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Presentation Julie Josse: Stat and ML for bio-sciences

Academic background:
• Engineer and Assistant Professor in Agronomy University (2007-2015)
• Visiting Researcher + Teaching at Stanford University (18 months)
• Professor at Ecole Polytechnique (IP Paris) (2016-2020). Still Teaching
• Visiting Researcher at Google Brain Paris (2019-2020). Still Collaborating
• Senior Researcher at Inria Montpellier (Sept. 2020-)

Research topics:
• Dimensionality reduction to visualize high dimensional heterogeneous data
• Missing values: supervised learning, inference, matrix completion, MNAR
• Causal inference: estimating treatment effect, combining RCT and

observational data, personalized recommendation
• Medical collaborations: Traumabase, IGR, CHU Nancy, Curie, etc.

Implementations - transfert:
• R community: book R for Statistics, R foundation, R Forwards (widen the

participation of minorities), R packages
• Rmisstastic https://rmisstastic.netlify.app/
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Outline

• Lecture 1: Introduction
• Single imputation, Multiple imputation
• Likelihood approaches

• Lecture 2: Low rank methods
• PCA with missing values - (Multiple) Imputation with PCA
• Practice
• MNAR data
• Heterogeneous data

• Lecture 3:
• Supervised learning with missing values

• Random Forest with missing values
• Linear regression with missing values

• Causal inference with missing values
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Outline
1. Introduction
2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization
3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel
4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values
5. Causal Inference with missing values
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Missing values

are everywhere: unanswered questions in a survey, lost data,
damaged plants, machines that fail...

"The best thing to do with missing values is not to have any”

⇒ Still an issue in the "big data" area

Data integration: data from different sources
6



Traumabase

• 30000 patients
• 250 continuous and categorical variables: heterogeneous
• 20 hospitals
• 4000 new patients/ year

Center Accident Age Sex Weight Lactactes BP shock . . .

Beaujon fall 54 m 85 NM 180 yes
Pitie gun 26 m NR NA 131 no

Beaujon moto 63 m 80 3.9 145 yes
Pitie moto 30 w NR Imp 107 no
HEGP knife 16 m 98 2.5 118 no

...
. . .

⇒ Estimate causal effect: Administration of the treatment
"tranexamic acid" on the outcome mortality for trauma brain patients.

Causal Inference (IPW) with covariates with missing values 1

1Doubly robust treatment effect estimation with incomplete confounders. Mayer, Wager, J.
Annals Of Applied Statistics 2020.
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• 20 hospitals
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Center Accident Age Sex Weight Lactactes BP shock . . .

Beaujon fall 54 m 85 NM 180 yes
Pitie gun 26 m NR NA 131 no

Beaujon moto 63 m 80 3.9 145 yes
Pitie moto 30 w NR Imp 107 no
HEGP knife 16 m 98 2.5 118 no

...
. . .

⇒ Explain and Predict platelet levels, hemorrhagic shock given
pre-hospital features

Ex linear, logistic regression/ random forests with covariates with missing
values

⇒ Estimate causal effect: Administration of the treatment
"tranexamic acid" on the outcome mortality for trauma brain patients.

Causal Inference (IPW) with covariates with missing values 1

1Doubly robust treatment effect estimation with incomplete confounders. Mayer, Wager, J.
Annals Of Applied Statistics 2020.
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Missing values
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Different types of missing values
Multilevel data/ data integration: Systematic missing variable in one hospital 8



Contingency tables with side information

• National agency for wildlife and hunting management (ONCFS) data
• Contingency tables: Water (722 wetland sites) - bird (species) count data,
from 1990-2016 in 5 countries in North Africa
• Additional sites & years info: meteo, geographical (altitude, etc.)

⇒ Aims: Assess the effect of time on species abundances;
Monitor the population and assess wetlands conservation policies.
⇒ 70% of missing values in contingency tables 2 3

2 Robin, J, Moulines Sardy. 2019. Low-rank model with covariates for count data with missing
values. Journal of Multivariate Analysis.
3 Robin, Klopp, J, Moulines Tibshirani. Main effects and interactions in mixed and incomplete
data frames. 2019. JASA. 9



Multi-blocks data set

L’OREAL data: 100 000 women in many countries - 300 questions in groups:

• Self-assessment questionnaire: life style, skin and hair characteristics, care
and consumer habits

• Clinical assessments by a dermatologist: facial skin complexion, wrinkles,
scalp dryness, greasiness

• Hair assessments by a hair dresser: abundance, volume, breakage, curly
• Skin and Hair photographs and measurements: sebum quantity, etc.

⇒ Aim: Clustering women for marketing targeting
⇒ Missing values structured by group 4 5

4 Handling missing values in exploratory multivariate data analysis. J., Husson. JSFDS 2012.
5 Handling missing values in Multiple Factor Analysis. J., Husson. FQP 2013. 10



Complete-case analysis
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Deleting rows with missing values?
?lm, ?glm, na.action = na.omit

"One of the ironies of Big Data is that missing data play an ever more
significant role" (R. Sameworth, 2019)

An n × p matrix, each entry is missing with probability 0.01
p = 5 =⇒ ≈ 95% of rows kept
p = 300 =⇒ ≈ 5% of rows kept 11



Distribution of missing values

Missing values mechanisms taxonomy Rubin, 1976
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MCAR - MAR - MNAR

Orange: missing values for Systolic Blood Pressure - Gravity index
(GCS) is always observed

MCAR (completely at random): Proba to be missing does not depend on
SBP neither on gravity
MAR: Proba depends on gravity (we do not measure for too severe patients)
MNAR (not at random): Proba depends on SBP (low SBP not measured)
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Missing values mechanisms

• Random Variables:

• X ∈ Rd : the complete unvailable data
• X̃ ∈ {R ∪ {NA}}p : incomplete data (available)
• M ∈ {0, 1}d : the missing-data pattern

obs(M) (resp. mis(M)) indices of the observed (resp. missing) entries.

• Realizations:

x = (1.1, 2.3, 3.1, 8, 5.27)
x̃ = (1.1,NA,−3.1, 8,NA)
m = (0, 1, 0, 0, 1)
xobs(m) = (1.1, 3.1, 8), xmis(m) = (2.3, 5.27)

MCAR: For all m ∈ {0, 1}d ,P(M = m | X ) = P(M = m)
MAR6: For all m ∈ {0, 1}d ,P(M = m | X ) = P

(
M = m | Xobs(m)

)
6What Is Meant by "Missing at Random"? Seaman, et al. Statistical Science. 2013. 13



Visualization

The first thing to do with missing values (as for any analysis) is descriptive
statistics: Visualization of patterns to get hints on how and why they occur

VIM (M. Templ), naniar (N. Tierney), FactoMineR (Husson et al.)
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MCA factor map

Dim 1 (22.47%)

D
im

 2
 (

11
.1

1%
) Glasgow.initial_m

Mydriase_m

Mannitol.SSH_m

Regression.mydriase.sous.osmotherapie_m

PAS.min_m
PAD.min_m FC.max_m

IOT.SMUR_m

Shock.index.ph_m
Delta.shock.index_m

Right: PAS_m close to PAD_m: Often missing on both PAS & PAD
IOT : nested questions. Q1: yes/no, if yes Q2 - Q4, if no Q2 - Q4 "missing"

Note: Crucial before starting any treatment of missing values and after
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https://rmisstastic.netlify.com/packages/naniar/
http://factominer.free.fr/


Outline
1. Introduction
2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization
3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel
4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values
5. Causal Inference with missing values
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Collaborators on inference/imputation with missing values

• W. Jiang, A. Sportisse, former PhD student at Polytechnique
• F. Husson, Professor Agronomy University (package missMDA, FactoMineR)
• G. Bogdan, Professor Wroclaw. C. Boyer, Associate Professor Sorbonne
• Traumabase project: J.P. Nadal, T. Gauss, S. Hamada

Logistic Regression with Missing Covariates – Parameter Estimation, Model
Selection and Prediction within a Joint-Modeling Framework. (2019). CSDA

Adaptive Bayesian SLOPE - High dimensional Model Selection with Missing
Values. (2020). JCGS.

Estimation and Imputation in Probabilistic Principal Component Analysis with
Missing Not At Random data. Neurips2020.

Missing Data Imputation using Optimal Transport. ICML2020.

Debiasing Stochastic Gradient Descent to handle missing values. Neurips2020. 16

http://factominer.free.fr/course/missing.html
https://www.youtube.com/playlist?list=PLnZgp6epRBbTsZEFXi_p6W48HhNyqwxIu
https://scholar.google.com/citations?hl=en&user=9Ajsxb8AAAAJ&view_op=list_works&sortby=pubdate
http://www.lpsm.paris/pageperso/boyer/


Solutions to handle missing values (M(C)AR)

Books: Schafer (2002), Little & Rubin (2019), Kim & Shao (2013), Carpenter & Kenward (2013),

van Buuren (2018), etc.

Modify the estimation process to deal with missing values
Maximum likelihood: EM algorithm to obtain point estimates +
Supplemented EM (Meng & Rubin, 1991) / Louis formulae for their variability
Ex logistic regression: EM to get β̂ + Louis to get V̂ (β̂)

Cons: Difficult to establish - not many softwares even for simple models
One specific algorithm for each statistical method...

Imputation (multiple) to get a complete data set
Any analysis can be performed
Ex logistic regression: Impute and apply logistic model to get β̂, V̂ (β̂)

Aim: Estimate parameters & their variance from an incomplete data
⇒ Inferential framework
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Mean imputation

• (xi , yi) ∼
i.i.d.
N2((µx , µy ),Σxy )

• 70 % of missing entries completely at random on Y
• Estimate parameters on the mean imputed data

X Y
-0.56 -1.93
-0.86 -1.50
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0.16 0.74
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σ̂y = 1.01
ρ̂ = 0.66
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Mean imputation

• (xi , yi) ∼
i.i.d.
N2((µx , µy ),Σxy )

• 70 % of missing entries completely at random on Y

• Estimate parameters on the mean imputed data

X Y
-0.56 NA
-0.86 NA
..... ...
2.16 0.7
0.16 NA
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ρ̂xy = 0.6
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Mean imputation

• (xi , yi) ∼
i.i.d.
N2((µx , µy ),Σxy )

• 70 % of missing entries completely at random on Y
• Estimate parameters on the mean imputed data
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-0.56 0.01
-0.86 0.01
..... ...
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0.16 0.01
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µy = 0
σy = 1
ρxy = 0.6

µ̂y = 0.01
σ̂y = 0.5
ρ̂ = 0.30

Mean imputation deforms joint and marginal distributions
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Mean imputation is bad for estimation
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−
1.
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5

1.
0

Variables factor map (PCA)

Dim 1 (91.18%)

D
im

 2
 (

4.
97

%
)

LL

LMA

Nmass
Pmass

Amass

Rmass

PCA with mean
imputation
library(FactoMineR)
PCA(ecolo)
Warning message: Missing
are imputed by the mean
of the variable:
You should use imputePCA
from missMDA

EM-PCA
library(missMDA)
imp <- imputePCA(ecolo)
PCA(imp$comp)

J. (2016). miss-
MDA: Handling
Missing Values in
Multivariate Data
Analysis, JSS.

Ecological data: 7 n = 69000 species - 6 traits. Estimated correlation between
Pmass & Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)
7Wright, I. et al. (2004). The worldwide leaf economics spectrum. Nature.
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Imputation methods

• by regression takes into account the relationship: Estimate β - impute
ŷi = β̂0 + β̂1xi ⇒ variance underestimated and correlation overestimated

• by stochastic reg: Estimate β and σ - impute from the predictive
ŷi ∼ N

(
xi β̂, σ̂2) ⇒ preserve distributions

Here β̂, σ̂2 estimated with complete data, but MLE can be obtained with EM
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Imputation with joint model with gaussian distribution

⇒ Assumption joint gaussian model zi = (xi , yi), zi. ∼ N (µ,Σ)

• Bivariate case with missing values on y (stochastic regression):
• estimate β and σ
• impute from the predictive ŷi ∼ N

(
xi β̂, σ̂2

)
• Extension to the multivariate case:

• Estimate µ and Σ from an incomplete data with EM
• Impute by drawing from the conditional distribution
Zmis|Zobs ∼ N (µmis|obs,Σmis|obs)

µmis|obs = E[Xmis] + Σmis,obsΣ−1obs,obs (Xobs − E[Xobs]) .

Σmis|obs = Σmis − Σmis,obsΣ−1obs,obsΣobs,mis . Schur complements.

> library(norm)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> imp <- imp.norm(pre, thetahat, don) 21



Imputation methods for multivariate data

Assuming a joint model

• Gaussian distribution: zi. ∼ N (µ,Σ) (Amelia Honaker, King, Blackwell)

• low rank: Zn×d = µn×d + ε εij
iid∼N

(
0, σ2

)
with µ of low rank k

(softimpute Hastie & Mazuder; missMDA J. & Husson, mimi 8)

• latent class - nonparametric Bayesian (dpmpm Reiter)
• deep learning using variational autoencoders (MIWAE, Mattei, 2018, VAEAC

Ivanov et al., 2019), using GAN (GAIN, Yoon et al. 2018)

Using conditional models (joint implicitly defined)

• with logistic, multinomial, poisson regressions (mice van Buuren)

• iterative impute each variable by random forests (missForest Stekhoven)

Imputation for categorical, mixed, blocks/multilevel data 9, etc.
⇒ Rmistatic platform, more than 150 packages10

8J. et al. Main effects and interactions in mixed and incomplete data frames. (2018) JASA.
9J. et al. 2018. Imputation of mixed data with multilevel SVD. . JCGS
10J., et al. https://cran.r-project.org/web/views/MissingData.html

22

https://gking.harvard.edu/amelia
https://rmisstastic.netlify.com/
https://cran.r-project.org/web/views/MissingData.html


Outline
1. Introduction
2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization
3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel
4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values
5. Causal Inference with missing values
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Single imputation methods: Danger!
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Confidence interval for a mean

Let Y = (Y1, . . . ,Yn)′ be i.i.d. independent Gaussian random with
expectation µy and variance σ2y > 0.

• The empirical mean Ȳ = n−1
∑n

i=1 Yi

• Ȳ ∼ N (µy , σ2y/n)
• A confidence interval for µ

P
(
Ȳ − σy√

n
z1−α/2 ≤ µ ≤ Ȳ + σy√

n
z1−α/2

)
= 1− α

Variance unknown:
√
n

σ̂y

(
Ȳ − µy

)
∼ T (n − 1)

[
ȳ − σ̂y√

n
qt1−α/2(n − 1) , ȳ + σ̂y√

n
qt1−α/2(n − 1)

]
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Confidence interval for a mean

Let Y = (Y1, . . . ,Yn)′ be i.i.d. independent Gaussian random with
expectation µy and variance σ2y > 0.

• The empirical mean Ȳ = n−1
∑n

i=1 Yi

• Ȳ ∼ N (µy , σ2y/n)
• A confidence interval for µ

P
(
Ȳ − σy√

n
z1−α/2 ≤ µ ≤ Ȳ + σy√

n
z1−α/2

)
= 1− α

Variance unknown:
√
n

σ̂y

(
Ȳ − µy

)
∼ T (n − 1)

[
ȳ − σ̂y√

n
qt1−α/2(n − 1) , ȳ + σ̂y√

n
qt1−α/2(n − 1)

]
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Simulation

1 Generate bivariate Gaussian data (µy = 0, σy = 1, ρ = 0.6)
2 Put missing values on y
3 Imput missing entries
4 Compute the confidence interval of µy - count if the true value
µy = 0 is in the confidence interval

5 Repeat the steps 1-4, 10000 times

⇒ Give the coverage

26



Single imputation methods: Danger![
ȳ − qtn−1 σ̂y√n ; ȳ − qtn−1 σ̂y√n

]
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The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

⇒ Standard errors of the parameters (σ̂µ̂y ) calculated from the imputed data
set are underestimated
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⇒ Standard errors of the parameters (σ̂µ̂y ) calculated from the imputed data
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⇒ Standard errors of the parameters (σ̂µ̂y ) calculated from the imputed data
set are underestimated
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CIµy95%

0.01
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0.59
70.8

The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

⇒ Standard errors of the parameters (σ̂µ̂y ) calculated from the imputed data
set are underestimated
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Underestimation of variance

Classical confidence interval for µy
[
ȳ − qtn−1 σ̂y√n ; ȳ − qtn−1 σ̂y√n

]
Asymptotic variance with MCAR values (Little & Rubin, 2019. p158):

σ̂2y
nobs

(
1− ρ̂2 n − nobs

nobs

)
=
σ̂2y
n

(
1 + n − nobs

nobs
(1− ρ̂2)

)
⇒ When the ρ = 1, we trust the prediction and the coverage given by
stochastic regression is OK.

⇒ Coverage of single imputation is too low: need to take into account
the uncertainty associated to the predictions.
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Single imputation: Underestimation of the variability

⇒ Incomplete Traumabase

X1 X2 X3 ... Y
NA 20 10 ... shock
-6 45 NA ... shock
0 NA 30 ... no shock
NA 32 35 ... shock
-2 NA 12 ... no shock
1 63 40 ... shock

⇒ Completed Traumabase

X1 X2 X3 ... Y
3 20 10 ... shock
-6 45 6 ... shock
0 4 30 ... no shock
-4 32 35 ... shock
-2 75 12 ... no shock
1 63 40 ... shock

A single value can’t reflect the uncertainty of prediction
Multiple impute 1) Generate M plausible values for each missing value
X1 X2 X3 Y
3 20 10 s
-6 45 6 s
0 4 30 no s
-4 32 35 s
-2 75 12 no s
1 63 40 s

X1 X2 X3 Y
-7 20 10 s
-6 45 9 s
0 12 30 no s
13 32 35 s
-2 10 12 no s
1 63 40 s

X1 X2 X3 Y
7 20 10 s
-6 45 12 s
0 -5 30 no s
2 32 35 s
-2 20 12 no s
1 63 40 s

library(mice); mice(traumadata)
library(missMDA); MIPCA(traumadata)
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Multiple imputation

1) Generate M plausible values for each missing value
X1 X2 X3 Y
3 20 10 s
-6 45 6 s
0 4 30 no s
-4 32 35 s
1 63 40 s
-2 15 12 no s

X1 X2 X3 Y
-7 20 10 s
-6 45 9 s
0 12 30 no s
13 32 35 s
1 63 40 s
-2 10 12 no s

X1 X2 X3 Y
7 20 10 s
-6 45 12 s
0 -5 30 no s
2 32 35 s
1 63 40 s
-2 20 12 no s

2) Perform the analysis on each imputed data set: β̂m, V̂ar
(
β̂m

)
3) Combine the results (Rubin’s rules):

β̂ = 1
M

M∑
m=1

β̂m

T = 1
M

M∑
m=1

V̂ar
(
β̂m

)
+
(
1 + 1

M

)
1

M − 1

M∑
m=1

(
β̂m − β̂

)2
imp.mice <- mice(traumadata)
lm.mice.out <- with(imp.mice, glm(Y ~ ., family = "binomial"))

⇒ Variability of missing values taken into account 30



Multiple imputation

1 Generating M imputed data sets
First idea: several stochastic regression
for m = 1, ...,M, draw ŷi from the predictive N (xi β̂, σ̂2)

2 Performing the analysis on each imputed data set
3 Combining: variance = within + between imputation variance

M = 1 M = 50
µy = 0 0.01 0.01
σy = 1 0.99 0.99
ρ = 0.6 0.59 0.59
CIµy95% 70.8 81.8

⇒ Variability of the parameters is missing: "improper" imputation
⇒ Prediction variance = estimation variance plus noise
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Regression: variance of prediction

yn+1 = x ′n+1β + εn+1

ŷn+1 = x ′n+1β̂

β̂ = (X ′X )−1X ′Y

V [ŷn+1 − yn+1] = V [x ′n+1(β̂ − β)− εn+1]
= x ′n+1V (β̂ − β)xn+1 + σ2]
= σ̂2

(
x ′n+1(X ′X )−1xn+1 + 1

)
CI for the prediction[

x ′n+1β̂ +−tn−p(1− α/2)σ̂
√(

x ′n+1(X ′X )−1xn+1 + 1
)]

32



Multiple imputation continuous data: bivariate case

⇒ Proper multiple imputation with yi = xiβ + εi

1 Variability of the parameters, M plausible: (β̂)1, ..., (β̂)M

⇒ Bootstrap
⇒ Posterior distribution: Data Augmentation (Tanner & Wong, 1987)

2 Noise: for m = 1, ...,M, missing values ŷmi are imputed by drawing
from the predictive distribution N (xi β̂m, (σ̂2)m)

Improper Proper
CIµy95% 0.818 0.935
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Multiple imputation

⇒ Aim: provide estimation of the parameters and of their variability
(taken into account the variability due to missing values)

Single imputation: a single value can’t reflect the uncertainty of
prediction ⇒ underestimate the standard errors

1 Generating M imputed data sets: variance of prediction
(F̂ û′)ij (F̂ û′)1ij + ε

1

ij (F̂ û′)2ij + ε
2

ij
(F̂ û′)3ij + ε

3

ij (F̂ û′)Bij + ε
B
ij

"1) Variance of estimation of the parameters + 2) Noise"

2 Performing the analysis on each imputed data set11, 12

3 Combining: variance = within + between imputation variance
β̂ = 1

M
∑M

m=1 β̂m T = 1
M
∑

V̂ar
(
β̂m
)

+
(
1 + 1

M

) 1
M−1

∑(
β̂m − β̂

)2
11The analysis model may be "in agreement" with the imputation model: congeniality.
12Little & Rubin. 2019. Statistical Analysis with Missing Data, 3rd Edition. Wiley
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ij (F̂ û′)2ij + ε
2

ij
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Joint modeling

⇒ Hypothesis zi. ∼ N (µ,Σ)

Algorithm Expectation Maximization Bootstrap:

1 Bootstrap rows: Z 1, ... , ZM

EM algorithm: (µ̂1, Σ̂1), ... , (µ̂M , Σ̂M)

2 Imputation: ẑmimiss drawn from N
(
µ̂m, Σ̂m

)
Easy to parallelized. Implemented in Amelia (website)

Amelia Earhart

James Honaker Gary King Matt Blackwell
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Fully conditional modeling 13

13 van Buuren. 2018. Flexible Imputation of Missing Data. Second Edition. CRC Press
36



Fully conditional modeling: one model/variable

1 Initial imputation: mean imputation
2 For a variable j

2.1 (β̂−j , σ̂−j) drawn from a Bootstrap: (β̂−j , σ̂−j)1, ..., (β̂−j , σ̂−j)M

2.2 Imputation of the missing values in variable j with a model of Xj on
the other X−j : stochastic regression imputation from
N
(

(xi,−j)′β̂−j , σ̂−j
)

3 Cycling through variables

⇒ Iteratively refine the imputation.

⇒ With continuous variables & regression/variable: gibbs N (µ,Σ) 14 15

Implemented in mice (website) and Python∗

“There is no clear-cut method for determining whether
the MICE algorithm has converged” Stef van Buuren

* IterativeImputer by default does single imputation with iterative ridge regression
14 Monte Carlo statistical methods (Robert, Casella, 2004) (p344),
15 The EM algorithm and extensions (McLachlan, et al. 1998) (p243)

37
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Single Iterative Random Forests Imputation 16

1 Initial imputation: mean imputation - random category
Sort the variables according to the amount of missing values

2 Fit a RF X obs
j on variables X obs

−j and then predict Xmiss
j

3 Cycling through variables

4 Repeat step 2.2 and 3 until convergence

• number of trees: 100
• number of variables randomly selected at each node

√
d

• number of iterations: 4-5

Implemented in the R package missForest

16Stekhoven, Buhlmann. 2012. MissForest - non-parametric missing value imputation for
mixed-type data. Bioinformatics
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Joint versus Conditional modeling

⇒ Imputed values are both seen as draws from a Joint distribution

Conditional modeling takes the lead?

• Flexible: one model/variable. Easy to deal with interactions and
variables of different nature (binary, ordinal, categorical...)

• Many statistical models are conditional models
• Tailor to your data
• Super powerful in practice

⇒ Drawbacks: one model/variable... tedious? Computational costly.

What to do with high correlation or when n < p

• JM shrinks the covariance Σ + kI (selection of k?)
• CM: ridge regression or predictors selection/variable
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Outline
1. Introduction
2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization
3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel
4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values
5. Causal Inference with missing values
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Ignorable missing values mechanism

• The full joint data distribution of (Z ,M) with density p(z ,m|θ, φ) 17

• The (full) observed distribution 18 :

p(zobs,m; θ, φ) =
∫

p(z ,m; θ, φ)dzmis

=
∫

p(z ; θ)p(m|z ;φ)dzmis

• With M(C)AR data:

p(zobs,m; θ, φ) =
∫

p(z ; θ)p(m|zobs;φ)dzmis,

= p(m|zobs;φ)
∫

p(z ; θ)dzmiss,

= p(m|zobs;φ)p(zobs; θ).

⇒ Likelihood inference can be based on p(zobs; θ)
17We assume separability of θ and φ
18zobs(m) is denoted zobs 41



Expectation - Maximization (Dempster et al., 1977)

Rationale to get ML estimates: max the observed data likelihood Lobs(θ)
through max of Lcomp(θ). Augment the data to simplify the problem.

E step (conditional expectation):

Q(θ, θ`) =
∫

log(p(z ; θ))p(zmiss |zobs ; θ`)dzmiss

M step (maximization):

θ`+1 = argmaxθQ(θ, θ`)

Result: when θ`+1 max Q(θ, θ`) then Lobs(θ`+1) ≥ Lobs(θ`).
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Estimation of the mean and covariance matrix

Ex: Hypothesis zi. ∼ N (µ,Σ)

⇒ Point estimates with EM:
> library(norm)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> getparam.norm(pre,thetahat)

Exercice: EM with bivariate data

⇒ Variances:

• Supplemented EM (Meng, 1991), Louis formulae
• Bootstrap approach:

• Bootstrap rows: Z 1, ... , ZB

• EM algorithm: (µ̂1, Σ̂1), ... , (µ̂B , Σ̂B)
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Logistic regression with missing covariates: Parameter estima-
tion, model selection and prediction (Jiang, J., et al, CSDA, 2018)

x = (xij) a n × d matrix of quantitative covariates
y = (yi) an n-vector of binary responses {0, 1}

Logistic regression model: P (yi = 1|xi ;β) =
exp(β0+

∑d
j=1
βjxij )

1+exp(β0+
∑d

j=1
βjxij )

Covariables: xi ∼
i.i.d.
Nd(µ,Σ)

Log-likelihood with θ = (µ,Σ, β) :
LL(θ; x , y) =

∑n
i=1

(
log(p(yi |xi ;β)) + log(p(xi ;µ,Σ))

)
.

X1 X2 X3 ... Y
NA 20 10 ... shock
-6 45 NA ... shock
0 NA 30 ... no shock
NA 32 35 ... shock
1 63 40 ... shock
-2 NA 12 ... no shock
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Logistic regression model: P (yi = 1|xi ;β) =
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Log-likelihood with θ = (µ,Σ, β) :
LL(θ; x , y) =

∑n
i=1

(
log(p(yi |xi ;β)) + log(p(xi ;µ,Σ))

)
.

X1 X2 X3 ... M1 M2 M3 ... Y
NA 20 10 ... 1 0 0 ... shock
-6 45 NA ... 0 0 1 ... shock
0 NA 30 ... 0 1 0 ... no shock
NA 32 35 ... 1 0 0 ... shock
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Stochastic Approximation EM - package misaem

argmaxLL(θ; xobs, y) =
∫
LL(θ; x , y)dxmis

• E-step: Evaluate the quantity

Q(θ, θ`) = E[LL(θ; x , y)|xobs, y ; θ`]

=
∫
LL(θ; x , y)p(xmis|xobs, y ; θ`)dxmis

• M-step: θ`+1 = argmaxθQ(θ, θ`)

⇒ Unfeasible computation of expectation

MCEM (Wei & Tanner, 1990): Generate samples of missing data from
p(xmis|xobs, y ; θ`) and replace the expectation by an empirical mean

⇒ Require a huge number of samples

SAEM (Lavielle, 2014) almost sure convergence to MLE (Metropolis Hasting
- Variance estimation with Louis formulae).

Unbiased estimates: β̂1, . . . , β̂d - V̂ (β̂1), . . . , V̂ (β̂d) - good coverage 45



Stochastic Approximation EM

Starting from an initial guess θ0, the kth iteration consists of three steps:

• Simulation: For i = 1, 2, · · · , n, draw one sample x (k)
i,mis from

p(xi,mis|xi,obs, yi ; θk−1).

• Stochastic approximation: Update the function Q

Qk(θ) = Qk−1(θ) + γk

(
LL(θ; xobs, x (k)

mis, y)− Qk−1(θ)
)
,

where (γk) is a decreasing sequence of positive numbers.

• Maximization: θk = argmaxθ Qk(θ).

Convergence: Allassonniere et al. 2010)
The choice of the sequence (γk) is important for ensuring the almost sure
convergence of SAEM to a MLE.
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Convergence: Allassonniere et al. 2010)
The choice of the sequence (γk) is important for ensuring the almost sure
convergence of SAEM to a MLE.
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Metropolis-Hastings algorithm

Target distribution

fi(xi,mis) = p(xi,mis|xi,obs, yi ; θ)

∝ p(yi |xi ;β) p(xi,mis|xi,obs;µ,Σ).

Proposal distribution gi(xi,mis) = p(xi,mis|xi,obs;µ,Σ)

xi,mis|xi,obs ∼ Np(µi ,Σi)

µi = µi,mis + Σi,mis,obsΣ−1i,obs,obs(xi,obs − µi,obs),

Σi = Σi,mis,mis − Σi,mis,obsΣ−1i,obs,obsΣi,obs,mis,

Metropolis

• z (k)
im ∼ gi(xi,mis), u ∼ U [0, 1]

• r = fi (z
(k)
im )/gi (z

(k)
im )

fi (z
(k)
i,m−1)/gi (z

(k)
i,m−1)

• If u < r , accept z (k)
im

Only need a few steps of Markov chains in each iteration of SAEM!
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Variance estimation

Observed Fisher information matrix (FIM) wrt β

I(θ) = −∂
2LL(θ; xobs, y)

∂θ∂θT
.

Louis formula

I(θ) =− E
(
∂2LL(θ; x , y)

∂θ∂θT

∣∣xobs, y ; θ
)

− E
(
∂LL(θ; x , y)

∂θ

∂LL(θ; x , y)T

∂θ

∣∣xobs, y ; θ
)

+ E
(
∂LL(θ; x , y)

∂θ
|xobs, y ; θ

)
E
(
∂LL(θ; x , y)

∂θ
|xobs, y ; θ

)T

.

Given the MH samples of unobserved data (x (m)
i,mis, 1 ≤ i ≤ n, 1 ≤ m ≤ M) , and

the SAEM estimate θ̂
⇒ Estimate FIM by empirical means.
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Model selection: criterion BIC

With p̃θ the number of estimated parameters in a given modelM,
model selection criterion (penalized likelihood) :

BIC(M) = −2LL(θ̂M; xobs, y) + log(n)d(M),

How to estimate observed likelihood ?

p(yi , xi,obs; θ) =
∫

p(yi , xi,obs|xi,mis; θ)p(xi,mis; θ)dxi,mis

=
∫

p(yi , xi,obs|xi,mis; θ) p(xi,mis; θ)
gi(xi,mis) gi(xi,mis)dxi,mis

= Egi

(
p(yi , xi,obs|xi,mis; θ) p(xi,mis; θ)

gi(xi,mis)

)
.

Sample from gi (the proposal distribution in SAEM)
⇒ Empirical mean.
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Comparison with competitors: estimates

x : d = 5, n = 1000 / n = 10 000 ⇒ y ∈ {0, 1}
percentage of missingness = 10%.
Repeat 1000 times for each setting.
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Comparison with competitors: coverage

Table 1: Coverage (%) for n = 10 000, calculated over 1000 simulations.

parameter no NA CC mice SAEM

β0 95.2 94.4 95.2 94.9
β1 96.0 94.7 93.9 95.1
β2 95.5 94.6 94.0 94.3
β3 94.9 94.3 86.5 94.7
β4 94.6 94.2 96.2 95.4
β5 95.9 94.4 89.6 94.7
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Figure 1: Distribution of the estimated standard errors of β̂3 obtained under
MCAR; for each method, the red point corresponds to the empirical standard
deviation of β̂3 calculated over the 1000 simulations.
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Comparison with competitors: execution time

Table 2: Comparison of execution time between no NA, MCEM, mice, and
SAEM with n = 1000 calculated over 1000 simulations.

Execution time (seconds) no NA MCEM mice SAEM

min 2.87× 10−3 492 0.64 9.96
mean 4.65× 10−3 773 0.70 13.50
max 43.50× 10−3 1077 0.76 16.79
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Application on TraumaBase

• 6384 patients, 14 variables, percentage of NA from 0 to 60%
• Prediction of hemoragic shock
• Selection of 8 variables, interpretation of coefficients (age, low
glasgow score positive effect)

> library(misaem)
> reg <- miss.glm(y~., data = don)
> regBIC <- miss.glm.model.select(don$y, subset(don,-c("y")))
> pr.saem <- predict(reg, newdata = dontest)
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Take home message inference/imputation

• Few implementation of EM strategies

"The idea of imputation is both seductive and dangerous”. It is

seductive because it can lull the user into the pleasurable state of believing that the data are

complete after all, and it is dangerous because it lumps together situations where the problem is

sufficiently minor that it can be legitimately handled in this way and situations where standard

estimators applied to the imputed data have substantial biases.” (Dempster & Rubin, 1983)

• Single imputation aims at completing a dataset as best as possible

• Multiple imputation aims at estimating the parameters and their
variability taking into account the uncertainty of the missing values

• Single imputation can be appropriate for point estimates

• Both % of NA & structure matter (5% of NA can be an issue)
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Take home message inference/imputation

⇒ Challenges with multiple imputation

• Multiple imputation in high dimension ?
• Aggregating lasso regressions
• Aggregating different models
• Theory with other asymptotic small n, large p ?

⇒ Other contributions:

Bogdan, J. et al. 2020. Adaptive Bayesian SLOPE - High dimensional
Model Selection with Missing Values. JCGS.

Muzelec, Cuturi, Boyer, J. 2020. Missing Data Imputation using Optimal
Transport. ICML.
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Outline
1. Introduction
2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization
3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel
4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values
5. Causal Inference with missing values
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PCA (complete)

Find the subspace that best represents the data

Figure 2: Camel or dromedary?

⇒ Best approximation with projection
⇒ Best representation of the variability
⇒ Do not distort the distances between observations 58



PCA (complete)

Find the subspace that best represents the data

Figure 2: Camel or dromedary? source J.P. Fénelon

⇒ Best approximation with projection
⇒ Best representation of the variability
⇒ Do not distort the distances between observations 58



PCA reconstruction
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⇒ Minimizes distance between observations and their projection
⇒ Approx Xn×p with a low rank matrix S < p ‖A‖22 = tr(AA>):

argminµ
{
‖X − µ‖22 : rank (µ) ≤ S

}

SVD X : µ̂PCA = Un×SΛ
1
2
S×SV

′

p×S

= Fn×SV
′

p×S

F = UΛ 1
2 PC - scores

V principal axes - loadings
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Missing values in PCA

⇒ PCA: least squares

argminµ
{
‖Xn×p − µn×p‖22 : rank (µ) ≤ S

}

⇒ PCA with missing values: weighted least squares

argminµ
{
‖Wn×p � (X − µ)‖22 : rank (µ) ≤ S

}
with Wij = 0 if Xij is missing, Wij = 1 otherwise; � elementwise
multiplication

Many algorithms: weighted alternating least squares (Gabriel & Zamir,
1979); iterative PCA (Kiers, 1997)
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Iterative PCA
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Initialization ` = 0: X 0 (mean imputation)
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Iterative PCA
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Iterative PCA
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Iterative PCA

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5    NA
2.0  1.98

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5  0.00
2.0  1.98

x1    x2
-1.98 -2.04
-1.44 -1.56
0.15 -0.18
1.00  0.57
2.27  1.67

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5  0.57
2.0  1.98

-2 -1 0 1 2 3

-2
-1

0
1

2
3

x1

x2

Steps are repeated until convergence
61



Iterative PCA
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PCA on the completed data set → (U`,Λ`,V `)
Missing values imputed with the fitted matrix µ̂` = U`Λ1/2`V `′
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Iterative PCA

Iterative PCA/SVD algorithm

1 initialization ` = 0: X 0 (mean imputation)
2 step `:

(a) PCA on the completed data → (U`,Λ`,V `);
S dimensions kept

(b) missing values are imputed with (µ̂S)` = U`Λ1/2`V `′

the new imputed data is X̂ ` = W � X + (1−W )� (µ̂S)`

3 steps of estimation and imputation are repeated

⇒ µ̂ from incomplete data: EM algo X = µ+ ε, εij
iid∼N

(
0, σ2

)
with µ of low rank , xij =

∑S
s=1

√
λ̃s ũis ṽjs + εij

⇒ Completed data: good imputation (matrix completion, Netflix)

Reduction of variability (imputation by UΛ1/2V ′)

Selecting S? Generalized cross-validation 19

19J. & Husson, 2012. Selecting the number of components in PCA using cross-validation
approximations. CSDA. 62
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Overfitting

Overfitting when:

• many parameters (Un×S , VS×p)/ the number of observed values: S
large, many NA

• data are very noisy

⇒ "Trust too much the relationship between variables"

Remarks:

• missing values: special case of small data set
• iterative PCA: prediction method

Solution:
⇒ Regularization
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Soft thresholding iterative SVD

⇒ Init - estimation - imputation steps:

The imputation step

µ̂PCAij =
S∑

s=1

√
λsuisvjs

is replaced by 20

µ̂Softij =
p∑

s=1

(√
λs − λ

)
+
uisvjs

X = µ+ ε argminµ
{
‖W � (X − µ)‖22 + λ‖µ‖?

}
,

with ‖µ‖?, the nuclear norm, i.e. the sum of its singular values.

Implemented in softImpute

20T. Hastie, R. Mazumber, 2015, Matrix Completion and Low-Rank SVD via Fast Alternating
Least Squares. JMLR.
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Regularized iterative PCA

The imputation step

µ̂PCAij =
S∑

s=1

√
λsuisvjs

is replaced by 21,22, 23 :

µ̂rPCAij =
S∑

s=1

(
λs − σ̂2

λs

)√
λsuisvjs =

S∑
s=1

(√
λs −

σ̂2√
λs

)
uisvjs

σ2 small → regularized PCA ≈ PCA
σ2 large → mean imputation

σ̂2 = RSS
ddl =

n
∑p

s=S+1 λs

np − p − nS − pS + S2 + S (Xn×p;Un×S ;Vp×S)

Implemented in missMDA (Youtube link)

21J., Husson. 2012. Handling missing values in exploratory multivariate data analysis. JSFDS.
22Verbank, J., Husson. 2013. Regularised PCA to denoise and visualise data Stat & Computing.
23Rationale: L2+L0 penalty, empirical bayes Efron Moris, 1979, PPCA 65

https://www.youtube.com/playlist?list=PLnZgp6epRBbQzxFnQrcxg09kRt-PA66T_


Properties

⇒ Powerful methods for matrix completion used in recommandation
systems (ex Netflix prize: 99% missing)
⇒ Very good quality of imputation. Using similarities between
observations and relationship between variables + reduction of dim

Model makes sense 24: Data = structure of rank S + noise

⇒ Different noise regime 25, 26

• low noise: iterative PCA (tuning S: CV - GCV)
• moderate: iterative regularized PCA (tuning S: CV - GCV, σ)
• high noise (SNR low, S large): soft thresholding (tuning λ: CV, σ)
Implemented in denoiseR 27

Imputed data should be analysed with caution by other methods

24Udell & Townsend. 2019. Why Are Big Data Matrices Approximately Low Rank? SIAM.
25J. & Sardy. 2015. Adaptive Shrinkage of singular values. Stat & Computing.
26J. & Wager. 2016. Stable Autoencoding: A Flexible Framework for Regularized Low-Rank
Matrix Estimation. JMLR.
27J. Wager, Sardy. 2016: denoiseR: A Package for Low Rank Matrix Estimation.
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Random Forests versus PCA

Feat1 Feat2 Feat3 Feat4 Feat5...
C1 1 1 1 1 1
C2 1 1 1 1 1
C3 2 2 2 2 2
C4 2 2 2 2 2
C5 3 3 3 3 3
C6 3 3 3 3 3
C7 4 4 4 4 4
C8 4 4 4 4 4
C9 5 5 5 5 5
C10 5 5 5 5 5
C11 6 6 6 6 6
C12 6 6 6 6 6
C13 7 7 7 7 7
C14 7 7 7 7 7
Igor 8 NA NA 8 8
Frank 8 NA NA 8 8
Bertrand 9 NA NA 9 9
Alex 9 NA NA 9 9
Yohann 10 NA NA 10 10
Jean 10 NA NA 10 10
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Random forests versus PCA

Feat1 Feat2 Feat3 Feat4 Feat5...
C1 1 1 1 1 1
C2 1 1 1 1 1
C3 2 2 2 2 2
C4 2 2 2 2 2
C5 3 3 3 3 3
C6 3 3 3 3 3
C7 4 4 4 4 4
C8 4 4 4 4 4
C9 5 5 5 5 5
C10 5 5 5 5 5
C11 6 6 6 6 6
C12 6 6 6 6 6
C13 7 7 7 7 7
C14 7 7 7 7 7
Igor 8 NA NA 8 8
Frank 8 NA NA 8 8
Bertrand 9 NA NA 9 9
Alex 9 NA NA 9 9
Yohann 10 NA NA 10 10
Jean 10 NA NA 10 10

Missing

Feat1 Feat2 Feat3 Feat4 Feat5
1 1.0 1.00 1 1
1 1.0 1.00 1 1
2 2.0 2.00 2 2
2 2.0 2.00 2 2
3 3.0 3.00 3 3
3 3.0 3.00 3 3
4 4.0 4.00 4 4
4 4.0 4.00 4 4
5 5.0 5.00 5 5
5 5.0 5.00 5 5
6 6.0 6.00 6 6
6 6.0 6.00 6 6
7 7.0 7.00 7 7
7 7.0 7.00 7 7
8 6.87 6.87 8 8
8 6.87 6.87 8 8
9 6.87 6.87 9 9
9 6.87 6.87 9 9
10 6.87 6.87 10 10
10 6.87 6.87 10 10

missForest

Feat1 Feat2 Feat3 Feat4 Feat5
1 1 1 1 1
1 1 1 1 1
2 2 2 2 2
2 2 2 2 2
3 3 3 3 3
3 3 3 3 3
4 4 4 4 4
4 4 4 4 4
5 5 5 5 5
5 5 5 5 5
6 6 6 6 6
6 6 6 6 6
7 7 7 7 7
7 7 7 7 7
8 8 8 8 8
8 8 8 8 8
9 9 9 9 9
9 9 9 9 9
10 10 10 10 10
10 10 10 10 10

imputePCA

⇒ Imputation inherits from the method: RF (computationaly costly)
good for non linear relationships / PCA good for linear relationships
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Multiple imputation with Bootstrap PCA 28

xij = µij + εij =
S∑

s=1

√
λ̃s ũis ṽjs + εij , εij ∼ N (0, σ2)

1 Variability of the parameters, M plausible: (µ̂ij)1, ..., (µ̂ij)M

2 Noise: for m = 1, ...,M, missing values xmij drawn N (µ̂mij , σ̂2)

Implemented in missMDA (website)

François Husson

28J. Pages. Husson. 2011. Multiple imputation in principal component analysis. ADAC.
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Visualization of the imputed values

X1 X2 X3 Y
3 20 10 s
-6 45 6 s
0 4 30 no s
-4 32 35 s
-2 15 12 no s
1 63 40 s

X1 X2 X3 Y
-7 20 10 s
-6 45 9 s
0 12 30 no s
13 32 35 s
-2 10 12 no s
1 63 40 s

X1 X2 X3 Y
7 20 10 s
-6 45 12 s
0 -5 30 no s
2 32 35 s
-2 20 12 no s
1 63 40 s
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Supplementary projection

Dim 1 (71.33%)
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)

1
2

3

4

5

6

7
8

910
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12

library(missMDA)
MIPCA(traumadata)

Percentage of NA?
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Joint, conditional and PCA

⇒ Good estimates of the parameters and their variance from an incomplete
data (coverage close to 0.95)
The variability due to missing values is well taken into account

Amelia & mice have difficulties with large correlations or n < p
missMDA does not but requires a tuning parameter: number of dim.

Amelia & missMDA are based on linear relationships
mice is more flexible (one model per variable)

MI based on PCA works in a large range of configuration, n < p, n > p strong
or weak relationships, low or high percentage of missing values
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Simulations

The simulated data N (µ,Σ)
• vary number of obs. n, variables p, correlation ρ
• vary %NA, missing values mechanism (MCAR, MAR) 0000

0000

0.80.80.80.8

0.80.80.80.8

0.80.80.80.8

0.80.80.80.8

⇒ Multiple imputation M = 100 imputed tables with PCA, JM, CM

⇒ Analysis model: estimate θ1 = E [Y ] , θ2 = β1 (regression coefficient)

⇒ Combine with Rubin’s rule: θ̂ = 1
M
∑M

m=1 θ̂m

T = 1
M
∑

m V̂ar
(
θ̂m

)
+ 1

M−1
∑

m

(
θ̂m − θ̂

)2
Assess Bias, CI width & coverage - 1000 simulations
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Outline
1. Introduction
2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization
3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel
4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values
5. Causal Inference with missing values
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Incomplete ozone

maxO3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 maxO3v
0601 87 15.6 18.5 18.4 4 4 8 NA -1.7101 -0.6946 84
0602 82 NA 18.4 17.7 5 5 7 NA NA NA 87
0603 92 NA 17.6 19.5 2 5 4 2.9544 1.8794 0.5209 82
0604 114 16.2 NA NA 1 1 0 NA NA NA 92
0605 94 17.4 20.5 NA 8 8 7 -0.5 NA -4.3301 114
0606 80 17.7 NA 18.3 NA NA NA -5.6382 -5 -6 94
0607 NA 16.8 15.6 14.9 7 8 8 -4.3301 -1.8794 -3.7588 80
0610 79 14.9 17.5 18.9 5 5 4 0 -1.0419 -1.3892 NA
0611 101 NA 19.6 21.4 2 4 4 -0.766 NA -2.2981 79
0612 NA 18.3 21.9 22.9 5 6 8 1.2856 -2.2981 -3.9392 101
0613 101 17.3 19.3 20.2 NA NA NA -1.5 -1.5 -0.8682 NA
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0919 NA 14.8 16.3 15.9 7 7 7 -4.3301 -6.0622 -5.1962 42
0920 71 15.5 18 17.4 7 7 6 -3.9392 -3.0642 0 NA
0921 96 NA NA NA 3 3 3 NA NA NA 71
0922 98 NA NA NA 2 2 2 4 5 4.3301 96
0923 92 14.7 17.6 18.2 1 4 6 5.1962 5.1423 3.5 98
0924 NA 13.3 17.7 17.7 NA NA NA -0.9397 -0.766 -0.5 92
0925 84 13.3 17.7 17.8 3 5 6 0 -1 -1.2856 NA
0927 NA 16.2 20.8 22.1 6 5 5 -0.6946 -2 -1.3681 71
0928 99 16.9 23 22.6 NA 4 7 1.5 0.8682 0.8682 NA
0929 NA 16.9 19.8 22.1 6 5 3 -4 -3.7588 -4 99
0930 70 15.7 18.6 20.7 NA NA NA 0 -1.0419 -4 NA
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Complete ozone

maxO3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 maxO3v
20010601 87.000 15.600 18.500 20.471 4.000 4.000 8.000 0.695 -1.710 -0.695 84.000
20010602 82.000 18.505 20.870 21.799 5.000 5.000 7.000 -4.330 -4.000 -3.000 87.000
20010603 92.000 15.300 17.600 19.500 2.000 3.984 3.812 2.954 1.951 0.521 82.000
20010604 114.000 16.200 19.700 24.693 1.000 1.000 0.000 2.044 0.347 -0.174 92.000
20010605 94.000 18.968 20.500 20.400 5.294 5.272 5.056 -0.500 -2.954 -4.330 114.000
20010606 80.000 17.700 19.800 18.300 6.000 7.020 7.000 -5.638 -5.000 -6.000 94.000
20010607 79.000 16.800 15.600 14.900 7.000 8.000 6.556 -4.330 -1.879 -3.759 80.000
20010610 79.000 14.900 17.500 18.900 5.000 5.000 5.016 0.000 -1.042 -1.389 99.000
20010611 101.000 16.100 19.600 21.400 2.000 4.691 4.000 -0.766 -1.026 -2.298 79.000
20010612 106.000 18.300 22.494 22.900 5.000 4.627 4.495 1.286 -2.298 -3.939 101.000
20010613 101.000 17.300 19.300 20.200 7.000 7.000 3.000 -1.500 -1.500 -0.868 106.000
.....

20010915 69.000 17.100 17.700 17.500 6.000 7.000 8.000 -5.196 -2.736 -1.042 71.000
20010916 71.000 15.400 18.091 16.600 4.000 5.000 5.000 -3.830 0.000 1.389 69.000
20010917 60.000 15.283 18.565 19.556 4.000 5.000 4.000 0.000 3.214 0.000 71.000
20010918 42.000 14.091 14.300 14.900 8.000 7.000 7.000 -2.500 -3.214 -2.500 60.000
20010919 65.000 14.800 16.425 15.900 7.000 7.982 7.000 -4.341 -6.062 -5.196 42.000
20010920 71.000 15.500 18.000 17.400 7.000 7.000 6.000 -3.939 -3.064 0.000 65.000
20010924 76.000 13.300 17.700 17.700 5.631 5.883 5.453 -0.940 -0.766 -0.500 65.139
20010925 75.573 13.300 18.434 17.800 3.000 5.000 5.001 0.000 -1.000 -1.286 76.000
20010927 77.000 16.200 20.800 20.499 5.368 5.495 5.177 -0.695 -2.000 -1.473 71.000
20010928 99.000 18.074 22.169 23.651 3.531 3.610 3.561 1.500 0.868 0.868 93.135
20010929 83.000 19.855 22.663 23.847 5.374 5.000 3.000 -4.000 -3.759 -4.000 99.000
20010930 70.000 15.700 18.600 20.700 7.000 6.405 7.000 -2.584 -1.042 -4.000 83.000

> library(missMDA)
> res.comp <- imputePCA(ozo[, 1:11])
> res.comp$comp
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Pattern visualization
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> library(VIM)
> aggr(don, sortVar = TRUE)
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Visualization
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> library(VIM)
> matrixplot(don, sortby = 2)
> marginplot(don[ ,c("T9", "maxO3")])
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Visualization with Multiple Correspondence Analysis

⇒ Create the missingness matrix

> mis.ind <- matrix("o", nrow = nrow(don), ncol = ncol(don))
> mis.ind[is.na(don)] = "m"
> dimnames(mis.ind) = dimnames(don)
> mis.ind

maxO3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 maxO3v
20010601 "o" "o" "o" "m" "o" "o" "o" "o" "o" "o" "o"
20010602 "o" "m" "m" "m" "o" "o" "o" "o" "o" "o" "o"
20010603 "o" "o" "o" "o" "o" "m" "m" "o" "m" "o" "o"
20010604 "o" "o" "o" "m" "o" "o" "o" "m" "o" "o" "o"
20010605 "o" "m" "o" "o" "m" "m" "m" "o" "o" "o" "o"
20010606 "o" "o" "o" "o" "o" "m" "o" "o" "o" "o" "o"
20010607 "o" "o" "o" "o" "o" "o" "m" "o" "o" "o" "o"
20010610 "o" "o" "o" "o" "o" "o" "m" "o" "o" "o" "o"
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Visualization with Multiple Correspondence Analysis
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maxO3v_m

maxO3v_o

> library(FactoMineR)
> resMCA <- MCA(mis.ind)
> plot(resMCA, invis = "ind", title = "MCA graph of the categories")
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Imputation with PCA in practice

⇒ Step 1: Estimation of the number of dimensions
> library(missMDA)
> nb <- estim_ncpPCA(don, method.cv = "Kfold")
> nb$ncp #2
> plot(0:5, nb$criterion, xlab = "nb dim", ylab ="MSEP")
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Imputation with PCA in practice

⇒ Step 2: Imputation of the missing values
> res.comp <- imputePCA(don, ncp = 2)
> res.comp$completeObs[1:3, ]

maxO3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 maxO3v
0601 87 15.60 18.50 20.47 4 4.00 8.00 0.69 -1.71 -0.69 84
0602 82 18.51 20.88 21.81 5 5.00 7.00 -4.33 -4.00 -3.00 87
0603 92 15.30 17.60 19.50 2 3.98 3.81 2.95 1.97 0.52 82
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Cherry on the cake: PCA on incomplete data!
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> imp <- cbind.data.frame(res.comp$completeObs, ozo[, 12])
> res.pca <- PCA(imp, quanti.sup = 1, quali.sup = 12)
> plot(res.pca, hab = 12, lab = "quali"); plot(res.pca, choix = "var")
> res.pca$ind$coord #scores (principal components)
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Imputation for continuous data

> library(softImpute)
> fit1 <- softImpute(XNA, rank = , lambda = )
> X.soft <- complete(XNA, fit1)

> library(denoiseR)
> adaNA <- imputeada(XNA, gamma = 1) ## time consuming...
> X.ada <- adaNA$completeObs

83



Multiple imputation in practice

⇒ Step 1: Generate M imputed data sets
> library(Amelia)
> res.amelia <- amelia(don, m = 100)

> library(mice)
> res.mice <- mice(don, m = 100, defaultMethod = "norm.boot")

> library(missMDA)
> res.MIPCA <- MIPCA(don, ncp = 2, nboot = 100)
> res.MIPCA$res.MI
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Multiple imputation in practice

⇒ Step 2: visualization
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> library(Amelia)
> res.amelia <- amelia(don, m = 100)
> compare.density(res.amelia, var = "T12")
> overimpute(res.amelia, var = "maxO3")

> library(missMDA)
res.over <- Overimpute(res.MIPCA)

function stripplot in mice
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Multiple imputation in practice

⇒ Step 2: visualization

⇒ Individuals position (and variables) with other predictions

Supplementary 
projectionPCA

Regularized iterative PCA
⇒ reference configuration 86



Multiple imputation in practice

⇒ Step 2: visualization
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Multiple imputation in practice

⇒ Step 2: visualization

⇒ Individuals position (and variables) with other predictions

Supplementary 
projectionPCA

Regularized iterative PCA
⇒ reference configuration 86



Multiple imputation in practice

⇒ Step 2: visualization
> res.MIPCA <- MIPCA(don, ncp = 2)
> plot(res.MIPCA, choice = "ind.supp"); plot(res.MIPCA, choice = "var")
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O.candied.fruit
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Attack.intensity
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Oxidation
Smoothness

Aroma.intensityAroma.persistency

Visual.intensity
Grade

Surface.feeling

⇒ Percentage of NA?
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Multiple imputation in practice

⇒ Step 3. Regression on each table and pool the results

β̂ = 1
M
∑M

m=1 β̂m

T = 1
M
∑

m V̂ar
(
β̂m

)
+
(
1 + 1

M
) 1

M−1
∑

m

(
β̂m − β̂

)2
> library(mice)
> res.mice <- mice(don, m = 100)
> imp.micerf <- mice(don, m = 100, defaultMethod = "rf")
> lm.mice.out <- with(res.mice, lm(maxO3 ~ T9+T12+T15+Ne9+...+Vx15+maxO3v))
> pool.mice <- pool(lm.mice.out)
> summary(pool.mice)

est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
(Intercept) 19.31 16.30 1.18 50.48 0.24 -13.43 52.05 NA 0.46 0.44
T9 -0.88 2.25 -0.39 26.43 0.70 -5.50 3.75 37 0.71 0.69
T12 3.29 2.38 1.38 27.54 0.18 -1.59 8.18 33 0.70 0.68
....
Vx15 0.23 1.33 0.17 39.00 0.87 -2.47 2.93 21 0.57 0.55
maxO3v 0.36 0.10 3.65 46.03 0.00 0.16 0.56 12 0.50 0.48
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Outline
1. Introduction
2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization
3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel
4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values
5. Causal Inference with missing values
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Low rank estimation with MNAR data

X ∈ Rn×p noisy realisation of a low-rank matrix µ ∈ Rn×p:

X = µ+ ε,where
{

µ with rank S < min{n, p},
εi
⊥⊥∼ N (0n, σ2In×n),∀i ∈ [1, n] .

99K Access only to the missing-data matrix Y �M,

• How to estimate µ ?
• How to impute the unknown entries of X ?

Data distribution

p(xij ;µij) = (2πσ2)−1/2 exp
(
−1
2

(xij − µij

σ

)2
)
.

MNAR missing-data mechanism via a Logistic Model
∀i ∈ [1, n], φj = (φ1j , φ2j) denoting a parameter vector:

p(Mij |xij ;φ) = [(1 + e−φ1j (xij−φ2j ))−1](1−Mij )[1− (1 + e−φ1j (xij−φ2j ))−1]Mij

 self-masked MNAR : the lack only depends on the value itself.
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Method 1: EM algo with MNAR (self-mask logistic)29

MAR (ignorable): maximize the observed penalized log-likelihood

µ̂ ∈ argminµ‖(X − µ)�M‖22 + λ‖µ‖?,

Algo: iterative soft-thresholding SVD (ISTA), accelerated version: FISTA

MNAR (non ignorable) L(µ, φ; xobs,m) =
∫
p(x ;µ)p(m|x ;φ)dxmis.

• E-step:
Q(µ, φ|µ̂(/ell), φ̂(`)) = −EXmis

[
`(µ, φ; x , µ)|Xobs,M;µ = µ̂(`), φ = φ̂(t)

]
• M-step:

µ̂(`+1), φ̂(`+1) ∈ argminµ,φ Q(µ, φ|µ̂(t), φ̂(`)) + λ‖µ‖?

• E-step: Monte-Carlo approximation and SIR algorithm.
• M-step: Separability of Q:

• µ: softImpute, FISTA.
• φ: Newton-Raphson algorithm.

⇒ Computationally costly, few variables with MNAR.
29Sportisse, Boyer, J. 2018. Low-rank estimation with missing non at random data. Statistics &
Computing.
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Method 2: implicitly modelling the mechanism

Add the mask !


X1 X2

1 2
3 NA

NA 4


︸ ︷︷ ︸

µ

→


X1 X2 M1 M2

1 2 0 0
3 NA 0 1

NA 4 1 0


︸ ︷︷ ︸

Θ

Solve the classical MAR optimization problem

Θ̂ ∈ argminΘ
1
2‖ [(1−M)� X |M] −[M|1]�Θ‖22 + λ‖Θ‖?,

• softImpute, FISTA.
• taking into account the mask binary type, with a Penalized
Iteratively Reweighted Least Squares algorithm 30.

Computationally efficient but no theoretical guaranties.
30Robin, Klopp, J, Moulines Tibshirani. Main effects and interactions in mixed and incomplete
data frames. 2019. JASA.
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Outline
1. Introduction
2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization
3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel
4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values
5. Causal Inference with missing values
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Categorical data

Questionnaire data from health institute http://www.inpes.sante.fr

region sex age year edu drunk alcohol glasses
Ile de France :8120 F:29776 18_25: 6920 2005:27907 E1:12684 0 :44237 <1/m :12889 0 : 2812
Rhone Alpes :5421 M:23165 26_34: 9401 2010:25034 E2:23521 1-2 : 4952 0 : 6133 0-2:37867
Provence Alpes :4116 35_44:10899 E3:6563 10-19: 839 1-2/m: 7583 10+: 590
Nord Pas de Calais :3819 45_54: 9505 E4:10100 20-29: 212 1-2/w: 9526 3-4: 9401
Pays de Loire :3152 55_64: 9503 NA:73 3-5 : 1908 3-4/w: 6815 5-6: 1795
Bretagne :3038 65_+ : 6713 30+ : 404 5-6/w: 3402 7-9: 391
(Other) :25275 6-9 : 389 7/w : 6593 NA: 85

binge Pbsleep Tabac
<2/m:10323 Never:20605 Frequent : 9176
0 :34345 Often: 10172 Never :39080
1/m : 6018 Rare :22134 Occasional: 4588
1/w : 1800 NA: 30 NA: 97
7/w : 374
NA : 81

Principal components method to explore categorical data: Multiple
Correpondence Analysis31

31M. Greenacre’s books, MCA and related methods. 2006. Chapman and Hall/CRC.
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Multiple Correspondence Analysis (MCA)

Xn×m m categorical variables coded with dummies in An×Cj , with Cj the tot
number of categories. For a category c, its frequency: pc = nc/n.

y . . . attack
y . . . attack
y . . . attack
n . . . suicide

X =

n . . . accident
n . . . suicide

1 0 . . . 1 0 0
1 0 . . . 1 0 0
1 0 . . . 1 0 0
0 1 . . . 0 1 0

A =

0 1 . . . 0 0 1
0 1 . . . 0 1 0

p1 0
Dp =

. . .

0 pJ

MCA: A SVD on weighted matrix: Z = 1√
mn (A− 1pT )D−1/2p = UΛV ′

The principal component (F = UΛ1/2) satisfies:

argmax
F∈Rn

1
m

m∑
j=1

η2(F ,Xj)

η2(F ,Xj) =
∑Cj

c=1 nc(F̄c − F̄ )2∑n
i=1

∑Cj
c=1(Fic − F̄ )2

= Between variance
Total variance

Benzecri, 1973 :"In data analysis the mathematical problems reduces to computing eigenvectors;

all the science (the art) is in finding the right matrix to diagonalize"
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Regularized iterative MCA 32

Iterative MCA algorithm:

1 initialization: imputation of the indicator matrix (proportion)

2 iterate until convergence

(a) estimation: MCA on the completed data → U,Λ,V
(b) imputation with the fitted matrix µ̂ = USΛ1/2

S V ′S
(c) column margins are updated

library(missMDA); ?imputeMCA

32J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence
Analysis. Journal of classification.
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(a) estimation: MCA on the completed data → U,Λ,V

(b) imputation with the fitted matrix µ̂ = USΛ1/2
S V ′S

(c) column margins are updated

library(missMDA); ?imputeMCA
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Regularized iterative MCA 32

Iterative MCA algorithm:

1 initialization: imputation of the indicator matrix (proportion)

2 iterate until convergence
(a) estimation: MCA on the completed data → U,Λ,V
(b) imputation with the fitted matrix µ̂ = USΛ1/2

S V ′S
(c) column margins are updated

V1 V2 V3 … V14 V1_a V1_b V1_c V2_e V2_f V3_g V3_h …
ind 1 a NA g … u ind 1 1 0 0 0.71 0.29 1 0 …
ind 2 NA f g u ind 2 0.12 0.29 0.59 0 1 1 0 …
ind 3 a e h v ind 3 1 0 0 1 0 0 1 …
ind 4 a e h v ind 4 1 0 0 1 0 0 1 …
ind 5 b f h u ind 5 0 1 0 0 1 0 1 …
ind 6 c f h u ind 6 0 0 1 0 1 0 1 …
ind 7 c f NA v ind 7 0 0 1 0 1 0.37 0.63 …

… … … … … … … … … … … … … …
ind  1232 c f h v ind 1232 0 0 1 0 1 0 1 …

⇒ the imputed values can be seen as degree of membership
library(missMDA); ?imputeMCA

32J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence
Analysis. Journal of classification.
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Regularized iterative MCA 32

Iterative MCA algorithm:

1 initialization: imputation of the indicator matrix (proportion)

2 iterate until convergence
(a) estimation: MCA on the completed data → U,Λ,V
(b) imputation with the fitted matrix µ̂ = USΛ1/2

S V ′S
(c) column margins are updated

Two ways to obtain categories: majority or draw
library(missMDA); ?imputeMCA

32J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence
Analysis. Journal of classification.
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Multiple imputation with MCA33

1 Variability of the parameters: M sets (Un×S ,ΛS×S ,V>m×S) using a
non-parametric bootstrap

X̂1 X̂2 X̂M
1 0 . . . 1 0 0
1 0 . . . 1 0 0
1 0 . . .

0.01 0.80 0.19

0.25 0.75
0 0 1

0 1 0 0 1

1 0 . . . 1 0 0
1 0 . . . 1 0 0
1 0 . . .

0.60 0.2 0.20

0.26 0.74
0 0 1

0 1 0 0 1

. . .

1 0 . . . 1 0 0
1 0 . . . 1 0 0
1 0 . . .

0.11 0.74 0.06

0.20 0.80
0 0 1

0 1 0 0 1

2 Categories drawn from multinomial disribution using the values in(
X̂m

)
1≤m≤M

y . . . Attack
y . . . Attack
y . . .

Suicide

n
. . . Accident

n . . . S

y . . . Attack
y . . . Attack
y . . .

Attack

n
. . . Accident

n . . . B

. . .

y . . . Attack
y . . . Attack
y . . .

Suicide

n
. . . Accident

n . . . Suicide

library(missMDA); MIMCA()

33Audigier, Husson, J. MIMCA: Multiple imputation for categorical variables with multiple
correspondence analysis. 2017. Statistic & Computing.
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Multiple imputation for categorical data

Joint modeling

• Log-linear model (Schafer, 1997) (cat): pb many levels
• Latent class models (Vermunt, 2014) - nonparametric Bayesian (Si &

Reiter, 2014, Murray & Reiter, 2016) (MixedDataImpute, NPBayesImpute,
NestedCategBayesImpute)

Conditional modeling

• logistic, multinomial logit, forests (mice)

⇒ MIMCA provides valid inference (ex. logistic reg with missing) applied
to data of various size (many levels, rare levels)

Time (seconds) Titanic Galetas Income
rows-variables-levels (2000 - 4 - 4) (1000 - 4 -11) (6000 - 14 - 9)
MIMCA 2.750 8.972 58.729
Loglinear 0.740 4.597 NA
Nonparametric bayes 10.854 17.414 143.652
Cond logistic 4.781 38.016 881.188
Cond forests 265.771 112.987 6329.514
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Categorical imputation in practice

• 1232 respondents, 14 questions, 35 categories, 9% of missing values
concerning 42% of respondents

In missMDA (Youtube)

data(vnf)
summary(vnf)
MCA(vnf)

#1) select the number of components
nb <- estim_ncpMCA(vnf, ncp.max = 5) #Time-consuming, nb = 4

#2) Impute the indicator matrix
res.impute <- imputeMCA(vnf, ncp = 4)
res.impute$tab.disj
res.impute$comp
summary(res.impute$comp)

# MCA on the incomplete data vnf
res.mca <- MCA(vnf, tab.disj = res.impute$tab.disj)
plot(res.mca, invisible=c("var"))
plot(res.mca,invisible=c("ind"),autoLab="yes", selectMod="cos2 5", cex = 0.6)
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Categorical imputation in practice

• 1232 respondents, 14 questions, 35 categories, 9% of missing values
concerning 42% of respondents
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Categorical imputation in practice

• 1232 respondents, 14 questions, 35 categories, 9% of missing values
concerning 42% of respondents
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Regularized iterative MCA: categories
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Regularized iterative MCA: subjects
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Comparison with respect to the imputation

• Mixed data: imputation with Factorial Analysis for Mixed Data34 FAMD.35

• Comparison with Random Forest imputation with RMSE for continuous data
& proportion of falsely classified entries for categorical data.

34F. Husson, et. al. 2017. Exploratory Multivariate Analysis by Example Using R. Chapman &
Hall.
35Audigier, Husson, J. 2016. A principal components method to impute mixed data. ADAC.
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Comparison with respect to the imputation

Imputations with PC methods are appropriate

• for strong linear relationships
• for categorical variables
• especially for rare categories (weights of MCA)

⇒ Tuning: number of components S (Cross-Validation)

Imputations with RF are appropriate

• for strong non-linear relationships between continuous variables
• when there are interactions

⇒ No tuning parameters?

Rq: categorical data improve the imputation on continuous data and
continuous data improve the imputation on categorical data

102



Comparison with respect to the imputation

Imputations with PC methods are appropriate

• for strong linear relationships
• for categorical variables
• especially for rare categories (weights of MCA)

⇒ Tuning: number of components S (Cross-Validation)

Imputations with RF are appropriate

• for strong non-linear relationships between continuous variables
(cutting continuous variables into categories)

• when there are interactions (creating interactions)

⇒ No tuning parameters?

Rq: categorical data improve the imputation on continuous data and
continuous data improve the imputation on categorical data 102



Mixed imputation in practice

> library(missMDA)
> res.ncp <- estim_ncpFAMD(ozo)
> res.famd <-imputeFAMD(ozo, ncp = 2)
> res.famd$completeObs

> library(missForest)
> res.rf <- missForest(ozo)
> res.rf$ximp
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Missing values in multi-source, multi-scale data

Clinical Data Biological Data Questionnaire on lifestyle
X1 .... Xp W Y Z1 ..... Zq .... C1 ... Cr

1 NA ....
Obs
Hospital 1

NA NA ...

NA ...
n1 NA NA ...
1 NA NA ... NA NA

Obs
Hospital 2

NA NA NA NA NA NA NA ...

NA NA ... NA NA NA
n2 NA NA ...

... ... ... ... ... ... ... ... ... ... ... ... ... ...
1 NA NA NA ... NA

Obs
Hospital K

NA ... NA

NA .... NA
nK NA .... NA
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Ex of missing values per group of variables: Journal impact
factors

Data from journalmetrics.com

443 journals (Computer Science, Statistics, Probability and
Mathematics),
15 years,
3 types of measures:

• IPP - Impact Per Publication: like the ISI impact factor but for 3
(rather than 2) years.

• SNIP - Source Normalized Impact Per Paper: Tries to weight by the
number of citations per subject field to adjust for different citation
cultures.

• SJR - SCImago Journal Rank: Tries to capture average prestige per
publication.

Many missing values per block of years.
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Multiple Factor Analysis (MFA) with missing values 36
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36Husson, J. 2013. Handling missing values in Multiple Factor Analysis. FQP.
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Multiple Factor Analysis (MFA) with missing values 36
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Multiple Factor Analysis (MFA) with missing values 36
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Multiple Factor Analysis (MFA) with missing values 36

ACM Transactions on Networking trajectory
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MFA imputation in practice

> library(denoiseR)
> library(missMDA)
> data(impactfactor)
> year=NULL; for (i in 1: 15) year= c(year, seq(i,45,15))
> res.imp <- imputeMFA(impactfactor, group = rep(3, 15), type = rep("s", 15))

##
> res.mfa <-MFA(res.imp$completeObs, group=rep(3,15), type=rep("s",15),
name.group=paste("year", 1999:2013,sep="_"),graph=F)

plot(res.mfa, choix = "ind", select = "contrib 15", habillage = "group", cex = 0.7)
points(res.mfa$ind$coord[c("Journal of Statistical Software",
"Journal of the American Statistical Association", "Annals of Statistics"),
1:2], col=2, cex=0.6)
text(res.mfa$ind$coord[c("Journal of Statistical Software"), 1],
res.mfa$ind$coord[c("Journal of Statistical Software"), 2],cex=1,
labels=c("Journal of Statistical Software"),pos=3, col=2)

plot.MFA(res.mfa,choix="var", cex=0.5,shadow=TRUE, autoLab = "yes")

plot(res.mfa, select="IEEE/ACM Transactions on Networking",
partial="all",
habillage="group",unselect=0.9,chrono=TRUE)
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Multilevel component analysis for group of observations

Ex: inhabitants nested within countries X ∈ RK×J

• similarities between countries? level 1
• similarities between inhabitants within each country?
level 2

• relationship between variables at each level

i

I

1

1

k1

1

1

kI

ki

1 J

Xi

XI

X1

xijki = x.j. + (xij. − x.j.) + (xijki − xij.)
Between + Within

Analysis of variance: split the sum of squares for each variable j

I∑
i=1

ki∑
k=1

(xijki )2 =
I∑

i=1
ki(x.j.)2 +

I∑
i=1

ki(xij. − x.j.)2 +
I∑

i=1

ki∑
k=1

(xijki − xij.)2
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Multilevel PCA (MLPCA)

⇒ Model for the between and within part i = 1, ..., I groups, J var

Xi(ki×J) = 1kim′ + 1kiF b′
i V b′ + Fw

i V w ′ + Ei

• F b
i (Qb × 1) between component scores of group i

• V b (J × Qb) between loading matrix
• Fw

i (ki × Qw ) within component scores of group i
• Vw (J × Qw ) within loading matrix. Constant across groups

Fitted by minimizing the least squares 37

argmin(m,F b
i ,V b ,Fw

i ,V w )

I∑
i=1

∥∥∥Xi − 1kim′ − 1kiF b′
i V b′ − Fw

i V w ′
∥∥∥2 ,

∑I
i=1 kiF b

i = 0Qb and 1′kiF
w
i = 0Qw , ∀i for identifiability.

37Timmerman. 2006. Multilevel component analysis. Br J Math Stat Psychol.
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MLPCA - quantitative data

i = 1, ..., I groups, J var, ki nb obs in group i

argmin(m,Fb
i ,V

b ,Fw
i ,V

w )

I∑
i=1

∥∥∥Xi − 1kim
′ − 1kiF

b′
i V b′ − Fw

i V w′
∥∥∥2 ,

∑I
i=1 kiF

b
i = 0Qb and 1′kiF

w
i = 0Qw , ∀i for identifiability.

(F̂ b, V̂ b): Weigthed PCA on the between part: SVD on DwXm; Xm (I × J) the
means of the variables per group, Dw (I × I) Dw ii =

√
ki

(F̂w , V̂ w ) PCA on the within part: SVD on the centered data per group
Xw (K × J), K =

∑
i ki

⇒ With missing values: Weighted Least Squares

⇒ Iterative imputation algorithm (imputation - estimation)
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Iterative MLPCA

2. iteration `: estimation of the between structure
• SVD DwX`m = PDQ′; Qb eigenvectors are kept:

F̂ b
i = [D−1w PQb ]i , F̂ b concatenation by row of [1ki F̂ b

i ]
V̂ b = QQbDQb , (J × Qb)

• the between hat matrix is computed: (X̂b)` = F̂ bV̂ b′

3. iteration `: imputation of the missing values with the fitted values
• X̂` = 1K m̂(`−1)′ + (X̂b)` + (X̂w )(`−1). The newly imputed dataset is

X` = W � X + (1K × 1′J −W )� X̂`

• m̂` is computed on X`

4. iteration `: estimation of the within structure
• SVD (Xw )` = PDQ′; Qw eigenvectors are kept:

Fw = PQw (K × Qw )
Vw = QQwDQw (J × Qw )

• the within hat matrix is computed (X̂w )` = F̂w V̂w′

5. iteration `: imputation of the missing values with the fitted values

• X`+1 = W � X + (1K × 1′J −W )�
(
1K m̂(`)′ + (X̂b)` + (X̂w )`

)
• m̂`+1 is computed on X`+1 111



Simulations design

The simulated data:

• Xi(ki×J) = 1kim′ + 1kiF b′
i V b′ + Fw

i V w ′ + Ei , with Eijki ∼ N (0, σ)
• 5 groups, 10 variables, Qb = 2, Qw = 2

Many scenarios are considered:

• number of individuals per group: 10-20, 70-100
• level of noise: low, strong
• percentage of missing values: 10%, 25%, 40%
• missing values mechanism: MCAR, MAR

⇒ Prediction error: 1
KJ
∑

(xijki − ˆxijki )2
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Comparison with competitors in terms of imputation

• Conditional model with random effect regression 38, implemented in
micemd

• Random forests imputation
• Global PCA - Separate PCA on each table
• Global mixed PCA (FAMD) with hospital as a variable

●

●

FAMD global Jomo Mult PCA global PCA sep

2.
00

2.
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2.
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20
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25
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30

MSE

sigma=2, pNA=0.2, J=10

●

●●

1 2 3 4 5

0
50

10
0

15
0

20
0

25
0

(PCA separate − multilevel PCA) per group

group

38Audigier, White, Jolani, Debray, Quartagno, Carpenter, van Buuren, S. & Resche-Rigon. 2018.
Multiple imputation for multilevel data with continuous and binary variables. Statistical Science.
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Comparison with competitors in terms of imputation

• PCA mixed give similar results than Random Forest
• mice (random effect model): difficulties with large dimensions
• Separate PCA: pb with many missing values
• Multilevel PCA is equivalent to global PCA when no group effect
• Other methods do not handle categorical variables

⇒ Multilevel PCA Computationaly fast in comparison to mice or RF.
Implemented R package missMDA

• Numbers of components Qb and Qw ?

cross-validation?

• Inference after imputation. Underestimation of the variance with single
imputation

Multiple imputation: bootstrap + drawn from the predictive distribution
N
(
1K m̂′ + F̂ bB̂b′ + F̂w B̂w ′ , σ̂2

)
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Aggregation of medical data

Combining data from different institutional databases promises many
advantages in personalizing medical care (large n, more chance for
finding patients like me)

⇒ The problem: high barriers to aggregation of medical data

• lack of standardization of ontologies
• privacy concerns
• proprietary attitude towards data, reluctance to cede control
• complexity/size of aggregated data, updates problems
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Solution: distributed computation

⇒ Data aggregation is not always necessary
⇒ NIH splits the storage of aggregated data across several centers

⇒ Data can stay at site

⇒ Computations can be distributed (share burden)

⇒ Hospitals only share intermediate results instead of the raw data 116



Topology: master-workers (Wolfson, et. al (2010))

⇒ Ex: Each site share the sum of age X̃i and the number of patients ni .
The master computes X̄ =

∑
ni X̃i/

∑
ni 117



Solution: distributed computation

⇒ Many models fitting can be implemented:

• Maximizing a likelihood. Intermediate computations break up into
sums of quantities computed on local data at sites. Log-likelihood,
score function and Fisher information can partition into sums. (OK
for logistic regression)

• Singular Value Decomposition (ex power method involve inner
product and sum). Iterative algorithms available for SVD using
quantities computed on local data at sites.

• And more.

Implemented in the R package discomp39

39Narasimhan et. al. 2017. Software for Distributed Computation on Medical
Databases: A Demonstration Project.
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Privacy preserving rank k SVD
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Iterative multilevel distributed imputation (distributed iterative
MLPCA) 40

i

I

1

1

k1

1

1

kI

ki

1 J

Xi

XI

X1

?

?

?

?

?

?

?
?
?
?
?

?

?

?

⇒ Impute the data of one hospital using the data of the others
⇒ Incentive to encourage the hospitals to participate in the project

40Robin, Husson, Narasimhan, J. (2018). Imputation of mixed data with multilevel singular value
decomposition JCGS 120



Low rank matrix completion for heterogeneous (count data)

• Robin, J., Moulines & Sardy. Low-rank model with covariates for
count data with missing values. 2019. Journal of Multivariate
Analysis (slides)

• Robin, Klopp, J., Moulines & Tibshirani. Main effects and
interactions in mixed and incomplete data frames. 2019. JASA.

• Sportisse, Boyer, J. Estimation and imputation in Probabilistic
Principal Component Analysis with Missing Not At Random data.
2020. NeurIPS.

Works of Madeleine Udell:

• Missing Value Imputation for Mixed Data Through Gaussian Copula.
2020. ACM SIGKDD conference.

• Matrix Completion with Quantified Uncertainty through Low Rank
Gaussian Copula. 2020. NeurIPS.

121

https://genevieverobin.files.wordpress.com/2019/08/presentation_grobin.pdf


Take home message: estimation/imputation with low rank meth-
ods

• Principal component methods powerful for single & multiple
imputation of quanti & categorical data (rare categories):
dimensionality reduction & capture similarities between obs and
variables.

⇒ Correct inferences for analysis model based on relationships
between pairs of variables

⇒ Requires to choose the number of dimensions S
• SVD can be distributed

• Handling missing values in PCA, MCA, FAMD, MFA,
Correspondence analysis for contingency tables

• Preprocessing before clustering - clustering with missing values
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Ressources implementation

Package missMDA:
http://factominer.free.fr/missMDA/index.html

Youtube: https://www.youtube.com/watch?v=OOM8_FH6_8o&list=
PLnZgp6epRBbQzxFnQrcxg09kRt-PA66T_playlist

Article JSS: https://www.jstatsoft.org/article/view/v070i01

MOOC Exploratory Multivariate Data Analysis

Package FactoShiny (Shiny interface), FactoInvestigate (for automatic
reporting)
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https://www.youtube.com/watch?v=OOM8_FH6_8o&list=PLnZgp6epRBbQzxFnQrcxg09kRt-PA66T_
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Outline
1. Introduction
2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization
3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel
4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values
5. Causal Inference with missing values
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Collaborators on supervised learning with missing values

• M. Le Morvan, Researcher, INRIA, Paris.
• E. Scornet, Asso. Pr., Ecole Polytechnique, Paris. Topic: random forests.
• G. Varoquaux, Researcher, INRIA, Paris. Topic: machine learning/ Scikitlearn

⇒ Random Forests with missing values
1. Consistency of supervised learning with missing values. (2019). Revis JMLR.

⇒ Linear regression with missing values - MultiLayer perceptron
2. Linear predictor on linearly-generated data with missing values: non
consistency and solutions. AISTAT2020.

3. Neumiss networks: differential programming for supervised learning with
missing values. Neurips2020. Oral.

⇒ Impute then regress: What’s a good imputation to predict with missing
values? Neurips2021. Spotlight. 126



Supervised learning framework

• A feature matrix X and a response vector Y

• Find a prediction function that minimizes the expected risk

Bayes rule: f ? ∈ argmin
f :X→Y

E [`(f (X ),Y )]; f ?(X ) = E[Y |X ]

• Empirical risk: f̂Dn,train ∈ argmin
f :X→Y

( 1
n
∑n

i=1 ` (f (Xi),Yi)
)

A new data Dn,test to estimate the generalization error rate

• Bayes consistent: E[`(f̂n(X ),Y )] −−−→
n→∞

E[`(f ?(X),Y )]

Differences with classical litterature
Aim: target an outcome Y (not estimate parameters and their variance)
Specificities: train & test sets with missing values

⇒ Is it possible to use previous approaches (EM - impute), consistent?
⇒ Do we need to design new ones?
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Imputation prior to learning

Imputation with the same model
Easy to implement for univariate imputation: The means (µ̂1, ..., µ̂d) of
each colum of the train. Also OK for Gaussian imputation.
Issue: Many methods are "black-boxes" and take as an input the
incomplete data and output the completed data (mice, missForest)

Separate imputation
Impute train and test separately (with a different model)
Issue: Depends on the size of the test set? one observation?

Group imputation/ semi-supervised
Impute train and test simultaneously but the predictive model is learned
only on the training imputed data set
Issue: Sometimes no training set at test time
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Mean imputation is bad for estimation
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Constant (mean) imputation is consistent for prediction

X̃ = X � (1−M) + NA�M. New feature space is R̃d = (R ∪ {NA})d .

Y =


4.6
7.9
8.3
4.6

 X̃ =


9.1 NA 1
2.1 NA 3
NA 9.6 2
NA 5.5 6

 X =


9.1 8.5 1
2.1 3.5 3
6.7 9.6 2
4.2 5.5 6

 M =


0 1 0
0 1 0
1 0 0
1 0 0


Find a prediction function that minimizes the risk.

Bayes rule: f ∗ ∈ argmin
f : R̃d→R

E
[(
Y − f (X̃ )

)2]
.

f ∗(X̃ ) = E
[
Y | X̃

]
= E

[
Y | Xobs(M),M

]
=

∑
m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

⇒ One model per pattern (2d) (Rubin, 1984, generalized propensity score)
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Constant (mean) imputation is consistent

Framework - assumptions

• Y = f (X ) + ε

• X = (X1, . . . ,Xd) has a continuous density g > 0 on [0, 1]d

• ‖f ‖∞ <∞
• Missing data MAR on X1 with M1 ⊥⊥ X1|X2, . . . ,Xd .
• (x2, . . . , xd) 7→ P[M1 = 1|X2 = x2, . . . ,Xd = xd ] is continuous
• ε is a centered noise independent of (X ,M1)

(remains valid when missing values occur for several variables X1, . . . , Xj)

131



Constant (mean) imputation is consistent

Constant imputed entry x ′ = (x ′1, x2, . . . , xd): x ′1 = x11M1=0 + α1M1=1

Theorem. (J. et al. 2019)

f ?impute(x ′) =E[Y |X2 = x2, . . . ,Xd = xd ,M1 = 1]
1x ′1=α]1P[M1=1|X2=x2,...,Xd=xd ]>0

+ E[Y |X = x ′]1x ′1=α1P[M1=1|X2=x2,...,Xd=xd ]=0

+ E[Y |X1 = x1,X2 = x2, . . . ,Xd = xd ,M1 = 0]1x ′1 6=α.

Prediction with mean is equal to the Bayes function almost everywhere

f ?impute(X ′) = f ?(X̃ ) = E[Y |X̃ = x̃ ]

Rq: pointwise equality if using a constant out of range.

⇒ Learn on the mean-imputed training data, impute the test set with
the same means and predict is optimal if the missing data are MAR and
the learning algorithm is universally consistent
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Consistency of supervised learning with NA: Rationale

• Specific value, systematic like a code for missing
• Need a lot of data (asymptotic result) and a super powerful learner
• The learner detects the code and recognizes it at the test time
• With categorical data, just code "Missing"
• With continuous data, any constant:
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Train Test
Mean imputation not bad for prediction; it is consistent; despite its
drawbacks for estimation - Useful in practice!
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Consistency of supervised learning with NA: Rationale

• Specific value, systematic like a code for missing
• Need a lot of data (asymptotic result) and a super powerful learner
• The learner detects the code and recognizes it at the test time
• With categorical data, just code "Missing"
• With continuous data, any constant: out of range
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CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the
feature j?, the threshold z? which minimises the (quadratic) loss

(j?, z?) ∈ argmin
(j,z)∈S

E
[(
Y − E[Y |Xj ≤ z ]

)2 · 1Xj≤z

+
(
Y − E[Y |Xj > z ]

)2 · 1Xj>z

]
.

X1

X2 root

X1 ≤ 3.3 X1 > 3.3

X2 ≤ 1.5 X2 > 1.5
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CART with missing values

X1 X2 Y
1
2 NA
3 NA
4

root

X1 ≤ s1 X1 > s1

X2 ≤ s2 X2 > s2

1) Select variable and threshold on observed values (1 & 4 for X1)

E
[(

Y − E[Y |Xj ≤ z,Mj = 0]
)2
· 1Xj≤z,Mj=0 +

(
Y − E[Y |Xj > z,Mj = 0]

)2
· 1Xj>z,Mj=0

]
.

2) Propagate observations (2 & 3) with missing values?

• Probabilistic split: Bernoulli( #L
#L+#R ) (Rweeka)

• Block: Send all to a side by minimizing the error (xgboost, lightgbm)
• Surrogate split: Search another variable that gives a close partition (rpart)
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Missing incorporated in attribute (Twala et al. 2008)

One step: select the variable, the threshold and propagate missing values

1 {X̃j ≤ z or X̃j = NA} vs {X̃j > z}
2 {X̃j ≤ z} vs {X̃j > z or X̃j = NA}
3 {X̃j 6= NA} vs {X̃j = NA}.

• The splitting location z depends on the missing values
• Missing values treated like a category (well to handle R ∪ NA)
• Good for informative pattern (M explains Y )

Targets one model per pattern:

E
[
Y
∣∣X̃] =

∑
m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

• Implementation 42: grf package, scikit-learn, partykit

⇒ Extremely good performances in practice for any mechanism.
42implementation trick, J. Tibshirani, duplicate the incomplete columns, and replace
the missing entries once by +∞ and once by −∞
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Consistency: 40% missing values MCAR
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Outline
1. Introduction
2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization
3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel
4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values
5. Causal Inference with missing values
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Linear model with missing values

Linear model:

Y = β0 + 〈X , β〉+ ε, X ∈ Rd , ε gaussian.

Existing solutions

• ML with EM algo. (available implementation struggles for large d)

• Multiple imputation (few aggregation strategies for predictive models)

⇒ Mainly to estimate parameters in Missing At Random setting

Aim: Predict Y (out of sample) with any missing value mechanism

X̃ = X � (1−M) + NA�M. New feature space is R̃d = (R ∪ {NA})d .

Bayes rule: f ∗ ∈ arg min
f : R̃d→R

E
[(

Y − f (X̃ )
)2
]
.

f ∗(X̃ ) = E
[
Y | X̃

]
=

∑

m∈{0,1}d
E
[
Y |Xobs(m),M = m

]
1M=m

⇒ One model per pattern (2d) (Rubin, 1984, generalized propensity score) 17



Linear model with missing values not necessarely linear

Example

Let Y = X1 + X2 + ε, where X2 = exp(X1) + ε1. Now, assume that only

X1 is observed. Then, the model can be rewritten as

Y = X1 + exp(X1) + ε+ ε1,

where f (X1) = X1 + exp(X1) is the Bayes predictor. In this example, the

submodel for which only X1 is observed is not linear.

⇒ There exists a large variety of submodels for a same linear model.

Depend on the structure of X and on the missing-value mechanism.

18



Explicit Bayes predictor with missing values

Linear model:

Y = β0 + 〈X , β〉+ ε, X ∈ Rd , ε gaussian.

Bayes predictor for the linear model:

f ?(X̃ ) = E[Y |X̃ ] = E[β0 + βTX | M,Xobs(M)]

= β0 + βT
obs(M)Xobs(M) + βT

mis(M) E[Xmis(M) | M,Xobs(M)]

Assumptions on covariates and missing values

1. Gaussian pattern mixture model, PMM: X | (M = m) ∼ N (µm,Σm)

2. Gaussian assumption X ∼ N (µ,Σ) + MCAR and MAR

3. (Also for Gaussian assumption + MNAR self mask gaussian)

Under Assump. the Bayes predictor is linear per pattern

f ?(Xobs ,M) = β?0 +〈β?obs ,Xobs〉+〈β?mis , µmis+Σmis,obs(Σobs)−1(Xobs−µobs)〉
use of obs instead of obs(M) for lighter notations - Expression for 2. 19



Expanded Bayes predictor

Under GPMM, bayes predictor is linear per pattern ⇔ linear model in W

f ∗(X̃ ) = 〈W , δ〉
W an expansion (2d blocks) & parameters δ ∈ Rd function of β, µm,Σm

X̃ =




1 x1,1 x1,2

1 x2,1 x2,2

1 x3,1 NA

1 x4,1 NA

1 NA x5,2

1 NA x6,2

1 NA NA

1 NA NA




W =




1 x1,1 x1,2 0 0 0 0 0

1 x2,1 x2,2 0 0 0 0 0

0 0 0 1 x3,1 0 0 0

0 0 0 1 x4,1 0 0 0

0 0 0 0 0 1 x5,2 0

0 0 0 0 0 1 x6,2 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1




W = (1M=(0,0),X11M=(0,0),X21M=(0,0), 1M=(0,1),X11M=(0,1), 1M=(1,0),X21M=(1,0), 1M=(1,1)).

Problem: Dim of W is p =
∑d

k=0

(
d

k

)
× (k + 1) = 2d−1 × (d + 2).

Need to approximate it: Linear + MLP approximation + Neumiss
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Linear Approximation

The Bayes predictor can be expressed as a polynome of X and M, which

can be truncated to a lower-dimensional approximation.

f ?approx(X̃ ) = β?0,0 +
d∑

j=1

β?j,0Mj +
d∑

j=1

β?j Xj(1−Mj).




1 X1 � (1−M1) X2 � (1−M2) M1 M2

1 x1,1 x1,2 0 0

1 x2,1 x2,2 0 0

1 x3,1 0 0 1

1 x4,1 0 0 1

1 0 x5,2 1 0

1 0 x6,2 1 0

1 0 0 1 1

1 0 0 1 1




Imputing X by 0 and concatenate M

21



Linear Approximation

Impute X by 0 and concatenate M ⇔ optimize an imputation constant.

Given

X1 X2


1.1 3.2

NA 0.1

4.6 NA

4.0 0.9

NA 2.2



,

X1 X2 M1 M2


1.1 3.2 0 0

0 0.1 1 0

4.6 0 0 1

4.0 0.9 0 0

0 2.2 1 0



⇔

X1 X2


1.1 3.2

C1 0.1

4.6 C2

4.0 0.9

C1 2.2




Indeed,

βj {Xj(1−Mj) + cjMj} = βjXj(1−Mj) + {βjcj}Mj .

22



Expanded model VS Linear approximation

expanded


1 x1,1 x1,2 0 0 0 0 0

1 x2,1 x2,2 0 0 0 0 0

0 0 0 1 x3,1 0 0 0

0 0 0 1 x4,1 0 0 0

0 0 0 0 0 1 x5,2 0

0 0 0 0 0 1 x6,2 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1




VS

linear approximation


1 x1,1 x1,2 0 0

1 x2,1 x2,2 0 0

1 x3,1 0 0 1

1 x4,1 0 0 1

1 0 x5,2 1 0

1 0 x6,2 1 0

1 0 0 1 1

1 0 0 1 1




Two estimations strategies:

• Linear reg. to estimate the expanded bayes predictor: rich model,

powerful in low dimension. Costly, large variance in high dimension

• Linear approximation: lower approximation capacity smaller variance

since it contains fewer parameters

Finite sample bounds - Excess of risk

• Expanded: O
(

2d

n

)

• Linear approximation: O
(
d2 + d

n

)

Comparing the upper bounds: Risk of expanded is lower than risk of

approximation when n >> 2d

d
23



Bayes consistency of the MLP

Theorem. Bayes consistency of a MLP. Le Morvan et al. (2020)

Under linear model + Gaussian pattern mixture model, a MLP:

• with one hidden layer containing 2d hidden units

• ReLU activation functions

• fed with [X � (1−M),M] (X̃ imputed by 0 concatenated with mask)

can achieve the Bayes rate.

Rationale: The MLP produces a prediction function piecewise affine.

Since the Bayes predictor is linear per pattern, MLP good candidate.

We show that there exists a configuration of the parameters of the MLP

so that the resulting predictor is the Bayes predictor.

Number of parameters: (d + 1)2d+1 + 1.

⇒ Provides a natural way to reduce the model capacity by reducing the

number of hidden units. (Trading off estimation and approximation error)
24



Neumiss Networks to approximate the covariance matrix

The Bayes predictor is linear per pattern (Gaussian+ M(C)AR)

f ?(Xobs ,M) = β?0 +〈β?obs ,Xobs〉+〈β?mis , µmis+Σmis,obs(Σobs)−1(Xobs−µobs)〉

Order-` approx of (Σ−1
obs(m)) for any m defined recursively:

S
(`)
obs(m) = (Id − Σobs(m))S

(`−1)
obs(m) + Id .

Neuman Series, S (0) = Id , ` =∞: (Σobs(m))
−1 =

∑∞
k=0(Id − Σobs(m))

k

Proposition (Risk of the Order-` approx)

Let ν be the smallest eigenvalue of Σ. Assume linear model with

Gaussian covariates, M(C)AR, and that the spectral radius of Σ is < 1.

Then, for all ` ≥ 1,

E
[(

f ?` (Xobs ,M)− f ?(Xobs ,M)
)2
]
≤ (1− ν)2`‖β?‖2

2

ν
E
[∥∥Id − S

(0)
obs(M)Σobs(M)

∥∥2

2

]

The error of the order-` approximation decays exponentially fast with `.
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Neumiss Networks to approximate the covariance matrix

Order-` approx of the Bayes predictor in MAR

f ?` (Xobs ,M) = 〈βobs ,Xobs〉+ 〈βmis , µmis + Σmis,obsS
(`)
obs(m)(Xobs − µobs)〉.

Order-` approx of (Σ−1
obs(m)) for any m defined recursively:

S
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2

ν
E
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obs(M)Σobs(M)

∥∥2

2

]
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Neumiss Networks to approximate the covariance matrix

Order-` approx of the Bayes predictor in MAR

f ?` (Xobs ,M) = 〈βobs ,Xobs〉+ 〈βmis , µmis + Σmis,obsS
(`)
obs(m)(Xobs − µobs)〉.

Order-` approx of (Σ−1
obs(m)) for any m defined recursively:

S
(`)
obs(m) = (Id − Σobs(m))S

(`−1)
obs(m) + Id .

Neuman Series, S (0) = Id , ` =∞: (Σobs(m))
−1 =

∑∞
k=0(Id − Σobs(m))

k

⇒ Neural network architecture to approximate the Bayes predictor

x � m̄ −

µ� m̄

S(0) W
(1)
Neu

(Id − Σobs )
+ W

(2)
Neu

(Id − Σobs )
+ W

(3)
Mix

(Σmis,obs )
+

µ� m

Wβ

β
Y

�m̄ �m̄ �m̄ �m

Neumiss iterations Non-linearity

Figure 1: Depth of 3, m̄ = 1−m. Each weight matrix W (k) corresponds to a

simple transformation of the covariance matrix indicated in blue.
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Neumiss Networks to approximate the covariance matrix

Order-` approx of the Bayes predictor in MAR
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Networks with missing values: �M nonlinearity

x � m̄ −

µ� m̄

S(0) W
(1)
Neu

(Id − Σobs )
+ W

(2)
Neu

(Id − Σobs )
+ W

(3)
Mix

(Σmis,obs )
+

µ� m

Wβ

β
Y

�m̄ �m̄ �m̄ �m

Neumiss iterations Non-linearity

• Implementing a network with the matrix weights W (k) = (I − Σobs(m))

masked differently for each sample can be challenging

• Masked weights is equivalent to masking input & output vector.

Let v a vector, m̄ = 1−m. (W � m̄m̄>)v = (W (v � m̄))� m̄

Classic network with multiplications by the mask nonlinearities �M

Proposition (equivalence MLP - depth-0 Neumiss network)

A MLP with ReLU activations, one hidden layer of d hidden units, and which

operates on the [X � (1−M),M], the input X imputed by 0 concatenated

with the mask M, is equivalent to the 0-depth NN
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Experiments for linear regression with missing values

• Y = Xβ∗ + ε, ε chosen such as SNR = 10.

• X ∼ N (µ,Σ)

• Σ = UU> + diag(ε′), U ∈ Rd× d
2 , Ui j ∼ N (0, 1) ε′ ∼ U(10−2, 10−1)

• 50% of MCAR, MAR, Probit self-masking.

• Max Likelihood: to estimate the parameters of the joint Gaussian

distribution (X1, ...,Xd ,Y ) with EM. Predict by conditional

expectation of Y given Xobs .

• ICE + LR: conditional imputation with an iterative imputer

followed by linear regression.

• MLP: take as input the data imputed by 0 concatenated with the

mask [X � (1−M),M] with ReLU nonlinearity,

• MLP-Wide: one hidden layer with width increased (between d & 2d)

• MLP-Deep: 1 to 10 hidden layers of d hidden units

• Neumiss: The Neumiss architecture with the �M, choosing the

depth on a validation set.
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Results
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Figure 2: Predictive performances in various scenarios — varying

missing-value mechanisms, number of samples n, and number of features d .

⇒ Best performances for MNAR scenario (50% of NA on all variables)

• More effective to increase the capacity of the Neumiss network (depth) than

to increase the capacity (width) of MLP Wide.
29



Discussion - challenges



Take-home message. Supervised learning with missing values.

Supervised learning different from usual inferential probabilistic models.

Solutions useful in practice robust to the missing-value mechanisms but

needs powerful model.

Powerful learner with missing values

• Incomplete train and test → same imputation model

• Single constant imputation is consistent with a powerful learner

• Tree-based models : Missing Incorporated in Attribute

• To be done: nonasymptotic results, uncertainty, distributional shift:

No NA in the test? Proofs in MNAR

Linear regression with missing values

• The Bayes predictor is explicit under Gaussian assumptions/ MAR

and gaussian self mask but high-dimensional.

• Approx include MLP which can be consistent and Neumiss Network

• New architecture for network with missing data: �M nonlinearity.
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Outline
1. Introduction
2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization
3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel
4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values
5. Causal Inference with missing values
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Traumabase

• 30000 patients

• 250 continuous and categorical variables: heterogeneous

• 24 hospitals

• 4000 new patients/ year

Center Accident Age Sex Weight Lactactes BP Acid Tran. Y

Beaujon fall 54 m 85 NM 180 treated 0

Pitie gun 26 m NR NA 131 control 1

Beaujon moto 63 m 80 3.9 145 treated 1

Pitie moto 30 w NR Imp 107 control 0

HEGP knife 16 m 98 2.5 118 treated 1
...

. . .

⇒ Estimate causal effect: Administration of the treatment

”tranexamic acid” (within 3 hours after the accident) on the outcome

mortality for traumatic brain injury patients.
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⇒ Estimate causal effect: Administration of the treatment

”tranexamic acid” (within 3 hours after the accident) on the outcome

mortality for traumatic brain injury patients.
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Missing values
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Potential Outcome framework (Neyman, 1923, Rubin, 1974)

Causal effect for a binary treatment

• n i.i.d. obs ( Xi︸︷︷︸
covariates

,

treatment︷︸︸︷
Wi , Yi (1),Yi (0)︸ ︷︷ ︸

potential outcomes

) ∈ Rd × {0, 1} × R× R

• Individual causal effect of the treatment: ∆i , Yi (1)− Yi (0)

Missing problem: ∆i never observed (only observe one outcome/indiv)

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? 200

-6 45 F 0 10 ?

0 15 M 1 ? 150

. . . . . . . . . . . .

-2 52 M 0 100 ?

Cov. Treat. Out.

X1 X2 X3 W Y

1.1 20 F 1 200

-6 45 F 0 10

0 15 M 1 150

. . . . . . . . .

-2 52 M 0 100

Average Treatment Effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

The ATE is the difference of the average outcome had everyone gotten treated

and the average outcome had nobody gotten treatment

5
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Observational data: non random assignment

survived deceased Pr(survived | treatment) Pr(deceased | treatment)

TA not administered 6,238 (76%) 1,327 (16%) 0.82 0.18

TA administered 367 (4%) 316 (4%) 0.54 0.46

Mortality rate 20% - for treated 46% - not treated 18%: treatment kills?
Standardized mean differences between treated and control.
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Severe patients (with higher risk of death) are more likely to be treated.

If control group does not look like treatment group, difference in response may

be confounded by differences between the groups. 6



Assumption for ATE identifiability in observational data

Unconfoundedness - selection on observables

{Yi (0),Yi (1)} ⊥⊥Wi |Xi

Treatment assignment Wi is random conditionally on covariates Xi

Measure enough covariates to capture dependence between Wi and outcomes

Overlap

Propensity score: probability of treatment given observed covariates.

e(x) , P(Wi = 1 |Xi = x) ∀ x ∈ X .

We assume overlap, i.e. η < e(x) < 1− η, ∀ x ∈ X and some η > 0

ATE not identifiable without assumptions: it is not a sample size problem.

7



Assumption for ATE identifiability in observational data

Unconfoundedness - selection on observables

{Yi (0),Yi (1)} ⊥⊥Wi |Xi

Treatment assignment Wi is random conditionally on covariates Xi

Measure enough covariates to capture dependence between Wi and outcomes

Overlap

Left: Non smoker and never treated Right: Smokers and all treated

If proba to be treated when smoker e(x) = 1, how to estimate the outcome

for smokers when not treated Y (0)? How to extrapolate if total confusion? 7



Regression adjustment: g-estimator

µ(w)(x) , E[Y (w)|X = x ]

OLS model w ∈ {0, 1}
Yi (w) = c(w) + Xiβ(w) + εi (w)

Identifiability (using {Yi (0),Yi (1)} ⊥⊥Wi |Xi )

τ = E[∆i ] = E[Yi (1)− Yi (0)]

= E[E[Yi (1)− Yi (0)|Xi ] = E[µ(1)(Xi )− µ(0)(Xi )]

= E[E[Yi (1)|Wi = 1,Xi = x ]− E[Yi (0)|Wi = 0, |Xi = x ]](uncounfoud)

= E[E[Yi |Wi = 1,Xi ]− E[Yi |Wi = 0,Xi ]](consistency)

E[Yi |Wi = 1,Xi ] can be estimated from data but E[Yi (1)|Xi ] not.

τ̂OLS =
1

n

n∑

i=1

(µ̂1(Xi )− µ̂0(Xi )) =
1

n

n∑

i=1

(ĉ(1) + Xi β̂(1))− (ĉ(0) + Xi β̂(0))

⇒ Consistent if µ̂(w) consistent 8



Inverse-propensity weighting estimator

Average treatment effect (ATE): τ , E[∆i ] = E[Yi (1)− Yi (0)]

Propensity score (proba treated|covariates): e(x) , P(Wi = 1 |Xi = x)

IPW estimator (Horvitz-Thomson, survey)

τ̂IPW ,
1

n

n∑

i=1

(
WiYi

ê(Xi )
− (1−Wi )Yi

1− ê(Xi )

)

⇒ Balance the differences between the two groups

⇒ Consistent estimator of τ when ê(·) consistent (logistic regression).

⇒ High variance (divide by probability)

9



Doubly robust estimator

Define µ(w)(x) , E[Yi (w) |Xi = x ] and e(x) , P(Wi = 1 |Xi = x).

Augmented IPW - Double Robust (DR)

τ̂AIPW , 1
n

∑n
i=1

(
µ̂(1)(Xi )− µ̂(0)(Xi ) + Wi

Yi−µ̂(1)(Xi )

ê(Xi )
− (1−Wi )

Yi−µ̂(0)(Xi )

1−ê(Xi )

)

is consistent if either the µ̂(w)(x) are consistent or ê(x) is consistent.

• τ̂IPW , 1
n

∑n
i=1

(
WiYi

ê(Xi )
− (1−Wi )Yi

1−ê(Xi )

)
: Treatment assignment ∼ covariates

• τ̂OLS , 1
n

∑n
i=1 (µ̂1(Xi )− µ̂0(Xi )): Outcome ∼ covariates

⇒ Both sensitive to misspecification. DR: combine ols + ipw of residuals

Rationale: makes group similar before extrapolation
∑

i :Wi=1

(˜̂µ(0)(Xi )− µ(0)(Xi )) = (X 1 − γ̂TX 0)︸ ︷︷ ︸
covariate balancing

(β̂(0) − β(0))︸ ︷︷ ︸
extrapolation

+ noise term

where γ̂ = (1− ê(Xj))−1
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10



Doubly robust ATE estimation

Model Treatment on Covariates e(x) , P(Wi = 1 |Xi = x)

Model Outcome on Covariates µ(w)(x) , E[Yi (w) |Xi = x ]

Augmented IPW - Double Robust (DR)

τ̂AIPW , 1
n

∑n
i=1

(
µ̂(1)(Xi )− µ̂(0)(Xi ) + Wi

Yi−µ̂(1)(Xi )

ê(Xi )
− (1−Wi )

Yi−µ̂(0)(Xi )

1−ê(Xi )

)

is consistent if either the µ̂(w)(x) are consistent or ê(x) is consistent.

Possibility to use any (machine learning) procedure such as random

forests, deep nets, etc. to estimate ê(x) and µ̂(w)(x) without harming

the interpretability of the causal effect estimation.

Properties - Double Machine Learning (chernozhukov, et al. 2018)

If ê(x) and µ̂(w)(x) converge at the rate n1/4 then
√
n (τ̂DR − τ)

d−−−→
n→∞

N (0,V ∗), V ∗ semiparametric efficient variance.

11



Causal inference with missing

attributes?



Missing (informative) values in the covariates

Straightforward – but often biased – solution is complete-case

Covariates Treatment Outcome(s)

X∗1 X∗2 X∗3 W Y(0) Y(1)

NA 20 F 1 ? Survived

-6 45 NA 0 Dead ?

0 NA M 1 ? Survived

NA 32 F 1 ? Dead

1 63 M 1 Dead ?

-2 NA M 0 Survived ?

→ Often not a good idea! What are the alternatives?

Three families of methods - different assumptions

• Classical unconfoundedness + classical missing values mechanisms

• Unconfoundedness with missingness + (no) missing values

mechanisms Mayer, J., Wager, Sverdrup, Moyer, Gauss. AOAS 2020.

• Latent unconfoundedness + classical missing values mechanisms

Mayer, J., Raimundo, Vert. 2020.

13



Under 1: Multiple Imputation

Consistency of IPW with missing values (Seaman, White 2014)

Assume Missing At Random (MAR) mechanism. Multiple imputation

(MICE using (X ∗,W ,Y )) with IPW on each imputed data is consistent when

Gaussian covariates and logistic/linear treatment/oucome model

X∗1 X∗2 X∗3 ... W Y

NA 20 10 ... 1 survived

-6 45 NA ... 1 survived

0 NA 30 ... 0 died

NA 32 35 ... 0 survived

-2 NA 12 ... 0 died

1 63 40 ... 1 survived

1) Generate M plausible values for each missing value

X1 X2 X3 ... W Y

3 20 10 ... 1 s

-6 45 6 ... 1 s

0 4 30 ... 0 d

-4 32 35 ... 0 s

-2 15 12 ... 0 d

1 63 40 ... 1 s

X1 X2 X3 ... W Y

-7 20 10 ... 1 s

-6 45 9 ... 1 s

0 12 30 ... 0 d

13 32 35 ... 0 s

-2 10 12 ... 0 d

1 63 40 ... 1 s

X1 X2 X3 ... W Y

7 20 10 ... 1 s

-6 45 12 ... 1 s

0 -5 30 ... 0 d

2 32 35 ... 0 s

-2 20 12 ... 0 d

1 63 40 ... 1 s

2) Estimate ATE on each imputed data set: τ̂m, V̂ar (τ̂m)

3) Combine the results (Rubin’s rules): τ̂ = 1
M

∑M
m=1 τ̂m

V̂ar (τ̂) = 1
M

∑M
m=1 V̂ar (τ̂m) +

(
1 + 1

M

)
1

M−1

∑M
m=1 (τ̂m − τ̂)2 15



2. Unconfoundedness with missing + (no) missing hypothesis

Covariates Treatment Outcome(s)

X∗1 X∗2 X∗3 W Y(0) Y(1)

NA 20 F 1 ? 200

-6 45 NA 0 10 ?

0 NA M 1 ? 150

NA 32 F 1 ? 100

1 63 M 1 15 ?

-2 NA M 0 20 ?

Unconfoundedness: {Yi (1),Yi (0)} ⊥⊥Wi |X not testable from the data.

⇒ Doctors give us the DAG (covariates relevant for either treatment

decision and for predicting the outcome)

Unconfoundedness with missing values: {Yi (1),Yi (0)} ⊥⊥Wi |X ∗
X ∗ , (1−M)�X + M �NA; with Mij = 1 if Xij is missing, 0 otherwise.

⇒ Doctors decide to treat a patient based on what they observe/record.

We have access to the same information as the doctors. 16



Under 2: Double Robust with missing values

AIPW with missing values

τ̂∗ , 1
n

∑
i

(
µ̂∗(1)(Xi )− µ̂∗(0)(Xi ) + Wi

Yi−µ̂∗(1)
(Xi )

ê∗(Xi )
− (1−Wi )

Yi−µ̂∗(0)
(Xi )

1−ê∗(Xi )

)

Generalized propensity score (Rosenbaum, Rubin JASA 1984)

e∗(x∗) , P(W = 1 |X ∗ = x∗)

One model per pattern:
∑

m∈{0,1}d E
[
W |Xobs(m),M = m

]
1M=m

⇒ Supervised learning with missing values. 1 2 3

• Mean imputation is consistent with a universally consistent learner.

• Missing Incorporate in Attributes (MIA) for trees methods.

1Consistency of supervised learning with missing values J., Prost, Scornet, Varoquaux. 2020
2Neumiss networks: differential programming for supervised learning with missing values. Le

Morvan, J. et al. Neurips2020
3What’s a good imputation to predict with missing values? Le Morvan, J. et al. Neurips 2021 17



Under 2: Double Robust with missing values

AIPW with missing values

τ̂∗ , 1
n

∑
i

(
µ̂∗(1)(Xi )− µ̂∗(0)(Xi ) + Wi

Yi−µ̂∗(1)
(Xi )

ê∗(Xi )
− (1−Wi )

Yi−µ̂∗(0)
(Xi )

1−ê∗(Xi )

)

Generalized propensity score (Rosenbaum, Rubin JASA 1984)

e∗(x∗) , P(W = 1 |X ∗ = x∗)

One model per pattern:
∑

m∈{0,1}d E
[
W |Xobs(m),M = m

]
1M=m

⇒ Supervised learning with missing values.

• Mean imputation is consistent with a universally consistent learner.

• Missing Incorporate in Attributes (MIA) for trees methods.

Implemented in grf package: combine two non-parametrics models,

forests (conditional outcome and treatment assignment) adapted to any

missing values with MIA.

τ̂AIPW ∗ is
√
n-consistent, asymptotically normal given the product of

RMSE of the nuisance estimates decay as o(n−1/2) Mayer, J. et al. AOAS 2020

21



Methods to do causal inference with missing values

Covariates Missingness Unconfoundedness Models for

(W ,Y )

multiva-

riate

normal

general M(C)AR general Missing Latent Classical
logistic-

linear

non-

param.

1. (SA)EM 4
3 7 3 7 3 7 7 3 7

1. Mean.GRF 3 3 3 (3) 3 7 7 3 3

1. MIA.GRF 3 3 3 (3) 3 7 7 3 3

2. Mult. Imp. 3 3 3 7 (7) 7 3 3 (7)

3. MatrixFact. 3 7 3 7 7 3 7 3 (7)

3. MissDeep-

Causal
3 3 3 7 7 3 7 3 3

Methods & assumptions on data generating process: models for covariates,

missing values mechanism, identifiability conditions, models for

treatment/outcome.

3: can be handled 7: not applicable in theory

(3): empirical results and ongoing work on theoretical guarantees

(7): no theoretical guarantees but heuristics.
4Use of EM algorithms for logistic regression with missing values. Jiang, et al. 2019 22



Simulations: no overall best performing method.

• 10 covariates generated with Gaussian mixture model Xi ∼ Nd (µ(ci )
,Σ(ci )

)|Ci = ci ,

C from a multinomial distribution with three categories.

• Unconfoundedness on complete/observed covariates, 30% NA

• Logistic-linear for (W , Y ), logit(e(Xi·)) = αTXi·, Yi ∼ N (βTXi· + τWi , σ
2)

Figure 1: Estimated with AIPW and true ATE τ = 1

Unconf. despite missingness

Complete data unconf.

100 500 1000 5000

−5.0
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0.0

2.5

5.0

−5.0

−2.5
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2.5

5.0

Method

mean.loglin

mice

mf

saem

grf

→ grf-MIA is asymptotically unbiased under unconfoundedness despite missingness.

→ Multiple imputation requires many imputations to remove bias.
23



Simulations: importance of unconfoundedness assumption and

choice of estimator

Setup
• Different data generating models (linear, nonlinear, latent, etc.)

• Different missingness mechanisms

Results

• AIPW estimators outperform their IPW counterparts.

• For τ̂mia, the unconfoundedness despite missingness is indeed necessary.

• τ̂mia unbiased for all missingness mechanisms, especially for MNAR.

• Multiple imputation (mice) only requires standard unconfoundedness, but needs

MAR

24



Results for Trauma Brain Injuries (TBI)

40 covariates, 18 confounders. 8,248 patients.

Overlap: cannot be tested but high level of uncertainty at diagnosing severe (internal

bleeding) makes it likely

Many MNAR missing values

ATE estimations (×100): effect of tranexamic acid on in-ICU mortality

●

●

●

●

● (e) mean

(d) MF

(c) MIA

(b) SAEM

(a) imputation (PC)
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ATE (in %)

Im
putation.set
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●

FAMD
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−
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mean
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● dr

ipw

ATE estimation

(y -axis: estimation approach, solid: Double Robust AIPW, dotted: IPW), (x-axis: ATE

estimation with bootstrap CI)

The obtained value corresponds to the difference in percentage points between mortality rates in

treatment and control.
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Comparison with CRASH-3 study same conclusion of “no average treatment effect”.
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Conclusion and perspectives

Take-away messages

• Missing attributes alter causal analyses.

• Additional assumptions on appropriate unconfoundedness.

• New proposals to handle missing values in causal inference.

• Prefer AIPW to IPW estimators, in theory and in practice.

• Heterogeneous treatment effects with missing values (causal forest)

implemented in the grf R package

26



Ongoing work

• Causal survival analysis, Policy learning (with missing values)

• Combine RCT and observational data to generalize the ATE to a (broader)

target population 5 6

Set S X1 X2 X3 W Y

1 R 1 1.1 20 NA 1 24.1

. . . R 1 . . . . . . . . .

n − 1 R 1 -6 45 8.3 0 26.3

n R 1 0 15 6.2 1 23.5

n + 1 O ? -2 NA 7.1 NA NA

n + 2 O ? -1 NA 2.4 NA NA

. . . O ? . . . NA NA

n + m O ? -2 NA 3.4 NA NA

Data with observed treatment W and outcome Y only in the RCT.

CRASH3

• Multi-centric RCT over 29 counties

• No effect of TXA with difference in

means (-0.3 with [95% CI -0.8 0.2])

Traumabase

• Representative sample

• 8200 patients with TBI

ATE = -0.035, 95% CI [-0.38 0.28] when generalizing with g-estimator.

Treatment effect modifiers ”time to treatment” is missing in Traumabase

5Colnet, J. et al. (2021). Causal inference methods for combining RCT and observational studies:

a review. In revision in Statistical Science - Causal effect on a target population: a sensitivity

analysis to handle missing covariates. Submitted
6Mayer, J. et al. Transporting treatment effects with missing attributes (2021) Submitted
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RCT 1
X1 X2 X3 X4 X5 W Y

RCT 2
X1 X2 X3 X4 X5 X6 W Ÿ

OBSERVATIONAL DATA A
X1 X2 X3 X4 X5 X6 X7 X8 W Y

Ho
sp

ita
l 1

Ho
sp

ita
l 2

Ho
sp

ita
l 3

OBSERVATIONAL DATA B
X1 X2 X3 X4 X5 X6 X7 X8 OBSERVATIONAL DATA C

X1 X2 X3 X4 X5 X6 X7 X8 AUXILIARY DATA
S1 S2 S3 S4

TARGET 
POPULATION

TREATMENT
ESTIMATE(S)

NEW PATIENTS TO TREAT
X1 X2 X3 X4 X5 X6 X7 X8 W

28



Missing value website

More information and details on

missing values: R-miss-tastic

platform. Mayer, J. et al., 2019

→ Theoretical and practical

tutorials, popular datasets,

bibliography, workflows (in R and

in python), active

contributors/researchers in the

community, etc.

rmisstastic.netlify.com

Interested in contribute to our platform? Feel free to contact us!
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MERCI
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An active area of research! Join this exciting field!

Challenges:

• SGD with missing values for linear regression and MCAR 43. Difficult
to extend to logistic or MAR.

• Naively impute the missing values, get X̃ ,
• Adapt algorithm to account for the error & apply this debiased
version to the complete dataset X̃ .

Naive imputation + debiasing also used for Lasso 44

Current works

• Times series with missing values for classification
• Model-based Clustering with Missing Not At Random Data
• MNAR missing values - CV with MNAR data? Contribution of
causality for missing data
Mohan, Pearl. 2021. Graphical Models for Processing Missing Data. JASA.

Sportisse, Boyer, J. Estimation and imputation in Probabilistic Principal Component

Analysis with Missing Not At Random data. Neurips2020.
43Sportisse, Boyer, Dieuleveut, J. Debiasing Stochastic Gradient Descent to handle missing values.
Neurips2020
44Loh, Wainwright. 2012. High-dimensional regression with noisy and missing data. Annals of
Stats.
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Ressources

R-miss-tastic https://rmisstastic.netlify.com/R-miss-tastic

J., I. Mayer, N. Tierney & N. Vialaneix

Project funded by the R consortium (Infrastructure Steering
Committee)45

Aim: a reference platform on the theme of missing data management

• list existing packages
• available literature
• tutorials
• analysis workflows on data
• main actors

⇒ Federate the community

⇒ Contribute!
45https://www.r-consortium.org/projects/call-for-proposals
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Ressources

Examples:

• Lecture 46 - General tutorial : Statistical Methods for Analysis with
Missing Data (Mauricio Sadinle)

• Lecture - Multiple Imputation: mice by Nicole Erler 47

• Longitudinal data, Time Series Imputation (Steffen Moritz - very
active contributor of r-miss-tastic), Principal Component Methods48

46https://rmisstastic.netlify.com/lectures/
47https://rmisstastic.netlify.com/tutorials/erler_course_
multipleimputation_2018/erler_practical_mice_2018
48https://rmisstastic.netlify.com/tutorials/Josse_slides_imputation_PCA_2018.pdf
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Thank you
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