the behaviour of the chain. Note that
∀x ∈ S, P(x, ·) is a probability measure over S.



Notation

When dealing with discrete state-spaces, it is easier to write

P(x, {y}) = P(x, y) = P
(
θ(t+1) = y|θ(t) = x

)
.

In the case of a finite discrete state-space, S = {x1, . . . , xr}, we can write
P(·, ·) as a matrix

P =

P(x1, x1) · · · P(x1, xr)... . . . ...
P(xr, x1) · · · P(xr, xr)

 .
The matrix P is a stochastic matrix.



Stationary distributions

A distribution π is said to be a stationary distribution of the homogeneous
Markov chain governed by the transition matrix P if

π = π P. (1)

Note that π is a row eigenvector of the transition matrix, with corresponding
eigenvalue equal to 1. It is also a fixed point of the linear map induced by P .
The stationary distribution is so-called because if at some time n, we have
π(n) = π, then π(n+1) = π(n)P = π P = π, and similarly
π(n+k) = π, ∀k ≥ 0. That is, if a chain has a stationary distribution, it
retains that distribution for all future time. Note that

π = π P ⇐⇒ π − π P = 0

⇐⇒ π(I − P ) = 0,

where I is the r × r identity matrix. Hence the stationary distribution of the
chain may be found by solving

π(I − P ) = 0. (2)



Note that the trivial solution π = 0 is not of interest here, as it does not
correspond to a probability distribution (its elements do not sum to 1).
However, there are always infinitely many solutions to (2), so proper solutions
can be found by finding a positive solution and then imposing the unit-sum
constraint. In the case of a unique stationary distribution (just one eigenvalue
of P equal to 1), then there will be a one-dimensional set of solutions to (2),
and the unique stationary distribution will be the single solution with positive
elements summing to 1.

In the case of a unique stationary distribution it is natural to wonder whether
π(n) will converge to this stationary distribution as n −→∞ irrespective of
π(0), in which case it is known as the (unique) equilibrium distribution of
the chain. In the case of a finite state space, this question is relatively
straightforward to resolve. However, in the general state space case that we
will be most interested in ultimately, this turns out to be a very delicate
question to answer. We will assume that in most cases of practical interest
that we do have convergence, but it is important to be aware that this is not
true in general.



Markov chains with continuous state-space

Many Markovian models naturally posess a discrete state space, but
sometimes it is helpful to regard the state of certain quantities as continuous.
In this case, we have to understand how the concept of a discrete state
Markov chain extends to the continuous state case. In fact, this extension is
exactly analogous to the generalisation of discrete random quantities to that
of continuous random quantities.

Here we are still working with discrete time, but we are allowing the
state-space S of the Markov chain to be continuous (e.g. S ⊆ R).



Transition kernels

Again, for a homogeneous chain, we can define

P(x,A) = P
(
θ(t+1) ∈ A|θ(t) = x

)
.

For continuous state-spaces we always have P(x, {y}) = 0, so in this case
we define P(x, y) by

P(x, y) = P
(
θ(t+1) ≤ y|θ(t) = x

)
= P

(
θ(1) ≤ y|θ(0) = x

)
, ∀x, y ∈ S,

the conditional cumulative distribution function (CDF). This is the distributional
form of the transition kernel for continuous state space Markov chains, but we
can also define the corresponding conditional density

p(x, y) =
∂

∂y
P(x, y), x, y,∈ S.

We can use this to define the density form of the transition kernel of the
chain. Note that p(x, y) is just the conditional density for the next state (with
variable y) given that the current state is x, so it could also be written p(y|x).
The density form of the kernel can be used more conveniently than the CDF



form for vector Markov chains, where the state-space is multidimensional (say
S ⊆ Rn).

Stochastic simulation and analysis

Simulation of Markov chains with a continuous state in discrete time is easy
provided that methods are available for simulating from the initial distribution,
π(0)(x), and from the conditional distribution represented by the transition
kernel, p(x, y).

1. First θ(0) is sampled from π(0)(·)

2. We can then simulate θ(1) from p(θ(0), ·)

3. In general, once we have simulated a realisation of θ(t), we can simulate
θ(t+1) from p(θ(t), ·)



Markov chains in continuous time

We have now looked at Markov chains in discrete time with both discrete and
continuous state-spaces. However, many processes evolve continuously in
time, and so we now turn our attention to the continuous time case. We begin
by studying chains with a finite number of states, but relax this assumption in
due course.

Before we begin we should try to be explicit about what exactly a Markov
process is in the continuous time case. Intuitively it is a straightforward
extension of the discrete time definition. In continuous time, we can write this
as

P(X(t+ dt) = x|{X(t) = x(t)|t ∈ [0, t]})
= P(X(t+ dt) = x|X(t) = x(t)) , ∀t ∈ [0,∞), x ∈ S.

Again, this expresses the idea that the future behaviour of the process
depends on the past behaviour of the process only via the current state.



Finite state-space

Consider first a process which can take on one of r states, which we label
S = {1,2, . . . , r}. If at time t the process is in state x ∈ S, its future
behaviour can be characterised by the transition kernel

p(x, t, x′, t′) ≡ P
(
X(t+ t′) = x′|X(t) = x

)
.

If this function does not depend explicitly on t, the process is said to be
homogeneous, and the kernel can be written p(x, x′, t′). For each value of
t′, this kernel can be expressed as an r × r transition matrix, P (t′). It is clear
that P (0) = I, the r × r identity matrix, as no transitions will take place in a
time interval of length zero. Also note that since P (·) is a transition matrix for
each value of t, we can multiply these matrices together to give combined
transition matrices in the usual way. In particular, we have
P (t+ t′) = P (t)P (t′) = P (t′)P (t), just as in the discrete time case.



Now define the transition rate matrix, Q, to be the derivative of P (t′) at
t′ = 0. Then

Q =
d

dt′
P (t′)

∣∣∣∣
t′=0

= lim
δt→0

P (δt)− P (0)

δt

= lim
δt→0

P (δt)− I
δt

.

The elements of the Q matrix give the “hazards” of moving to different states.
Re-arranging gives the infinitesimal transition matrix

P (dt) = I +Qdt.

Note that for P (dt) to be a stochastic matrix (with non-negative elements and
rows summing to 1), the above implies several constraints which must be
satisfied by the rate matrix Q. Since the off-diagonal elements of I are zero,
the off-diagonal elements of P (dt) and Qdt must be the same, and so the
off-diagonal elements of Q must be non-negative. Also, since the diagonal
elements of P (dt) are bounded above by one, the diagonal elements of Q
must be non-positive. Finally, since the rows of P (dt) and I both sum to 1,



the rows of Q must each sum to zero. These properties must be satisfied by
any rate matrix Q.

The above rearrangement gives us a way of computing the stationary
distribution of the Markov chain, as a probability row vector π will be
stationary only if

π P (dt) = π

⇒ π(I +Qdt) = π

⇒ πQ = 0.

Solving this last equation (subject to the constraint that the elements of π sum
to 1), will give a stationary distribution for the system.



If P (t) is required for finite t, it may be computed by solving a matrix
differential equation. This can be derived by considering the derivative
of P (t) for arbitrary times t.

d

dt
P (t) =

P (t+ dt)− P (t)

dt

=
P (dt)P (t)− P (t)

dt

=
P (dt)− I

dt
P (t)

= QP (t).

Therefore, P (t) is a solution to the matrix differential equation

d

dt
P (t) = QP (t),

subject to the initial condition P (0) = I. This differential equation has
solution

P (t) = exp{Qt},

where exp{·} denotes the matrix exponential function (Golub & Van Loan
1996).



Example

Consider a very simple model for the activation of a single prokaryotic gene.
In this model, the gene will be activated unless a repressor protein is bound to
its regulatory region. We will consider just two states in our system: state 0
(inactive), and state 1 (active). In the inactive state (0), we will assume a
constant hazard of α > 0 for activation. In the active state, we will assume a
constant hazard of β > 0 for inactivation. Given that the rows of Q must sum
to zero, it is now completely specified as

Q =

(
−α α
β −β

)
.

Solving πQ = 0 gives the stationary distribution

π =

(
β

α+ β
,

α

α+ β

)
.

We can also compute the infinitesimal transition matrix

P (dt) = I +Qdt =

(
1− αdt α dt
β dt 1− β dt

)
.



A simulated realisation of this process is shown in Figure 1. Note that this
process is sometimes known as the telegraph process and can also form
the basis for a very simple model of ion channels.
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Figure 1: A simulated realisation of the simple gene activation process with
α = 0.5 and β = 1.



Stochastic simulation

There are three straightforward approaches one can take to simulating this
process on a computer. The first is based on a fine time-discretisation of the
process, similar in spirit to the first-order Euler method for integrating ordinary
differential equations. Given the definition of the infinitesimal transition matrix

P (dt) = I +Qdt,

for small time steps ∆t we will have

P (∆t) ' I +Q∆t.

P (∆t) can then be regarded as the transition matrix of a discrete time
Markov chain, and a simulated sequence of states at times
0, ∆t, 2 ∆t, 3 ∆t, . . . may be generated in the usual way.



The above method can be easily improved by replacing the above
approximation for P (∆t) by its exact value

P (∆t) = exp{Q∆t},

provided that a method for computing the matrix exponential is available.
Then it does not matter how small ∆t is chosen to be, provided it is small
enough to clearly show the behaviour of the process and not so large that
interesting transitions are “missed”.



A third approach to simulation may be taken by simulating each transition
event and its corresponding time sequentially, rather than simply looking at
the processes only at times on a given lattice. Like the previous method, this
gives an exact realisation of the process and offers the additional advantage
that recording every event ensures none will be “missed”. Such an approach
is known as discrete event simulation, and in the statistics literature the
technique dates back to at least Kendall (1950). If the process is currently in
state x, then the xth row of Q gives the hazards for the transition to other
states. As the row sums to zero, −qxx gives the combined hazard for moving
away from the current state — a discrete transition event (note that qxx is
non-positive). So, the time to a transition event is exponential with rate −qxx.
When that transition event occurs, the new state will be random with
probabilities proportional to the xth row of Q (with qxx omitted). The above
intuitive explanation can be formalised as follows.



To understand how to simulate the process we must consider being in state i
at time t, and think about the probability that the next event will be in the time
interval (t+ t′, t+ t′+ dt], and will consist of a move to state j. Let this
probability divided by dt be denoted by f(t′, j|t, i), so that the probability is
f(t′, j|t, i)dt. It is clear that as the Markov process is homogeneous, there
will be no explicit dependence on t in this probability, but we will include it to
be clear about exactly what we mean. Then

f(t′, j|t, i)dt = P
(
Next event in (t+ t′, t+ t′+ dt]|t, i

)
× P

(
j|Next event in (t+ t′, t+ t′+ dt], t, i

)
.

Thinking about the first term, we know that the hazards for the individual
transitions are given by the off-diagonal elements of the ith row of Q. The
combined hazard is the sum of these off-diagonal elements, which is −qii (as
the row sums to zero). Combined hazards can always be computed as the
sum of hazards in this way because the probability that two events occur in
the interval (t, t+ dt] is of order dt2 and can therefore be neglected. Now we
know from properties of the exponential distribution that the time to an event
of constant hazard is Exp(−qii), and so the first term must be −qiieqiit

′
dt.



The second term is

P
(
X(t+ t′+ dt) = j|[X(t+ t′) = i] ∩ [X(t+ t′+ dt) 6= i]

)
=

P
(
X(t+ t′+ dt) = j|X(t+ t′) = i

)
P(X(t+ t′+ dt) 6= i|X(t+ t′) = i)

=
qijdt∑
k 6=i qikdt

=
qij

−qii
.

Taking the two terms together we have

f(t′, j|t, i) = −qiieqiit
′
×

qij

−qii
.

The fact that this function factorises into the form of a probability density for
the time to the next event and a probability mass function for the type of that
event means that we can simulate the next event with the generation of two
random variables. Note also that there is no j dependence in the PDF for t′

and no t′ dependence in the PMF for j, so the two random variables are
independent of one another and hence can be simulated independently.



It is the consideration of f(t′, j|t, i) that leads to the standard discrete event
simulation algorithm which could be stated as follows:

1. Initialise the process at t = 0 with initial state i;

2. Call the current state i. Simulate the time to the next event, t′, as an
Exp(−qii) random quantity;

3. Put t : = t+ t′;

4. Simulate new state j as a discrete random quantity with PMF
−qik/qii, k 6= i;

5. Output the time t and state j;

6. If t < Tmax, return to step 2.



This particular discrete event simulation technique is known as the direct
method. A simple R function to implement this algorithm is given in Figure 2.
The function returns a step-function object, which is easy to plot. Using this
function, a plot similar to Figure 1 can be obtained with the following
command:
plot(rcfmc(20,matrix(c(-0.5,0.5,1,-1),ncol=2,byrow=TRUE),c(1,0)))



rcfmc <- function(n,Q,pi0)
{

xvec = vector("numeric",n+1)
tvec = vector("numeric",n)
r = length(pi0)
x = sample(r,1,prob=pi0)
t = 0
xvec[1] = x
for (i in 1:n) {

t = t+rexp(1,-Q[x,x])
weights = Q[x,]
weights[x] = 0
x = sample(r,1,prob=weights)
xvec[i+1] = x
tvec[i] = t

}
stepfun(tvec,xvec)

}

Figure 2: An R function to simulate a sample path with n events from a
continuous time Markov chain with transition rate matrix Q and initial
distribution pi0.



All of these simulation methods give a single realisation of the Markov
process. Now obviously, just as one would not study a normal distribution by
looking at a single simulated value, the same is true with Markov processes.
Many realisations must be simulated in order to get a feel for the distribution
of values at different times. In the case of a finite number of states, this
distribution is relatively straightforward to compute directly without any
simulation at all, but for the stochastic kinetic models we will consider later,
simulation is likely to be the only tool we have available to us for gaining
insight into the behaviour of the process.



Countable state-space

Before moving on to thinking about continuous state-spaces, it is worth
spending a little time looking at the case of a countably infinite state-space.
Rather than attempting to present the theory in generality, we will concentrate
on a simple example, which illustrates many of the interesting features. The
model is known as the immigration-death process. In this model,
individuals arrive into the population with constant hazard λ, and each
individual dies independently with constant hazard µ. Consequently, the
population of individuals increases by one when an immigration event occurs
and decreases by one when a death event occurs. There is no reproduction
in this model. The key transition equations are:

P(X(t+ dt) = x+ 1|X(t) = x) = λ dt

P(X(t+ dt) = x− 1|X(t) = x) = xµ dt

P(X(t+ dt) = x|X(t) = x) = 1− (λ+ xµ)dt

P(X(t+ dt) = y|X(t) = x) = 0, ∀y 6∈ {x− 1, x, x+ 1}.

These equations clearly define a homogeneous Markov process, but with
infinite state-space S = 0,1,2, . . .. We therefore cannot easily write down a



set of matrix equations for the process, as the matrices are infinite
dimensional, but this does not prevent us from working with the process or
from simulating it on a computer.

First let’s think about understanding this process theoretically. Although the Q
matrix is infinite in extent, we can write its general form as follows:

Q =


−λ λ 0 0 0 · · ·
µ −λ− µ λ 0 0 · · ·
0 2µ −λ− 2µ λ 0
0 0 3µ −λ− 3µ λ . . .
... . . . . . . . . . . . .

 .

Then for an infinite dimensional π = (π0, π1, π2, . . .) we can solve πQ = 0

to get the stationary distribution one equation at a time, expressing each πk in
terms of π0 to find the general form

πk =
λk

k!µk
π0, k = 1,2, . . . .



But these are terms in the expansion of π0e
λ/µ, and so imposing the

unit-sum constraint we get π0 = e−λ/µ giving the general solution

πk =
(λ/µ)ke−λ/µ

k!
, k = 0,1,2, . . . .

This is easily recognised as the PMF of a Poisson random quantity with mean
λ/µ. Hence, the stationary distribution of this process is Poisson with mean
λ/µ.



We can also simulate realisations of this process on a computer. Here it is
easiest to use the technique of discrete event simulation. If the current state
of the process is x, the combined hazard for moving away from the current
state is λ+ xµ, and so the time to the next event is an exponentially
distributed random quantity with rate λ+ xµ. When that event occurs, the
process will move up or down with probabilities proportional to their
respective hazards, λ and xµ. That is, the state will increase by 1 with
probability λ/(λ+ xµ) and decrease by 1 with probability xµ/(λ+ xµ). This
sequence can be easily simulated on a computer to give a set of states and
event times which can be plotted, summarised, etc. A simulated realisation of
this immigration-death process is shown in Figure 3. An R function to
simulate the process is given in Figure 4.
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Figure 3: A single realisation of the immigration-death process with
parameters λ = 1 and µ = 0.1, initialised at X(0) = 0. Note that the
stationary distribution of this process is Poisson with mean 10.



imdeath <- function(n=20, x0=0, lambda=1, mu=0.1)
{

xvec = vector("numeric",n+1)
tvec = vector("numeric",n)
t = 0
x = x0
xvec[1] <- x
for (i in 1:n) {

t = t+rexp(1,lambda+x*mu)
if ( runif(1,0,1) < lambda/(lambda+x*mu) )

x <- x+1
else

x <- x-1
xvec[i+1] <- x
tvec[i] <- t

}
stepfun(tvec, xvec)

}

Figure 4: R function for discrete-event simulation of the immigration-death
process.



Diffusion processes

Introduction

Markov processes with continuous states that evolve continuously in time are
often termed diffusion processes. A rigorous formal discussion of the theory
of such processes is beyond the scope of this course. Nevertheless, it is
useful to provide a non-technical introduction at this point, as these processes
provide an excellent modelling tool for many applications.

A d-dimensional Itô diffusion process Y is governed by a stochastic
differential equation (SDE) of the form

dYt = µ(Yt)dt+ Ψ(Yt)dWt, (3)

where µ : Rd → Rd is a d-dimensional drift vector and Ψ : Rd → Rd×Rd is a
(d× d)-dimensional diffusion matrix. The SDE can be thought of as a recipe
for constructing a realisation of Y from a realisation of a d-dimensional
Brownian motion (or Wiener process), W . A d-dimensional Brownian motion
has d independent components, each of which is a univariate Brownian



motion, B. A univariate Brownian motion B is a process defined for t ≥ 0 in
the following way.

1. B0 = 0,

2. Bt −Bs ∼ N(0, t− s), ∀t > s,

3. The increment Bt −Bs is independent of the increment
Bt′ −Bs′, ∀t > s ≥ t′ > s′.

It is clear from property 2 that Bt ∼ N(0, t) (and so E(Bt) = 0 and
Var(Bt) = t). It is also clear that if for some small time increment ∆t we
define the process increment ∆Bt = Bt+∆t −Bt, we then have
∆Bt ∼ N(0,∆t), ∀t, and since we know that the increments are
independent of one another, this provides a mechanism for simulating the
process on a regular grid of time points.



If we define the increment in the diffusion process Y (and the multivariate
Brownian motion W ) similarly, then we can interpret the SDE (3) as the limit
of the difference equation

∆Yt = µ(Yt)∆t+ Ψ(Yt)∆Wt, (4)

as ∆t gets infinitesimally small. For finite ∆t, (4) is known as the Euler
approximation (or, more correctly, as the Euler–Maruyama approximation)
of the SDE, and it provides a simple mechanism for approximate simulation of
the process Y on a regular grid of time points.

In the case d = 1 we have a univariate diffusion process, and it is clear that
then the increments of the process are approximately distributed as

∆Yt ∼ N(µ(Yt)∆t,Ψ(Yt)
2∆t).

An R function to simulate a univariate diffusion using an Euler approximation
is given in Figure 5. Note that more efficient simulation strategies are
possible; see Kloeden & Platen (1992) for further details.



rdiff <- function(afun, bfun, x0 = 0, t = 50, dt = 0.01, ...)
{

n <- t/dt
xvec <- vector("numeric", n)
x <- x0
sdt <- sqrt(dt)
for (i in 1:n) {

t <- i*dt
x <- x + afun(x,...)*dt +

bfun(x,...)*rnorm(1,0,sdt)
xvec[i] <- x

}
ts(xvec, deltat = dt)

}

Figure 5: R function for simulation of a diffusion process using the Euler
method.



We can approximate a discrete Markov process using a diffusion by choosing
the functions µ(·) and Ψ(·) so that the mean and variance of the increments
match. This is best illustrated by example.



Example — diffusion approximation of the immigration-death process

Suppose we have an immigration-death process with immigration rate λ and
death rate µ, and that at time t the current state of the system is x. Then at
time t+ dt, the state of the system is a discrete random quantity with PMF,

P
(
Xt+dt = x− 1

)
= xµ dt,

P
(
Xt+dt = x

)
= 1− (λ+ xµ)dt,

P
(
Xt+dt = x+ 1

)
= λ dt.

So the increment of the process has PMF

P(dXt = −1) = xµ dt, P(dXt = 0) = 1−(λ+xµ)dt, P(dXt = 1) = λ dt.

From this PMF we can calculate the expectation and variance as

E(dXt) = (λ− µx)dt, Var(dXt) = (λ+ µx)dt.

We therefore set µ(x) = λ− µx and Ψ(x)2 = λ+ µx to get the diffusion
approximation

dXt = (λ− µx)dt+
√
λ+ µx dWt.

We can use our code for simulating diffusion processes to get sample paths
like that shown in Figure 6 using the R code shown in Figure 7.
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Figure 6: A single realisation of the diffusion approximation to the
immigration-death process with parameters λ = 1 and µ = 0.1, initialised at
X(0) = 0. Note that this realisation appears to dip below zero near the time
origin.



afun <- function(x,lambda,mu)
{

lambda-mu*x
}
bfun <- function(x,lambda,mu)
{

sqrt(lambda+mu*x)
}
plot(rdiff(afun,bfun,lambda=1,mu=0.1,t=30))

Figure 7: R code for simulating the diffusion approximation to the
immigration-death process.



Chemical reactions

A general chemical reaction takes the form

m1R1 +m2R2 + · · ·+mrRr −→ n1P1 + n2P2 + · · ·+ npPp,

where r is the number of reactants and p is the number of products. Ri
represents the ith reactant molecule and Pj is the jth product molecule. mi is
the number of molecules of Ri consumed in a single reaction step, and nj is
the number of molecules of Pj produced in a single reaction step. The
coefficients mi and nj are known as stoichiometries. The stoichiometries
are usually (though not always) assumed to be integers, and in this case it is
assumed that there is no common factor of the stoichiometries. That is, it is
assumed that there is no integer greater than one which exactly divides each
stoichiometry on both the left and right sides. There is no assumption that the
Ri and Pj are distinct, and it is perfectly reasonable for a given molecule to
be both consumed and produced by a single reaction. The reaction equation
describes precisely which chemical species react together, and in what
proportions, along with what is produced.



In order to make things more concrete, consider the dimerisation of a protein
P . This is normally written

2P −→ P2,

as two molecules of P react together to produce a single molecule of P2.
Here P has a stoichiometry of 2 and P2 has a stoichiometry of 1.
Stoichiometries of 1 are not usually written explicitly. Similarly, the reaction for
the dissociation of the dimer would be written

P2 −→ 2P.

A reaction that can happen in both directions is known as reversible.
Reversible reactions are quite common in biology and tend not to be written
as two separate reactions. They can be written with a double-headed arrow
such as

2P 
 P2 or 2P ←→ P2 or 2P ⇐⇒ P2.

If one direction predominates over the other, this is sometimes emphasised in
the notation. So if the above protein prefers the dimerised state, this may be
written something like

2P ⇀
↽
P2 or 2P −→← P2.



Modelling genetic and biochemical networks

Transcription (prokaryotes)

Transcription is a key cellular process, and control of transcription is a
fundamental regulation mechanism. As a result, virtually any model of genetic
regulation is likely to require some modelling of the transcription process.
This process is much simpler in prokaryotic organisms, so it will be helpful to
consider this in the first instance. Here, typically, a promoter region exists just
upstream of the gene of interest. RNA-polymerase (RNAP) is able to bind to
this promoter region and initiate the transcription process, which ultimately
results in the production of an mRNA transcript and the release of RNAP back
into the cell. The transcription process itself is complex, but whether it will be
necessary to model this explicitly will depend very much on the modelling
goals. If the modeller is primarily interested in control and the downstream
effects of the transcription process, it may not be necessary to model
transcription itself in detail.



Figure 8: Transcription of a single prokaryotic gene.



The process is illustrated diagrammatically in Figure 8. Here, g is the gene of
interest, p is the upstream promoter region, and r is the mRNA transcript of g.
A very simple representation of this process as a system of coupled chemical
reactions can be written as follows:

p+ RNAP −→ p · RNAP

p · RNAP −→ p+ RNAP + r.

As discussed, the second reaction is really the end result of a very large
number of reactions. It is also worth emphasising that the reactions do not
represent a closed system, as r appears to be produced out of nothing. In
reality, it is created from other chemical species within the cell, but we have
chosen here not to model at such a fine level of detail. One detail not included
here that may be worth considering is the reversible nature of the binding of
RNAP to the promoter region.



It is also worth noting that these two reactions form a simple linear chain,
whereby the product of the first reaction is the reactant for the second.
Indeed, we could write the pair of reactions as

p+ RNAP −→ p · RNAP −→ p+ RNAP + r.

It is therefore tempting to summarise this chain of reactions by the single
reaction

p+ RNAP −→ p+ RNAP + r,

and this is indeed possible, but is likely to be inadequate for any model of
regulation or control where the intermediary compound p ·RNAP is important,
such as any model for competitive binding of RNAP and a repressor in the
promoter region.



Modelling higher-level systems

We have concentrated so far on fairly low-level biochemical models where the
concept of modelling with “chemical reactions” is perhaps most natural.
However, it is important to recognise that we use the notation of chemical
reactions simply to describe things that combine and the things that they
produce, and that this framework can be used to model higher-level
phenomena in a similar way.

Consider the Lotka–Volterra predator prey model for two interacting species:

Y1 −→ 2Y1

Y1 + Y2 −→ 2Y2

Y2 −→ ∅.



This is not a real reaction system in the strictest sense, but it is interesting
and useful, as it is the simplest model exhibiting the kind of non-linear
auto-regulatory feedback behaviour that is very common in biological
systems. Also, as it only involves two species and three reactions, it is
relatively easy to work with without getting lost in detail. Here, Y1 represents a
“prey” species (such as rabbits) and Y2 represents a “predator” species (such
as foxes). The first reaction is a simple representation of prey reproduction.
The second reaction is an attempt to capture predator-prey interaction
(consumption of prey by predator, in turn influencing predator reproduction
rate). The third reaction represents death of predators due to natural causes.



Another widely studied individual level model is the so-called SIR model for
disease epidemiology, where the initials stand for Susceptible, Infected, and
Recovered. The idea is that individuals are initially susceptible to catching a
disease from an infected person. Should they contract the disease, they will
make the transition from susceptible to infected, where they will have the
possibility of infecting susceptibles. Eventually the infected individual will
make the transition to the “recovered” category, when they will no longer be
able to infect susceptibles, but will have immunity to the disease, and hence
will not be themselves any longer susceptible to infection. Of course for some
diseases, this “recovered” category will include individuals who are in fact
dead! In this case, the “R” category is sometimes used to stand for
Removed. The simplest variant of this model is often summarised with just
two reactions as

S −→ I −→ R.



However, it should more correctly be written as the pair of reactions

S + I −→ 2I

I −→ R.

There are obviously many variants on this basic model. For example, some
individuals may develop immunity without ever becoming infectious (S −→ R)
and some recovered individuals may lose their immunity (R −→ S), etc.
Another commonly studied variant is the SEIR model which introduces an
additional category, Exposed, representing individuals who have been
infected with the disease but are not yet themselves infectious, and this is
often summarised as

S −→ E −→ I −→ R.



Classical continuous deterministic chemical
kinetics

Introduction

Chemical kinetic modelling is concerned with understanding the
time-evolution of a reaction system specified by a given set of coupled
chemical reactions. In particular, it is concerned with system behaviour away
from equilibrium. In order to introduce the concepts it is helpful to use a very
simple model system. Consider the “Lotka–Volterra” (LV) system introduced
previously:

Y1 −→ 2Y1

Y1 + Y2 −→ 2Y2

Y2 −→ ∅.

Although the reaction equations capture the key interactions between the
competing species, on their own they are not enough to determine the full
dynamic behaviour of the system. For that, we need to know the rates at
which each of the reactions occurs (together with some suitable initial
conditions).



Mass-action kinetics

The above model encourages us to think about the number of prey (Y1) and
predators (Y2) as integers, which can change only by discrete (integer)
amounts when a reaction event occurs. This picture is entirely correct, and
we will study the implications of such an interpretation later. However, we will
introduce the study of kinetics by thinking about a more classical chemical
reaction setting of macroscopic amounts of chemicals reacting in a “beaker of
water”. There, the amount of each chemical is generally regarded as a
concentration, measured in (say) moles per litre, M , which can vary
continuously as the reaction progresses. Conventionally, the concentration of
a chemical species X is denoted [X].



It is generally the case that the instantaneous rate of a reaction is directly
proportional to the concentration (in turn directly proportional to mass) of
each reactant raised to the power of its stoichiometry. We will see the reason
behind this when we study stochastic kinetics later, but for now we will accept
it as an empirical law. This kinetic “law” is known as mass-action kinetics.
So, for the LV system, the second reaction will proceed at a rate proportional
to [Y1][Y2]. Consequently, due to the effect of this reaction, [Y1] will
decrease at instantaneous rate k2[Y1][Y2] (where k2 is the constant of
proportionality for this reaction), and [Y2] will increase at the same rate (since
the overall effect of the reaction is to decrease [Y1] at the same rate [Y2]

increases). k2[Y1][Y2] is known as the rate law of the reaction, and k2 is the
rate constant. Considering all three reactions, we can write down a set of
ordinary differential equations (ODEs) for the system:

d[Y1]

dt
= k1[Y1]− k2[Y1][Y2]

d[Y2]

dt
= k2[Y1][Y2]− k3[Y2].



The three rate constants, k1, k2, and k3 (measured in appropriate units) must
be specified, as well as the initial concentrations of each species. Once this
has been done, the entire dynamics of the system are completely determined
and can be revealed by “solving” the set of ODEs, either analytically (in the
rare cases where this is possible) or numerically using a computer.

It is instructive to rewrite the above ODE system in matrix form as

d

dt

([Y1]

[Y2]

)
=

(
1 −1 0
0 1 −1

) k1[Y1]
k2[Y1][Y2]
k3[Y2]

 ,
where the 2× 3 matrix is just the stoichiometry matrix, S, of the reaction
system (the change in each species caused by each reaction). This leads to
a general strategy for constructing ODE models from the reaction network
representation.



If we write r([Y ]) = (r1([Y ]), r2([Y ]), . . . , rv([Y ]))T for the vector of rate
laws of the v different chemical reactions, then the ODE model may be
derived from the state updating equation as

d

dt
[Y ] = S r([Y ]).

We will see later that this ODE model may be regarded as a continuous
deterministic approximation of the natural discrete stochastic Markov process
model description given by the theory of stochastic chemical kinetics.

The dynamics for a particular combination of rate parameters and initial
conditions are shown in Figure 9. An alternative way of displaying these
dynamics is as an “orbit” in “phase-space” (where the value of one variable is
plotted against the others, and time is not shown directly). Figure 10 shows
the dynamics in this way.
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Figure 9: Lotka–Volterra dynamics for
[Y1](0) = 4, [Y2](0) = 10, k1 = 1, k2 = 0.1, k3 = 0.1.
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Figure 10: Lotka–Volterra dynamics in phase-space for rate parameters
k1 = 1, k2 = 0.1, k3 = 0.1. The dynamics for the initial condition
[Y1](0) = 4, [Y2](0) = 10 are shown as the bold orbit. Orbits for other
initial conditions are shown as dotted curves.



Molecular approach to kinetics

The deterministic approach to kinetics fails to capture the discrete and
stochastic nature of chemical kinetics at low concentrations. As many
intra-cellular processes involve reactions at extremely low concentrations,
such discrete stochastic effects are often relevant for systems biology models.
We are now in a position to see how chemical kinetics can be modelled in this
way.

Consider a bi-molecular reaction of the form

X + Y −→?

(the RHS is not important). What this reaction really means is that a molecule
of X is able to react with a molecule of Y if the pair happen to collide with one
another (with sufficient energy), while moving around randomly, driven by
Brownian motion. Considering a single pair of such molecules in a container
of volume V , it is possible to use statistical mechanical arguments to
understand the hazard of molecules colliding.



Under fairly weak assumptions regarding the container and its contents
(essentially that it is small or well stirred, and in thermal equilibrium), it can be
rigorously demonstrated that the collision hazard is constant, provided the
volume is fixed and the temperature is constant. A comprehensive treatment
of this issue is given in Gillespie (1992), to which the reader is referred for
further details. However, the essence of the argument is that as the molecules
are uniformly distributed throughout the volume and this distribution does not
depend on time, then the probability that the molecules are within reaction
distance is also independent of time. In the case of time-varying V (which can
be quite relevant in the biological context), the hazard is inversely proportional
to V . Again, for the careful statistical mechanical argument see Gillespie
(1992), but an intuitive explanation can be given as follows. Let the molecules
position in space be denoted by P1 and P2, respectively. Then P1 and P2 are
uniformly and independently distributed over the volume V . This means that
for a region of space d with volume v′ we have

P(Pi ∈ d) =
v′

V
, i = 1,2.



Now if we are interested in the probability that X and Y are within a reacting
distance (r) of one another at any given instant of time (assuming that r is
very small relative to the dimensions of the container, so that boundary
effects can be ignored), this probability can be computed as

P(|P1 − P2| < r) = E(P(|P1 − P2| < r|P2))

but the conditional probability will be the same for any P2 away from the
boundary, rendering the expectation redundant, and reducing the expression
to

= P(|P1 − p| < r) (for any p away from the boundary)
= P(P1 ∈ d) (where d is a sphere of radius r)

=
4πr3

3V
.

This probability is inversely proportional to V . Then conditional on the
molecules being within reaction distance, they will not necessarily react, but
will do so with a probability independent of V (as other important variables,
such as the velocity distributions, are independent of V ), thus preserving the
inverse dependence on V in the combined probability of being within reaction
distance and reacting.



Mass-action stochastic kinetics

We will consider a system of reactions involving u species X1, X2, . . . ,Xu
and v reactions, R1, R2, . . . ,Rv. Typically (but not always) there will be
more reactions than species, v > u. We will assume that the qualitative
structure of the reaction network can be encoded in the form of a Petri net
N = (P, T, Pre, Post,M), where P = (X1, X2, . . . , Xu)T and
T = (R1, R2, . . . , Rv)T. Denote the number of molecules of Xi at time t by
Xit, and put Xt = (X1t, X2t, . . . , Xut)

T for the state of the system at time t.
Let Rit denote the number reactions of type Ri in the time window (0, t], and
then define Rt = (R1t, . . . , Rvt)

T. From the state updating equation we have

Xt −X0 = SRt, (5)

where

S = (Post− Pre)T

is the u× v stoichiometry matrix of the reaction network.



In addition, each reaction, Ri, will have a stochastic rate constant, ci, and
an associated rate law (or hazard function), hi(x, ci), where
x = (x1, x2, . . . , xu)T is the current state (or marking) of the system (and so
at time t this will be hi(Xt, ci)). The form of hi(x, ci) (and the interpretation
of the rate constant ci) is determined by the order of reaction Ri. In all cases
the hazard function has the same interpretation, namely that conditional on
the state being x at time t, the probability that an Ri reaction (or transition)
will occur in the time interval (t, t+ dt] is given by hi(x, ci) dt. Thus, in the
absence of any other reactions taking place, the time to such a reaction
event would be an Exp(hi(x, ci)) random quantity. Note, however, that
since the hazard depends on the state x, and other reactions could change
the state, the actual time until an Ri reaction will typically not be exponential.



Zeroth-order reactions

First consider a reaction of the form

Ri : ∅ ci−→ X.

Although in practice things are not created from nothing, it can sometimes be
useful to model a constant rate of production of a chemical species (or influx
from another compartment) via a zeroth-order reaction. In this case, ci is the
hazard of a reaction of this type occurring, and so

hi(x, ci) = ci.



First-order reactions

Consider the first-order reaction

Ri : Xj
ci−→?.

Here ci represents the hazard that a particular molecule of Xj will undergo
the reaction. However, there are xj molecules of Xj, each of which having a
hazard of ci of reacting. This gives a combined hazard of

hi(x, ci) = cixj

for a reaction of this type. Note that first-order reactions of this nature are
intended to capture the spontaneous change of a molecule into one or more
other molecules, such as radioactive decay, or the spontaneous dissociation
of a complex molecule into simpler molecules. It is not intended to model the
conversion of one molecule into another in the presence of a catalyst, as this
is really a second-order reaction. However, in the presence of a large pool of
catalyst that can be considered not to vary in level during the time evolution of
the reaction network, a first-order reaction may provide a reasonable
approximation.



Second-order reactions

For second-order reactions of the form

Ri : Xj + Xk
ci−→?,

ci represents the hazard that a particular pair of molecules of type Xj and Xk
will react. But since there are xj molecules of Xj and xk molecules of Xk,
there are xj xk different pairs of molecules of this type, and so this gives a
combined hazard of

hi(x, ci) = cixj xk

for this type of reaction.



There is another type of second-order reaction which needs to be considered:

Ri : 2Xj
ci−→?.

Again ci represents the hazard of a particular pair of molecules reacting. But
here there are only xj(xj − 1)/2 pairs of molecules of type Xj, and so

hi(x, ci) = ci
xj(xj − 1)

2
.

Note that this does not match exactly the form of the corresponding
deterministic mass-action rate law.



The Gillespie algorithm

The discussion in the previous sections shows that the time-evolution of a
reaction system can be regarded as a stochastic process. Further, due to the
fact that the reaction hazards depend only on the current state of the system
(the number of molecules of each type), it is clear that the time-evolution of
the state of the reaction system can be regarded as a continuous time Markov
process with a discrete state space. Detailed mathematical analysis of such
systems is usually intractable, but stochastic simulation of the time-evolution
of the system is quite straightforward.

In a given reaction system with v reactions, we know that the hazard for a type
i reaction is hi(x, ci), so the hazard for a reaction of some type occurring is

h0(x, c) ≡
v∑

i=1

hi(x, ci).



We now follow the discrete event stochastic simulation procedure (Kendall
1950) discussed previously to update the state of the process. It is clear that
the time to the next reaction is Exp(h0(x, c)), and also that this reaction will
be a random type, picked with probabilities proportional to the hi(x, ci),
independent of the time to the next event. That is, the reaction type will be i
with probability hi(x, ci)/h0(x, c). Using the time to the next event and the
event type, the state of the system can be updated, and simulation can
continue. In the context of chemical kinetics, this standard discrete event
simulation procedure is known as “the Gillespie algorithm” (or “Gillespie’s
direct method”), after Gillespie (1977). The algorithm can be summarised as
follows:



The Gillespie algorithm

1. Initialise the system at t = 0 with rate constants c1, c2, . . . , cv and initial
numbers of molecules for each species, x1, x2, . . . , xu.

2. For each i = 1,2, . . . , v, calculate hi(x, ci) based on the current state, x.

3. Calculate h0(x, c) ≡
∑v
i=1 hi(x, ci), the combined reaction hazard.

4. Simulate time to next event, t′, as an Exp(h0(x, c)) random quantity.

5. Put t : = t+ t′.

6. Simulate the reaction index, j, as a discrete random quantity with
probabilities hi(x, ci) / h0(x, c), i = 1,2, . . . , v.



7. Update x according to reaction j. That is, put x : = x+ S(j), where S(j)

denotes the jth column of the stoichiometry matrix S.

8. Output x and t.

9. If t < Tmax, return to step 2.

We will examine different ways of turning this algorithm into R code in the
following sections. Note that Step 6 is usually executed via some kind of
“lookup method”. Efficient implementation of this step is crucial to obtaining a
simulation algorithm which performs well.



Analysis of simulation output

The smfsb R package

Installation

We will use the package smfsb, which accompanies Wilkinson (2018), and is
available from CRAN. It should therefore install using
install.packages("smfsb")

from any machine with an internet connection.

Once installed, the package can be loaded ready for use with
library(smfsb)

Accessing documentation

I have tried to ensure that the package and all associated functions and
datasets are properly documented with runnable examples. So,



help(package="smfsb")

will give a brief overview of the package and a complete list of all functions.
The list of vignettes associated with the package can be obtained with
vignette(package="smfsb")

Only one is available, and can be accessed from the R command line with
vignette("smfsb",package="smfsb")

Help on functions can be obtained using the usual R mechanisms. For
example, help on the function StepGillespie can be obtained with
?StepGillespie

and the associated example can be run with
example(StepGillespie)

A list of demos associated with the package can be obtained with
demo(package="smfsb")



Simulation of stochastic kinetic models

Example: the Lotka Volterra model

The main purpose of the smfsb package is to provide a collection of tools for
building and simulating stochastic kinetic models. This can be illustrated
using a simple Lotka–Volterra predator–prey system.

Later we will explore additional functions for Bayesian parameter inference.



First, consider the prey, X1 and the predator X2 as a stochastic network as

X1 −→ 2X1

X1 +X2 −→ 2X2

X2 −→ ∅.

The first “reaction” represents predator reproduction, the second
predator–prey interaction and the third predator death. We can write this in
tabular form as

Pre Post Hazard
X1 X2 X1 X2 h(·)
1 0 2 0 θ1x1
1 1 0 2 θ2x1x2
0 1 0 0 θ3x2



This can be encoded in R as a stochastic Petri net (SPN) using
# SPN for the Lotka-Volterra system
LV=list()
LV$Pre=matrix(c(1,0,1,1,0,1),ncol=2,byrow=TRUE)
LV$Post=matrix(c(2,0,0,2,0,0),ncol=2,byrow=TRUE)
LV$h=function(x,t,th=c(th1=1,th2=0.005,th3=0.6))
{
with(as.list(c(x,th)),{

return(c(th1*x1, th2*x1*x2, th3*x2 ))
})

}

which could be created directly by executing
data(spnModels)

since this model is included in the package.



Functions for simulating from the transition kernel of the Markov process
defined by the SPN can be created easily by passing the SPN object into the
appropriate constructor. For example, if simulation using the Gillespie
algorithm is required, a simulation function can be created with
stepLV=StepGillespie(LV)

This function can then be used to advance the state of the process. For
example, to simulate the state of the process at time 1, given an initial
condition of X1 = 50, X2 = 100 at time 0, use
stepLV(c(x1=50,x2=100),0,1)

Alternatively, to simulate a realisation of the process on a regular time grid
over the interval [0,100] in steps of 0.1 time units, use
out = simTs(c(x1=50,x2=100),0,100,0.1,stepLV)



This returns an R time series object which can be plotted directly. See the
help and runnable example for the function StepGillespie for further details.

Note that in addition to the function simTs() which simulates a realisation of
the process on a regular time grid, there is also a function simTimes() which
simulates a realisation on an arbitrary user-specified set of times, and a
function simSample() which simulates many realisations from the transition
kernel, providing an empirical representation of the transition density. See the
help and runnable examples of these functions for further details.
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Figure 11: A single realisation of a stochastic LV process. The state of the
system is initialised to 50 prey and 100 predators, and the stochastic rate
constants are c = (1,0.005,0.6)T.
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Figure 12: A single realisation of a stochastic LV process in phase-space.
The state of the system is initialised to 50 prey and 100 predators, and the
stochastic rate constants are c = (1,0.005,0.6)T.
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