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Introduction: Probabilistic predictions

▶ Let Y ∈ Y be an unknown future outcome.
▶ Temperature tomorrow at 12:00 in Cambridge. (Y ∈ Y = R)
▶ Event of rain tomorrow in London. (Y ∈ Y = {0, 1})
▶ Default of credit card client. (Y ∈ Y = {0, 1})
▶ Amount of precipitation tomorrow in Cambridge and Oxford. (Y ∈ Y = R2)

▶ Single valued “best guess” z ∈ Y does not quantify uncertainty.

▶ Better: Quantify uncertainty of Y by a probabilistic prediction F .
▶ F is a distribution on Y.

▶ If X is information available for prediction, F should approximate L(Y | X ).

▶ Other possibilities to quantify uncertainty of Y : prediction intervals,
predictions of some measure of variability, . . .

▶ Which loss functions can we use to compare probabilistic predictions?
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Motivation 1: Forecast comparison

Let P be a class of distributions on Y.

Pick a loss function S : P × Y → R, and compare average realized scores:
For (F1,G1,Y1), . . . , (Fn,Gn,Yn), let

Ŝ1 =
1

n

n∑
i=1

S(Fi ,Yi ) and Ŝ2 =
1

n

n∑
i=1

S(Gi ,Yi ).

The forecast with the smaller value Ŝj is better.

▶ When does this procedure make sense?

▶ S needs to be a proper scoring rule.

▶ History: In meteorology, Brier (1950) showed that quadratic score for binary
outcomes cannot be gamed.
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Motivation 2: McCarthy’s forecasting tournament

▶ Forecasting agent makes probabilistic prediction F for a random variable Y
and receives the penalty S(F ,Y ).

▶ Rationally, if the agent believes Y ∼ G then it issues

argmin
F

EG [S(F ,Y )]

EGS(F ,Y ) means: take expectation with Y ∼ G .

▶ Not necessarily equal to G .

▶ McCarthy’s idea. Choose S such that

G = argmin
F

EG [S(F ,Y )]

▶ McCarthy characterized such (differentiable) S for Y ∈ {0, 1} (McCarthy, 1956).

▶ Bregman divergences...∼ 10 years before Bregman introduced them in 1967.
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Let P be a convex class of distributions on Y.

Definition
A scoring rule is a function S : P × Y → R ∪ {±∞} that is suitably integrable.
A scoring rule S is proper if

EFS(F ,Y ) ≤ EFS(G ,Y ), F ,G ∈ P,Y ∼ F . (1)

S is strictly proper if equality implies F = G .

Equivalent to (1) is

F ∈ argmin
G

EFS(G ,Y ) = argmin
G

S(G ,F ).

▶ Scoring rules are interpreted as penalties.

▶ Forecasts should be compared with proper scoring rules (Gneiting and Raftery, 2007).

▶ Proper scoring rules are also increasingly important in estimation (Dawid et al., 2016).

▶ New review article (Waghmare and Ziegel, 2025).
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Examples for Y = {0, 1}

Distributions F on Y can be identified with a parameter p ∈ [0, 1].

Brier score

S(p, y) = (y − p)2, p ∈ [0, 1], y ∈ {0, 1},

Logarithmic score

S(p, y) = −y log(p)− (1− y) log(1− p), p ∈ [0, 1], y ∈ {0, 1}.
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Divergence and entropy

For a scoring rule S : P × Y → R, we associate an entropy

H : P → R, H(F ) =

∫
S(F , y) dF (y) = EFS(F ,Y ) = S(F ,F ),

and a divergence

d : P × P → R, d(F ,G ) = S(F ,G )− H(G ).

9 / 58
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Examples for Y = R
Logarithmic Score (LogS)

f density of F
LogS(F , y) = − log f (y)

Entropy is Shannon entropy:

H(F ) = −
∫

f (x) log f (x) dµ(x) = −EF log f (X )

Divergence is Kullback-Leibler divergence: g density of G

d(F ,G ) =

∫
g(y) log

(
g(y)

f (y)

)
dµ(y) = DKL(G ||F )

▶ Empirical risk minimization with respect to logarithmic score:
Maximum likelihood estimation
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Examples for Y = R

Continuous Ranked Probability Score (CRPS)

F CDF, finite mean

CRPS(F , y) =

∫
R
(F (z)− 1{y ≤ z})2 dz

Entropy

H(F ) =

∫
F (x)(1− F (x)) dx

Divergence G CDF, finite mean

d(F ,G ) =

∫
(F (y)− G (y))2 dy

▶ Central role in forecast evaluation in meteorology.
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Motivation 3

Let Y be a Polish space and X be some measurable covariate space.

Theorem
A scoring rule S : P × Y → R is strictly proper if and only if for every pair of
random variables (X ,Y ) ∈ X × Y such that

▶ the conditional distributions PY |X=x ∈ P
we have

{PY |X=x}x = argmin
{Px}x

E
[
S(PX ,Y )

]
.

where Px : X → P.

13 / 58
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Remark
▶

PY |X= · = argmin
P(·)

E
[
S(PX ,Y )

]
.

is analogous to

E[Y |X = · ] = argmin
f :X→Y

E[(Y − f (X ))2]

▶ Proper scoring rules are to conditional distributions what the squared error
loss (and Bregman divergences) are to conditional expectations.
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Bias-Variance decomposition

Theorem
▶ Let {Pθ,x}θ∈Θ be a parametric family.

▶ Consider an estimator Pθ̂,· of PY |X= · where θ̂ = θ̂({(Xj ,Yj)}nj=1).

▶ Then,
E[d(Pθ̂,X ,PY |X )] = E[d(Pθ̂,X , P̄X )]︸ ︷︷ ︸

variance

+E[d(P̄X ,PY |X )]︸ ︷︷ ︸
bias

where
P̄x = argmin

P
E[d(Pθ̂,x ,P)]

and
PY |X=x = argmin

P
E[S(P,Y ) |X = x ]

is the best predictor, assuming the two exist.

(Pfau, 2013)
15 / 58
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Analogy to classical bias-variance decomposition

E[d(Pθ̂,X ,PY |X )] = E[d(Pθ̂,X , P̄X )]︸ ︷︷ ︸
variance

+E[d(P̄X ,PY |X )]︸ ︷︷ ︸
bias

P̄x = argmin
P

E[d(Pθ̂,x ,P)] PY |X=x = argmin
P

E[S(P,Y ) |X = x ]

Take S(F , y) = (m(F )− y)2. Then

d(F ,G ) = EG (m(F )− Y )2 − varG (Y ) = (m(F )−m(G ))2.

E[d(Pθ̂,X ,PY |X )] = E[E[d(Pθ̂,X ,PY |X ) | X ]] = E(mθ̂(X )− Y )2 − Evar(Y | X )

argmin
P

E[d(Pθ̂,x ,P)] ≡ argmin
z

E(mθ̂(x)− z)2 = Eθ̂mθ̂(x).

E[d(Pθ̂,X , P̄X )] = E[E[d(Pθ̂,X , P̄X ) | X ]] = E(mθ̂(X )− Eθ̂mθ̂(X ))2 variance

E[d(P̄X ,PY |X )] = E[E[d(P̄X ,PY |X ) | X ]] = E(Eθ̂mθ̂(X )− E(Y | X ))2 bias
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Characterization of proper scoring rules
Let P be a convex class of distributions on Y.

Preliminaries
▶ Concavity: H : P → R such that for F ,G ∈ P,

H(αF + (1− α)G ) ≥ αH(F ) + (1− α)H(G )

Entropies H are concave!

▶ Supergradient: hF : Y → R that is G -integrable and

H(F ) +

∫
hF (y) d(G − F )(y) ≥ H(G )

for all G ∈ P.

▶ Regularity: A scoring rule S : P × Y → R is called regular if
H(F ) = S(F ,F ) is finite and S(F ,G ) > −∞ for every F ,G ∈ P with
F ̸= G .
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Theorem
A regular scoring rule S : P × Y → R is (strictly) proper if and only if there is a
(strictly) concave function H : P → R such that

S(F , y) = H(F ) + hF (y)−
∫

hF (x) dF (x)

for every F ∈ P and y ∈ Y, where hF is a supergradient of H at F .

▶ If H is differentiable, hF = ∇FH, where ∇FH is such that, for all G ∈ P

lim
α↓0

1

α
[H((1− α)F + αG )− H(F )] =

∫
∇FH(y) dG (y),

▶ and

d(F ,G ) = H(F )− H(G )−
∫

∇FH(y) d(F − G )(y).

(Gneiting and Raftery, 2007)
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Local scoring rules

▶ Y ⊆ Rd open

▶ Pk : probability measures on Y with k-times differentiable densities

Definition
A proper scoring rule S : Pk × Y → R is local of order k if

S(F , y) = s(y , f (y), . . . ,∇k
y f (y)), F ∈ P,

where f is the density of F .

Example

Local scoring rule of order 0: S(F , y) = − log f (y).
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Uniqueness of logarithmic score

Theorem
Logarithmic score is (essentially) only differentiable local scoring rule of order 0.

Proof.
Let S(F , y) = s(y , f (y)) with s(y , z) differentiable. Then H(F ) =

∫
s(y , f (y))f (y) dy .

lim
α↓0

1

α
[H((1− α)F + αG)− H(F )] =

∫
∇FH(y) dG(y)

=

∫ (
s(y , f (y)) +

∂

∂z
s(x , f (y))f (y)

)
g(y) dy −

∫
s(y , f (y))f (y) dy −

∫
∂

∂z
s(y , f (y))(f (y))2 dy

Hence, by the characterization theorem

S(F , y) = s(y , f (y)) + f (y)
∂

∂y
s(y , f (y))−

∫
∂

∂z
s(y , f (w))(f (w))2︸ ︷︷ ︸

=cf (w)

dw

⇒ ∂
∂z s(y , f (w)) = c

f (w) ⇒ s(y , f (y)) = a log f (y) + b for some a, b ∈ R.
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Score matching

Example (Hyvärinen Score)

Let Y = Rd and ∥∇xxx log p(xxx)∥ → 0 as ∥xxx∥ → ∞ for p ∈ P2. Then

S(P,yyy) = ∆yyy log p(yyy) +
1

2
∥∇yyy log p(yyy)∥2=

∑
j

{
∂2 log p

∂y2j
+

1

2

[
∂ log p

∂yj

]2}
,

where ∇yyy f and ∆yyy f are gradient and Laplacian, is a strictly proper scoring rule.

Non-normalized Densities
Consider the parametric family {Pθ : θ ∈ Θ}. Let dPθ/dµ = pθ(xxx) ∝ exp ηθ(xxx).

S(Pθ,xxx) = ∆xxxηθ(xxx) +
1

2
∥∇xxxηθ(xxx)∥2

We have

min
θ

EQS(Pθ,Y) = min
θ

EQ∥∇yyy log pθ(Y)−∇yyy log q(Y)∥2

(?)
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f -scores

µ measure on Y, P all absolutely continuous measures wrt µ
f : [0,∞) → R concave and differentiable. Define concave entropy

Hf (P) =

∫
f (p(x)) dµ(x), P ∈ P;

p density of P ∈ P.

This yields the proper scoring rule

Sf (P, y) = f ′(p(y)) + Hf (P)−
∫

f ′(p(x))p(x) dµ(x).

▶ Different name: Separable Bregman scores (Grünwald and Dawid, 2004)

▶ Only scoring rules of the form S(P, y) = r(p(y)) + ℓ(P).
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f -scores

Sf (P, y) = f ′(p(y)) + Hf (P)−
∫

f ′(p(x))p(x) dµ(x).

Examples

f (u) S(P, y)

−u log u − log p(y) logarithmic score
−u2 −2p(y) +

∫
p(x)2 dµ(x) quadratic score, Brier score
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gf -scores
Consider entropies of the form

H(P) = g

(∫
f (p(x)) dµ(x)

)
= g(Hf (P)),

p density of P ∈ P,

where f , g are such that H is concave, for example

▶ f concave, g concave and increasing;

▶ f convex, g concave and decreasing.

If f , g are differentiable, we obtain the proper scoring rule

Sgf (P, y) = g ′(Hf (P))f
′(p(y)) + g(Hf (P))− g ′(Hf (P))

∫
f ′(p(x))p(x) dµ(x).

Example (Spherical score)

f (u) = u2, g(u) = −
√
u, S(P, y) = −p(y)/

√∫
p(x)2 dµ(x).
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Kernel scores: Motivation

P: class of probability measures on R with finite mean.
Probability measures specified as CDFs F .

Continuous Ranked Probability Score (CRPS)

S(F , y) =

∫
R
(F (x)− 1{y ≤ x})2 d(x)

=

∫ 1

0

(
1{y ≤ F−1(α)} − α

) (
F−1(α)− y

)
dα

= EF |X − y | − 1

2
EF |X − X ′|

▶ Allows to compare discrete, continuous and mixed discrete-continuous
distributions.

▶ Is becoming increasingly popoular also in estimation.
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Kernel scores: Motivation
Let h(x , y) = |x − y |.

Transformation Models
Let gθ(N) ∼ Pθ.

Ŝ =
1

m

m∑
i=1

h(gθ(Ni ), y)−
1

2m(m − 1)

m∑
i=1

∑
i ′:i ′ ̸=i

h(gθ(Ni ), gθ(Ni ′))

Conditional Transformation Models
Let gθ(xxx ,N) ∼ Pθ,xxx .

Ŝ =
1

m

m∑
i=1

h(gθ(xxx ,Ni ), y)−
1

2m(m − 1)

m∑
i=1

∑
i ′:i ′ ̸=i

h(gθ(xxx ,Ni ), gθ(xxx ,Ni ′))

(Gneiting et al., 2005; Hothorn et al., 2014; Bouchacourt et al., 2016)
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Kernel scores
Instead of h(x , y) = |x − y |. . .

Take conditionally negative definite kernel h on Y: That is, h : Y × Y → [0,∞)
is

▶ symmetric: h(x , y) = h(y , x);

▶ ∀n ≥ 1, x1, . . . , xn ∈ Y, α1, . . . , αn ∈ R with
∑n

j=1 αj = 0, we have

n∑
i ,j=1

αiαjh(xi , xj) ≤ 0.

Then,

H(P) =
1

2

∫ ∫
h(x , y) dP(x) dP(y).

is concave with supergradient

∇PH(y) =

∫
h(x , y) dP(x)− 2H(P).
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Let Ph = {P | H(P) <∞}.

Theorem (Kernel score)

If h : Y × Y → [0,∞) is a (strongly) conditionally negative definite kernel, then
Sh : Ph × Y → R given by

Sh(P, y) =

∫
h(x , y) dP(x)− 1

2

∫ ∫
h(x , y) dP(x) dP(y)

is a (strictly) proper scoring rule.

▶ Divergence: d(P,Q) = −1
2

∫ ∫
h(x , y) d(P − Q)(x) d(P − Q)(y)

Symmetric in P and Q!

▶ S(P, y) = d(P, δy ) +
1
2h(y , y)

Divergence is itself a proper scoring rule.

▶ Divergence is squared maximum mean discrepancy (MMD).

(Gneiting and Raftery, 2007; Dawid, 2007; Steinwart and Ziegel, 2021)
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Connection to Hilbert space geometry

Theorem
There exists a Hilbert space H and a subset {ψx}x∈Y ⊂ H such that the
divergence d of S satisfies

d(P,Q) = −1

2

x
∥ψx − ψy∥2H d(P − Q)(x) d(P − Q)(y).

Moreover,

d(P,Q) =

∥∥∥∥∫ ψx dP(x)−
∫
ψx dQ(x)

∥∥∥∥2
H
.

Kernel score can be constructed on Y if

▶ we can construct a conditionally negative definite kernel on Y;

▶ we can construct a positive definite kernel k on Y (take h = −k);

▶ we can embed Y in a Hilbert space H.

30 / 58



Proper scoring
rules

Johanna Ziegel

Introduction

Definition

Motivation

Definition

Divergence and entropy

Examples

Estimation

Classes of scoring
rules

Characterization

Local scoring rules

f -scores and gf -scores

Kernel scores

Forecast
comparison

Information sets

Decompositions

Limitations

Summary

References

Connection to Hilbert space geometry

Theorem
There exists a Hilbert space H and a subset {ψx}x∈Y ⊂ H such that the
divergence d of S satisfies

d(P,Q) = −1

2

x
∥ψx − ψy∥2H d(P − Q)(x) d(P − Q)(y).

Moreover,

d(P,Q) =

∥∥∥∥∫ ψx dP(x)−
∫
ψx dQ(x)

∥∥∥∥2
H
.

Kernel score can be constructed on Y if

▶ we can construct a conditionally negative definite kernel on Y;

▶ we can construct a positive definite kernel k on Y (take h = −k);

▶ we can embed Y in a Hilbert space H.

30 / 58



Proper scoring
rules

Johanna Ziegel

Introduction

Definition

Motivation

Definition

Divergence and entropy

Examples

Estimation

Classes of scoring
rules

Characterization

Local scoring rules

f -scores and gf -scores

Kernel scores

Forecast
comparison

Information sets

Decompositions

Limitations

Summary

References

Kernels on Rd

Bounded continuous kernels
Radial kernels that are strongly positive definite for any d :

k(x , y) = φ(∥x − y∥),

where

φ(t) =

∫ ∞

0

exp(−t2s) dν(s)

for a measure µ with suppµ ̸= {0}.
(Sriperumbudur et al., 2011)

Distance kernels

h(x , y) = ∥x − y∥α,

for α ∈ (0, 2) are strongly conditionally negative definite for any d .

▶ CRPS corresponds to d = 1, α = 1.

▶ Energy scores.
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Connection to energy distance

Székely and Rizzo (2004), Baringhaus and Franz (2004) introduced the energy distance
between two distributions P,Q on Rd with finite first moments

E∥Z −W ∥ − 1

2
E∥Z − Z ′∥ − 1

2
E∥W −W ′∥,

where Z ,Z ′,W ,W ′ are independent with Z ,Z ′ ∼ P, W ,W ′ ∼ Q.

▶ Energy distance is the divergence of the kernel score with h(x , y) = ∥x − y∥
called the energy score.

▶ Energy distance is a squared maximum mean discrepancy between P and Q
(Sejdinovic et al., 2013).

▶ Energy score is a popular strictly proper scoring rule for multivariate
outcomes.
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Distance kernels

When is
h(x , y) = ∥x − y∥

strongly conditionally negative definite? Metric of strong negative type

▶ Separable Hilbert spaces

▶ Separable Lp-spaces for 1 < p ≤ 2

(Linde, 1986; Lyons, 2013; Sejdinovic et al., 2013)
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Characterizations of kernel scores

Theorem
Let S : P ×Y → R be a proper scoring rule such that {δy : y ∈ Y} ⊆ P and the
supergradient map P 7→ hP is weakly continuous.

Then, the divergence d of S is symmetric if and only if S is a kernel score.

▶ A proper scoring rule with {δy : y ∈ Y} ⊆ P corresponds to a squared
metric on measures if and only if it is a kernel score!

▶ This also provides a natural motivation for using kernel-MMD for two
sample testing.

(Waghmare and Ziegel, 2025)
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Characterizations of kernel scores
Let S be a scoring rule.

▶ Translation invariance: For y,h ∈ Rd ,

S(P, y) = S(Ph, y + h)

where Ph(A) = P(A+ h) for Borel sets A ⊂ Rd .

▶ Homogeneity: For every c > 0, P ∈ P and y ∈ Rd ,

S(Pc , cy) = cαS(P, y)

where Pc(A) = P(c−1A) for Borel sets A ⊂ Rd .

▶ Isotropy: For every rotation matrix U ∈ SO(d), P ∈ P and y ∈ Rd ,

S(PU,Uy) = S(P, y)

where PU(A) = P(U⊤A) for Borel sets A ⊂ Rd .
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Up to positive multiplicative constants:

1. CRPS → only 1-homogeneous translation invariant kernel score on R, and
2. Energy Scores → only homogeneous isotropic translation invariant kernel

scores on Rd .

(Waghmare and Ziegel, 2025)
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Foundations

Where do our loss functions come from?

▶ Logarithmic score.
Only proper scoring rule of the form S(P, y) = s(y , p(y)).

▶ Kernel Maximum Mean Discrepancy.
Only proper scoring rules which admit point measures and have symmetric
divergences.

▶ Squared error loss.
Only Bregman divergence which is symmetric and isotropic.
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Forecast comparison
Information sets
Decompositions
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Forecast comparison

Pick a strictly proper scoring rule S , compare the average realized score:
For (F1,G1,Y1), . . . , (Fn,Gn,Yn), let

Ŝ1 =
1

n

n∑
i=1

S(Fi ,Yi ) and Ŝ2 =
1

n

n∑
i=1

S(Gi ,Yi ).

The forecast with the smaller value Ŝj is better.

▶ Formal tests for differences between expected scores available.
(Diebold and Mariano, 1995; Giacomini and White, 2006; Lai et al., 2011; Henzi and Ziegel,

2022; Choe and Ramdas, 2024)

▶ If (Fi ,Yi ) are iid, classical (asymptotic) t-test can be used.
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Simulation example

Let X1 ∼ N (0, 1), X2 ∼ N (0, 2) be independent, and

P(Y = 1 | X1,X2) = Φ(X1 + X2).

Predictions:

p(0) = 1/2, p(1) = Φ
( X1√

3

)
, p(2) = Φ

( X2√
2

)
, p(3) = Φ(X1 + X2).

n = 200.

Prediction Brier Score Logarithmic score

p0 0.250 0.693
p1 0.213 0.613
p2 0.167 0.499
p3 0.116 0.355
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Does forecast comparison depend on the choice of the proper scoring rule S?
Generally, yes.

▶ Finite samples

▶ Non-nested information sets

▶ Uncalibrated predicitions/misspecified models

(Patton, 2020; Ziegel et al., 2020)

Can we avoid the choice of a proper scoring rule S?

▶ For binary outcomes, sometimes yes (Murphy diagrams)

▶ Otherwise, no.
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Murphy diagrams
All proper scoring rules for binary outcomes Y ∈ {0, 1} can be written as

S(p, y) =

∫ 1

0
Sθ(p, y) dH(θ)

for some measure H on (0, 1).

▶ One-parameter family (Sθ(p, y))θ of elementary scores.

▶ Forecast p is better with respect to all proper scoring rules S
if and only if it is better with respect to all Sθ, θ ∈ (0, 1).

T. Dimitriadis, T. Gneiting, A.I. Jordan et al. International Journal of Forecasting 40 (2024) 1101–1122

Table 1

Probability forecasts for class C1.0+ solar flares at a prediction horizon of a day ahead from a joint test
set within calendar years 2016 and 2017 (Leka & Park, 2019; Leka et al., 2019): Acronym, source, mean
Brier score, mean logarithmic (Log) score, and misclassification rate (MR). Details of the data example
are discussed in Section 6.1.
Probability forecast Mean score
Acronym Source Brier Log MR
NOAA National Oceanic and Atmospheric Administration 0.144 0.449 0.205
SIDC Royal Observatorium Belgium 0.172 0.515 0.263
ASSA Korean Space Weather Agency 0.184 → 0.273
MCSTAT Trinity College Dublin 0.193 0.587 0.275

Fig. 1. Triptych of diagnostic graphics for evaluating and comparing the probability forecasts of class C1.0+ solar flares from Table 1: Murphy curves
(lower is better), reliability curves (close to diagonal is preferred) with 90% consistency bands, and ROC curves (higher is better).

Not surprisingly, numerous types of diagnostic graph-
ics for evaluating probability forecasts exist (Filho et al.,
2023; Murphy & Winkler, 1992; Prati et al., 2011), and
practitioners may wonder which ones are preferred.

In this article, we propose using a triptych of diag-
nostic graphics and provide theoretical support for our
choices. The triptych consists of reliability curves in the
recently proposed CORP (Consistent, Optimally binned,
Reproducible, and Pool-Adjacent-Violators (PAV) algor-
ithm-based) form to assess calibration (Dimitriadis et al.,
2021), receiver operating characteristic (ROC) curves to
judge discrimination ability (Fawcett, 2006; Swets, 1973),
and Murphy curves for the assessment of overall pre-
dictive performance and utility (Ehm et al., 2016). Fig. 1
illustrates the triptych for probabilistic classifiers from an
astrophysical forecast challenge (Leka & Park, 2019; Leka
et al., 2019) as introduced in Table 1 and discussed in
detail in Section 6.1.

From the left, Murphy curves assess overall predictive
performance in terms of proper scoring rules (Ehm et al.,
2016). To provide background, a scoring rule assigns a
score S(x, y) to each pair of a probability forecast x ↑
[0, 1] and a binary outcome y ↑ {0, 1}, where 1 stands for
an event and 0 for a non-event. A scoring rule is proper
if a forecaster minimizes the expected score by issuing
a probability forecast that corresponds to her true belief,
with the Brier score S(x, y) = (x↓y)2 and the logarithmic
(Log) score S(x, y) = ↓y log x ↓ (1 ↓ y) log(1 ↓ x) being
prominent examples (Gneiting & Raftery, 2007). Scores
then are averaged over a test set, and the forecast with

the smallest mean score is considered best. The widely
used misclassification rate (MR) arises as a special case,
namely, by assigning a score of 1 if the probability forecast
is less than 1

2 and the event realizes, or the forecast
is greater than 1

2 and the event does not realize, and
assigning a score of 0 otherwise. Distinct proper scoring
rules may yield distinct forecast rankings, so practitioners
may wonder which one to use, and guidance is essential.
In the case of a binary outcome, proper scoring rules
can be represented as mixtures over so-called elemen-
tary scoring rules. Consequently, we can reconstruct a
forecast’s score under any given proper rule if we know
its scores under the elementary rules. Fortunately, the
family of the elementary scoring rules is linearly parame-
terized by a threshold or cost-loss parameter ω . A Murphy
curve depicts the mean elementary score as a function of
the threshold ω , with lower scores being preferable. The
height of the Murphy curve at ω = 1

2 equals the mis-
classification rate, and the area under the Murphy curve
equals the mean Brier score. If a forecast has a Murphy
curve below a competitor’s, it is superior in terms of any
proper scoring rule and has superior economic utility to
any decision maker. For example, we see from the Murphy
curves in Fig. 1 that the NOAA forecast dominates the
ASSA forecast, regardless of intended use.

A probability forecast is calibrated if, conditional on
any forecast value p, the event realizes in 100·p percent of
the instances considered. Reliability curves visualize cal-
ibration by plotting an estimate of the conditional event
probability (CEP) as a function of the forecast value. While

1102

Ehm et al. (2016); Krüger and Ziegel (2021); Figure from Dimitriadis et al. (2024)
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Why should we use proper scoring rules to evaluate predictions?
▶ They incentivize truthful (calibrated) and informative forecasts.

Let S be a (strictly) proper scoring rule.

Theorem
Let F = L(Y | X ), G based on X (σ(X )-measurable). Then,

ES(F ,Y ) ≤ ES(G ,Y ).

Equality implies that F = G almost surely.

Corollary

Let F = L(Y | X ,Z ), G = L(Y | X ). Then,

ES(F ,Y ) ≤ ES(G ,Y ).

Equality happens if and only if Y and Z are conditionally independent given X .

(Holzmann and Eulert, 2014)

43 / 58



Proper scoring
rules

Johanna Ziegel

Introduction

Definition

Motivation

Definition

Divergence and entropy

Examples

Estimation

Classes of scoring
rules

Characterization

Local scoring rules

f -scores and gf -scores

Kernel scores

Forecast
comparison

Information sets

Decompositions

Limitations

Summary

References

Why should we use proper scoring rules to evaluate predictions?
▶ They incentivize truthful (calibrated) and informative forecasts.

Let S be a (strictly) proper scoring rule.

Theorem
Let F = L(Y | X ), G based on X (σ(X )-measurable). Then,

ES(F ,Y ) ≤ ES(G ,Y ).

Equality implies that F = G almost surely.

Corollary

Let F = L(Y | X ,Z ), G = L(Y | X ). Then,

ES(F ,Y ) ≤ ES(G ,Y ).

Equality happens if and only if Y and Z are conditionally independent given X .

(Holzmann and Eulert, 2014)

43 / 58



Proper scoring
rules

Johanna Ziegel

Introduction

Definition

Motivation

Definition

Divergence and entropy

Examples

Estimation

Classes of scoring
rules

Characterization

Local scoring rules

f -scores and gf -scores

Kernel scores

Forecast
comparison

Information sets

Decompositions

Limitations

Summary

References

Scoring rules and calibration

Goal
Decompose

Ŝ =
1

n

n∑
k=1

S(Fi , yi )

into interpretable terms quantifying miscalibration (MCB), discrimination ability
(DSC), and uncertainty (UNC).

Idea

ES(F ,Y ) = ES(F ,Y )− ES(L(Y | F ),Y )︸ ︷︷ ︸
MCB

−
(
ES(L(Y ),Y )− ES(L(Y | F ),Y )︸ ︷︷ ︸

DSC

)
+ ES(L(Y ),Y )︸ ︷︷ ︸

UNC

▶ L(Y | F ) is best auto-calibrated forecast given information F .

▶ L(Y ) is uninformative but auto-calibrated.
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Empirical translation of the idea

Data: (F1, y1), . . . , (Fn, yn)

Uncertainty: UNC = ES(L(Y ),Y )

UNC =
1

n

n∑
i=1

S
(1
n

n∑
k=1

δyk , yi
)

Miscalibration: MCB = ES(F ,Y )− ES(L(Y | F ),Y )

▶ Need estimate of L(Y | F ) that is in-sample auto-calibrated and such that
MCB ≥ 0. Generally not feasible.

▶ If S = CRPS, there is possible solution using isotonic distributional regression
(Henzi et al., 2021).

Discrimination: DSC = ES(L(Y ),Y )− ES(L(Y | F ),Y )

▶ Estimate DSC by Ŝ −MCB− UNC.
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Data application

Compare probabilistic quantitative precipitation forecasts.

Numerical weather prediction models

▶ Physical model of the atmosphere is run with current (measured) inital conditions

▶ Initial conditions are measured with error: Several model runs with slightly
perturbed inital conditions yields ensemble of forecasts

▶ Forecast ensembles are interpreted as random draws from the conditional
distribution of the outcome

▶ Ensembles are usually biased and underdispersed: Statistical postprocessing

Bauer et al. (2015)
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▶ Airport station observations at London and Zurich

▶ 52 member raw ensemble forecasts from European Centre for Medium-Range
Weather Forecasts (ECMWF)

▶ Training data from 2007–2014, evaluation data from 2015-2016

▶ Prediction horizons of 1-5 days

Postprocessing methods:

▶ Bayesian model averaging (BMA)

▶ Ensemble model output statistics (EMOS)

▶ Heteroscedastic censored logistic regression (HCLR)

▶ Isotonic distributional regression (IDR)
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Probabilistic quantitative precipitation forecasts
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Uncertainty quantification on benchmark datasets in machine
learning
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Arnold et al. (2024)
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Limitations
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Proper scoring rules and extremes

▶ Evaluation of forecast behaviour with respect to extreme events requires
care (Lerch et al., 2017): Never condition on the outcomes when evaluating:
Forecasters dilemma.

▶ Proper scoring rules are not necessarily directly useful: Expected scores
cannot distinguish different tail behaviour (Brehmer and Strokorb, 2019).

▶ However, evaluating calibration of probabilistic predictions with regards to
tails is possible (Allen et al., 2025).
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Summary

▶ Probabilistic predictions should be calibrated and sharp.

▶ Ideally, probabilistic predictions should be auto-calibrated.

▶ Proper scoring rules allow to compare probabilistic predictions
simultaneously with respect to calibration and discrimination ability.
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