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Plan for the course

Part 1: What is an HMM?

Part 2: How do we fit an HMM to data?

Part 3: What else can we do with HMMs?
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1.1 Motivating example






Why would we want to statistically model muskox movement?

m do individual characteristics like age, size & sex affect movement activity?
m what about external covariates like temperature, snow cover, etc.?

m how does the behaviour vary over the day?
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What are the main patterns in the movement data?



Deriving key movement metrics

Figure: Calculating (Euclidean) step lengths between successive locations — later on, we
will additionally consider the turning angles.



Load the data in R:

muskox <- read.csv("http://www.rolandlangrock.com//Misc//muskox.csv")

Calculate step lengths (and turning angles) using the moveHMM package:
install.packages("moveHMM") # if not already installed

library (moveHMM)
data <- prepData(muskox, type = "UTM")

Let’'s have a look at the first few rows:

> head(data, 12)

ID step angle x y temp altitude tod
1 trackl 2046.5034 NA 517945 8262572 -7 2.364444 12
2 trackl 2005.0249 -0.152212718 519221 8260972 -6 5.244889 13
3 trackl 1988.6609 0.074810792 520219 8259233 -7 20.193333 14
4 tracki NA NA 521335 8257587 -6 13.878333 15
5 tracki NA NA NA NA -6 13.878333 16
6 tracki NA NA NA NA -6 13.878333 17
7 trackl NA NA NA NA -6 13.878333 18
8 trackl NA NA NA NA -6 13.878333 19
9 trackl NA NA NA NA -6 13.878333 20
10 trackl NA NA NA NA -6 13.878333 21
11 trackl 1860.8732 NA 521264 8258161 -5 15.695111 22

12 trackl 967.3826 -0.006769389 520439 8259829 -2 35.833334 23

And you might want to try:

plot (data)
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Figure: Time series of step lengths x1, . . ., X1440 between successive locations.



Towards a statistical model for the muskox movement data

Exploratory data analysis reveals three levels of (movement) activity:
= none (~ resting)
= moderate (~~ foraging/area-restricted search)
= high (~ travelling)

These different activity levels occur in clusters: when the animal is say

travelling, then it tends to exhibit the same behaviour in subsequent time periods.



HMMs — sneak preview

A hidden Markov model (HMM) involves two stochastic processes:

1. observation process
2. underlying hidden state process

OO ) e
OO0 )

~ each observation is generated by one of N possible distributions

s

~ the state process selects which of the N distributions is active at any time

~ the state at time t depends on the state at time t — 1 (~» Markov chain)



Muskox step lengths — how the fitted HMM will look like
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OK, fine, but what do people use HMMs for?

m decoding hidden states (medicine, recognition tasks, etc.)
m forecasting (mainly in econ/finance)

m to better understand the dynamics of a system (very common in ecology)



1.2 Definition of the basic HMM



A Markov chain is a sequence of random variables Sy, S, . . . such that
m S e{l,...,N}forallt (i.e.there are N so-called “states”)
m the Markov property holds:
Pr(Si+1 = Stt1 | St = Sty ..., S1 = S1) = Pr(St41 = St1 | St = st)

OO0~

The Markov property simply means that the state at time t completely determines
the probabilities of the different states at time ¢t + 1.

This dependence structure is mathematically convenient and often plausible.



Due to the Markov property, a Markov chain is fully characterised by

(i) the initial state distribution,
60 = (60 .. 8\)) = (Pr(Si =1),...,Pr(S1 = N)),

(ii) and the (one-step) state transition probabilities’,
i = Pr(Sep1 = j[ St = i),
which we summarise in the transition probability matrix (t.p.m.):

Y1t VIN
r— c ]

YNI ... YNN

here for simplicity assumed to be constant over time — this will later be relaxed



HMM formulation — some preliminary remarks

m the class of HMMs is immensely flexible and versatile

m in particular,

® various different types of data can be considered — count data, continuous data,
binary data, categorical data, univariate data, multivariate data, ...

® various different dependence structures can be considered

= we start with the most basic formulation, later building up complexity

® main inferential tools are the same regardless of the specific formulation



Intuitive definition of the basic HMM

DO OO ) e
(DD~ ) amm
m Si,Sy,...is an N-state Markov chain

m S; selects which of N distributions is active at time t
m X; is then generated by that distribution
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More formal definition of the basic HMM

An N-state HMM is a doubly stochastic process in discrete time, with

® an unobserved state process Sy, Sy, . .., St taking values in {1, ..., N},
= and an observed state-dependent process Xi, Xz, . . ., X72,
such that
m f(st| St,...,8—1) = f(st | 5t—1)
(Xt | Styey STy Xty e ey Xtm1y Xttty - - -, XT) = F(X¢ | St)

Note this is a general model for time series data, which is useful when
= we are interested in how some process evolves over time...
= ...but we don't directly observe that process (instead just a proxy)

2where the X; can also be vectors



&y

Marginal distribution
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If {S:} is stationary with stationary distribution (41, ..., dn), then the un-
conditional (marginal) distribution of X; is

N N
F(x) "2 3T Pr(S = () B3 gifi(x).
j=1 j=1

m thus, an HMM is a mixture model!

m crucially, an HMM is a dependent mixture model: which distribution is
selected at time t does affect which one will be selected at time t + 1

n
N



A basic HMM is specified by
m the initial state distribution 5",
= the transition probability matrix I, and

= the state-dependent (component) distributions, f;(x;) = f(x; | st =)

In particular, given these three components we can
= simulate data from the HMM

m calculate the likelihood f(xi, ..., x7)



1.3 Simulating data from an HMM

24



A concrete simulation example
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R code for simulating data from this HMM

n <- 50

x <- s <- rep(NA, n)

Gamma <- matrix(c(0.9, 0.1, 0.1, 0.9), nrow = 2)
delta <- ¢(0.5, 0.5)

mu <- c(5, 14)

sigma <- c(2, 3)

s[1] <- sample(1:2, size = 1, prob = delta)
x[1] <- rnorm(1, mu[s[1]], sigmals[1]])

for (¢t in 2:50){
s[t] <- sample(1:2, size = 1, prob = Gamma[s[t-1], 1)
x[t] <- rnorm(1l, mu[s[t]], sigmals[t]l])

}



One example realisation

Xt
10
1
.
.

time t

Can you guess the states?
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Xt

time t

These are the actual states (which in practice aren’t observed).



Some remarks on the hidden states

The example from the previous slide shows:

m the obs. will often give a good idea of what could be the underlying state
m however, when the component distributions overlap, we can never be sure

m it's crucial to take the time series nature of the observations into account

The time series Xi, ..., X7 is a noisy observation of the state process Si, ..., Sr,
which we can use to learn something about the latter.
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Cond. independence # independence! s

While the observations are conditionally independent of each other (given the
states), they are not independent of each other:

m say that, in the simulation example, x; is large

m then most likely this is because state 2 is active at time ¢

m with a prob. of 90% the process will then still be in state 2 at time t 4 1
m and hence x:.1 will probably also be large

Thus, the Markov chain induces dependence in the state-dependent process —
only *within* states the observations are independent of each other.
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1.4 Some remarks
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Areas of application of HMMs

Observations Interpretation Literature
of states
Fourier transforms sequence of Juang and

of recorded speech

EEG measurements
during sleep

multiple sclerosis
lesion count data

times between a
neuron’s firing events

DNA sequence
of bases

share returns

retailer transaction
records

volcanic eruptions

responses in a
learning experiment

phonemes

REM and non-REM
sleep states

disease states

states of neuron

homogeneous segments

of DNA sequence

market sentiment

customer’s
propensity to buy

activity level of
the volcano

guessing state vs.
learned state

Rabiner (1991)
Langrock et al. (2013)
Altman and

Petkau (2005)
Camproux et al. (1996)

Churchill (1989)

Rydén et al. (1998)

Mark et al. (2013)

Bebbington (2007)

Visser et al. (2002)
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Terminology in the literature

Various other labels are used for what | call HMMs, e.g.

m Markov-switching/regime-switching models

state-switching models
m latent Markov models

latent transition/latent class models

= hidden Markov processes
m state-space models
These labels very often refer to the same mathematical object...

Rule-of-thumb: model with observations driven by underlying states & Markov
assumption for states? ~~ most likely it's an HMM as discussed here.
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More on HMMs in the literature (classification vs. general inference)

Roughly speaking, there are two branches of literature on HMMs:

1. engineering/ML literature, dealing with recognition/classification:

® originally developed for speech recognition in the 1960s, HMMs have been
applied in all sorts of recognition tasks

® in those instances, training data, where the states are observed, are used to
calibrate the model (supervised learning)

® recognition/classification then involves decoding the latent states for new data

2. statistical literature, dealing with general inference:
® here the main aim often is to learn something about the system considered
® sometimes used also for forecasting, especially in economics/finance

Our focus is on 2., but we’ll cover the main techniques used within 1. too.
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Interpretation of HMM states in case of unsupervised learning

A trivial yet underappreciated HMM fact:
HMM states # meaningful entities (e.g. behaviours)

Instead, the model states are only proxies for potentially meaningful entities.

Why?
m features of HMM states are (usually) data-driven (~» unsupervised learning)
= model picks up whatever pattern is strongest w.r.t. multimodality
m temporal resolution determines which states may be inferred at all
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Part 2 — How do we fit an HMM to data?

2.1
2.2
2.3
2.4
25
2.6

Overview: how to fit an HMM to data
Likelihood evaluation & optimisation
Example: fitting HMMs to movement data
Model selection

Model checking

State decoding
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2.1 Overview: how to fit an HMM to data
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Workflow for finding “the right” HMM for given real data

1. formulate candidate models based on EDA, in particular

® selecting N & the class of state-dependent distributions
® potentially incorporating covariates (see later slides)

\ 4 1
2. estimate model parameters, for each candidate model
1 \ 3
3. choose between candidate models
1 A \
4. check the chosen model (and, if necessary, go back to 1.)
1 4 {

5. conduct whatever inference is of interest

We will first focus on 2., which is usually the hardest part.
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Parameter estimation — overview

There are three main approaches to fitting HMMs:
1. direct numerical likelihood maximisation
2. likelihood maximisation using the EM algorithm
3. Bayesian inference/MCMC

While there are scenarios where either 2. or 3. can be preferable®, in most cases
my preferred option is 1., as it’s simplest and often also fastest.

3in particular, Bayesian inference has some advantages when the model includes random effects
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Maximum likelihood estimation

= maximum likelihood (ML) estimation is
an approach for fitting a model to data

m key idea: good parameter estimates make
the observed data look plausible

m ML estimation: select parameter 6 for which model has the highest likelihood
[:(0) = fe(X1 sy XT)
of having generated the observed data
= ML estimation...
® _.is intuitively appealing,
® _.is practically feasible in many cases (including HMMs),

® ...and has desirable theoretical properties

= but we do need to be able to calculate the likelihood!
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2.2 Likelihood evaluation & optimisation
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Likelihood evaluation — how?

The seemingly easiest way to calculate the likelihood is via summation over all
possible state sequences (law of total probability):

LO)=3 .3 (H fsxx,)) (5;9 H%,w,s,)

s1=1 sr=1 t=1

m simple structure, and all components are directly available
® but N7 summands render the calculation infeasible in most cases
= note though that many calculations in the sum above are redundant

m for example, for T = 20 and N = 2, it is extremely inefficient to separately
calculate the likelihood contribution of the two state sequences

11122221111112222111

and 11122221111112222112
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Smarter way to do this: the forward algorithm

Consider the so-called forward variables,
() = f(x1,....x, 8t =), ar=(ar(1),...,u(N))
At time t, these variables contain information on
m the likelihood of the observations up to time ¢

m the probabilities of being in the
different states at time t

The forward algorithm is an efficient recursive scheme for calculating the
forward variables:

o1 =86P(x1),  ar=ou1TP(x) for t=2,...,T,

with P(x;) = diag(f(x), - . - , fu(x)), initial distribution 6" and t.p.m. T.
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Using the forward algorithm to evaluate the likelihood

m the forward algorithm can be applied in order to first calculate a1, then o
based on a1, then a3 based on i, etc., until one arrives at ar

= the likelihood is then £(6) = S-N , f(x1, ..., xr, st =j) = S, ar())

m written in closed form, with 1 = (1,...,1) € R":
£(0) = 8P(x;)TP(x)TP(xs) ... TP(x7)1"

m comput. cost of evaluating £(0) is linear in the number of observations, T

= in practice, this means that the likelihood can be evaluated in a fraction of a
second even for T in the thousands and moderate number of states N

m this opens up the way for a numerical maximisation of the likelihood
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Numerical search algorithms are used to
find the maximum likelihood estimate:

guess the value of the parameter vector as 6o,
obtain improved guess 61y based on (gradient in) 6o

[
[
m obtain improved guess 6 based on (gradient in) 64
|
|

terminate algorithm when changes in £(0) are negligible

global maximum

WARNING: the algorithm might converge to
a local rather than the global maximum!

local maximum



2.3 Example: fitting HMMs to movement data
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A distribution for modelling step lengths
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Figure: Gamma distributions with different mean () and std. dev. (o) parameters.
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Figure: Histogram of the observed hourly step lengths.

Eye-balling possible initial values for the gamma step length distributions:
m state-dep. means of (about) 5, 50 and 500 metres might be about right
= initial values for standard deviations can simply be taken to be a bit larger
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muskox <- read.csv("http://www.rolandlangrock.com//muskox.csv")
# install.packages ("moveHMM")

library (moveHMM)

data_muskox <- prepData(muskox, type="UTM")

# choose initial parameter values

stepMean0 <- c(5, 50, 500) # means of gamma distribution

stepSDO <- c(10, 100, 1000) # standard deviations of gamma distribution
stepPar0 <- c(stepMean0, stepSDO)

s <- Sys.time()

muskoxhmm <- fitHMM(data=data_muskox, nbStates=3, stepParO=stepPar0,
verbose=2, angleDist="none")

Sys.time()-s

muskoxhmm

plot (muskoxhmm)



Muskox step lengths — fitted 3—state gamma HMM
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1lks <- rep(NA, 20)
mods <- vector("list")

for (k in 1:20){

step_mean0 <- runif(3, 0, 1000) # gamma means

step_sd0 <- runif(3, 0, 500) # gamma std. dev

step0 <- c(step_mean0, step_sd0)

mods[[k]] <- fitHMM(data, nbStates=3, stepParO=step0,

angleDist="none")

11ks[k] <- -mods[[k]]$mod$minimum

print (11lks)

}
[1] -7388.818 -7193.963 -7812.318 -7388.818 -7193.963 -7812.318
[7] -7388.818 -7812.318 -7388.818 -7388.818 -7388.818 -7388.818
[13] -7193.963 -7812.318 -7388.818 -7812.319 -7812.318 -7812.318
[19] -7193.963 -7193.963

+ 4+ 4+ ++ 4+ 4+ VY



Incorporating directionality

steps—1
stepyy1

Figure: Representing location data in terms of step lengths (top) & turning angles (bottom).
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HMM for bivariate time series of steps & turns

Figure: Simple extension of the basic HMM to accommodate bivariate observations.

~~ We can again use gamma distributions for the steps X;
~ but we need a special type of distribution for the turns Y:
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The von Mises distribution
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Figure: Example densities of von Mises distributions with different values of the mean (u)
and concentration (k) parameters.
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muskox <- read.csv("http://www.rolandlangrock.com//muskox.csv")
library (moveHMM)
data_muskox <- prepData(muskox, type="UTM")

# choose initial parameter values

stepMean0 <- c(5, 40, 400) # means of gamma distribution

stepSDO <- c(10, 50, 500) # standard deviations of gamma distribution
stepParQ <- c(stepMean0, stepSDO)

angleMean0 <- c(pi, pi, 0) # means of von Mises  (turning angles)
angleCon0 <- c¢(0.5, 0.5, 1) # std. dev. of von Mises (turning angles)
anglePar0 <- c(angleMeanO, angleCon0)

s<-Sys.time ()

fullmuskoxhmm<-fitHMM(data=data_muskox, nbStates=3,
stepParO=stepPar0, angleParO=anglePar0, verbose=2)

Sys.time()-s

fullmuskoxhmm

plot (fullmuskoxhmm)



Muskox steps & turns — fitted 3—state gamma/von Mises HMM
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How do we fit general HMMs?

The moveHMM package was developed specifically for tracking data (steps &
turns) and cannot deal with general types of data.

Options for fitting general HMMs:
B momentuHMM (an extension of moveHMM — much more flexible)
® hmmTMB (very good in particular for mixed models)
B depmixS4 or HiddenMarkov (general HMIM packages)
m write your own code (example implementation on the next slide)
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Vanilla code for fitting a 3—state gamma HMM to the muskox data

muskox <- read.csv("http://www.rolandlangrock.com//Misc//muskox.csv")
library (moveHMM)
data <- prepData(muskox, type = "UTM")

mllk <- function(theta.star, x){
Gamma <- diag(3)
Gamma[!Gamma] <- exp(theta.star[1:6])
Gamma <- Gamma / rowSums(Gamma)
delta <- solve(t(diag(3) - Gamma + 1), rep(i, 3))
mu <- exp(theta.star[7:9])
sigma <- exp(theta.star[10:12])
allprobs <- matrix(i, length(x), 3)
ind <- which(!is.na(x))
for (j in 1:3){
allprobs[ind, j] <- dgamma(x[ind], shape = mu[j]1~2 / sigmal[jl-2,
scale = sigmal[j]1~2 / mul[jl)
i
foo <- delta %% diag(allprobs[1i, 1)
1 <- log(sum(foo))
phi <- foo / sum(foo)
for (t in 2:length(x)){
foo <- phi %*) Gamma %% diag(allprobs[t, 1)
1 <- 1 + log(sum(fo0))
phi <- foo / sum(foo)
¥
return(-1)

}

theta.star <- c(rep(-2, 6), log(c(5, 50, 500)), log(c(10, 100, 800)))
nlm(mllk, theta.star, x = data$step, print.level = 2, iterlim = 10000)
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2.4 Model selection
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AIC and BIC

Aim: select the best HMM from a set of candidate models

AlIC = —2log L + 2 - #parameters

BIC = —2log L + log(T) - #parameters

~> in either case, choose model with smallest value of the criterion applied.

m both criteria reward goodness of fit while penalising complexity
m AIC favours more complex models due to the smaller penalty (for T > 8)

m both provide a relative comparison of models from a suite of candidate
models ~~ the selected model could still be a bad one!!
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lllustration using the muskox data

In the following:
m we will illustrate the use of AIC and BIC for the muskox step lengths
m we fit N—state gamma HMMs with N =2,3,4,5,6
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Figure: AIC & BIC values for gamma HMMs with different numbers of states.

m AIC selects the 6-state model*
m BIC selects the 4—state model
= biologist who collected the data thinks there should be 3 states ...

“and would probably go for even more states if we were to consider corresponding models...
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Some remarks on model selection

Criteria like AIC or BIC are very appealing as they...
m have a theoretical foundation...
m ...yet are very easy to use,
such that they appear to offer universally applicable solutions to model selection.

As a consequence, they are often applied without any critical reasoning.

However, both AIC and BIC have their shortcomings.
~ don’t blindly trust these criteria, and instead only use them as guidance

63



lllustrating example with simulated data

density

state 1
state 2

I T T T T T 1
0 5 10 15 20 25 30

Observations were generated using the two state-dependent distributions
displayed above and the t.p.m.
0.9 0.1
r= (0.1 0.9>

If we fit gamma HMMs with N = 2, 3, then what N will be selected?
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state 1

%‘ S state 2
s © state 1 (estimated)
° state 2 (estimated)
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o
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~ lack of fit of the distribution in state 2 due to insufficient flexibility
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~ this (3—state) model is selected by both AIC and BIC
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States mopping up structure

Model misspecification is often compensated by additional states, which “mop up”
the neglected structure due to, e.g.,

m inadequate (parametric) state-dep. distributions

m outliers

m individual heterogeneity

= violations of Markov property or conditional independence assumption

~ for HMMs, AIC/BIC tend to favour models with “too many” states

Resulting models may fit the data better, but are often not interpretable:
= may not be a problem if model is used for forecasting
= but when inferring animal behaviours, then such an HMM can be useless



How to deal with this?
~ ideally, improve model formulation to account for such structure
~ often not feasible for complex datal!
~~ we may need to accept lack of fit and be pragmatic® about choosing N
~ in particular, I'd rather trust the ecologists’ expertise than AIC/BIC

Bottom line: selecting N is notoriously difficult!!

SPohle et al. (2017), Selecting the number of states in hidden Markov models: pragmatic solutions
illustrated using animal movement, JABES.
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2.5 Model checking
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Model checking in HMMs

Main options to check if a fitted HMM is adequate:

1. graphical comparison of marginal distribution under fitted HMM and
empirical distribution, to check adequacy of state-dep. distributions

2. simulate data from the fitted model, then compare the patterns found in the
simulated data with those of the real data® ~ informal, but useful strategy!

3. aresidual analysis ~~ comprehensive formal check of the model

spatterns to look for: marginal distribution, autocorrelation, etc.



Marginal vs. empirical distribution

The marginal distribution of a fitted stationary HMM is
N
f(x) =D 6if(x),
j=1

where §; is the stationary prob. of occupying state j. This can be compared to the
empirical distribution of the data, as visualised e.g. using a histogram.

density
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0.01

"\

I NN e — _
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0 100 200 300 400

0.00

step length

Figure: Histogram of the muskox’ step lengths (truncated at 400 mtrs. for clarity) and
marginal distribution under the fitted 4—state gamma HMM.
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Simulation-based check
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Figure: Comparison of the actual time series of muskox step lengths (top row) with a time
series simulated from the fitted 4—state gamma HMM (bottom row).



Pseudo-residuals

Problem: due to the time series structure, each X; has a different distribution,
making it difficult to assess which observations are extreme relative to the model.

Trick: use probability integral transform to obtain a common scale.

m first convert X; such that transformation is uniformly distributed:
Fx,(X:) ~ Uniform[0,1]
m then convert once more to obtain standard normal distribution:
&~ (Fx (X)) ~ N(0,1),

which holds if F, is correct
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Construction of pseudo-residuals

f1(x) f(u)
u=F(x,)
—_
(. f(u)
uz=Fa(x)
—_
f(x) f(u)
ur=Fr(x7) °
—_
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Given a fitted HMM, we consider the conditional distribution:

FXI(X[) = Pr(Xr S Xt | X1 = X{,.. .Xt71 = Xt71,Xt+1 = Xt+1, .. .XT = XT)

The quantities ® " (Fx,(X;)) are called pseudo-residuals. If the model is
correct, then these (random variables) are standard normally distributed.

® we can use quantile-quantile-plots and/or hypothesis tests to check for
normality: any indication of non-normality ~~ indication of a lack of fit!

m strong residual autocorrelation ~~ correlation structure not fully captured!



Pseudo-res. for the muskox data, obtained under fitted 4—state model

time series of pseudo-residuals

histogram of the pseudo-residuals

0.5

Sample Quantiles

00 02 04 06 08 10
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-3

sample ACF of the pseudo-residuals

normal Q-Q Plot

Theoretical Quantiles

76



So when are we satisfied with a model?

1. it helps to address the study aim
(e.g. forecasting, classification, obtaining overview of patterns)

2. it “outperforms” other reasonable candidate models

3. model checks don’t reveal any substantial lack of fit — in particular,
® pseudo-residuals should be approx. normally distributed...

® _..and exhibit little autocorrelation

7



2.6 State decoding
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Given a fitted model, it is often of interest to decode the hidden states
underlying the observed time series.

Global decoding: looks at the sequence as a whole
m consider Pr(Sy = i1, ..., St = ir|X1,...,X7)

= most probable state sequence is maximum
of the above over (i, ...,it) € {1,...,N}"

Local decoding: looks at each time point in isolation
m consider Pr(S; = i|x, ..., XT)

= most probable state at time ¢ is maximum
of the above overi=1,... N

Usually the outcome is either identical or at least very similar. But local decoding
additionally provides uncertainty information.



Global decoding (using the Viterbi algorithm) in the muskox example

first 200 observations fitted gamma distributions
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Local decoding (using the forward-backward algorithm) in the example

first 200 observations fitted gamma distributions
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Part 3 — What else can we do with HMMs?

3.1
3.2
3.3
3.4
3.5

Covariates, seasonality & random effects
Alternative & advanced dependence structures
Continuous-valued state processes

HMMs in continuous time

Nonparametric inference in HMMs
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3.1 Covariates, seasonality & random effects
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Why and how to include covariates in HMIMs?

The inclusion of covariates allows to investigate how the dynamic system HMM
responds to potential drivers:

= how does animal behaviour change with varying temperatures?
m how does a cancer patient respond to medication?
= how does the financial market respond to changes in say the interest rate?

Technically it's straightforward to incorporate covariates in HMMs, in both state
process and state-dep. process: the likelihood structure remains unaffected.

£(0) = 6P(x)TP(x)TP(x3) ... TP(x7)1"

~ all that changes is that P(x;) and/or I will depend on covariates
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Covariates in the state process

We first consider the inclusion of covariates in the state process,
m expressing state transition probabilities as functions of covariates...
m ...to infer how state dynamics depend on external (or internal) factors
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Muskox example with covariate influence in the state process

Consider a 2—state HMM for steps and turns, with temp, affecting the transitions:

where, for i # j,

(i) 500
B . B +877 - temp,
‘(At) —lo it71 (i) + () -tem = e—
i ¢} ( 0 61 pz) eBéU)+ﬂ1(ll}~tesz +1

(extension to multiple covariates, quadratic effects, interactions etc. is obvious)
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In moveHMM:

muskox <- read.csv("http://www.rolandlangrock.com//muskox.csv")
# install.packages ("moveHMM")

library (moveHMM)

data_muskox <- prepData(muskox, type="UTM")

step_mean0 <- c(5, 200)

step_sd0 <- c¢(5, 100)

step0 <- c(step_mean0, step_sd0)
angle_mean0 <- c(pi, 0)

angle_con0 <- ¢(0.5, 1)

angle0 <- c(angle_meanO, angle_con0)

muskoxhmm <- fitHMM(data, nbStates = 2, stepPar0 = step0,
anglePar0 = angle0, formula = “temp, verbose = 2)

muskoxhmm

plot (muskoxhmm, plotCI = TRUE)



> muskoxhmm
Value of the maximum log-likelihood: -9907.767

Step length parameters:

state 1 state 2
mean 4.714617 229.1425
sd  3.323690 281.4776

Turning angle parameters:

state 1 state 2
mean 2.8735816 -0.06313096
concentration 0.5299382 0.47877136

Regression coeffs for the transition probabilities:

1 ->2 2 ->1
intercept -1.15149048 -1.52939023
temp 0.04811378 0.02857322

Initial distribution:

[1] 9.458273e-06 9.999905e-01



Transition probabilities
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(the colder it is, the longer the animal stays in a state — but this data set is small)
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Another example: grey seal behaviour & commercial fishing

turning angle turning angle

step length step length
divg t[me dive time‘a
ma. dcpth mas. depth@ @ °

surf. time surf. time

Figure: HMM for multivariate dive-by-dive data collected for grey seals in the Baltic Sea.
m 3—state model (“foraging”, “resting”, “travelling”) was deemed most adequate
m covariate effects on state process modelled using multinomial logit link

® main covariate of interest: distance to nearest fishing net
m additional covariates included: sediment type, sex, bathymetry, salinity
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N —— state 3 (‘traveling’)
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Distance (km) to active fishing net

Figure: Estimated state occupancy as a function of the distance to the nearest fishing net.

In this case we have AAIC = 37.2, indicating fairly strong correlation”.

"but of course we're not estimating a causal effect here



Incorporating seasonality or diel patterns

In many real data applications, there is within-day or within-year variation.
In essence, this means that parameters depend on the covariate

However,
m predictors ought to return to where they started after completing a full cycle

m this can be achieved by using trigonometric functions

For the muskox data, consider the 2—state HMM as before, but now with

O _ toait—" (a0 o a0 o (2T 0) 2m -
7 = logi (ﬁo + o sin () + 6 C°S(T))
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In moveHMM:

muskox <- read.csv("http://www.rolandlangrock.com//muskox.csv")
# install.packages ("moveHMM")

library (moveHMM)

data_muskox <- prepData(muskox, type="UTM")

step_mean0 <- c(5, 200)

step_sd0 <- c(5, 100)

step0 <- c(step_mean0, step_sd0)
angle_mean0 <- c(pi, 0)

angle_con0 <- ¢(0.5, 1)

angle0 <- c(angle_mean0, angle_con0)

muskoxhmm <- fitHMM(data, nbStates = 2, stepPar0 = step0,
anglePar0 = angle0, verbose = 2,
formula = ~“sin(2*pi*tod/24)+cos(2*pi*tod/24))
muskoxhmm

plot (muskoxhmm, plotCI = TRUE)
plotStationary(muskoxhmm, plotCI = TRUE)
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Figure: Time-of-day variation in the state process dynamics (2—state muskox model).
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Resulting state occupancy (model with N = 2 states)
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Resulting state occupancy (model with N = 3 states)
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Covariates in the state-dependent process

Y
5
SRONONCES

® e.g., the state-dep. mean step length could depend on age or time of year
= as a consequence, meaning of the state may vary across covariate values
= easy to implement, but not as often seen in applications

= in econometrics commonly referred to as Markov-switching regression
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Markov-switching regression — motivation from a regression perspective

Consider a regression scenario,
Yi = Bo + Bixt + e,

where the pairs (Y}, x;) are observed over time, i.e. the index t refers to time®.

In such a context, there is often temporal correlation in the data, which can render
simple regression models invalid (~~ correlated errors).

A possible reason: the regression coefficients, 5o and 31, might change over time.

Classic example: economic time series where the effect of an explanatory
variable x; may differ between times of high and low economic growth.

8e.g. days/months/years
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Example Lydia Pinkham sales
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Key features of the Lydia Pinkham data:
1. sales figures were strongly driven by advertising expenditure
2. sales figures in year t tended to be similar to those in year t — 1
3. advertising strategy was changed several times

A simple regression model that takes 1. and 2. (but not 3.) into account:

sales; = o + (1 - sales;_1 + (2 - advertising, + 0 - €1, € ~ N(0,1)
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Fitted linear model:

sales; = 0.139 + 0.759 - sales;—1 + 0.329 - advertising, + 0.225 - ¢

residuals
0
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<
~

1910 1920 1930 1940 1950 1960
year

Figure: Residuals of the linear model plotted against time ~~ strongly serially correlated.



Unsurprisingly, the simple regression model fails to capture the temporal
correlation of the observations.

In the example, there seem to be major structural breaks in the time series.

Thus, consider instead a Markov-switching regression model, where the linear
model changes when there is a switch in an underlying state process:

sales; = /3(()5!) + /31(50 -sales;—1 + ﬂés[) - advertising, + A €t,

with s; denoting the state of an unobserved 2—state Markov chain.



Fitted Markov-switching model:

sales; = {

0.693 + 0.434 - sales;_4 + 0.747 - advertising; + 0.121 - ¢
0.309 + 0.562 - sales; 1 + 0.397 - advertising; + 0.103 - ¢;

when s; = 1;
when s; = 2.

0.841 0.159
0.047 0.953

T 1
1950 1960

/\
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AN /
f.] ] | j
g VU
g A
) ; \/
/'\_'- _/
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« - eseervesn eveoese
19‘10 19‘20 19‘30 1;40
year

Figure: Sales figures and states decoded under the Markov-switching model.
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residuals
0

Figure:

year

Residuals of the Markov-switching model ~~ only minor serial correlation.
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Remarks on the fitted Markov-switching model:
m gl =0.747
» 8% =0.397
~ advertising much more effective in state 1

m the actual history:

® around 1915, beginning of successful marketing as “remedy for female troubles”

® in 1925, a court ordered to stop this kind of advertising (“vegetable tonic” was
the new, much less successful label being used in subsequent years)

® from 1940, the previous marketing strategy was allowed to be used again

~ clear interpretation of the HMM states

~ Viterbi sequence nicely aligned with actual history of Lydia Pinkham



Some summary remarks on covariates in HMIMs

= in many real-data applications, the ability to include covariates into the
model formulation is of crucial importance

m the flexibility of HMMs is here both a blessing® and a curse'®

® in most applications, including covariates in the state process is preferable
over the inclusion in the state-dep. process

%lots of options to tailor the model to the particular data/question at hand
'%it can be difficult to choose from the large variety of possible model formulations
106



Addressing heterogeneity when tracking multiple animals

m complete pooling:
¢ all individuals are assumed to follow
the same data-generating process
® ignores potential heterogeneity
® can be misleading & can invalidate inference
when individuals are very different

® no pooling:
® model the individuals separately, with no
parameters shared across them
® less than ideal # observations / parameter ratio
® resulting models most likely incommensurable

m partial pooling:
® some — but not all — of the parameters are
constant across individuals
® compromise between the extremes above

¢ individual-specific parameters modelled as
functions of covariates or as random effects

~
CY-

ﬂmm

A
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Different strategies for partial pooling

(a) estimate, for each subject-specific parameter, one value for each individual
(easy to fit, but still relatively many & unstructured parameters)

(b) model parameters as functions of individual-specific covariates (e.g. age)
(easy to implement & helps to understand the source of the heterogeneity)

(c) assume parameters to be random effects, i.e. that they are drawn from a
distribution common to all individuals, with one realisation per individual
(parsimonious in terms of numbers of parameters, but difficult to fit)

We often want to (or need to) implement c), but it’s relatively hard!
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3.2 Alternative & advanced dependence structures
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Higher-order state processes

m Markov property can be unrealistic in practice, a common criticism
m conceptually it's easy to allow for higher-order Markov state processes

m Markov chain of second order:

= model complexity and comp. effort increase very rapidly
m associated models are very difficult to interpret

= hardly ever used in applications



Autoregressive structures in the state-dependent process

Potentially useful for high-resolution data, where conditional independence
assumption will be violated — though practical relevance is unclear.

Creates no difficulties for inference: x;—1 is treated just like any other covariate in
the state-dependent distribution of X;.



Hidden semi-Markov models

geometric

m in a basic HMM, the duration of a
stay within a state is necessarily
geometrically distributed

probabiiity
0 00z 00¢ 005 008 010

3 x

‘H‘HHHHHHHummmm
M4 ® o

duration of stay

~+ mode is 1 (very often unrealistic!) !

negative binomial

duration of stay

= hidden semi-Markov models relax
this restrictive condition: any distribution
on the positive integers can be modelled

probabiiity

000 001 002 003 004 005

~~ e.g. negative binomial

HHHHH\HWW
M o

B

~~ of interest primarily when focus lies on state-switching dynamics
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An N-state hidden semi-Markov model is defined by specifying:

1. N distributions on the positive integers describing how long {S;}
stays in any given state

2. the conditional state trans. prob., given the current state is left:
PI’(S(+1:].|St:I.,St+1;éi), ’7/:17aN>/7é./

3. the state-dependent distributions

~~ much more flexible than standard HMMs, yet very parsimonious in terms of
the number of parameters

~ of interest primarily when focus lies on state-switching dynamics

~~ estimation is more challenging and takes some time to implement, by writing
HSMM as an HMM with extended state space



Hierarchical HMMs

° 0 observed
OO

hidden

observed

~ allows joint modelling of multi-scale data
~ statistical inference is relatively straightforward (in theory anyway...)
~ lots of difficult modelling decisions, inference can be very unstable
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Coupled HMMs

~ conceptually appealing for modelling interactions
~ relatively straightforward to implement
~ but number of parameters quickly explodes

(observed)

(hidden)

(hidden)

(observed)



3.3 Continuous-valued state processes
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Motivation

= a defining property of HMMs is that their state process takes only a finite
number of values

= in some cases,

® the choice of the number of states is relatively straightforward...
® ...and the interpretation of the states is intuitive

m however, in general, both can be difficult

m additional problem: the number of parameters increases rapidly as the
number of states increases (N* — N for the t.p.m. alone)



time series of major earthquake counts (worldwide) and means according to decoded states
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Figure: 3—state Poisson HMM fitted to time series of annual counts of major earthquakes.
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m probably no seismological grounds for assuming finitely many states

= more intuitive: assume that the rate of occurrence of major earthquakes is
continuous-valued, so that gradual change over the years is possible

m we could use an autoregressive process (of order 1) to model those rates:
St = ¢Si—1 + ony,

with |¢| < 1 (otherwise non-stationary), o > 0, n; X N(0,1)

¢=0.5, 0=2 ¢=0.98, 0=0.5 @=1.05, 0=2

0.0 0.4

-04
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Continuous-valued state processes — a possible model specification

A simple model allowing for gradual change:
St = ¢St—1 + ot

X; ~ Poisson(3e®)

m {S;} determines occurrence rate of earthquakes (with only two parameters!)
m {5} fluctuates around zero, such that the mean of {X:} fluctuates around 3
m ¢ controls the strength of the mean-reverting effect

m o controls the variability of the occurrence rates

m this is an example of a state-space model (SSM)



State-space models — general formulation

OO ) -

O-E-O-O-G-@O )

= an SSM is a doubly stochastic process in discrete time, with

® an unobserved state process Si, Sy, ..., St (typically continuous-valued)
® and an observed state-dependent process X1, Xo, ..., XT,
= such that
° f(X[ | S],...,S(,X1,...,X[_1) = f(X[ | S()
(conditional independence assumption)
® f(st|s1,...,8—1) =f(st | 5t—1)

(Markov property)

m an HMM is in fact a special case of an SSM where the state space is finite
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State-space models — likelihood evaluation

For continuous-valued state processes, the likelihood is

[:()—f(X1,..., )

/ /f(x1,.. ,XT,S1,...,8T)dSrT..

:/.../f(xh...,xr|s1,...,sr)f(s1,...,sr)dsr...ds1
T

:/.../f(s1)f(x1 |s)) [ [ (st | s-1)f(xi | st)dsr...ds:
t=2

Analogous derivation and structure as for HMMs. But now we are dealing with T
integrals instead of T sums...
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Consider the innermost integral,

/f(ST ‘ $T71)f(XT | ST) dsr

def
Zg(sr)

A simple midpoint quadrature gives the approximation

[ atsrydsr = > ha(i) = Yo nie7 | sr-1)i(xr | 7).

i=1

where b7, ..., by, are the midpoints of the intervals [bi_1, b],i = 1,..., m, all of
length h = (bm — bo)/m.

The approximation will be accurate if
m mis large
and
m g is effectively zero outside the interval [bo, by].



By repeated application of midpoint quadrature, we obtain the following
approximation of the likelihood:

;
/ /31)fX1\s1 [ (st | se—1)f(xc | s)dsr...dsy
t=2

%hTZ"'Zf( ) Xq |b/1)Hf(br, |bl, 1)f(Xf|blr)*‘CaPPTOX( )

=1 ir=1 t=2

~~ there are m’ summands (and both m and T are large!)
~ but the structure of Lapprox(0) is identical to that of a standard HMM

~ numerical integration corresponds to discretisation of the state space —
we're approximating the SSM by an HMM with very many (namely m) states



We want to apply the forward algorithm, so we define:

m the i—th component of the m—dimensional vector (") to be §; = hf(b}")

m an m x mmatrix I' = (v;) by specifying v; = hf(b}|b}")

m the diagonal matrix P(x;) to be the m x m diagonal matrix with i—th diagonal
entry equal to f(x; | b)

Putting all the pieces together, we can rewrite the approximate likelihood as:

Lapprox(8) = 8P (x1)TP(x2)TP(x3) - - - TP(x7_1)TP(x7)1!



Overview and technical remarks

m numerical max. of Lapprox(0) is feasible for large T and fairly large m

m the choices of m and [bo, bm] control the accuracy of the approximation

® m needs to be large to provide a good approximation, and [bo, bm] should be
neither too narrow nor too wide

m note that the number of model parameters does not depend on m — the
entries of the m x m matrix I" depend only on the parameters of {S;}

m all other HMM tools, e.g. Viterbi, are applicable
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Earthquake example — implementation in R

mllk <- function(theta.star, x, m, bm){
phi <- plogis(theta.star[1])

sigma <- exp(theta.star[2])

beta <- exp(theta.star[3])

b <- seq(-bm, bm, length = m + 1) # specify boundaries of m intervals
h <- b[2] - b[1] # h is the length of each interval
bstar <- (b[-1] + b[-(m + 1)]) * 0.5 # midpoints of the m intervals

Gamma <- matrix(0, m, m)

for (i in 1:m){

Gamma[i, ] <- h * dnorm(bstar, phi * bstar[i], sigma) # m*m t.p.m. of the approx. HMM
¥

delta <- h * dnorm(bstar, 0, sigma / sqrt(i - phi~2)) # stat. initial distribution
foo <- delta * dpois(x[1], exp(bstar) * beta)

1 <- log(sum(foo))

phi <- foo / sum(foo)

for (t in 2:length(x)){

foo <- phi %) Gamma * dpois(x[t], exp(bstar) * beta)

1 <- 1 + log(sum(foo))

phi <- foo / sum(foo)

T

return(-1)

¥
quakes <- read.table("http://www.rolandlangrock.com/Misc/earthquakes.txt", header = TRUE)

theta.star <- c(qlogis(0.8), log(0.2), log(20))
mod <- nlm(mllk, theta.star, x = quakes$count, m = 200, bm = 1.5, print.level = 2)

c(plogis(mod$estimate[1]), exp(mod$estimate[2]), exp(mod$estimate[3]))



The code fits the following simple SSM to the series of earthquake counts:

St = ¢St—1 +on
X; ~ Poisson(3e®)

® m = 200 and [bo, bm] = [—1.5, 1.5] were used in the approximation

= maximum likelihood estimates:

$=089, 5=0.14, 3=17.8

m the variance of the stationary distribution of {S;} is 2/(1 — ¢72),
approximately 0.3%, which indicates that [bo, bm] is sufficiently wide

estimation takes less than a second!!"!

m AlIC= 670.54 (AIC of 3—state Poisson HMM: 676.92)

this is remarkable — alternative approaches for fitting SSMs tend to be magnitudes slower



lllustration of the influence of m and [bgy, b)

Table: SSM fitted to earthquakes data: maximum log-likelihood values obtained for various
values of m and bmax, Where —by = bm = bmax-

bmax m =20 m =40 m=70 m =100 m = 200

0.5 —337.61050 —337.66812 —337.68095 —337.68412 —337.68640
1 —332.26895 —332.26918 —332.26924 —332.26925 —332.26926
2 —332.21761 —332.26789 —332.26789 —332.26789 —332.26789
4 - —332.21761 —332.26789 —332.26789 —332.26789

In this application, the likelihood approximation is virtually exact for m = 40,
provided that the specified essential range is neither too small nor too large.
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Viterbi output in the earthquake example

time series of major earthquake counts and means of decoded states
50

* HMM means according to decoded states
* SSM means according to decoded states

40 4
30 4

20 4

major quakes counts

10 4

T T T T T T T T T T T 1
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
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A second example: Deutsche Bank share returns

time series of daily returns (Deutsche Bank)

10 20

share return
0

-20 -10

T
03/01/2000

For modelling share returns using HMMs, we could assume that

Xi|St = j ~ N(0,07)

1
11/07/2016



0.20
|

very calm
calm

normal
nervous

Very nervous
marginal dist.

density

0.00 0.05 0.10 0.15

share return

Figure: 5-state HMM fitted to Deutsche Bank share returns — displayed are the (weighted)
state-dep. normal distributions, (0, 02), for j = 1,. .., 5, and the marginal distribution.
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T
03/01/2000

1
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Figure: Time series of daily returns, colour-coded according to the Viterbi-decoded states
(top plot), and associated “volatility” levels (bottom plot).
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Continuous volatility

The assumption of discrete volatility levels seems rather unrealistic!
Idea: formulate a model where market volatility is continuous-valued.

We will again assume that the volatility at time t — now denoted g; for
consistency with the literature — depends only on the volatility at time t — 1, g;—1.

For example, we can again use an AR(1) process:

gt = ¢Gi—1 +om, me ~ N(0,1)
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Basic stochastic volatility (SV) model for share returns:

¥ = Bere®/?, 9t = ¢Ggi—1 + ont

m y;: share return on day t

® g:: unobserved volatility, n; < N(0,1)

" S N(0,1)

m [ is the baseline standard deviation of the returns (when g; is in equilibrium)

m SV models capture most of the ‘stylized facts’ attributed to series of returns

For the DB share returns, maximum likelihood estimation yields:

~ ~

B=21164, $=0.9897, & =0.1397



time series of daily returns (Deutsche Bank)

standard deviations according to HMM

T B A

standard deviations according to SV model

r 1
03/01/2000 11/07/2016

Figure: Comparison between fitted SV model and 5—-state Gaussian HMM — displayed in
the bottom two rows are the standard deviations conditional on the decoded states.



3.4 HMMs in continuous time
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Sampling schemes and their relevance for HMMs

The discrete-time nature of HMMs means that there needs to be a meaningful
sampling unit w.r.t. which t.p.m. and state-dep. distributions are interpreted:

m data collected at regular time intervals (hourly/daily/etc.) v~
= dive-by-dive summary statistics for marine mammals v~
= opportunistic data, e.g. collected whenever a patient visits their doctor X

= experience sampling methods, e.g. smartphone push notifications X

For irregular sampling, we may need model formulations in continuous time.
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Motivating example: lung function measurements after lung transplantation

150
150
150
150

.* [ A
8 8 "'Vu. 8 * 8% o
g g g g
!hrr'- | death
. Pomore,
3 3 ""h.... 3 3
° ° ° °
L N R R L N R R
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
time in days time in days time in days time in days

Figure: Time series for 4 out of 203 patients who had a lung transplantation — shown on
the y axis are measurements of the forced expiratory volume (FEV).

~ doctor consultations irregularly spaced in time
~ disease progression hence needs to be modelled in continuous time

~ additional patterns:

® deterioration of lung function largely irreversible
® death as absorbing state
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From discrete-time to continuous-time Markov chains

Discrete-time Markov chain {S;,t = 1,2, ...} can be defined as follows:
m duration of a stay within a state is geometrically distributed
= at the end of such a stay, chain switches to a different state

Natural analogue {S;,t > 0} in continuous time:
m duration of a stay within a state is exponentially distributed
= at the end of such a stay, chain switches to a different state
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0 20 40 60 80

Shown above is an example realisation from a continuous-time Markov chain with
conditional transition probability matrix (given a state is left)

0.0 03 07
©2=108 00 02
05 05 0.0

and Exp(0.2), Exp(0.5) and Exp(1) dwell-time distrib. in states 1-3, respectively.



A continuous-time Markov chain {S;,t > 0} is a stochastic process
such that

mSe{l,...,N}forallt >0
m the duration of a stay in state i follows an Exp(\;) distribution

m given a transition away from state /, the probability that the process
enters state j is wj, with wi = 0and >°_,; wj = 1

This is one of several possible ways to define a continuous-time Markov chain —
actually not the standard definition, but arguably the most intuitive one.



Infinitesimal generator matrix

we can interpret \; as the rate of transitions out of state i

out of those transitions, a proportion of wj; go to state j, such that \; - wj can
be interpreted as the rate of transitions from state i to state j

all these transition rates are summarised in the so-called (infinitesimal)
generator matrix (also called transition intensity matrix):

— A\ AMwiz  AMwiz ... g1 Q12 Q13
Aewa1 —A2 dewss Qo1 Qo2 Qo3
Q= [ Agwsr  Aawzz  —As = | g1 Q2 Q33
the diagonal entries are calculated as g = — Z#, gjj, with q; > 0 for i # j

from the transition rates gj;, we can obtain both \; and wj;

generator matrix completely describes the dynamics of the state process
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Deriving state transition probabilities from Q

Defining P(t, t.) as the matrix containing the state transition probabilities over
the period [t, &]'?, we have the important relation

P(ti, 1) = e¥e7"),

where e is the matrix exponential function.

Example:
—0.2 0.06 0.14 0.70 0.18 0.12
Q=|( 04 -05 0.1 ~ P(0,5)=e%*= (065 024 0.1
05 05 —1 066 022 0.12

2i.e. with p;(t1, ) = Pr(S, = ISy = i)
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Continuous-time HMMs

Assumptions are analogous to the discrete-time case:

= Markov property for the (continuous-time) state process
m observations are conditionally independent, given the states

145



Likelihood calculation using the forward algorithm
Suppose we want to calculate the likelihood of observations x , X, . . . , X

Consider the (continuous-time version of the) forward variables,

az(f) = f(Xy, .- X, S, =), @z = (az(1), .. .,az(N))

Forward algorithm (in continuous time):
ay, = 8P(x,)

O, = O,y eo'(tzftzf‘)P(xtz) for z = 2, ey T

Resulting closed-form expression for the likelihood:

£(8) = 8P(x, )e*271P(x,)e¥ B TP(x;,) - ... - X IT=DP(x, )1
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Fitted 4—state CT-HMM in the lung transplantation example

—0.0010
0.0000
0.0000
0.0000

(s}
Il

Xi| St =1~ N(103.9,15.1)
Xi| St =2~ N(74.7,12.4)
Xi| St =3~ N(39.6,11.6)

0.0009
—0.0012
0.0000
0.0000

0.0000
0.0010
—0.0013
0.0000

0.0001
0.0002
0.0013
0.0000

(state 4 is absorbing and indicates death)



3.5 Nonparametric inference in HMMs

148



Why nonparametrically estimate the state-dependent distributions?

m state-dependent distributions usually from a class of parametric distributions

= finding the “right” distributional family, or even a suitable one, can be difficult

40
|

observations
20
I

density
0.000 0.005 0.010 0.015 0.020 0.025 0.030
I

time observations

Based on this EDA, what family of distributions would you use?
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Why nonparametrically estimate the state-dependent distributions?

m state-dependent distributions usually from a class of parametric distributions

m finding the “right” distributional family, or even a suitable one, can be difficult

8
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The true model: highly skewed distributions in both states.
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Consequences of fitting a (misspecified) Gaussian HMM

density

0.005 0010 0.015 0020 0.025 0.030

0.000

——— state 1 (true distribution)

—— state 2 (true distribution)

~ = state 1 (estimated distribution)
~ state 2 (estimated distribution)

observations

Observations from the extreme tails of either of the distributions will then
obviously be allocated to the incorrect state.
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An unfortunate choice of the parametric family can lead to...

= ...a poor fit and hence poor predictive power
= ..a mismatch between model states and “true” states
= ...a bad performance of the state decoding

= ...invalid inference e.g. on the number of states



Alternative nonparametric estimation based on P—splines

Represent (state-dependent) densities using B—spline densities:

K

f(x| St =1) = Z w,idk(Xt)

k=—K

-100 -50 0 50 100

Figure: Possible set of B—spline densities ¢_k, . . ., ¢k to be used as basis functions.
Transform constrained parameters w_,j, . . . ,wk,; to ensure f is a density:
ex| i .
Wk,i = 7p(/8k7l) with /80,,' =0

S _kexp(B)
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Figure: Unpenalised estimation of a density as linear combination of basis functions.
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Smoothness selection

Tackling the bias-variance trade-off by selecting K is tedious.

Instead, we use a fairly large K (e.g. K = 25), to obtain virtually unlimited
flexibility for capturing complex distributional shapes.

Then we numerically maximise the penalised log-likelihood:

K
I(8,X) = log(L Z Ai Z Azwk,i)2

=1 k=—K+2

This penalty approximates the integrated squared second derivatives.



Figure: Penalised estimation of a density as linear combination of basis functions.
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density

0.010 0.015 0.020 0.025 0.030
L L L L |

0.005
L

—— state 1 (true distribution)
—— state 2 (true distribution)
- - state 1 (estimated distribution)
state 2 (estimated distribution)

0.000

Figure:

observations

2-state nonparametric HMM fitted to the simulated data shown earlier.
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Real-data example: beaked whale dive data

observed time series
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Real-data example: beaked whale dive data

Table: Results of fitting HMMs with normal state-dependent distributions.

#states  #param. AIC BIC
3 12 9784.00 9855.59
4 20 9498.16 9617.47
5 30 9400.30 9579.27
6 42 9294.88 9545.43
7 56 9208.04 9542.11
8 72 9129.15 9558.67
9 90 9090.98 9627.87
10 110 9064.53 9720.74
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Beaked whale data — fitted parametric HMM with N = 7

fitted P istr ( 7-state ic HMM) qg-plot of residuals against standard normal
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Beaked whale data — parametric HMM, N = 3

fitted state—dependent distributions (3-state parametric HMM) qg-plot of residuals against standard normal
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Beaked whale data — nonparametric HMM with N = 3

fitted state-depes i (3-state ic HMM) qq-plot of residuals against standard normal
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Nonparametric Markov-switching regression

Consider a general GLM-like Markov-switching regression model

g(EB(Y: | s1,x.4)) = 0™ (x.1),
—_—

(st)
I
where... !

= ... Y; follows some distribution from the exponential family
B ..X.: = (X1, ..., Xpt) is the covariate vector at time ¢
m ...g is a suitable link function

= ..7*) is the predictor function given state s;
(the form of which will be specified shortly)



Nonparametric modelling of the predictor

Now consider a GAM-type predictor:
0 0xe) = 86 + 17 () + 57 0cer) + -+ 167 (xer)

We represent each f,gi) as a linear combination of B-spline basis functions,
K
B(0) = > 7o Be(x),
k=1

and numerically maximise the penalised log-likelihood:
K

(8, ) = log(L£(8)) — > > " Ao > _(A%p)?

i=1 p=1 k=3
m inference analogous as for nonparametric HMMs

m notably, parametric models are nested special cases (for A — o)
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Example Spanish energy price ~ exchange rate & market state

Price
Price

EuroDol EurDol

Figure: Fitted Markov-switching regression models, with linear predictor (left panel) and
with nonparametric effect modelling (right panel), and colours indicating different states.
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Flexible modelling of periodic variation in the state process

General parametric model for periodic variation:

K K
" - i iy . [ 27K i
transition probabilities ~ z,3% + E w? sm(w—t> + E P cos

24 —

k=1
More flexible spline-based model:

Q
transition probabilities ~ z,3" + Z al By (t mod 24)
g=1

r T T T T T 1
o 4 8 12 16 20 24

time of day

0.6

0.4

0.2

0.0

(

27kt
24

)
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Example: common fruit fly activity data

Figure: Locomotor tubes measuring fly activity as counts of passes of infrared beam.
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activity count
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50

Figure:

LD DD

|
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| |

activity count
100
1

time of day time of day

Boxplots of the flies’ activity counts over the day, under two different light conditions.
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2—state negative binomial HMM fitted to the fruitfly data

low-activity state
* high-activity state

- " "M
WL T

[ I T T 1
0 50 100 150 200

probabilities
0.000 0.005 0.010 0.015 0.020
1

activity count

Figure: Estimated state-dependent distribution (multiple lines to indicate random effect
modelling of heterogeneity across flies).
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Pr(high-activity state)

cyclic P-splines
—— trigonometric (K=1)
trigonometric (K=2)
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Figure: Estimated time-varying probability of being in the active state, under different
specifications of the predictor for the transition probabilities (LD on the left, DD on the right).



Very quick summary at the end

observed

cleYole
@@@@d@@ "

HMMs constitute a flexible class of statistical models...
m for many different types of sequential (time series) data...
m ..when observations are proxies for underlying system state of interest

Various types of state-space models (also MMPPs!) are closely related,
rendering the intuitive class of HMMs a good starting point in this area.



Some further reading

5000 MUCH MORETO'LEARN ABOUT HMMS

Bartolucci et al. (2014), Latent Markov Models for Longitudinal Data, Chapman and
Hall/CRC.

Langrock et al. (2018), Spline-based nonparametric inference in general
state-switching models, Statistica Neerlandica.

McClintock et al. (2020), Uncovering ecological state dynamics with hidden Markov
models, Ecology Letters.

Maruotti (2014), Mixed hidden Markov models for longitudinal data: An overview,
International Statistical Review.

Mews et al. (2024), How to build your latent Markov model — the role of time and
space, arXiv.

Zucchini et al. (2016), Hidden Markov Models for Time Series: An Introduction Using
R, Chapman and Hall/CRC.
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