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Who am I? (brief academic CV)

born 1983 in Hannover, Germany

studied mathematics 2003–2008 in Heidelberg

PhD with focus on statistics 2008-2011 in Göttingen

postdoc/lecturer 2011-2015 in St Andrews (statistics & biology)

since 2015 professor of statistics and data analysis at Bielefeld University
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Plan for the course

Part 1: What is an HMM? (33 slides)

Part 2: How do we fit an HMM to data? (46 slides)

Part 3: What else can we do with HMMs? (89 slides)

3



Part 1 — What is an HMM?

1.1 Motivating example
1.2 Definition of the basic HMM
1.3 Simulating data from an HMM
1.4 Some remarks
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1.1 Motivating example
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Why would we want to statistically model muskox movement?

do individual characteristics like age, size & sex affect movement activity?

what about external covariates like temperature, snow cover, etc.?

how does the behaviour vary over the day? (see EDA below)
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What are the main patterns in the movement data?
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Deriving key movement metrics

stept−1

stept

stept+1

φt

φt+1

3

Figure: Calculating (Euclidean) step lengths between successive locations — later on, we
will additionally consider the turning angles.
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Load the data in R:

muskox <- read.csv("http://www.rolandlangrock.com//Misc//muskox.csv")

Calculate step lengths (and turning angles) using the moveHMM package:

install.packages("moveHMM") # if not already installed
library(moveHMM)
data <- prepData(muskox, type = "UTM")

Let’s have a look at the first few rows:

> head(data, 12)
ID step angle x y temp altitude tod

1 track1 2046.5034 NA 517945 8262572 -7 2.364444 12
2 track1 2005.0249 -0.152212718 519221 8260972 -6 5.244889 13
3 track1 1988.6609 0.074810792 520219 8259233 -7 20.193333 14
4 track1 NA NA 521335 8257587 -6 13.878333 15
5 track1 NA NA NA NA -6 13.878333 16
6 track1 NA NA NA NA -6 13.878333 17
7 track1 NA NA NA NA -6 13.878333 18
8 track1 NA NA NA NA -6 13.878333 19
9 track1 NA NA NA NA -6 13.878333 20
10 track1 NA NA NA NA -6 13.878333 21
11 track1 1860.8732 NA 521264 8258161 -5 15.695111 22
12 track1 967.3826 -0.006769389 520439 8259829 -2 35.833334 23

And you might want to try:

plot(data)
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Figure: Time series of step lengths x1, . . . , x1440 between successive locations.
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Towards a statistical model for the muskox movement data

Exploratory data analysis reveals three levels of (movement) activity:

none (⇝ resting)

moderate (⇝ foraging/area-restricted search)

high (⇝ travelling)

These different activity levels occur in clusters: when the animal is say
travelling, then it tends to exhibit the same behaviour in subsequent time periods.
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HMMs — sneak preview

A hidden Markov model (HMM) involves two stochastic processes:

1. observation process (here: the time series of step lengths)

2. underlying hidden state process (here: the behavioural state)

function of the unknown parameters θð Þ given the observation
sequence x1, . . .,xTð Þ can be calculated at a computational cost
that is (only) linear in T. The parameter vector θ, which is to
be estimated, contains any unknown parameters embedded in
the three model-defining components δ, Γ and P xtð Þ. Made
possible by the relatively simple dependence structure of an
HMM, the forward algorithm traverses along the time series,
updating the likelihood step-by-step while retaining informa-
tion on the probabilities of being in the different states (Zuc-
chini et al., 2016, pp. 37–39). Application of the forward
algorithm is equivalent to evaluating the likelihood using a
simple matrix product expression,

Lðθjx1, :::,xTÞ¼ δP x1ð ÞΓP x2ð Þ⋯ΓP xT�1ð ÞΓP xTð Þ1, (1)

where 1 is a column vector of ones (see Supplementary Tuto-
rial for technical derivation).
In practice, the main challenge when working with HMMs

tends to be the estimation of the model parameters. The two
main strategies for fitting an HMM are numerical maximisation
of the likelihood (Myung, 2003; Zucchini et al., 2016) or Baye-
sian inference (Ellison, 2004; Gelman et al., 2004) using Markov
chain Monte Carlo (MCMC) sampling (Brooks et al., 2011).
The former seeks to identify the parameter values that maximise
the likelihood function (i.e. the maximum likelihood estimates
θ), whereas the latter yields a sample from the posterior distri-
bution of the parameters (Ellison, 2004). Specifically for the
maximum likelihood (ML) approach, the forward algorithm
makes it possible to use standard optimisation methods
(Fletcher, 2013) to directly numerically maximise the likelihood
(eqn 1). An alternative ML approach is to employ an expecta-
tion–maximisation (EM) algorithm that uses similar recursive
techniques to iterate between state decoding and updating the
parameter vector until convergence (Rabiner, 1989). For
MCMC, many different strategies can be used, but these tend
to differ in appropriateness and efficiency in a manner that can
strongly depend on the specific model and data at hand (Gilks
et al., 1996; Gelman et al., 2004; Brooks et al., 2011; Robert
and Casella, 2004).
The forward algorithm and similar recursive techniques can

further be used for forecasting and state decoding, as well as to
conduct formal model checking using pseudo-residuals (Zuc-
chini et al., 2016, Chapters 5 & 6). State decoding is usually
accomplished using the Viterbi algorithm or the forward–back-
ward algorithm (also known as smoothing), which respectively
identify the most likely sequence of states or the probability of
each state at any time t, conditional on the observations. Fortu-
nately, practitioners can often use existing software for most
aspects of HMM-based data analyses and need not dwell on
many of the more technical details of implementation (see

IMPLEMENTATION, CHALLENGES AND PITFALLS
and Supplementary Tutorial).
To illustrate some of the basic mechanics, we use a simple

example based on observations of the feeding behaviour of a
blue whale (Balaenoptera musculus; cf. DeRuiter et al., 2017).
Suppose we assume that observations of the number of feeding
lunges performed in each of T¼ 53 consecutive dives
(Xt∈ 0,1,2, . . .f g for t¼ 1, . . .,T) arise from N¼ 2 states of feed-
ing activity. Building on Fig. 2, we could for example have:

Fig. 3 displays the results for this simple two-state HMM
assuming Poisson state-dependent (observation) distributions,
XtjSt ¼ i∼Poisson λið Þ for i∈ 1,2f g, when fitted to the full
observation sequence via direct numerical maximisation of
eqn 1. The rates of the state-dependent distributions were esti-
mated as λ̂1 ¼ 0:05 and λ̂2 ¼ 2:82, suggesting states 1 and 2
correspond to ‘low’ and ‘high’ feeding activity respectively.
The estimated state transition probability matrix,

suggests interspersed bouts of ‘low’ and ‘high’ feeding activity,
but with bouts of ‘high’ activity tending to span fewer dives.
The estimated initial distribution δ̂¼ 0:75,0:25ð Þ suggests this
individual was more likely to have been in the ‘low’ activity
state at the start of the sequence. Most ecological applications
of HMMs involve more complex inferences related to specific
hypotheses about system state dynamics, and a great strength
of the HMM framework is the relative ease with which the
basic model formulation can be modified to describe a wide
variety of processes (Zucchini et al., 2016, Chapters 9–13).
Next we highlight some extensions that we consider to be
highly relevant in ecological research.

Extensions

The dependence assumptions made within the basic HMM are
mathematically convenient, but not always appropriate (see
Box 2). The Markov property implies that the amount of time
spent in a state before switching to another state – the so-called
sojourn time – follows a geometric distribution. The most likely

Figure 2 Dependence structure of a basic hidden Markov model, with an observed sequence X1, . . .,XT arising from an unobserved sequence of underlying

states S1, . . .,ST.

Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Ecology Letters published by John Wiley & Sons Ltd.

Review And Synthesis Hidden Markov models for ecology 1883

⇝ each observation is generated by one of N possible distributions

⇝ the state process selects which of the N distributions is active at any time

⇝ the state at time t depends on the state at time t − 1 (⇝ Markov chain)
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Muskox step lengths — how the fitted HMM will look like

Γ̂ =

Pr(1 → 1) Pr(1 → 2) Pr(1 → 3)
Pr(2 → 1) Pr(2 → 2) Pr(2 → 3)
Pr(3 → 1) Pr(3 → 2) Pr(3 → 3)

 =

0.74 0.23 0.03
0.18 0.80 0.02
0.04 0.15 0.81
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OK, fine, but what do people use HMMs for?

decoding hidden states (medicine, recognition tasks, etc.)

forecasting (mainly in econ/finance)

to better understand the dynamics of a system (very common in ecology)
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1.2 Definition of the basic HMM
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A Markov chain is a sequence of random variables S1,S2, . . . such that

St ∈ {1, . . . ,N} for all t (i.e. there are N so-called “states”)

the Markov property holds:

Pr(St+1 = st+1 |St = st , . . . ,S1 = s1) = Pr(St+1 = st+1 |St = st)

function of the unknown parameters θð Þ given the observation
sequence x1, . . .,xTð Þ can be calculated at a computational cost
that is (only) linear in T. The parameter vector θ, which is to
be estimated, contains any unknown parameters embedded in
the three model-defining components δ, Γ and P xtð Þ. Made
possible by the relatively simple dependence structure of an
HMM, the forward algorithm traverses along the time series,
updating the likelihood step-by-step while retaining informa-
tion on the probabilities of being in the different states (Zuc-
chini et al., 2016, pp. 37–39). Application of the forward
algorithm is equivalent to evaluating the likelihood using a
simple matrix product expression,

Lðθjx1, :::,xTÞ¼ δP x1ð ÞΓP x2ð Þ⋯ΓP xT�1ð ÞΓP xTð Þ1, (1)

where 1 is a column vector of ones (see Supplementary Tuto-
rial for technical derivation).
In practice, the main challenge when working with HMMs

tends to be the estimation of the model parameters. The two
main strategies for fitting an HMM are numerical maximisation
of the likelihood (Myung, 2003; Zucchini et al., 2016) or Baye-
sian inference (Ellison, 2004; Gelman et al., 2004) using Markov
chain Monte Carlo (MCMC) sampling (Brooks et al., 2011).
The former seeks to identify the parameter values that maximise
the likelihood function (i.e. the maximum likelihood estimates
θ), whereas the latter yields a sample from the posterior distri-
bution of the parameters (Ellison, 2004). Specifically for the
maximum likelihood (ML) approach, the forward algorithm
makes it possible to use standard optimisation methods
(Fletcher, 2013) to directly numerically maximise the likelihood
(eqn 1). An alternative ML approach is to employ an expecta-
tion–maximisation (EM) algorithm that uses similar recursive
techniques to iterate between state decoding and updating the
parameter vector until convergence (Rabiner, 1989). For
MCMC, many different strategies can be used, but these tend
to differ in appropriateness and efficiency in a manner that can
strongly depend on the specific model and data at hand (Gilks
et al., 1996; Gelman et al., 2004; Brooks et al., 2011; Robert
and Casella, 2004).
The forward algorithm and similar recursive techniques can

further be used for forecasting and state decoding, as well as to
conduct formal model checking using pseudo-residuals (Zuc-
chini et al., 2016, Chapters 5 & 6). State decoding is usually
accomplished using the Viterbi algorithm or the forward–back-
ward algorithm (also known as smoothing), which respectively
identify the most likely sequence of states or the probability of
each state at any time t, conditional on the observations. Fortu-
nately, practitioners can often use existing software for most
aspects of HMM-based data analyses and need not dwell on
many of the more technical details of implementation (see

IMPLEMENTATION, CHALLENGES AND PITFALLS
and Supplementary Tutorial).
To illustrate some of the basic mechanics, we use a simple

example based on observations of the feeding behaviour of a
blue whale (Balaenoptera musculus; cf. DeRuiter et al., 2017).
Suppose we assume that observations of the number of feeding
lunges performed in each of T¼ 53 consecutive dives
(Xt∈ 0,1,2, . . .f g for t¼ 1, . . .,T) arise from N¼ 2 states of feed-
ing activity. Building on Fig. 2, we could for example have:

Fig. 3 displays the results for this simple two-state HMM
assuming Poisson state-dependent (observation) distributions,
XtjSt ¼ i∼Poisson λið Þ for i∈ 1,2f g, when fitted to the full
observation sequence via direct numerical maximisation of
eqn 1. The rates of the state-dependent distributions were esti-
mated as λ̂1 ¼ 0:05 and λ̂2 ¼ 2:82, suggesting states 1 and 2
correspond to ‘low’ and ‘high’ feeding activity respectively.
The estimated state transition probability matrix,

suggests interspersed bouts of ‘low’ and ‘high’ feeding activity,
but with bouts of ‘high’ activity tending to span fewer dives.
The estimated initial distribution δ̂¼ 0:75,0:25ð Þ suggests this
individual was more likely to have been in the ‘low’ activity
state at the start of the sequence. Most ecological applications
of HMMs involve more complex inferences related to specific
hypotheses about system state dynamics, and a great strength
of the HMM framework is the relative ease with which the
basic model formulation can be modified to describe a wide
variety of processes (Zucchini et al., 2016, Chapters 9–13).
Next we highlight some extensions that we consider to be
highly relevant in ecological research.

Extensions

The dependence assumptions made within the basic HMM are
mathematically convenient, but not always appropriate (see
Box 2). The Markov property implies that the amount of time
spent in a state before switching to another state – the so-called
sojourn time – follows a geometric distribution. The most likely

Figure 2 Dependence structure of a basic hidden Markov model, with an observed sequence X1, . . .,XT arising from an unobserved sequence of underlying

states S1, . . .,ST.

Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Ecology Letters published by John Wiley & Sons Ltd.

Review And Synthesis Hidden Markov models for ecology 1883

The Markov property simply means that the state at time t completely determines
the probabilities of the different states at time t + 1.

This dependence structure is mathematically convenient and often plausible.
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Due to the Markov property, a Markov chain is fully characterised by

(i) the initial state distribution,

δ(1) =
(
δ
(1)
1 , . . . , δ

(1)
N

)
=
(
Pr(S1 = 1), . . . ,Pr(S1 = N)

)
,

(ii) and the (one-step) state transition probabilities1,

γij = Pr(St+1 = j |St = i),

which we summarise in the transition probability matrix (t.p.m.):

Γ =

γ11 . . . γ1N

...
. . .

...
γN1 . . . γNN

 e.g.
=

0.74 0.23 0.03

0.18 0.80 0.02

0.04 0.15 0.81



1here for simplicity assumed to be constant over time — this will later be relaxed
18



HMM formulation — some preliminary remarks

the class of HMMs is immensely flexible and versatile

in particular,
• various different types of data can be considered — count data, continuous data,

binary data, categorical data, univariate data, multivariate data, ... (you name it!)
• various different dependence structures can be considered

we start with the most basic formulation, later building up complexity

main inferential tools are the same regardless of the specific formulation

19



Intuitive definition of the basic HMM

function of the unknown parameters θð Þ given the observation
sequence x1, . . .,xTð Þ can be calculated at a computational cost
that is (only) linear in T. The parameter vector θ, which is to
be estimated, contains any unknown parameters embedded in
the three model-defining components δ, Γ and P xtð Þ. Made
possible by the relatively simple dependence structure of an
HMM, the forward algorithm traverses along the time series,
updating the likelihood step-by-step while retaining informa-
tion on the probabilities of being in the different states (Zuc-
chini et al., 2016, pp. 37–39). Application of the forward
algorithm is equivalent to evaluating the likelihood using a
simple matrix product expression,

Lðθjx1, :::,xTÞ¼ δP x1ð ÞΓP x2ð Þ⋯ΓP xT�1ð ÞΓP xTð Þ1, (1)

where 1 is a column vector of ones (see Supplementary Tuto-
rial for technical derivation).
In practice, the main challenge when working with HMMs

tends to be the estimation of the model parameters. The two
main strategies for fitting an HMM are numerical maximisation
of the likelihood (Myung, 2003; Zucchini et al., 2016) or Baye-
sian inference (Ellison, 2004; Gelman et al., 2004) using Markov
chain Monte Carlo (MCMC) sampling (Brooks et al., 2011).
The former seeks to identify the parameter values that maximise
the likelihood function (i.e. the maximum likelihood estimates
θ), whereas the latter yields a sample from the posterior distri-
bution of the parameters (Ellison, 2004). Specifically for the
maximum likelihood (ML) approach, the forward algorithm
makes it possible to use standard optimisation methods
(Fletcher, 2013) to directly numerically maximise the likelihood
(eqn 1). An alternative ML approach is to employ an expecta-
tion–maximisation (EM) algorithm that uses similar recursive
techniques to iterate between state decoding and updating the
parameter vector until convergence (Rabiner, 1989). For
MCMC, many different strategies can be used, but these tend
to differ in appropriateness and efficiency in a manner that can
strongly depend on the specific model and data at hand (Gilks
et al., 1996; Gelman et al., 2004; Brooks et al., 2011; Robert
and Casella, 2004).
The forward algorithm and similar recursive techniques can

further be used for forecasting and state decoding, as well as to
conduct formal model checking using pseudo-residuals (Zuc-
chini et al., 2016, Chapters 5 & 6). State decoding is usually
accomplished using the Viterbi algorithm or the forward–back-
ward algorithm (also known as smoothing), which respectively
identify the most likely sequence of states or the probability of
each state at any time t, conditional on the observations. Fortu-
nately, practitioners can often use existing software for most
aspects of HMM-based data analyses and need not dwell on
many of the more technical details of implementation (see

IMPLEMENTATION, CHALLENGES AND PITFALLS
and Supplementary Tutorial).
To illustrate some of the basic mechanics, we use a simple

example based on observations of the feeding behaviour of a
blue whale (Balaenoptera musculus; cf. DeRuiter et al., 2017).
Suppose we assume that observations of the number of feeding
lunges performed in each of T¼ 53 consecutive dives
(Xt∈ 0,1,2, . . .f g for t¼ 1, . . .,T) arise from N¼ 2 states of feed-
ing activity. Building on Fig. 2, we could for example have:

Fig. 3 displays the results for this simple two-state HMM
assuming Poisson state-dependent (observation) distributions,
XtjSt ¼ i∼Poisson λið Þ for i∈ 1,2f g, when fitted to the full
observation sequence via direct numerical maximisation of
eqn 1. The rates of the state-dependent distributions were esti-
mated as λ̂1 ¼ 0:05 and λ̂2 ¼ 2:82, suggesting states 1 and 2
correspond to ‘low’ and ‘high’ feeding activity respectively.
The estimated state transition probability matrix,

suggests interspersed bouts of ‘low’ and ‘high’ feeding activity,
but with bouts of ‘high’ activity tending to span fewer dives.
The estimated initial distribution δ̂¼ 0:75,0:25ð Þ suggests this
individual was more likely to have been in the ‘low’ activity
state at the start of the sequence. Most ecological applications
of HMMs involve more complex inferences related to specific
hypotheses about system state dynamics, and a great strength
of the HMM framework is the relative ease with which the
basic model formulation can be modified to describe a wide
variety of processes (Zucchini et al., 2016, Chapters 9–13).
Next we highlight some extensions that we consider to be
highly relevant in ecological research.

Extensions

The dependence assumptions made within the basic HMM are
mathematically convenient, but not always appropriate (see
Box 2). The Markov property implies that the amount of time
spent in a state before switching to another state – the so-called
sojourn time – follows a geometric distribution. The most likely

Figure 2 Dependence structure of a basic hidden Markov model, with an observed sequence X1, . . .,XT arising from an unobserved sequence of underlying

states S1, . . .,ST.

Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Ecology Letters published by John Wiley & Sons Ltd.

Review And Synthesis Hidden Markov models for ecology 1883

S1,S2, . . . is an N–state Markov chain

St selects which of N distributions is active at time t

Xt is then generated by that distribution

20



More formal definition of the basic HMM

An N–state HMM is a doubly stochastic process in discrete time, with

an unobserved state process S1,S2, . . . ,ST taking values in {1, . . . ,N},
and an observed state-dependent process X1,X2, . . . ,XT

2,

such that

f (st | s1, . . . , st−1) = f (st | st−1)
(Markov property)

f (xt | s1, . . . , sT , x1, . . . , xt−1, xt+1, . . . , xT ) = f (xt | st )
(conditional independence assumption)

Note this is a general model for time series data, which is useful when

we are interested in how some process evolves over time...

...but we don’t directly observe that process (instead just a proxy)

2where the Xt can also be vectors
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Marginal distribution
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If {St} is stationary with stationary distribution (δ1, . . . , δN), then the un-
conditional (marginal) distribution of Xt is

f (xt)
tot. prob.
=

N∑
j=1

Pr(St = j)fj(xt)
stat.
=

N∑
j=1

δj fj(xt).

thus, an HMM is a mixture model!

crucially, an HMM is a dependent mixture model: which distribution is
selected at time t does affect which one will be selected at time t + 1
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A basic HMM is specified by

the initial state distribution δ(1),

the transition probability matrix Γ, and

the state-dependent (component) distributions, fj(xt) = f (xt | st = j)

In particular, given these three components we can

simulate data from the HMM

calculate the likelihood f (x1, . . . , xT )
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1.3 Simulating data from an HMM
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A concrete simulation example

δ(1) = (0.5, 0.5) Γ =

(
0.9 0.1
0.1 0.9

)
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f j(
x)

N(5,4) (when in state 1)

N(14,9) (when in state 2)
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R code for simulating data from this HMM

n <- 50
x <- s <- rep(NA, n)
Gamma <- matrix(c(0.9, 0.1, 0.1, 0.9), nrow = 2)
delta <- c(0.5, 0.5)
mu <- c(5, 14)
sigma <- c(2, 3)

s[1] <- sample(1:2, size = 1, prob = delta)
x[1] <- rnorm(1, mu[s[1]], sigma[s[1]])

for (t in 2:50){
s[t] <- sample(1:2, size = 1, prob = Gamma[s[t-1], ])
x[t] <- rnorm(1, mu[s[t]], sigma[s[t]])

}

26



One example realisation
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Can you guess the states?
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These are the actual states (which in practice aren’t observed).
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Some remarks on the hidden states

The example from the previous slide shows:

the obs. will often give a good idea of what could be the underlying state

however, when the component distributions overlap, we can never be sure

it’s crucial to take the time series nature of the observations into account

The time series X1, . . . ,XT is a noisy observation of the state process S1, . . . ,ST ,
which we can use to learn something about the latter.
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Cond. independence ̸= independence!
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While the observations are conditionally independent of each other (given the
states), they are not independent of each other:

say that, in the simulation example, xt is large (relative to the overall mean)

then most likely this is because state 2 is active at time t

with a prob. of 90% the process will then still be in state 2 at time t + 1

and hence xt+1 will probably also be large

Thus, the Markov chain induces dependence in the state-dependent process —
only *within* states the observations are independent of each other.
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1.4 Some remarks
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Areas of application of HMMs
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Terminology in the literature

Various other labels are used for what I call HMMs, e.g.

Markov-switching/regime-switching models (especially in econometrics)

state-switching models (e.g. in ecology)

latent Markov models (especially in Italy!)

latent transition/latent class models (especially in the social sciences)

hidden Markov processes (especially in engineering)

state-space models (in mathematical statistics)

These labels very often refer to the same mathematical object...

Rule-of-thumb: model with observations driven by underlying states & Markov
assumption for states? ⇝ most likely it’s an HMM as discussed here.
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More on HMMs in the literature (classification vs. general inference)

Roughly speaking, there are two branches of literature on HMMs:

1. engineering/ML literature, dealing with recognition/classification:
• originally developed for speech recognition in the 1960s, HMMs have been

applied in all sorts of recognition tasks
• in those instances, training data, where the states are observed, are used to

calibrate the model (supervised learning)
• recognition/classification then involves decoding the latent states for new data

2. statistical literature, dealing with general inference:
• here the main aim often is to learn something about the system considered
• sometimes used also for forecasting, especially in economics/finance

Our focus is on 2., but we’ll cover the main techniques used within 1. too.
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Interpretation of HMM states in case of unsupervised learning

A trivial yet underappreciated HMM fact:

HMM states ̸= meaningful entities (e.g. behaviours)

Instead, the model states are only proxies for potentially meaningful entities.

Why?

features of HMM states are (usually) data-driven (⇝ unsupervised learning)

model picks up whatever pattern is strongest w.r.t. multimodality

temporal resolution determines which states may be inferred at all
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Part 2 — How do we fit an HMM to data?

2.1 Overview: how to fit an HMM to data
2.2 Likelihood evaluation & optimisation
2.3 Example: fitting HMMs to movement data
2.4 Model selection
2.5 Model checking
2.6 State decoding
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2.1 Overview: how to fit an HMM to data
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Workflow for finding “the right” HMM for given real data

1. formulate candidate models based on EDA, in particular
• selecting N & the class of state-dependent distributions
• potentially incorporating covariates (see later slides)

↓ ↓ ↓

2. estimate model parameters, for each candidate model
↓ ↓ ↓

3. choose between candidate models
↓ ↓ ↓

4. check the chosen model (and, if necessary, go back to 1.)
↓ ↓ ↓

5. conduct whatever inference is of interest

We will first focus on 2., which is usually the hardest part.
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Parameter estimation — overview

There are three main approaches to fitting HMMs:

1. direct numerical likelihood maximisation

2. likelihood maximisation using the EM algorithm

3. Bayesian inference/MCMC

While there are scenarios where either 2. or 3. can be preferable3, in most cases
my preferred option is 1., as it’s simplest and often also fastest.

3 in particular, Bayesian inference has some advantages when the model includes random effects
39



Maximum likelihood estimation
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maximum likelihood (ML) estimation is
an approach for fitting a model to data

key idea: good parameter estimates make
the observed data look plausible

ML estimation: select parameter θ for which model has the highest likelihood

L(θ) = fθ(x1, . . . , xT )

of having generated the observed data

ML estimation...
• ...is intuitively appealing,
• ...is practically feasible in many cases (including HMMs),
• ...and has desirable theoretical properties

but we do need to be able to calculate the likelihood!
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2.2 Likelihood evaluation & optimisation
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Likelihood evaluation — how?

The seemingly easiest way to calculate the likelihood is via summation over all
possible state sequences (law of total probability):

L(θ) =
N∑

s1=1

. . .

N∑
sT =1

(
T∏

t=1

fst (xt)

)(
δ
(1)
s1

T∏
t=2

γst−1,st

)

simple structure, and all components are directly available

but NT summands render the calculation infeasible in most cases

note though that many calculations in the sum above are redundant

for example, for T = 20 and N = 2, it is extremely inefficient to separately
calculate the likelihood contribution of the two state sequences

and 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1

and 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 2

42



Smarter way to do this: the forward algorithm

Consider the so-called forward variables,

αt(j) = f (x1, . . . , xt , st = j), αt =
(
αt(1), . . . , αt(N)

)
At time t , these variables contain information on

the likelihood of the observations up to time t

the probabilities of being in the
different states at time t

The forward algorithm is an efficient recursive scheme for calculating the
forward variables:

α1 = δ(1)P(x1), αt = αt−1ΓP(xt) for t = 2, . . . ,T ,

with P(xt) = diag
(
f1(xt), . . . , fN(xt)

)
, initial distribution δ(1) and t.p.m. Γ.
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Using the forward algorithm to evaluate the likelihood

the forward algorithm can be applied in order to first calculate α1, then α2

based on α1, then α3 based on α2, etc., until one arrives at αT

the likelihood is then L(θ) =
∑N

j=1 f (x1, . . . , xT , sT = j) =
∑N

j=1 αT (j)

written in closed form, with 1 = (1, . . . , 1) ∈ RN :

L(θ) = δ(1)P(x1)ΓP(x2)ΓP(x3) . . .ΓP(xT )1t

comput. cost of evaluating L(θ) is linear in the number of observations, T

in practice, this means that the likelihood can be evaluated in a fraction of a
second even for T in the thousands and moderate number of states N

this opens up the way for a numerical maximisation of the likelihood
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θ(0)

θ(1)

θ(2)
θ(3)

Numerical search algorithms are used to
find the maximum likelihood estimate:

guess the value of the parameter vector as θ(0) (initial value)

obtain improved guess θ(1) based on (gradient in) θ(0)

obtain improved guess θ(2) based on (gradient in) θ(1)

...

terminate algorithm when changes in L(θ) are negligible

WARNING: the algorithm might converge to
a local rather than the global maximum!

●

●

global maximum

local maximum
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2.3 Example: fitting HMMs to movement data
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A distribution for modelling step lengths
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Figure: Gamma distributions with different mean (µ) and std. dev. (σ) parameters.
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step length in mtrs.

de
ns

ity

0 500 1000 1500 2000 2500

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Figure: Histogram of the observed hourly step lengths.

Eye-balling possible initial values for the gamma step length distributions:

state-dep. means of (about) 5, 50 and 500 metres might be about right

initial values for standard deviations can simply be taken to be a bit larger
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Using moveHMM to fit a 3–state gamma HMM to the muskox data

muskox <- read.csv("http://www.rolandlangrock.com//muskox.csv")
# install.packages("moveHMM")
library(moveHMM)
data_muskox <- prepData(muskox, type="UTM")

# choose initial parameter values
stepMean0 <- c(5, 50, 500) # means of gamma distribution
stepSD0 <- c(10, 100, 1000) # standard deviations of gamma distribution
stepPar0 <- c(stepMean0, stepSD0)

s <- Sys.time()
muskoxhmm <- fitHMM(data=data_muskox, nbStates=3, stepPar0=stepPar0,

verbose=2, angleDist="none")
Sys.time()-s

muskoxhmm

plot(muskoxhmm)
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Muskox step lengths — fitted 3–state gamma HMM

Γ̂ =

0.74 0.23 0.03

0.18 0.80 0.02

0.04 0.15 0.81
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Checking for local maxima

> llks <- rep(NA, 20)
> mods <- vector("list")
> for (k in 1:20){
+ step_mean0 <- runif(3, 0, 1000) # gamma means
+ step_sd0 <- runif(3, 0, 500) # gamma std. dev
+ step0 <- c(step_mean0, step_sd0)
+ mods[[k]] <- fitHMM(data, nbStates=3, stepPar0=step0,
+ angleDist="none")
+ llks[k] <- -mods[[k]]$mod$minimum
+ print(llks)
+ }
[1] -7388.818 -7193.963 -7812.318 -7388.818 -7193.963 -7812.318
[7] -7388.818 -7812.318 -7388.818 -7388.818 -7388.818 -7388.818

[13] -7193.963 -7812.318 -7388.818 -7812.319 -7812.318 -7812.318
[19] -7193.963 -7193.963
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Incorporating directionality

stept−1

stept

stept+1

turnt

turnt+1

3

Figure: Representing location data in terms of step lengths (top) & turning angles (bottom).
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HMM for bivariate time series of steps & turns

simply for ease of exposition and view them as neither
exhaustive nor mutually exclusive.
Although typically not referred to as HMMs in the ecologi-

cal literature, several subfields of ecology have been using
HMMs for individual- to community-level inference for dec-
ades. HMMs have also become standard in biological
sequence analysis and molecular ecology (Durbin et al., 1998;
Barbu and Limnios, 2009; Yoon, 2009), and there is much
crossover potential for state-of-the-art bioinformatic methods
to other applications in ecology (Jones et al., 2006; Tucker
and Duplisea, 2012). HMMs are also used for very specialised
tasks of relevance to ecology, such as counting annual layers
in ice cores (Winstrup et al., 2012) or characterising plant
architectures (Durand et al., 2005). There are therefore many
example HMM applications within some areas of ecology, of
which only a handful can be covered in the material that fol-
lows. However, in other areas the promise of HMMs has only
just begun to be recognised.

Individual level

Existential state
At the level of an individual organism, a fundamental mea-
sure of existence is to be alive or not (i.e. dead or unborn).
We will therefore begin by demonstrating that one of the
oldest and most popular inferential tools in wildlife ecology,
the Cormack-Jolly-Seber (CJS) model of survival (Williams
et al., 2002), is a special case of an HMM. The CJS model
estimates survival probabilities (ϕ) from capture–recapture
data. Capture–recapture data consist of n sequences of

encounter histories for marked individuals collected through
time, where for each individual the observed data are repre-
sented as a binary series of ones and zeros. For the CJS
model, Xt ¼ 1 indicates a marked individual was alive and
detected at time t, while Xt ¼ 0 indicates non-detection.
Marked individuals can either be alive or dead at time t, but
the ‘alive’ state is only partially observable and the ‘dead’
state is completely unobservable. Under this observation pro-
cess, if Xt ¼ 1 it is known that the individual survived from
time t�1 to time t (with probability ϕ) and was detected
with probability p. However, when Xt ¼ 0 there are two pos-
sibilities: (1) the individual survived to time t (with probabil-
ity ϕ) but was not detected (with probability 1�p); or (2)
the individual did not survive from time t�1 to time t (with
probability 1�ϕ).
Although not originally described as such, the CJS model is

simply a two-state HMM that conditions on first capture. Fram-
ing the observed and hidden processes within the dependence
structure of a basic HMM (Fig. 2), we could for example have:

The state-dependent observation distribution for Xt is a simple
Bernoulli (i.e. a coin flip) with success probability p if alive
and success probability 0 if dead:

(a) (b)

(c) (d)

Figure 4 Graphical models associated with different extensions of the basic HMM formulation: (a) state sequence with memory order 2; (b) influence of

covariate vectors z1, . . .,zT on state dynamics; (c) observations depending on both states and previous observations; (d) bivariate observation sequence,

conditionally independent given the states.

Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Ecology Letters published by John Wiley & Sons Ltd.

1886 B. T. McClintock et al. Review And Synthesis

Figure: Simple extension of the basic HMM to accommodate bivariate observations.

⇝ we can again use gamma distributions for the steps Xt

⇝ but we need a special type of distribution for the turns Yt
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The von Mises distribution

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

x

de
ns

ity

Figure: Example densities of von Mises distributions with different values of the mean (µ)
and concentration (κ) parameters.
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Using moveHMM to fit a 3–state gamma/von Mises HMM to the muskox data

muskox <- read.csv("http://www.rolandlangrock.com//muskox.csv")
library(moveHMM)
data_muskox <- prepData(muskox, type="UTM")

# choose initial parameter values
stepMean0 <- c(5, 40, 400) # means of gamma distribution
stepSD0 <- c(10, 50, 500) # standard deviations of gamma distribution
stepPar0 <- c(stepMean0, stepSD0)
angleMean0 <- c(pi, pi, 0) # means of von Mises (turning angles)
angleCon0 <- c(0.5, 0.5, 1) # std. dev. of von Mises (turning angles)
anglePar0 <- c(angleMean0, angleCon0)

s<-Sys.time()
fullmuskoxhmm<-fitHMM(data=data_muskox, nbStates=3,

stepPar0=stepPar0, anglePar0=anglePar0, verbose=2)
Sys.time()-s

fullmuskoxhmm

plot(fullmuskoxhmm)
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Muskox steps & turns — fitted 3–state gamma/von Mises HMM
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How do we fit general HMMs?

The moveHMM package was developed specifically for tracking data (steps &
turns) and cannot deal with general types of data.

Options for fitting general HMMs:

momentuHMM (an extension of moveHMM — much more flexible)

hmmTMB (very good in particular for mixed models)

depmixS4 or HiddenMarkov (general HMM packages)

write your own code (example implementation on the next slide)
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Vanilla code for fitting a 3–state gamma HMM to the muskox data

muskox <- read.csv("http://www.rolandlangrock.com//Misc//muskox.csv")
library(moveHMM)
data <- prepData(muskox, type = "UTM")

mllk <- function(theta.star, x){
Gamma <- diag(3)
Gamma[!Gamma] <- exp(theta.star[1:6])
Gamma <- Gamma / rowSums(Gamma)
delta <- solve(t(diag(3) - Gamma + 1), rep(1, 3))
mu <- exp(theta.star[7:9])
sigma <- exp(theta.star[10:12])
allprobs <- matrix(1, length(x), 3)
ind <- which(!is.na(x))
for (j in 1:3){
allprobs[ind, j] <- dgamma(x[ind], shape = mu[j]^2 / sigma[j]^2,

scale = sigma[j]^2 / mu[j])
}
foo <- delta %*% diag(allprobs[1, ])
l <- log(sum(foo))
phi <- foo / sum(foo)
for (t in 2:length(x)){
foo <- phi %*% Gamma %*% diag(allprobs[t, ])
l <- l + log(sum(foo))
phi <- foo / sum(foo)

}
return(-l)

}

theta.star <- c(rep(-2, 6), log(c(5, 50, 500)), log(c(10, 100, 800)))
nlm(mllk, theta.star, x = data$step, print.level = 2, iterlim = 10000)
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2.4 Model selection
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AIC and BIC

Aim: select the best HMM from a set of candidate models
(e.g. 2–state vs. 3–state or log-normal vs. gamma distributions)

AIC = −2 logL+ 2 ·#parameters

BIC = −2 logL+ log(T ) ·#parameters

⇝ in either case, choose model with smallest value of the criterion applied.

both criteria reward goodness of fit while penalising complexity

AIC favours more complex models due to the smaller penalty (for T ≥ 8)

both provide a relative comparison of models from a suite of candidate
models⇝ the selected model could still be a bad one!!
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Illustration using the muskox data

In the following:

we will illustrate the use of AIC and BIC for the muskox step lengths

we fit N–state gamma HMMs with N = 2, 3, 4, 5, 6
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Figure: AIC & BIC values for gamma HMMs with different numbers of states.

AIC selects the 6–state model4

BIC selects the 4–state model

biologist who collected the data thinks there should be 3 states ...

4and would probably go for even more states if we were to consider corresponding models...
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Some remarks on model selection

Criteria like AIC or BIC are very appealing as they...

have a theoretical foundation...

...yet are very easy to use,

such that they appear to offer universally applicable solutions to model selection.

As a consequence, they are often applied without any critical reasoning.

However, both AIC and BIC have their shortcomings.

⇝ don’t blindly trust these criteria, and instead only use them as guidance
(this in particular concerns the choice of the number of states!)
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Illustrating example with simulated data
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Observations were generated using the two state-dependent distributions
displayed above and the t.p.m.

Γ =

(
0.9 0.1
0.1 0.9

)
If we fit gamma HMMs with N = 2, 3, then what N will be selected?
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⇝ lack of fit of the distribution in state 2 due to insufficient flexibility
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⇝ this (3–state) model is selected by both AIC and BIC
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States mopping up structure

Model misspecification is often compensated by additional states, which “mop up”
the neglected structure due to, e.g.,

inadequate (parametric) state-dep. distributions

outliers

individual heterogeneity

violations of Markov property or conditional independence assumption

⇝ for HMMs, AIC/BIC tend to favour models with “too many” states

Resulting models may fit the data better, but are often not interpretable:

may not be a problem if model is used for forecasting

but when inferring animal behaviours, then such an HMM can be useless
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How to deal with this?

⇝ ideally, improve model formulation to account for such structure

⇝ often not feasible for complex data!

⇝ we may need to accept lack of fit and be pragmatic5 about choosing N

⇝ in particular, I’d rather trust the ecologists’ expertise than AIC/BIC

Bottom line: selecting N is notoriously difficult!!

5Pohle et al. (2017), Selecting the number of states in hidden Markov models: pragmatic solutions
illustrated using animal movement, JABES.
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2.5 Model checking
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Model checking in HMMs

Main options to check if a fitted HMM is adequate:

1. graphical comparison of marginal distribution under fitted HMM and
empirical distribution, to check adequacy of state-dep. distributions

2. simulate data from the fitted model, then compare the patterns found in the
simulated data with those of the real data6 ⇝ informal, but useful strategy!

3. a residual analysis⇝ comprehensive formal check of the model

6patterns to look for: marginal distribution, autocorrelation, etc.
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Marginal vs. empirical distribution

The marginal distribution of a fitted stationary HMM is

f (x) =
N∑

j=1

δj fj(x),

where δj is the stationary prob. of occupying state j . This can be compared to the
empirical distribution of the data, as visualised e.g. using a histogram.
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Figure: Histogram of the muskox’ step lengths (truncated at 400 mtrs. for clarity) and
marginal distribution under the fitted 4–state gamma HMM.
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Simulation-based check
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Figure: Comparison of the actual time series of muskox step lengths (top row) with a time
series simulated from the fitted 4–state gamma HMM (bottom row).
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Pseudo-residuals

Problem: due to the time series structure, each Xt has a different distribution,
making it difficult to assess which observations are extreme relative to the model.

Trick: use probability integral transform to obtain a common scale.

first convert Xt such that transformation is uniformly distributed:

FXt (Xt) ∼ Uniform[0,1]

then convert once more to obtain standard normal distribution:

Φ−1(FXt (Xt)) ∼ N (0, 1),

which holds if FXt is correct
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Construction of pseudo-residuals

x

f1(x)

x1

u1=F1(x1)

0 1
0

1

u

f(u)

u1

z1=Φ−1(u1)

−3 3
z

φ(z)

z1

x

f2(x)

x2

u2=F2(x2)

0 1
0

1

u

f(u)

u2

z2=Φ−1(u2)

−3 3
z

φ(z)

z2

x

fT(x)

xT

uT=FT(xT)

0 1
0

1

u

f(u)

uT

zT=Φ−1(uT)

−3 3
z

φ(z)

zT

74



Given a fitted HMM, we consider the conditional distribution:

FXt (xt) = Pr(Xt ≤ xt |X1 = x1, . . .Xt−1 = xt−1,Xt+1 = xt+1, . . .XT = xT )

(these are obtained using the forward and the backward variables)

The quantities Φ−1(FXt (Xt)
)

are called pseudo-residuals. If the model is
correct, then these (random variables) are standard normally distributed.

we can use quantile-quantile-plots and/or hypothesis tests to check for
normality: any indication of non-normality⇝ indication of a lack of fit!

strong residual autocorrelation⇝ correlation structure not fully captured!
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Pseudo-res. for the muskox data, obtained under fitted 4–state model
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So when are we satisfied with a model?

1. it helps to address the study aim
(e.g. forecasting, classification, obtaining overview of patterns)

2. it “outperforms” other reasonable candidate models

3. model checks don’t reveal any substantial lack of fit — in particular,

• pseudo-residuals should be approx. normally distributed...

• ...and exhibit little autocorrelation
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2.6 State decoding
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Given a fitted model, it is often of interest to decode the hidden states
underlying the observed time series.

Global decoding: looks at the sequence as a whole

consider Pr(S1 = i1, . . . ,ST = iT |x1, . . . , xT )

most probable state sequence is maximum
of the above over (i1, . . . , iT ) ∈ {1, . . . ,N}T

Local decoding: looks at each time point in isolation

consider Pr(St = i|x1, . . . , xT )

most probable state at time t is maximum
of the above over i = 1, . . . ,N

Usually the outcome is either identical or at least very similar. But local decoding
additionally provides uncertainty information.
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Global decoding (using the Viterbi algorithm) in the muskox example
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Local decoding (using the forward-backward algorithm) in the example
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Part 3 — What else can we do with HMMs?

3.1 Covariates, seasonality & random effects
3.2 Alternative & advanced dependence structures
3.3 Continuous-valued state processes
3.4 HMMs in continuous time
3.5 Nonparametric inference in HMMs
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3.1 Covariates, seasonality & random effects
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Why and how to include covariates in HMMs?

The inclusion of covariates allows to investigate how the dynamic system HMM
responds to potential drivers:

how does animal behaviour change with varying temperatures?

how does a cancer patient respond to medication?

how does the financial market respond to changes in say the interest rate?

Technically it’s straightforward to incorporate covariates in HMMs, in both state
process and state-dep. process: the likelihood structure remains unaffected.

L(θ) = δ(1)P(x1)ΓP(x2)ΓP(x3) . . .ΓP(xT )1t

⇝ all that changes is that P(xt) and/or Γ will depend on covariates
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Covariates in the state process

simply for ease of exposition and view them as neither
exhaustive nor mutually exclusive.
Although typically not referred to as HMMs in the ecologi-

cal literature, several subfields of ecology have been using
HMMs for individual- to community-level inference for dec-
ades. HMMs have also become standard in biological
sequence analysis and molecular ecology (Durbin et al., 1998;
Barbu and Limnios, 2009; Yoon, 2009), and there is much
crossover potential for state-of-the-art bioinformatic methods
to other applications in ecology (Jones et al., 2006; Tucker
and Duplisea, 2012). HMMs are also used for very specialised
tasks of relevance to ecology, such as counting annual layers
in ice cores (Winstrup et al., 2012) or characterising plant
architectures (Durand et al., 2005). There are therefore many
example HMM applications within some areas of ecology, of
which only a handful can be covered in the material that fol-
lows. However, in other areas the promise of HMMs has only
just begun to be recognised.

Individual level

Existential state
At the level of an individual organism, a fundamental mea-
sure of existence is to be alive or not (i.e. dead or unborn).
We will therefore begin by demonstrating that one of the
oldest and most popular inferential tools in wildlife ecology,
the Cormack-Jolly-Seber (CJS) model of survival (Williams
et al., 2002), is a special case of an HMM. The CJS model
estimates survival probabilities (ϕ) from capture–recapture
data. Capture–recapture data consist of n sequences of

encounter histories for marked individuals collected through
time, where for each individual the observed data are repre-
sented as a binary series of ones and zeros. For the CJS
model, Xt ¼ 1 indicates a marked individual was alive and
detected at time t, while Xt ¼ 0 indicates non-detection.
Marked individuals can either be alive or dead at time t, but
the ‘alive’ state is only partially observable and the ‘dead’
state is completely unobservable. Under this observation pro-
cess, if Xt ¼ 1 it is known that the individual survived from
time t�1 to time t (with probability ϕ) and was detected
with probability p. However, when Xt ¼ 0 there are two pos-
sibilities: (1) the individual survived to time t (with probabil-
ity ϕ) but was not detected (with probability 1�p); or (2)
the individual did not survive from time t�1 to time t (with
probability 1�ϕ).
Although not originally described as such, the CJS model is

simply a two-state HMM that conditions on first capture. Fram-
ing the observed and hidden processes within the dependence
structure of a basic HMM (Fig. 2), we could for example have:

The state-dependent observation distribution for Xt is a simple
Bernoulli (i.e. a coin flip) with success probability p if alive
and success probability 0 if dead:

(a)

(c) (d)

Figure 4 Graphical models associated with different extensions of the basic HMM formulation: (a) state sequence with memory order 2; (b) influence of

covariate vectors z1, . . .,zT on state dynamics; (c) observations depending on both states and previous observations; (d) bivariate observation sequence,

conditionally independent given the states.

Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Ecology Letters published by John Wiley & Sons Ltd.

1886 B. T. McClintock et al. Review And Synthesis

We first consider the inclusion of covariates in the state process,

expressing state transition probabilities as functions of covariates...

...to infer how state dynamics depend on external (or internal) factors
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Muskox example with covariate influence in the state process

Consider a 2–state HMM for steps and turns, with tempt affecting the transitions:

Γ(t) =

(
1 − γ

(t)
12 γ

(t)
12

γ
(t)
21 1 − γ

(t)
21

)
,

where, for i ̸= j ,

γ
(t)
ij = logit−1(β(ij)

0 + β
(ij)
1 · tempt

)
=

eβ
(ij)
0 +β

(ij)
1 ·tempt

eβ
(ij)
0 +β

(ij)
1 ·tempt + 1

(extension to multiple covariates, quadratic effects, interactions etc. is obvious)
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In moveHMM:

muskox <- read.csv("http://www.rolandlangrock.com//muskox.csv")
# install.packages("moveHMM")
library(moveHMM)
data_muskox <- prepData(muskox, type="UTM")

step_mean0 <- c(5, 200)
step_sd0 <- c(5, 100)
step0 <- c(step_mean0, step_sd0)
angle_mean0 <- c(pi, 0)
angle_con0 <- c(0.5, 1)
angle0 <- c(angle_mean0, angle_con0)

muskoxhmm <- fitHMM(data, nbStates = 2, stepPar0 = step0,
anglePar0 = angle0, formula = ~temp, verbose = 2)

muskoxhmm

plot(muskoxhmm, plotCI = TRUE)

87



> muskoxhmm
Value of the maximum log-likelihood: -9907.767

Step length parameters:
----------------------

state 1 state 2
mean 4.714617 229.1425
sd 3.323690 281.4776

Turning angle parameters:
------------------------

state 1 state 2
mean 2.8735816 -0.06313096
concentration 0.5299382 0.47877136

Regression coeffs for the transition probabilities:
--------------------------------------------------

1 -> 2 2 -> 1
intercept -1.15149048 -1.52939023
temp 0.04811378 0.02857322

Initial distribution:
--------------------
[1] 9.458273e-06 9.999905e-01
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(the colder it is, the longer the animal stays in a state — but this data set is small)
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Another example: grey seal behaviour & commercial fishing

5Scientific RepoRts |          (2019) 9:5642  | https://doi.org/10.1038/s41598-019-42109-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

weight to catch ratio followed by flounder (Platichthys spp.) and herring. We focused on gillnets only as compa-
rable data on use of fykes, fish traps and hooks were not available. Both large (≥12 m) and small (<12 m) gillnet 
vessels operated in the study area. Small gillnet vessels in Denmark and Germany are not required to track and 
report their offshore route and data on fishing locations are therefore lacking. In contrast, small Swedish gillnet 
vessels are monitored through GPS and fishing locations and soak time (start/end time of nets in waters) are 
reported by the fishermen in logbooks. Hence, we collected logbook data of Swedish vessels operating within the 
study area and period to obtain gillnet fishing locations and their associated soak time. Large vessels (≥12 m) are 
required to track and report their movements with a Vessel Monitoring System (VMS). We collected VMS data 
of all large Danish, German and Swedish vessels operating within the study area and during the study period. To 
obtain gillnet fishing locations and the start time of when the net was placed in the water, we processed the VMS 
data using the approach detailed in Bastardie et al.43. In brief, this approach aims to detect fishing events and 
locations for all VMS-equipped vessels (one position every 1 h interval) by analysing variation in the speed profile 
during a trip at sea. Based on speed thresholds, the vessels trajectory is classified into periods of drifting, fishing 
and steaming events. The lower threshold was 0.5 knots while the upper speed threshold was specific to each 
vessel and detected automatically. Most gillnet fishing events occurred between 0.5 and 3 knots in vessel speed. 
For each fishing event a time stamp is then extracted from the VMS data indicating when a net was placed into 
the water (Supplementary Fig. S4). For Swedish vessels logbook data also provided an end time for when the nets 
were taken out (i.e. soak time). A time stamp for when the net was taken out of the water was missing for Danish 
and German data. As such, we assumed soak time for all Danish and German fishing events detected during a trip 
to be similar to the mean soak time as derived from all Swedish vessels combined (Fig. Supplementary Fig. S5), 
which was 0.9 days. Through the above VMS and logbook data processing procedure, we compiled a database 
with a total of 24 018 gill net fishing locations between October 2009–March 2013; the period that overlapped 
spatially and temporally with the seal movement data (Supplementary Fig. S6). Swedish fishing locations con-
stituted 71% of the data, Danish fishing locations constituted 22% of the data, while German fishing locations 
constituted 7% of the data. Screening of logbook data on fishing operations did not reveal the use of light or bait. 
Although the use of deterrents such as pingers (underwater devices that emit noise to deter harbour porpoises 
(Phocoena phocoena) away from gill nets) are mandatory according to EU council regulation in most of the study 
area44, deterrents are not used widely and systematically. After the fishing location and soak time database was 
compiled, we identified for each seal location all gillnet fishing locations that were active (i.e. soaking) by over-
laying the date-time stamp in the seal movement data with the soak time in the fishing location dataset. We then 
calculated the Euclidian distance (km) between each seal location and the nearest known location of an active 
fishing net.

statistical analysis. We developed a multivariate HMM to analyze the grey seal movement data. In the 
model, the distribution of the observations (Xb) made in movement batch b is one out of N possible distributions 
as determined by an underlying or “hidden” state process Sb (Fig. 2). Our model was multivariate as Xb is a vector 
comprising maximum depth, dive duration, surface duration, horizontal step length and turning angle as aver-
aged over the batch of dives. We used an unobserved first-order N-state Markov chain, which assumes that the 
probability of being in the current state is determined only by the previous state9,10. More specifically, the way the 
states evolve over time is completely specified by the one-step state transition probabilities denoted as, for i, j = 1, 
…, N. Moreover, the model was built under two conditional independence assumptions. First, the state active 
during movement batch b completely determines the distribution of Xb and second, that the observations made 
during the movement batch (maximum depth, Xb1, dive duration, Xb2, surface duration, Xb3, step length, Xb4, 
and turning angle, Xb5) are conditionally independent of each other. Under the given assumptions, our model is 
able to capture some but not all of the complex dependence structures in the behavioural time series data whilst 

Figure 2. Dependence structure of the multivariate HMM fitted to the grey seal movement data. Xb,1 is the 
average maximum depth within dive batch b, Xb,2 is the average dive duration within dive batch b, Xb,3 is the 
average post-dive surface duration within dive batch b, Xb,4 is the step length over dive batch b, and Xb,5 is the 
turning angle associated with dive batch b.

Figure: HMM for multivariate dive-by-dive data collected for grey seals in the Baltic Sea.

3–state model (“foraging”, “resting”, “travelling”) was deemed most adequate

covariate effects on state process modelled using multinomial logit link

main covariate of interest: distance to nearest fishing net

additional covariates included: sediment type, sex, bathymetry, salinity
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1 0Scientific RepoRts |          (2019) 9:5642  | https://doi.org/10.1038/s41598-019-42109-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

haul-out site in our analysis and instead focused on bathymetry. This was because the latter is a key environmental
condition in grey seal space use patterns within their Baltic Sea distribution40 and also because the tagged seals
used multiple haul-out sites throughout the area and tracking period. We do not argue that distance to haul-out 
site is unrelated to grey seal movement behaviour, but instead that the use of this variable is most relevant when
modelling the dynamics of foraging trips made by individuals that travel larger distances over longer time periods
to and from the same haul-out site (i.e. central-place foraging behaviour)25,60,61 compared to the grey seals in the 
south-western Baltic, a relatively landlocked system.

Movement behaviour in relation to commercial fishing activity. Seal foraging and travelling behav-
iour was clearly related to proximity to active gill net fishing locations. This finding provides further indirect
evidence that the environmental variables considered here capture at least some of the variation in fish abundance
in this system as commercial fishing operations are expected to target sites where fish abundance is high so as to 
maximize catch per unit effort. We found that the likelihood of grey seals occupying a foraging state at locations 
with active fishing nets was relatively high (ca. 50%) for both males and females. Our model results are, however, 
correlative and should not be interpreted as causation. Hence, we do not postulate that grey seals in this region 
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Figure 5. Probabilities (mean and 95% CI) of occupying the three behavioural states as a function of the 
covariates included in the multivariate HMM. Probabilities were calculated for each covariate and state 
separately by fixing the values of the remaining covariates at their respective means. All estimates were made 
using the categorical covariates sex (male) and sediment type (sand) as reference categories. CIs for the 
probabilities were obtained based on Monte Carlo simulation from the estimators’ approximate distribution 
as implied by maximum likelihood theory. Coefficients of the multinomial logistic regression underlying this 
figure are provided in Supplementary Table S1.

Figure: Estimated state occupancy as a function of the distance to the nearest fishing net.

In this case we have ∆AIC = 37.2, indicating fairly strong correlation7.

7but of course we’re not estimating a causal effect here
91



Incorporating seasonality or diel patterns

In many real data applications, there is within-day or within-year variation.

In essence, this means that parameters depend on the covariate timet .

However,
predictors ought to return to where they started after completing a full cycle

this can be achieved by using trigonometric functions
(with period equal to day, year, or whatever the assumed cycle length)

For the muskox data, consider the 2–state HMM as before, but now with

γ
(t)
ij = logit−1

(
β
(ij)
0 + β

(ij)
1 sin

(2π · timet

24

)
+ β

(ij)
2 cos

(2π · timet

24

))
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Muskox example with within-day variation in the state process

In moveHMM:

muskox <- read.csv("http://www.rolandlangrock.com//muskox.csv")
# install.packages("moveHMM")
library(moveHMM)
data_muskox <- prepData(muskox, type="UTM")

step_mean0 <- c(5, 200)
step_sd0 <- c(5, 100)
step0 <- c(step_mean0, step_sd0)
angle_mean0 <- c(pi, 0)
angle_con0 <- c(0.5, 1)
angle0 <- c(angle_mean0, angle_con0)

muskoxhmm <- fitHMM(data, nbStates = 2, stepPar0 = step0,
anglePar0 = angle0, verbose = 2,
formula = ~sin(2*pi*tod/24)+cos(2*pi*tod/24))

muskoxhmm

plot(muskoxhmm, plotCI = TRUE)
plotStationary(muskoxhmm, plotCI = TRUE)
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Figure: Time-of-day variation in the state process dynamics (2–state muskox model).
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Resulting state occupancy (model with N = 2 states)
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Resulting state occupancy (model with N = 3 states)
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Covariates in the state-dependent process

simply for ease of exposition and view them as neither
exhaustive nor mutually exclusive.
Although typically not referred to as HMMs in the ecologi-

cal literature, several subfields of ecology have been using
HMMs for individual- to community-level inference for dec-
ades. HMMs have also become standard in biological
sequence analysis and molecular ecology (Durbin et al., 1998;
Barbu and Limnios, 2009; Yoon, 2009), and there is much
crossover potential for state-of-the-art bioinformatic methods
to other applications in ecology (Jones et al., 2006; Tucker
and Duplisea, 2012). HMMs are also used for very specialised
tasks of relevance to ecology, such as counting annual layers
in ice cores (Winstrup et al., 2012) or characterising plant
architectures (Durand et al., 2005). There are therefore many
example HMM applications within some areas of ecology, of
which only a handful can be covered in the material that fol-
lows. However, in other areas the promise of HMMs has only
just begun to be recognised.

Individual level

Existential state
At the level of an individual organism, a fundamental mea-
sure of existence is to be alive or not (i.e. dead or unborn).
We will therefore begin by demonstrating that one of the
oldest and most popular inferential tools in wildlife ecology,
the Cormack-Jolly-Seber (CJS) model of survival (Williams
et al., 2002), is a special case of an HMM. The CJS model
estimates survival probabilities (ϕ) from capture–recapture
data. Capture–recapture data consist of n sequences of

encounter histories for marked individuals collected through
time, where for each individual the observed data are repre-
sented as a binary series of ones and zeros. For the CJS
model, Xt ¼ 1 indicates a marked individual was alive and
detected at time t, while Xt ¼ 0 indicates non-detection.
Marked individuals can either be alive or dead at time t, but
the ‘alive’ state is only partially observable and the ‘dead’
state is completely unobservable. Under this observation pro-
cess, if Xt ¼ 1 it is known that the individual survived from
time t�1 to time t (with probability ϕ) and was detected
with probability p. However, when Xt ¼ 0 there are two pos-
sibilities: (1) the individual survived to time t (with probabil-
ity ϕ) but was not detected (with probability 1�p); or (2)
the individual did not survive from time t�1 to time t (with
probability 1�ϕ).
Although not originally described as such, the CJS model is

simply a two-state HMM that conditions on first capture. Fram-
ing the observed and hidden processes within the dependence
structure of a basic HMM (Fig. 2), we could for example have:

The state-dependent observation distribution for Xt is a simple
Bernoulli (i.e. a coin flip) with success probability p if alive
and success probability 0 if dead:

(a)

(c) (d)

Figure 4 Graphical models associated with different extensions of the basic HMM formulation: (a) state sequence with memory order 2; (b) influence of

covariate vectors z1, . . .,zT on state dynamics; (c) observations depending on both states and previous observations; (d) bivariate observation sequence,

conditionally independent given the states.

Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Ecology Letters published by John Wiley & Sons Ltd.
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e.g., the state-dep. mean step length could depend on age or time of year

as a consequence, meaning of the state may vary across covariate values

easy to implement, but not as often seen in applications

in econometrics commonly referred to as Markov-switching regression
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Markov-switching regression — motivation from a regression perspective

Consider a regression scenario,

Yt = β0 + β1xt + ϵt ,

where the pairs (Yt , xt) are observed over time, i.e. the index t refers to time8.

In such a context, there is often temporal correlation in the data, which can render
simple regression models invalid (⇝ correlated errors).

A possible reason: the regression coefficients, β0 and β1, might change over time.

Classic example: economic time series where the effect of an explanatory
variable xt may differ between times of high and low economic growth.

8e.g. days/months/years
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Example Lydia Pinkham sales
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Key features of the Lydia Pinkham data:

1. sales figures were strongly driven by advertising expenditure

2. sales figures in year t tended to be similar to those in year t − 1

3. advertising strategy was changed several times (more on this later)

A simple regression model that takes 1. and 2. (but not 3.) into account:

salest = β0 + β1 · salest−1 + β2 · advertisingt + σ · ϵt , ϵt
iid∼ N (0, 1)
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Fitted linear model:

salest = 0.139 + 0.759 · salest−1 + 0.329 · advertisingt + 0.225 · ϵt
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Figure: Residuals of the linear model plotted against time⇝ strongly serially correlated.
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Unsurprisingly, the simple regression model fails to capture the temporal
correlation of the observations.

In the example, there seem to be major structural breaks in the time series.

Thus, consider instead a Markov-switching regression model, where the linear
model changes when there is a switch in an underlying state process:

salest = β
(st )
0 + β

(st )
1 · salest−1 + β

(st )
2 · advertisingt + σ(st ) · ϵt ,

with st denoting the state of an unobserved 2–state Markov chain.
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Fitted Markov-switching model:

salest =

{
0.693 + 0.434 · salest−1 + 0.747 · advertisingt + 0.121 · ϵt when st = 1;
0.309 + 0.562 · salest−1 + 0.397 · advertisingt + 0.103 · ϵt when st = 2.

Γ̂ =

(
0.841 0.159
0.047 0.953

)
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Figure: Sales figures and states decoded under the Markov-switching model.
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Figure: Residuals of the Markov-switching model⇝ only minor serial correlation.
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Remarks on the fitted Markov-switching model:

β
(1)
2 = 0.747

β
(2)
2 = 0.397

⇝ advertising much more effective in state 1

the actual history:
• around 1915, beginning of successful marketing as “remedy for female troubles”
• in 1925, a court ordered to stop this kind of advertising (“vegetable tonic” was

the new, much less successful label being used in subsequent years)
• from 1940, the previous marketing strategy was allowed to be used again

⇝ clear interpretation of the HMM states

⇝ Viterbi sequence nicely aligned with actual history of Lydia Pinkham
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Some summary remarks on covariates in HMMs

in many real-data applications, the ability to include covariates into the
model formulation is of crucial importance

the flexibility of HMMs is here both a blessing9 and a curse10

in most applications, including covariates in the state process is preferable
over the inclusion in the state-dep. process (better interpretability)

9 lots of options to tailor the model to the particular data/question at hand
10 it can be difficult to choose from the large variety of possible model formulations
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Addressing heterogeneity when tracking multiple animals

complete pooling:
• all individuals are assumed to follow

the same data-generating process
• ignores potential heterogeneity
• can be misleading & can invalidate inference

when individuals are very different

no pooling:
• model the individuals separately, with no

parameters shared across them
• less than ideal # observations / parameter ratio
• resulting models most likely incommensurable

partial pooling:
• some — but not all — of the parameters are

constant across individuals
• compromise between the extremes above
• individual-specific parameters modelled as

functions of covariates or as random effects
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Different strategies for partial pooling

(a) estimate, for each subject-specific parameter, one value for each individual
(easy to fit, but still relatively many & unstructured parameters)

(b) model parameters as functions of individual-specific covariates (e.g. age)
(easy to implement & helps to understand the source of the heterogeneity)

(c) assume parameters to be random effects, i.e. that they are drawn from a
distribution common to all individuals, with one realisation per individual
(parsimonious in terms of numbers of parameters, but difficult to fit)

We often want to (or need to) implement c), but it’s relatively hard!
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3.2 Alternative & advanced dependence structures
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Higher-order state processes

Markov property can be unrealistic in practice, a common criticism

conceptually it’s easy to allow for higher-order Markov state processes

Markov chain of second order:

model complexity and comp. effort increase very rapidly

associated models are very difficult to interpret

hardly ever used in applications
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Autoregressive structures in the state-dependent process

simply for ease of exposition and view them as neither
exhaustive nor mutually exclusive.
Although typically not referred to as HMMs in the ecologi-

cal literature, several subfields of ecology have been using
HMMs for individual- to community-level inference for dec-
ades. HMMs have also become standard in biological
sequence analysis and molecular ecology (Durbin et al., 1998;
Barbu and Limnios, 2009; Yoon, 2009), and there is much
crossover potential for state-of-the-art bioinformatic methods
to other applications in ecology (Jones et al., 2006; Tucker
and Duplisea, 2012). HMMs are also used for very specialised
tasks of relevance to ecology, such as counting annual layers
in ice cores (Winstrup et al., 2012) or characterising plant
architectures (Durand et al., 2005). There are therefore many
example HMM applications within some areas of ecology, of
which only a handful can be covered in the material that fol-
lows. However, in other areas the promise of HMMs has only
just begun to be recognised.

Individual level

Existential state
At the level of an individual organism, a fundamental mea-
sure of existence is to be alive or not (i.e. dead or unborn).
We will therefore begin by demonstrating that one of the
oldest and most popular inferential tools in wildlife ecology,
the Cormack-Jolly-Seber (CJS) model of survival (Williams
et al., 2002), is a special case of an HMM. The CJS model
estimates survival probabilities (ϕ) from capture–recapture
data. Capture–recapture data consist of n sequences of

encounter histories for marked individuals collected through
time, where for each individual the observed data are repre-
sented as a binary series of ones and zeros. For the CJS
model, Xt ¼ 1 indicates a marked individual was alive and
detected at time t, while Xt ¼ 0 indicates non-detection.
Marked individuals can either be alive or dead at time t, but
the ‘alive’ state is only partially observable and the ‘dead’
state is completely unobservable. Under this observation pro-
cess, if Xt ¼ 1 it is known that the individual survived from
time t�1 to time t (with probability ϕ) and was detected
with probability p. However, when Xt ¼ 0 there are two pos-
sibilities: (1) the individual survived to time t (with probabil-
ity ϕ) but was not detected (with probability 1�p); or (2)
the individual did not survive from time t�1 to time t (with
probability 1�ϕ).
Although not originally described as such, the CJS model is

simply a two-state HMM that conditions on first capture. Fram-
ing the observed and hidden processes within the dependence
structure of a basic HMM (Fig. 2), we could for example have:

The state-dependent observation distribution for Xt is a simple
Bernoulli (i.e. a coin flip) with success probability p if alive
and success probability 0 if dead:

(a)

(c) (d)

Figure 4 Graphical models associated with different extensions of the basic HMM formulation: (a) state sequence with memory order 2; (b) influence of

covariate vectors z1, . . .,zT on state dynamics; (c) observations depending on both states and previous observations; (d) bivariate observation sequence,

conditionally independent given the states.

Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Ecology Letters published by John Wiley & Sons Ltd.
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Potentially useful for high-resolution data, where conditional independence
assumption will be violated — though practical relevance is unclear.

Creates no difficulties for inference: xt−1 is treated just like any other covariate in
the state-dependent distribution of Xt .
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Hidden semi-Markov models

in a basic HMM, the duration of a
stay within a state is necessarily
geometrically distributed

⇝ mode is 1 (very often unrealistic!)
0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

geometric

duration of stay

pr
ob

ab
ili

ty

hidden semi-Markov models relax
this restrictive condition: any distribution
on the positive integers can be modelled

⇝ e.g. negative binomial
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⇝ of interest primarily when focus lies on state-switching dynamics
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An N–state hidden semi-Markov model is defined by specifying:

1. N distributions on the positive integers describing how long {St}
stays in any given state (called the state dwell-time distributions)

2. the conditional state trans. prob., given the current state is left:

Pr
(
St+1 = j | St = i,St+1 ̸= i

)
, i, j = 1, . . . ,N, i ̸= j

3. the state-dependent distributions

⇝ much more flexible than standard HMMs, yet very parsimonious in terms of
the number of parameters (N additional parameters if neg. binom. is used)

⇝ of interest primarily when focus lies on state-switching dynamics

⇝ estimation is more challenging and takes some time to implement, by writing
HSMM as an HMM with extended state space
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Hierarchical HMMs

⇝ allows joint modelling of multi-scale data

⇝ statistical inference is relatively straightforward (in theory anyway...)

⇝ lots of difficult modelling decisions, inference can be very unstable
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Coupled HMMs

· · · St−1 St St+1 · · ·

Yt−1 Yt Yt+1

(hidden)

(observed)

Figure 1: Basic structure of a HMM

· · · S
(1)
t−1 S

(1)
t S

(1)
t+1

· · ·

Y
(1)
t−1 Y

(1)
t Y

(1)
t+1

(hidden)

(observed)

· · · S
(2)
t−1 S

(2)
t S

(2)
t+1

· · ·

Y
(2)
t−1 Y

(2)
t Y

(2)
t+1

(hidden)

(observed)

1

⇝ conceptually appealing for modelling interactions

⇝ relatively straightforward to implement

⇝ but number of parameters quickly explodes
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3.3 Continuous-valued state processes
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Motivation

a defining property of HMMs is that their state process takes only a finite
number of values

in some cases,
• the choice of the number of states is relatively straightforward...
• ...and the interpretation of the states is intuitive

however, in general, both can be difficult

additional problem: the number of parameters increases rapidly as the
number of states increases (N2 − N for the t.p.m. alone)

117



0 5 10 20 30 40

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
state 1

number of quakes

0 5 10 20 30 40

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
state 2

number of quakes

0 5 10 20 30 40

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
state 3

number of quakes

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

0

10

20

30

40

50
time series of major earthquake counts (worldwide) and means according to decoded states

m
aj

or
 q

ua
ke

s 
co

un
ts

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure: 3–state Poisson HMM fitted to time series of annual counts of major earthquakes.
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probably no seismological grounds for assuming finitely many states

more intuitive: assume that the rate of occurrence of major earthquakes is
continuous-valued, so that gradual change over the years is possible

we could use an autoregressive process (of order 1) to model those rates:

St = ϕSt−1 + σηt ,

with |ϕ| < 1 (otherwise non-stationary), σ > 0, ηt
iid∼ N (0, 1)
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Continuous-valued state processes — a possible model specification

A simple model allowing for gradual change:

St = ϕSt−1 + σηt

Xt ∼ Poisson
(
βeSt

)

{St} determines occurrence rate of earthquakes (with only two parameters!)

{St} fluctuates around zero, such that the mean of {Xt} fluctuates around β

ϕ controls the strength of the mean-reverting effect

σ controls the variability of the occurrence rates

this is an example of a state-space model (SSM)
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State-space models — general formulation

function of the unknown parameters θð Þ given the observation
sequence x1, . . .,xTð Þ can be calculated at a computational cost
that is (only) linear in T. The parameter vector θ, which is to
be estimated, contains any unknown parameters embedded in
the three model-defining components δ, Γ and P xtð Þ. Made
possible by the relatively simple dependence structure of an
HMM, the forward algorithm traverses along the time series,
updating the likelihood step-by-step while retaining informa-
tion on the probabilities of being in the different states (Zuc-
chini et al., 2016, pp. 37–39). Application of the forward
algorithm is equivalent to evaluating the likelihood using a
simple matrix product expression,

Lðθjx1, :::,xTÞ¼ δP x1ð ÞΓP x2ð Þ⋯ΓP xT�1ð ÞΓP xTð Þ1, (1)

where 1 is a column vector of ones (see Supplementary Tuto-
rial for technical derivation).
In practice, the main challenge when working with HMMs

tends to be the estimation of the model parameters. The two
main strategies for fitting an HMM are numerical maximisation
of the likelihood (Myung, 2003; Zucchini et al., 2016) or Baye-
sian inference (Ellison, 2004; Gelman et al., 2004) using Markov
chain Monte Carlo (MCMC) sampling (Brooks et al., 2011).
The former seeks to identify the parameter values that maximise
the likelihood function (i.e. the maximum likelihood estimates
θ), whereas the latter yields a sample from the posterior distri-
bution of the parameters (Ellison, 2004). Specifically for the
maximum likelihood (ML) approach, the forward algorithm
makes it possible to use standard optimisation methods
(Fletcher, 2013) to directly numerically maximise the likelihood
(eqn 1). An alternative ML approach is to employ an expecta-
tion–maximisation (EM) algorithm that uses similar recursive
techniques to iterate between state decoding and updating the
parameter vector until convergence (Rabiner, 1989). For
MCMC, many different strategies can be used, but these tend
to differ in appropriateness and efficiency in a manner that can
strongly depend on the specific model and data at hand (Gilks
et al., 1996; Gelman et al., 2004; Brooks et al., 2011; Robert
and Casella, 2004).
The forward algorithm and similar recursive techniques can

further be used for forecasting and state decoding, as well as to
conduct formal model checking using pseudo-residuals (Zuc-
chini et al., 2016, Chapters 5 & 6). State decoding is usually
accomplished using the Viterbi algorithm or the forward–back-
ward algorithm (also known as smoothing), which respectively
identify the most likely sequence of states or the probability of
each state at any time t, conditional on the observations. Fortu-
nately, practitioners can often use existing software for most
aspects of HMM-based data analyses and need not dwell on
many of the more technical details of implementation (see

IMPLEMENTATION, CHALLENGES AND PITFALLS
and Supplementary Tutorial).
To illustrate some of the basic mechanics, we use a simple

example based on observations of the feeding behaviour of a
blue whale (Balaenoptera musculus; cf. DeRuiter et al., 2017).
Suppose we assume that observations of the number of feeding
lunges performed in each of T¼ 53 consecutive dives
(Xt∈ 0,1,2, . . .f g for t¼ 1, . . .,T) arise from N¼ 2 states of feed-
ing activity. Building on Fig. 2, we could for example have:

Fig. 3 displays the results for this simple two-state HMM
assuming Poisson state-dependent (observation) distributions,
XtjSt ¼ i∼Poisson λið Þ for i∈ 1,2f g, when fitted to the full
observation sequence via direct numerical maximisation of
eqn 1. The rates of the state-dependent distributions were esti-
mated as λ̂1 ¼ 0:05 and λ̂2 ¼ 2:82, suggesting states 1 and 2
correspond to ‘low’ and ‘high’ feeding activity respectively.
The estimated state transition probability matrix,

suggests interspersed bouts of ‘low’ and ‘high’ feeding activity,
but with bouts of ‘high’ activity tending to span fewer dives.
The estimated initial distribution δ̂¼ 0:75,0:25ð Þ suggests this
individual was more likely to have been in the ‘low’ activity
state at the start of the sequence. Most ecological applications
of HMMs involve more complex inferences related to specific
hypotheses about system state dynamics, and a great strength
of the HMM framework is the relative ease with which the
basic model formulation can be modified to describe a wide
variety of processes (Zucchini et al., 2016, Chapters 9–13).
Next we highlight some extensions that we consider to be
highly relevant in ecological research.

Extensions

The dependence assumptions made within the basic HMM are
mathematically convenient, but not always appropriate (see
Box 2). The Markov property implies that the amount of time
spent in a state before switching to another state – the so-called
sojourn time – follows a geometric distribution. The most likely

Figure 2 Dependence structure of a basic hidden Markov model, with an observed sequence X1, . . .,XT arising from an unobserved sequence of underlying

states S1, . . .,ST.

Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Ecology Letters published by John Wiley & Sons Ltd.
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an SSM is a doubly stochastic process in discrete time, with
• an unobserved state process S1,S2, . . . ,ST (typically continuous-valued)
• and an observed state-dependent process X1,X2, . . . ,XT ,

such that
• f (xt | s1, . . . , st , x1, . . . , xt−1) = f (xt | st )

(conditional independence assumption)
• f (st | s1, . . . , st−1) = f (st | st−1)

(Markov property)

an HMM is in fact a special case of an SSM where the state space is finite
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State-space models — likelihood evaluation

For continuous-valued state processes, the likelihood is

L(θ) = f (x1, . . . , xT )

=

∫
. . .

∫
f (x1, . . . , xT , s1, . . . , sT )dsT . . .ds1

=

∫
. . .

∫
f (x1, . . . , xT | s1, . . . , sT )f (s1, . . . , sT ) dsT . . .ds1

=

∫
. . .

∫
f (s1)f (x1 | s1)

T∏
t=2

f (st | st−1)f (xt | st) dsT . . .ds1

Analogous derivation and structure as for HMMs. But now we are dealing with T
integrals instead of T sums...
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Consider the innermost integral,∫
f (sT | sT−1)f (xT | sT )︸ ︷︷ ︸

def
=g(sT )

dsT

A simple midpoint quadrature gives the approximation∫
g(sT ) dsT ≈

m∑
i=1

h g(b∗
i ) =

m∑
i=1

h f (b∗
i | sT−1)f (xT | b∗

i ),

where b∗
1 , . . . , b

∗
m are the midpoints of the intervals [bi−1, bi ], i = 1, . . . ,m, all of

length h = (bm − b0)/m.

The approximation will be accurate if

m is large
and

g is effectively zero outside the interval [b0, bm].
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By repeated application of midpoint quadrature, we obtain the following
approximation of the likelihood:

L(θ) =
∫
. . .

∫
f (s1)f (x1 | s1)

T∏
t=2

f (st | st−1)f (xt | st)dsT . . .ds1

≈ hT
m∑

i1=1

. . .
m∑

iT =1

f (b∗
i1)f (x1 | b∗

i1)
T∏

t=2

f (b∗
it | b∗

it−1)f (xt | b∗
it ) = Lapprox(θ)

⇝ there are mT summands (and both m and T are large!)

⇝ but the structure of Lapprox(θ) is identical to that of a standard HMM

⇝ numerical integration corresponds to discretisation of the state space —
we’re approximating the SSM by an HMM with very many (namely m) states
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We want to apply the forward algorithm, so we define:

the i–th component of the m–dimensional vector δ(1) to be δi = h f (b∗
i )

(the approximate probability of S1 falling in the interval [bi−1, bi ])

an m × m matrix Γ =
(
γij
)

by specifying γij = h f (b∗
j |b∗

i )
(the approximate probability of St falling into the interval [bj−1, bj ], given that
St−1 is in the interval [bi−1, bi ])

the diagonal matrix P(xt) to be the m × m diagonal matrix with i–th diagonal
entry equal to f (xt | b∗

i )
(an approximation of the density of xt , given that St ∈ [bi−1, bi ])

Putting all the pieces together, we can rewrite the approximate likelihood as:

Lapprox(θ) = δ(1)P(x1)ΓP(x2)ΓP(x3) · · ·ΓP(xT−1)ΓP(xT )1t
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Overview and technical remarks

numerical max. of Lapprox(θ) is feasible for large T and fairly large m

the choices of m and [b0, bm] control the accuracy of the approximation

m needs to be large to provide a good approximation, and [b0, bm] should be
neither too narrow nor too wide

note that the number of model parameters does not depend on m — the
entries of the m × m matrix Γ depend only on the parameters of {St}

all other HMM tools, e.g. Viterbi, are applicable
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Earthquake example — implementation in R

mllk <- function(theta.star, x, m, bm){
phi <- plogis(theta.star[1])
sigma <- exp(theta.star[2])
beta <- exp(theta.star[3])
b <- seq(-bm, bm, length = m + 1) # specify boundaries of m intervals
h <- b[2] - b[1] # h is the length of each interval
bstar <- (b[-1] + b[-(m + 1)]) * 0.5 # midpoints of the m intervals
Gamma <- matrix(0, m, m)
for (i in 1:m){
Gamma[i, ] <- h * dnorm(bstar, phi * bstar[i], sigma) # m*m t.p.m. of the approx. HMM

}
delta <- h * dnorm(bstar, 0, sigma / sqrt(1 - phi^2)) # stat. initial distribution
foo <- delta * dpois(x[1], exp(bstar) * beta)
l <- log(sum(foo))
phi <- foo / sum(foo)
for (t in 2:length(x)){
foo <- phi %*% Gamma * dpois(x[t], exp(bstar) * beta)
l <- l + log(sum(foo))
phi <- foo / sum(foo)

}
return(-l)

}

quakes <- read.table("http://www.rolandlangrock.com/Misc/earthquakes.txt", header = TRUE)

theta.star <- c(qlogis(0.8), log(0.2), log(20))
mod <- nlm(mllk, theta.star, x = quakes$count, m = 200, bm = 1.5, print.level = 2)

c(plogis(mod$estimate[1]), exp(mod$estimate[2]), exp(mod$estimate[3]))
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The code fits the following simple SSM to the series of earthquake counts:

St = ϕSt−1 + σηt

Xt ∼ Poisson
(
βeSt

)
m = 200 and [b0, bm] = [−1.5, 1.5] were used in the approximation

maximum likelihood estimates:

ϕ̂ = 0.89, σ̂ = 0.14, β̂ = 17.8

the variance of the stationary distribution of {St} is σ̂2/(1 − ϕ̂2),
approximately 0.32, which indicates that [b0, bm] is sufficiently wide

estimation takes less than a second!!11

AIC= 670.54 (AIC of 3–state Poisson HMM: 676.92)

11this is remarkable — alternative approaches for fitting SSMs tend to be magnitudes slower
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Illustration of the influence of m and [b0, bm]

Table: SSM fitted to earthquakes data: maximum log-likelihood values obtained for various
values of m and bmax, where −b0 = bm = bmax.

bmax m = 20 m = 40 m = 70 m = 100 m = 200
0.5 −337.61050 −337.66812 −337.68095 −337.68412 −337.68640
1 −332.26895 −332.26918 −332.26924 −332.26925 −332.26926
2 −332.21761 −332.26789 −332.26789 −332.26789 −332.26789
4 – −332.21761 −332.26789 −332.26789 −332.26789

In this application, the likelihood approximation is virtually exact for m = 40,
provided that the specified essential range is neither too small nor too large.
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Viterbi output in the earthquake example
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A second example: Deutsche Bank share returns

−
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             time series of daily returns (Deutsche Bank)
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For modelling share returns using HMMs, we could assume that

Xt |St = j ∼ N (0, σ2
j )

(such that states ∼= levels of nervousness/volatility of the market)
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Figure: 5–state HMM fitted to Deutsche Bank share returns — displayed are the (weighted)
state-dep. normal distributions, N (0, σ2

j ), for j = 1, . . . , 5, and the marginal distribution.
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Figure: Time series of daily returns, colour-coded according to the Viterbi-decoded states
(top plot), and associated “volatility” levels (bottom plot).
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Continuous volatility

The assumption of discrete volatility levels seems rather unrealistic!

Idea: formulate a model where market volatility is continuous-valued.

We will again assume that the volatility at time t — now denoted gt for
consistency with the literature — depends only on the volatility at time t − 1, gt−1.

For example, we can again use an AR(1) process:

gt = ϕgt−1 + σηt , ηt ∼ N (0, 1)
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Basic stochastic volatility (SV) model for share returns:

yt = βϵt e
gt/2, gt = ϕgt−1 + σηt

yt : share return on day t

gt : unobserved volatility, ηt
iid∼ N (0, 1)

ϵt
iid∼ N (0, 1)

β is the baseline standard deviation of the returns (when gt is in equilibrium)

SV models capture most of the ‘stylized facts’ attributed to series of returns
(no autocorrelation, correlation of squared returns, kurtosis > 3, etc.)

For the DB share returns, maximum likelihood estimation yields:

β̂ = 2.1164, ϕ̂ = 0.9897, σ̂ = 0.1397
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time series of daily returns (Deutsche Bank)
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Figure: Comparison between fitted SV model and 5–state Gaussian HMM — displayed in
the bottom two rows are the standard deviations conditional on the decoded states.

136



3.4 HMMs in continuous time
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Sampling schemes and their relevance for HMMs

The discrete-time nature of HMMs means that there needs to be a meaningful
sampling unit w.r.t. which t.p.m. and state-dep. distributions are interpreted:

data collected at regular time intervals (hourly/daily/etc.)

dive-by-dive summary statistics for marine mammals

opportunistic data, e.g. collected whenever a patient visits their doctor X

experience sampling methods, e.g. smartphone push notifications X

For irregular sampling, we may need model formulations in continuous time.
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Motivating example: lung function measurements after lung transplantation
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Figure: Time series for 4 out of 203 patients who had a lung transplantation — shown on
the y axis are measurements of the forced expiratory volume (FEV).

⇝ doctor consultations irregularly spaced in time

⇝ disease progression hence needs to be modelled in continuous time

⇝ additional patterns:
• deterioration of lung function largely irreversible
• death as absorbing state
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From discrete-time to continuous-time Markov chains

Discrete-time Markov chain {St , t = 1, 2, . . .} can be defined as follows:

duration of a stay within a state is geometrically distributed

at the end of such a stay, chain switches to a different state

Natural analogue {St , t ≥ 0} in continuous time:

duration of a stay within a state is exponentially distributed

at the end of such a stay, chain switches to a different state

140



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

time t

S
(t

)

1
2

3

Shown above is an example realisation from a continuous-time Markov chain with
conditional transition probability matrix (given a state is left)

Ω =

0.0 0.3 0.7
0.8 0.0 0.2
0.5 0.5 0.0


and Exp(0.2), Exp(0.5) and Exp(1) dwell-time distrib. in states 1–3, respectively.
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A continuous-time Markov chain {St , t ≥ 0} is a stochastic process
such that

St ∈ {1, . . . ,N} for all t ≥ 0 (i.e. there are N states)

the duration of a stay in state i follows an Exp(λi) distribution

given a transition away from state i , the probability that the process
enters state j is ωij , with ωii = 0 and

∑
j ̸=i ωij = 1

This is one of several possible ways to define a continuous-time Markov chain —
actually not the standard definition, but arguably the most intuitive one.
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Infinitesimal generator matrix

we can interpret λi as the rate of transitions out of state i

out of those transitions, a proportion of ωij go to state j , such that λi · ωij can
be interpreted as the rate of transitions from state i to state j

all these transition rates are summarised in the so-called (infinitesimal)
generator matrix (also called transition intensity matrix):

Q =


−λ1 λ1ω12 λ1ω13 . . .
λ2ω21 −λ2 λ2ω23

λ3ω31 λ3ω32 −λ3

...
. . .

 =


q11 q12 q13 . . .
q21 q22 q23

q31 q32 q33

...
. . .


the diagonal entries are calculated as qii = −

∑
j ̸=i qij , with qij ≥ 0 for i ̸= j

⇝ from the transition rates qij , we can obtain both λi and ωij

⇝ generator matrix completely describes the dynamics of the state process

143



Deriving state transition probabilities from Q

Defining P(t1, t2) as the matrix containing the state transition probabilities over
the period [t1, t2]12, we have the important relation

P(t1, t2) = eQ·(t2−t1),

where e... is the matrix exponential function.

Example:

Q =

−0.2 0.06 0.14
0.4 −0.5 0.1
0.5 0.5 −1

 ⇝ P(0, 5) = eQ·5 =

0.70 0.18 0.12
0.65 0.24 0.11
0.66 0.22 0.12



12 i.e. with pij (t1, t2) = Pr
(

St2 = j|St1 = i
)
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Continuous-time HMMs

�������������	
 ���

St1 St2 St3 St4
. . .

Xt1 Xt2 Xt3 Xt4

St0 = 1 St1 =? St2 = 2 St3 =? . . .

Xt0 = 1 Xt1 = 0 Xt2 = 2 Xt3 = 0

�

Assumptions are analogous to the discrete-time case:

Markov property for the (continuous-time) state process

observations are conditionally independent, given the states
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Likelihood calculation using the forward algorithm

Suppose we want to calculate the likelihood of observations xt1 , xt2 , . . . , xtT .

Consider the (continuous-time version of the) forward variables,

αz(j) = f (xt1 , . . . , xtz , stz = j), αz =
(
αz(1), . . . , αz(N)

)
Forward algorithm (in continuous time):

αt1 = δ(1)P(xt1)

αtz = αtz−1 eQ·(tz−tz−1)P(xtz ) for z = 2, . . . ,T

Resulting closed-form expression for the likelihood:

L(θ) = δ(1)P(xt1)e
Q·(t2−t1)P(xt2)e

Q·(t3−t2)P(xt3) · . . . · eQ·(tT −tT−1)P(xtT )1
t
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Fitted 4–state CT-HMM in the lung transplantation example

Q̂ =


−0.0010 −0.0009 −0.0000 −0.0001
−0.0000 −0.0012 −0.0010 −0.0002
−0.0000 −0.0000 −0.0013 −0.0013
−0.0000 −0.0000 −0.0000 −0.0000



Xt |St = 1 ∼ N (103.9, 15.1)

Xt |St = 2 ∼ N (74.7, 12.4)

Xt |St = 3 ∼ N (39.6, 11.6)

(state 4 is absorbing and indicates death)
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3.5 Nonparametric inference in HMMs
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Why nonparametrically estimate the state-dependent distributions?

state-dependent distributions usually from a class of parametric distributions

finding the “right” distributional family, or even a suitable one, can be difficult
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Why nonparametrically estimate the state-dependent distributions?

state-dependent distributions usually from a class of parametric distributions

finding the “right” distributional family, or even a suitable one, can be difficult
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The true model: highly skewed distributions in both states.
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Consequences of fitting a (misspecified) Gaussian HMM
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Observations from the extreme tails of either of the distributions will then
obviously be allocated to the incorrect state.
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An unfortunate choice of the parametric family can lead to...

...a poor fit and hence poor predictive power

...a mismatch between model states and “true” states

...a bad performance of the state decoding

...invalid inference e.g. on the number of states
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Alternative nonparametric estimation based on P–splines

Represent (state-dependent) densities using B–spline densities:

f (xt |St = i) =
K∑

k=−K

ωk,iϕk(xt)

−100 −50 0 50 100

Figure: Possible set of B–spline densities ϕ−K , . . . , ϕK to be used as basis functions.

Transform constrained parameters ω−K ,i , . . . , ωK ,i to ensure f is a density:

ωk,i =
exp(βk,i)∑K

j=−K exp(βj,i)
with β0,i = 0
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Figure: Unpenalised estimation of a density as linear combination of basis functions.
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Smoothness selection

Tackling the bias-variance trade-off by selecting K is tedious.

Instead, we use a fairly large K (e.g. K = 25), to obtain virtually unlimited
flexibility for capturing complex distributional shapes.

Then we numerically maximise the penalised log-likelihood:

lp(θ,λ) = log
(
L(θ)

)
−

[
N∑

i=1

λi

K∑
k=−K+2

(
∆2ωk,i

)2

]

This penalty approximates the integrated squared second derivatives.
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Figure: Penalised estimation of a density as linear combination of basis functions.

156



observations

de
ns

ity

−60 −40 −20 0 20 40 60

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

state 1 (true distribution)
state 2 (true distribution)
state 1 (estimated distribution)
state 2 (estimated distribution)

Figure: 2–state nonparametric HMM fitted to the simulated data shown earlier.

157



Real-data example: beaked whale dive data
−
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Real-data example: beaked whale dive data

Table: Results of fitting HMMs with normal state-dependent distributions.

#states #param. AIC BIC

3 12 9784.00 9855.59
4 20 9498.16 9617.47
5 30 9400.30 9579.27
6 42 9294.88 9545.43
7 56 9208.04 9542.11
8 72 9129.15 9558.67
9 90 9090.98 9627.87
10 110 9064.53 9720.74
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Beaked whale data — fitted parametric HMM with N = 7

fitted state−dependent distributions ( 7−state parametric HMM)

log(absolute depth displacement)
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Beaked whale data — parametric HMM, N = 3

fitted state−dependent distributions (3−state parametric HMM)
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Beaked whale data — nonparametric HMM with N = 3

fitted state−dependent distributions (3−state nonparametric HMM)

log(absolute depth displacement)
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Nonparametric Markov-switching regression

Consider a general GLM–like Markov-switching regression model

g
(
E(Yt | st , x·t)︸ ︷︷ ︸

µ
(st )
t

)
= η(st )(x·t),

where...

...Yt follows some distribution from the exponential family

...x·t = (x1t , . . . , xPt) is the covariate vector at time t

...g is a suitable link function

...η(st ) is the predictor function given state st

(the form of which will be specified shortly)
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Nonparametric modelling of the predictor

Now consider a GAM–type predictor:

η(st )(x·t) = β
(st )
0 + f (st )

1 (x1t) + f (st )
2 (x2t) + . . .+ f (st )

P (xPt)

We represent each f (i)p as a linear combination of B-spline basis functions,

f (i)p (x) =
K∑

k=1

γipk Bk(x),

and numerically maximise the penalised log-likelihood:

lp(θ,λ) = log
(
L(θ)

)
−

N∑
i=1

P∑
p=1

λip

K∑
k=3

(∆2γipk)
2

inference analogous as for nonparametric HMMs

notably, parametric models are nested special cases (for λ→ ∞)
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Example Spanish energy price ∼ exchange rate & market state

268 Stat Comput (2017) 27:259–270

Fig. 6 Spanish energy prices
example: observed energy price
against Euro/Dollar exchange
rate (gray points), with
estimated state-dependent mean
energy prices (solid lines) for
one-state (blue) and two-state
(green and red) nonparametric
and linear models;
nonparametric models are
shown together with associated
approximate 95 % pointwise
confidence intervals obtained
based on 999 parametric
bootstrap samples (dotted lines).
(Color figure online)
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the forward variables, are approximately standard normally
distributed if the model is adequate (Zucchini and Mac-
Donald 2009). Overall, both models appear to fit the data
adequately. However, for the parametric MS-LIN model
there is some residual autocorrelation, which is often an
indication that more states are required to fully capture the
correlation structure of the time series (under the givenmodel
formulation). No such lack of fit is observed for the MS-
GAM.

4.2 Spanish energy prices

Next we analyze the data collected on the daily price of
energy in Spain between 2002 and 2008. The data, 1784
observations in total, are available in the R package MSwM
(Sanchez-Espigares et al. 2014). We consider the relation-
ship over time between the price of energy, yt , and the
Euro/Dollar exchange rate, xt . The commonly observed sto-
chastic volatility of financial time series renders it unlikely
that the relationship between these two variables is constant
over time, and a possible, computationally efficient way to
account for this is to consider a Markov-switching model.
It is also probable that the two variables’ unknown relation-
ship within a regime has a non-linear functional form. As in
the previous example, in the following we illustrate potential
advantages of considering Markov-switching models with

flexible nonparametric predictor functions, i.e. MS-GAMs,
rather than GAMs or parametric Markov-switching models
when analyzing time series regression data.

To this end, we consider four different models for the
energy price data. As benchmark models, we considered
two parametric models with state-dependent linear predic-
tor β

(st )
0 + β

(st )
1 xt , with one (LIN) and two states (MS-LIN),

respectively, assuming the response variable yt to be nor-
mally distributed with state-dependent variance. Addition-
ally, we considered two nonparametric models as introduced
in Sect. 2.3, with one state (hence a basic GAM) and two
states (MS-GAM), respectively. In these two models, we
assumed yt to be gamma-distributed, applying the log link
function to meet the range restriction for the (positive) mean.

Figure 6 shows the fitted curves for each model. For each
one-state model (GAM and LIN), the mean curve passes
through a region with no data (for values of xt around −1).
This results in response residuals with clear systematic devi-
ation. It is failings such as this which demonstrate the need
for regime-switching models.

Models were also formally compared using an out-of-
sample one-step-ahead forecast evaluation, by means of the
sum of the log-likelihoods of observations yu under the
models fitted to all preceding observations, y1, . . . , yu−1,
considering u = 501, . . . , 1784 (such that models are fit-
ted to a reasonable number of observations). We obtained

123

Figure: Fitted Markov-switching regression models, with linear predictor (left panel) and
with nonparametric effect modelling (right panel), and colours indicating different states.
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Flexible modelling of periodic variation in the state process

General parametric model for periodic variation:

transition probabilities ∼ z′tβ
(ij) +

K∑
k=1

ω
(ij)
k sin

(
2πkt
24

)
+

K∑
k=1

ψ
(ij)
k cos

(
2πkt
24

)

More flexible spline-based model:

transition probabilities ∼ z′tβ
(ij) +

Q∑
q=1

a(ij)
q Bq(t mod 24)

0.
0

0.
2

0.
4

0.
6

time of day

0 4 8 12 16 20 24
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Example: common fruit fly activity data

Figure: Locomotor tubes measuring fly activity as counts of passes of infrared beam.

167



0
50

10
0

15
0

20
0

LD

time of day

ac
tiv

ity
 c

ou
nt

0 4 8 12 16 20 24

0
50

10
0

15
0

20
0

DD

time of day

ac
tiv

ity
 c

ou
nt

0 4 8 12 16 20 24

Figure: Boxplots of the flies’ activity counts over the day, under two different light conditions.
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2–state negative binomial HMM fitted to the fruitfly data

Figure: Estimated state-dependent distribution (multiple lines to indicate random effect
modelling of heterogeneity across flies).
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Figure: Estimated time-varying probability of being in the active state, under different
specifications of the predictor for the transition probabilities (LD on the left, DD on the right).
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Very quick summary at the end

function of the unknown parameters θð Þ given the observation
sequence x1, . . .,xTð Þ can be calculated at a computational cost
that is (only) linear in T. The parameter vector θ, which is to
be estimated, contains any unknown parameters embedded in
the three model-defining components δ, Γ and P xtð Þ. Made
possible by the relatively simple dependence structure of an
HMM, the forward algorithm traverses along the time series,
updating the likelihood step-by-step while retaining informa-
tion on the probabilities of being in the different states (Zuc-
chini et al., 2016, pp. 37–39). Application of the forward
algorithm is equivalent to evaluating the likelihood using a
simple matrix product expression,

Lðθjx1, :::,xTÞ¼ δP x1ð ÞΓP x2ð Þ⋯ΓP xT�1ð ÞΓP xTð Þ1, (1)

where 1 is a column vector of ones (see Supplementary Tuto-
rial for technical derivation).
In practice, the main challenge when working with HMMs

tends to be the estimation of the model parameters. The two
main strategies for fitting an HMM are numerical maximisation
of the likelihood (Myung, 2003; Zucchini et al., 2016) or Baye-
sian inference (Ellison, 2004; Gelman et al., 2004) using Markov
chain Monte Carlo (MCMC) sampling (Brooks et al., 2011).
The former seeks to identify the parameter values that maximise
the likelihood function (i.e. the maximum likelihood estimates
θ), whereas the latter yields a sample from the posterior distri-
bution of the parameters (Ellison, 2004). Specifically for the
maximum likelihood (ML) approach, the forward algorithm
makes it possible to use standard optimisation methods
(Fletcher, 2013) to directly numerically maximise the likelihood
(eqn 1). An alternative ML approach is to employ an expecta-
tion–maximisation (EM) algorithm that uses similar recursive
techniques to iterate between state decoding and updating the
parameter vector until convergence (Rabiner, 1989). For
MCMC, many different strategies can be used, but these tend
to differ in appropriateness and efficiency in a manner that can
strongly depend on the specific model and data at hand (Gilks
et al., 1996; Gelman et al., 2004; Brooks et al., 2011; Robert
and Casella, 2004).
The forward algorithm and similar recursive techniques can

further be used for forecasting and state decoding, as well as to
conduct formal model checking using pseudo-residuals (Zuc-
chini et al., 2016, Chapters 5 & 6). State decoding is usually
accomplished using the Viterbi algorithm or the forward–back-
ward algorithm (also known as smoothing), which respectively
identify the most likely sequence of states or the probability of
each state at any time t, conditional on the observations. Fortu-
nately, practitioners can often use existing software for most
aspects of HMM-based data analyses and need not dwell on
many of the more technical details of implementation (see

IMPLEMENTATION, CHALLENGES AND PITFALLS
and Supplementary Tutorial).
To illustrate some of the basic mechanics, we use a simple

example based on observations of the feeding behaviour of a
blue whale (Balaenoptera musculus; cf. DeRuiter et al., 2017).
Suppose we assume that observations of the number of feeding
lunges performed in each of T¼ 53 consecutive dives
(Xt∈ 0,1,2, . . .f g for t¼ 1, . . .,T) arise from N¼ 2 states of feed-
ing activity. Building on Fig. 2, we could for example have:

Fig. 3 displays the results for this simple two-state HMM
assuming Poisson state-dependent (observation) distributions,
XtjSt ¼ i∼Poisson λið Þ for i∈ 1,2f g, when fitted to the full
observation sequence via direct numerical maximisation of
eqn 1. The rates of the state-dependent distributions were esti-
mated as λ̂1 ¼ 0:05 and λ̂2 ¼ 2:82, suggesting states 1 and 2
correspond to ‘low’ and ‘high’ feeding activity respectively.
The estimated state transition probability matrix,

suggests interspersed bouts of ‘low’ and ‘high’ feeding activity,
but with bouts of ‘high’ activity tending to span fewer dives.
The estimated initial distribution δ̂¼ 0:75,0:25ð Þ suggests this
individual was more likely to have been in the ‘low’ activity
state at the start of the sequence. Most ecological applications
of HMMs involve more complex inferences related to specific
hypotheses about system state dynamics, and a great strength
of the HMM framework is the relative ease with which the
basic model formulation can be modified to describe a wide
variety of processes (Zucchini et al., 2016, Chapters 9–13).
Next we highlight some extensions that we consider to be
highly relevant in ecological research.

Extensions

The dependence assumptions made within the basic HMM are
mathematically convenient, but not always appropriate (see
Box 2). The Markov property implies that the amount of time
spent in a state before switching to another state – the so-called
sojourn time – follows a geometric distribution. The most likely

Figure 2 Dependence structure of a basic hidden Markov model, with an observed sequence X1, . . .,XT arising from an unobserved sequence of underlying

states S1, . . .,ST.
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HMMs constitute a flexible class of statistical models...

for many different types of sequential (time series) data...

...when observations are proxies for underlying system state of interest

Various types of state-space models (also MMPPs!) are closely related,
rendering the intuitive class of HMMs a good starting point in this area.
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Some further reading

Bartolucci et al. (2014), Latent Markov Models for Longitudinal Data, Chapman and
Hall/CRC.

Langrock et al. (2018), Spline-based nonparametric inference in general
state-switching models, Statistica Neerlandica.

McClintock et al. (2020), Uncovering ecological state dynamics with hidden Markov
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Maruotti (2014), Mixed hidden Markov models for longitudinal data: An overview,
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Zucchini et al. (2016), Hidden Markov Models for Time Series: An Introduction Using
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