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Introduction: Probabilistic predictions

» Let Y € Y be an unknown future outcome.

» Temperature tomorrow at 12:00 in Cambridge. (Y € ) = R)

P Event of rain tomorrow in London. (Y € Y = {0,1})

P Default of credit card client. (Y € Y ={0,1})

» Amount of precipitation tomorrow in Cambridge and Oxford. (Y € J = R?)

» Single valued “best guess” z € ) does not quantify uncertainty.
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predictions of some measure of variability, ...

2/58



Proper scoring

Introduction: Probabilistic predictions rules

Johanna Ziegel

» Let Y € Y be an unknown future outcome.
> Introduction

>
>
>

» Single valued “best guess” z € ) does not quantify uncertainty.
» Better: Quantify uncertainty of Y by a probabilistic prediction F.
» F is a distribution on V.

» If X is information available for prediction, F should approximate L(Y | X).

» Other possibilities to quantify uncertainty of Y: prediction intervals,
predictions of some measure of variability, ...
» Which loss functions can we use to compare probabilistic predictions?

Proper scoring rules.

2/58



. Proper scorin
OUtllne . prules ¢
Introduction

Definition
Motivation
Definition
Divergence and entropy
Examples

Estimation

Classes of scoring rules
Characterization
Local scoring rules
f-scores and gf-scores
Kernel scores

Forecast comparison
Information sets
Decompositions

Limitations

Summary

Johanna Ziegel

Introduction

3/58



Proper scoring
rules

Johanna Ziegel

Definition

Definition
Motivation
Definition
Divergence and entropy
Examples

4/58



Motivation 1: Forecast comparison Eeagen scoting

rules

Johanna Ziegel

Pick a loss function S: P x Y — R, and compare average realized scores: S
For (Fl, Gl, Yl), ey (Fn, Gn, Yn), let

L 1L s _1¢
S = - ;S(F;, Y:) and S = " ;S(Gi, Yi)-

The forecast with the smaller value S; is better.
» When does this procedure make sense?

» S needs to be a proper scoring rule.

» History: In meteorology, Brier (1950) showed that quadratic score for binary
outcomes cannot be gamed.
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Motivation 2: McCarthy's forecasting tournament

>

>

Forecasting agent makes probabilistic prediction F for a random variable Y
and receives the penalty S(F,Y).

Rationally, if the agent believes Y ~ G then it issues

argmin Eg[S(F, Y)]
F

Not necessarily equal to G.
McCarthy’s idea. Choose S such that

G = argmin Eg[S(F,Y)]
F

McCarthy characterized such (differentiable) S for Y € {0,1} (McCarthy, 1956).

Bregman divergences...~ 10 years before Bregman introduced them in 1967.
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Let P be a convex class of distributions on ). Frepar seaiiig

rules
Deﬁnition Johanna Ziegel
A scoring rule is a function S : P x YV — R U {400} that is suitably integrable.
A scoring rule S is proper if

EFS(F) Y) S EFS(G, Y), F, G & P’ Y ~ F. (1) Definition

S is strictly proper if equality implies F = G.
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Let P be a convex class of distributions on ).

Definition

A scoring rule is a function S : P x YV — R U {400} that is suitably integrable.
A scoring rule S is proper if

ErS(F,Y)<EgS(G,Y), F,GeP,Y ~F. (1)
S is strictly proper if equality implies F = G.
Equivalent to (1) is
F € argminErS(G, Y) = argmin S(G, F).
G G

» Scoring rules are interpreted as penalties.
» Forecasts should be compared with proper scoring rules (Gneiting and Raftery, 2007).
» Proper scoring rules are also increasingly important in estimation (Dawid et al., 2016).

» New review article (Waghmare and Ziegel, 2025).
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Examples for Y = {0, 1}

Distributions F on ) can be identified with a parameter p € [0, 1].

Brier score

S(p.y)=(y—p)®, pel0,1], y €{0,1},

Logarithmic score

S(p,y) = —ylog(p) — (L — y)log(L — p),

p€[0,1], y € {0,1}.
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Proper scoring

Divergence and entropy e

Johanna Ziegel

For a scoring rule S : P x Y — R, we associate an entropy
H:P— R, H(F)= /S(F,y)dF(y) =EgS(F,Y)=S(F,F),

and a divergence

d:PxP R, d(F,G)=S(F,G)— H(G).
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Examples for Y = R

Logarithmic Score (LogS)
f density of F

LogS(F,y) = —log f(y)
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Entropy is Shannon entropy: Zerme

H(F) = —/f(x) log f(x)du(x) = —Eg log f(X)
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Examples for Y = R

Logarithmic Score (LogS)

LogS(F,y) = —log f(y)
Entropy is Shannon entropy:

H(F) = —/f(x) log f(x)du(x) = —Eg log f(X)

Divergence is Kullback-Leibler divergence:

d(F.6) = [ gly)log (igg) du(y) = Dic(GI|F)

» Empirical risk minimization with respect to logarithmic score:
Maximum likelihood estimation
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Examples for y =R Propzlzoring

Johanna Ziegel

Continuous Ranked Probability Score (CRPS)
F CDF, finite mean

CRPS(F.y) = /R (F(2) — 1{y < 2}) dz R

Entropy

Divergence G CDF, finite mean
d(F.6) = [(Fiy) - 6()P dy =

» Central role in forecast evaluation in meteorology.
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Motivation 3 P s

rules
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Theorem

A scoring rule S : P x Y — R is strictly proper if and only if for every pair of
random variables (X,Y) € X x Y such that

> the conditional distributions Py x_, € P

Estimation

we have

{Py|x—x}x = argmin E [S(PX, Y)} .
(B

where P* : X — P.
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Remark
>
Py x—. = argminE [S(IP’X, Y)] .
PC)

Estimation

is analogous to

E[YIX= -]= argﬂl}f) E[(Y — £(X))?]

» Proper scoring rules are to conditional distributions what the squared error
loss (and Bregman divergences) are to conditional expectations.
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Proper scoring

Bias-Variance decomposition rules

Johanna Ziegel

Theorem
» Let {IPg}oco be a parametric family.

» Consider an estimator Py of Py x— . where 6 = 67({(XJ, Yi) j:l)'

» Then,
E[d(Pj x: Py|x)] = E[d(Pj x, Px)] + E[d(Px, Py |x)] Estimation
variance I
where B
P, = arg]gnin E[d(]P’é,X, P)]
and

Py|x=x = argmin E[S(P, Y) | X = x]
P

is the best predictor, assuming the two exist.

(Pfau, 2013)
15/58



Analogy to classical bias-variance decomposition

E[d(P; x, Pyix)] = E[d(P; x, Px)] + E[d(Px, Py x)]

variance bias

Py = argminE[d(P; ,,P)] Py x—x = argmin E[S(P, Y) | X = x]
P ' P

Limitations

Summary

References
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Analogy to classical bias-variance decomposition

E[d(B) . By x)] = E[d(; . Bx)] + E[d(Bx. Py(x)]
variance bias

P, = argmin E[d(P; ., P)] Py x—x = argminE[S(P, Y) | X = x]
P ©

Take S(F,y) = (m(F) —y)?. Then
d(F,G) =Eg(m(F) — Y)? —varg(Y) = (m(F) — m(G))?.
E[d(Pj x,Pyix)] = E[E[d(Pj x, Py x) | X]] = E(my(X) — Y)? —Evar(Y | X)
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E[d(P; x, Pyix)] = E[d(Pg x. Px)] + E[d(Px, Pyx)]
variance bias

P, = argmin E[d(P; ., P)] Py x—x = argminE[S(P, Y) | X = x]
‘i

P

Take S(F,y) = (m(F) —y)?. Then
d(F,G) =Eg(m(F) — Y)? —varg(Y) = (m(F) — m(G))?.
E[d(Pj x,Pyix)] = E[E[d(Pj x, Py x) | X]] = E(my(X) — Y)? —Evar(Y | X)

argmin E[d(P; ,P)] = argmin E(my(x) — z)> = Eymy(x).
P ’ z
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Analogy to classical bias-variance decomposition

E[d(P; x, Pyix)] = E[d(Pg x. Px)] + E[d(Px, Pyx)]
variance bias

P, = argmin E[d(P; ., P)] Pyix=x = argminE[S(P, Y) | X = x]
P :

Take S(F,y) = (m(F) — y)?. Then
d(F,G) =Eg(m(F) — Y)? —varg(Y) = (m(F) — m(G))?.

E[d(Pj x. Py|x)] = E[E[d(P; x. Pyix) | X]] = E(mg(X) — Y)? — Evar(Y | X)
arg];nin E[d(Py ,.P)] = argzmin E(my(x) — 2)* = Egmy(x).

E[d(Pg x. Px)] = E[E[d(P5 x. Px) | X]| = E(ms(X) — Egmy(X))?  variance
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Analogy to classical bias-variance decomposition

E[d(P x. Pyix)] = E[d(P; x, Px)] + E[d(Px, Pyx)]

bias

variance

Py x=x = argmin H’;[S(MD- Y) X = X]

P, = argminE[d(P; ,]P)]

Take S(F,y) = (m(F) —y)?. Then

d(F,G) =Eg(m(F) = Y)* = varg(Y) = (m(F) — m(G)).
E[d(Pg x, Pyix)] = E[E[d(P; x, Py|x) | X]] = E(my(X) — Y)? — Evar(Y | X)
arg];nin E[d(P; ,,P)] = argzmin E(my(x) — 2)* = Egmy(x).

E[d(Pg x. Px)] = E[E[d(P5 x. Px) | X]| = E(ms(X) — Egmy(X))?  variance

E[d(Bx. Py x)] = E[E[d(Bx. Py(x) | XI| = E(Egmy(X) — E(Y | X))* bias
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Examples

16 /58



Classes of scoring rules
Characterization
Local scoring rules
f-scores and gf-scores
Kernel scores
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Characterization of proper scoring rules

Let P be a convex class of distributions on ).
Preliminaries
» Concavity: H:P — R such that for F,G € P,

H(aF + (1 —«a)G) > aH(F) + (1 — a)H(G)

Entropies H are concave!

» Supergradient: hg: Y — R that is G-integrable and

H(F) + / he(y) d(G — F)(y) > H(G)

for all G € P.

» Regularity: A scoring rule S: P x Y — R is called regular if
H(F) = S(F, F) is finite and S(F, G) > —oo for every F, G € P with
F+£G.
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rules
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Proper scoring

!
Theorem e

A regular scoring rule S : P x Y — R is (strictly) proper if and only if there is a ohanna Zieee
(strictly) concave function H : P — R such that

S(F,y) = H(F) + he(y) - / hr(x) dF (x)

for every F € P and y € ), where hr is a supergradient of H at F.
» If H is differentiable, hr = VgH, where VgH is such that, for all G € P

Characterization

i~ [H((1 - 0)F +a6) = H(F) = [ VeH()dG().

» and
d(F,G) = H(F) — H(G) — / VEH(y)d(F - G)(y).
(Gneiting and Raftery, 2007)
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Proper scoring

Local scoring rules e

Johanna Ziegel
> )V C R open
» Pk probability measures on ) with k-times differentiable densities

Definition
A proper scoring rule S : PK x ) — R is local of order k if

S(F,y) =s(y.f(y).---, Vyf(y)), FeP.
where f is the density of F.

Example
Local scoring rule of order 0: S(F,y) = —log f(y).
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Uniqueness of logarithmic score e
Johanna Ziegel
Theorem

Logarithmic score is (essentially) only differentiable local scoring rule of order 0.
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Uniqueness of logarithmic score Proper scoring

rules
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Theorem
Logarithmic score is (essentially) only differentiable local scoring rule of order 0.

Proof.
Let S(F,y) = s(y, f(y)) with s(y, z) differentiable. Then H(F) = [ s(y, f(y))f(y)dy.

/VFH(y) dG(y)
— [ (st £ + s FNF ) elr)dy = [ st FONF )y = [ 5Lt PO dy
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Uniqueness of logarithmic score Proper scoring

rules

Johanna Ziegel
Theorem

Logarithmic score is (essentially) only differentiable local scoring rule of order 0.

Proof.
Let S(F,y) = s(y, f(y)) with s(y, z) differentiable. Then H(F) = [ s(y, f(y))f(y)dy.

/VFH(y) dG(y)
— [ (st £ + s FNF ) elr)dy = [ st FONF )y = [ 5Lt PO dy

Hence, by the characterization theorem

S(F,) = sty ) + 1) st F)) = [ sl Fm)(Fw))? dw

=cf(w)

= %s(y, f(w)) = f((\:/v) = s(y,f(y)) = alogf(y) + b for some a,b € R. O
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Score matching

Example (Hyvarinen Score)
Let ¥ = RY and ||V log p(x)|| — 0 as ||x|| — oo for p € P2. Then

1 0?logp 1 [0logp 8
5<P,y>=Aylogp(y)+§||vylogp(y>||2—Z{1 AN
- {
J

())32 2

where V,f and A, f are gradient and Laplacian, is a strictly proper scoring rule.
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Proper scoring

Score matching riles
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Example (Hyvarinen Score)
Let Y = RY and ||V log p(x)|| — 0 as ||x|| — oo for p € P2. Then

5 lo 1 [0log p]?
gp { gp} }

1
Py)=A,I + = ||V 2— g =
S(P.,y) y log p(y) 2” y log p(y)| : { (.)ng 2 | oy,

where V, f and A, f are gradient and Laplacian, is a strictly proper scoring rule.

Non-normalized Densities
Consider the parametric family {Py : 0 € ©}. Let dPy/du = pp(x) o< expng(x). R

1 I
S(Po,x) = Batig(x) + 5| Vo ()]
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Proper scoring

Score matching riles

Johanna Ziegel

Example (Hyvarinen Score)
Let Y = RY and ||V log p(x)|| — 0 as ||x|| — oo for p € P2. Then

1
S(P.y) = By logp(y) + 5[ Vy log p(y)[I* ,

is a strictly proper scoring rule.

Non-normalized Densities REE—
Consider the parametric family {Py : 0 € ©}. Let dPy/du = pp(x) o< expng(x).

1
S(Po,x) = Lacng (%) + 5[ Vo ()|

We have
minEQS(Py, Y) = minEq||Vy log py(Y) — Vy log q(Y)|I?
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Proper scoring
f-scores -
Johanna Ziegel

1 measure on ), P all absolutely continuous measures wrt p
f :[0,00) — R concave and differentiable. Define concave entropy

Hi(P) = [ F(p0)du(). P e

p density of P € P.

f-scores and gf-scores

Kernel scores
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Proper scoring

f-scores e
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f : [0,00) — R concave and differentiable. Define concave entropy

Hi(P) = [ F(p0)du(). P e

This yields the proper scoring rule

SH(P.y) = F(p() + Hi(P) ~ [ F/(plx))p(x)dux).

23/58



Proper scoring

f-scores e

Johanna Ziegel

f : [0,00) — R concave and differentiable. Define concave entropy

Hi(P) = [ F(p0)du(). P e

This yields the proper scoring rule

f-scores and gf-scores

SH(P.y) = F(p() + Hi(P) ~ [ F/(plx))p(x)dux).

» Different name: Separable Bregman scores (Griinwald and Dawid, 2004)
» Only scoring rules of the form S(P,y) = r(p(y)) + ¢(P).
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Proper scoring

f-scores e

Johanna Ziegel

Examples

f(u) 5(P.y)

—ulogu —log p(y) logarithmic score
—u? —2p(y) + [ p(x)?du(x) quadratic score, Brier score
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gf-scores per scoring
Consider entropies of the form Johanna Ziegel

H(P) = ¢ [ o) du) ) = eCHi(P)
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Proper scorin
gf-scores per scoring
Consider entropies of the form Johanna Ziegel

H(P) = ¢ [ o) du) ) = eCHi(P)

1
where f, g are such that H is concave, for example
» f concave, g concave and increasing;

» f convex, g concave and decreasing.

If f, g are differentiable, we obtain the proper scoring rule

Ser(P,y) = &' (He(P)f'(p(y)) + &(He (P)) —g’(Hf(P))/f’(P(X))P(X) dp(x).
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gf‘_scores Proper scoring

rules

Consider entropies of the form Johanna Ziegel

H(P) = ¢ [ o) du) ) = eCHi(P)

1
where f, g are such that H is concave, for example
» f concave, g concave and increasing;

» f convex, g concave and decreasing.

. . . . f-scores and gf-scores
If f, g are differentiable, we obtain the proper scoring rule ¢

Ser(P,y) = &' (He(P)f'(p(y)) + &(He (P)) —g’(Hf(P))/f’(p(X))P(X) dp(x).

Example (Spherical score)
f(u) =u? g(u)=—u, S(P,y) = A/ [ p(x)? dp(x
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Kernel scores: Motivation

‘P: class of probability measures on R with finite mean.
Probability measures specified as CDFs F.

References
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Kernel scores: Motivation

P: class of probability measures on R with finite mean.
Probability measures specified as CDFs F.

Continuous Ranked Probability Score (CRPS)
S(Fy) = [ (O = 1y < x))* d)
1
= /0 (H{y < FYa)} —a) (Fa)—y) da

1
= Ep[X —y| = SE£IX = X'|

> Allows to compare discrete, continuous and mixed discrete-continuous
distributions.

P Is becoming increasingly popoular also in estimation.

Proper scoring
rules
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Proper scoring

Kernel scores: Motivation e

Johanna Ziegel

Let h(x,y) = |x — y|.

Transformation Models
Let gg(N) ~ Py.

A

3= %zh(gg(m,) ¥) Z > h(gs(N7), go(Ni))

i=1 "'
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Kernel scores: Motivation
Let h(x,y) = |x — y|.
Transformation Models
Let gg(N) ~ Py.

A

5= %Z h(go(N3i), y)

Conditional Transformation Models
Let gg(X, N) ~ PG,X-

A

5%2 (&, Ni), )

Z > h(gs(Ny), go(Ni))

i=1 "'

ZzhgexN ,89(x,N))

i=1i"i'#i

(Gneiting et al., 2005; Hothorn et al., 2014; Bouchacourt et al., 2016)

Proper scoring
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Kernel scores
Instead of h(x,y) =|x—y]|...
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Take conditionally negative definite kernel h on ):
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Kernel scores Proper scring
Instead Of h(X,y) = ‘X — y‘ L. Johanna Ziegel

Take conditionally negative definite kernel hon ): Thatis, h: Y x Y — [0,00)
is

» symmetric: h(x,y) = h(y, x);
> Vn>1 x,....xa €Y, a1,...,0, € R with Z}’Zlaj:O, we have

Z Oz,'Ozjh(X,',Xj) < 0.
ij=1
Then , 1 Kernel scores
HP) =5 [ [ Hxy)dPx) aP(y).

is concave with supergradient

VpH(y) = /h(x,y)dP(x) —2H(P).

28 /58



Proper scoring
rules
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Theorem (Kernel score)
Ifh:Y xY —[0,00) is a (strongly) conditionally negative definite kernel, then
Sh: Py x)Y — R given by

5i(P.y) = [ Hxy)dPl) 5 [ [ hix.y) dP(x) dP(y)

is a (strictly) proper scoring rule.
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Proper scoring

Theorem (Kernel score)

Ifh:Y xY —[0,00) is a (strongly) conditionally negative definite kernel, then
Sh: Py x)Y — R given by

5i(P.y) = [ Hxy)dPl) 5 [ [ hix.y) dP(x) dP(y)

is a (strictly) proper scoring rule.

> Divergence: d(P,Q) = —3 [ [ h(x,y)d(P— Q)(x)d(P — Q)(y)
> S(P,y)=d(P,é,)+ h(y.y)

» Divergence is squared maximum mean discrepancy (MMD).

(Gneiting and Raftery, 2007; Dawid, 2007; Steinwart and Ziegel, 2021)

rules

Johanna Ziegel
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Connection to Hilbert space geometry Proper scoring

rules

Johanna Ziegel

Theorem

There exists a Hilbert space H and a subset {1x}xcy C H such that the
divergence d of S satisfies

d(P,Q) = 3 [ Il — by I3, AP — Q)) d(P — Q)(y)

d(P, Q) = H/deP /wxdo

Moreover,
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Connection to Hilbert space geometry

Theorem
There exists a Hilbert space H and a subset {1x}xcy C H such that the
divergence d of S satisfies

d(P,Q) = 3 [ Il — by I3, AP — Q)) d(P — Q)(y)

d(P, Q) = H/wde /wxdo

Kernel score can be constructed on Y if

Moreover,

P> we can construct a conditionally negative definite kernel on Y;
> we can construct a positive definite kernel k on Y

> we can embed ) in a Hilbert space H.

Proper scoring
rules

Johanna Ziegel
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Kernels on R?

Bounded continuous kernels
Radial kernels that are strongly positive definite for any d:

k(x,y) = o(llx = yll),

where

o(t) = /0 "~ exp(—t25) du(s)

for a measure p with supp p # {0}.

Proper scoring
rules
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(Sriperumbudur et al., 2011)
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Bounded continuous kernels
Radial kernels that are strongly positive definite for any d:

k(x,y) = o(llx = yll),

where -
o(t) = / exp(—t25) du(s)
0
for a measure p with supp p # {0}.
(Sriperumbudur et al., 2011)

Distance kernels

h(x,y) = lx =yl
for a € (0,2) are strongly conditionally negative definite for any d.
» CRPS correspondsto d =1, a = 1.

» Energy scores.
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Székely and Rizzo (2004), Baringhaus and Franz (2004) introduced the energy distance
between two distributions P, @ on R? with finite first moments

1 1
E|lZ - W - 5EIZ - Z/| - SE|W - W',

where Z,Z' W, W’ are independent with Z,Z" ~ P, W, W' ~ Q.
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Székely and Rizzo (2004), Baringhaus and Franz (2004) introduced the energy distance
between two distributions P, @ on R? with finite first moments

1 1
E|lZ - W - 5EIZ - Z/| - SE|W - W',

where Z,Z' W, W’ are independent with Z,Z" ~ P, W, W' ~ Q.
» Energy distance is the divergence of the kernel score with h(x,y) =[x — y/|

called the energy score. ——

» Energy distance is a squared maximum mean discrepancy between P and @
(Sejdinovic et al., 2013).

» Energy score is a popular strictly proper scoring rule for multivariate
outcomes.
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Distance kernels

When is
h(x,y) =[x =yl

strongly conditionally negative definite? Metric of strong negative type
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Distance kernels

When is

h(x,y) =[x =yl

strongly conditionally negative definite? Metric of strong negative type

» Separable Hilbert spaces
» Separable LP-spaces for 1 < p <2

(Linde, 1986; Lyons, 2013; Sejdinovic et al., 2013)
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Theorem

Let S: P x Y — R be a proper scoring rule such that {5, : y € Y} C P and the
supergradient map P — hp is weakly continuous.

Then, the divergence d of S is symmetric if and only if S is a kernel score.

34/58



Characterizations of kernel scores Proper scoring

rules

Johanna Ziegel

Theorem
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» A proper scoring rule with {0, : y € Y} C P corresponds to a squared
metric on measures if and only if it is a kernel score!

(Waghmare and Ziegel, 2025)
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Characterizations of kernel scores Proper scoring

rules

Johanna Ziegel

Theorem

Let S: P x Y — R be a proper scoring rule such that {5, : y € Y} C P and the
supergradient map P — hp is weakly continuous.

Then, the divergence d of S is symmetric if and only if S is a kernel score.

» A proper scoring rule with {0, : y € Y} C P corresponds to a squared
metric on measures if and only if it is a kernel score!

» This also provides a natural motivation for using kernel-MMD for two
sample testing.

(Waghmare and Ziegel, 2025)
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» Translation invariance: For y,h € RY,

S(P.y) = 5(Pn,y +h)

where P,(A) = P(A+ h) for Borel sets A C RY.
» Homogeneity: For every ¢ >0, P € P andy € R,

S(Pc, cy) = c“S(P,y)

where P.(A) = P(c1A) for Borel sets A C RY.
> Isotropy: For every rotation matrix U € SO(d), P € P and y € R¢,

5(Pu,Uy) = 5(P,y)

where Py(A) = P(UT A) for Borel sets A C RY.
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Up to positive multiplicative constants:

1. CRPS — only 1-homogeneous translation invariant kernel score on R, and

2. Energy Scores — only homogeneous isotropic translation invariant kernel
scores on RY.

(Waghmare and Ziegel, 2025)

Kernel scores
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Where do our loss functions come from?

Motivation

» Logarithmic score.
Only proper scoring rule of the form S(P,y) = s(y, p(y)).

» Kernel Maximum Mean Discrepancy.
Only proper scoring rules which admit point measures and have symmetric
divergences.

Kernel scores

» Squared error loss. Ifors
Only Bregman divergence which is symmetric and isotropic.
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Pick a strictly proper scoring rule S, compare the average realized score:
For (Fl, Gl, Yl), ey (Fn, Gn, Yn), let

R L s 1L
Slzniz_;s(/:iyyi) and 52:niz_;5(Gi’Yi)'

The forecast with the smaller value §j is better.

» Formal tests for differences between expected scores available.
(Diebold and Mariano, 1995; Giacomini and White, 2006; Lai et al., 2011; Henzi and Ziegel, :zrr:;:fitson

2022; Choe and Ramdas, 2024)
» If (F;, Y;) are iid, classical (asymptotic) t-test can be used.
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Simulation example
Let X3 ~N(0,1), Xo ~ N(0,2) be independent, and

Predictions:

p© —1/2 ) — q,(

n = 200.

P(Y =1 X1, X2) = &(Xy + X2).

Xi
V3

) sl

%)

Prediction | Brier Score Logarithmic score

Po
P1
P2

0.250
0.213
0.167
0.116

0.693
0.613
0.499
0.355

Proper scoring
rules

Johanna Ziegel

Forecast
comparison

40/58



Proper scoring
rules

Johanna Ziegel

Does forecast comparison depend on the choice of the proper scoring rule 57
Generally, yes.

» Finite samples
» Non-nested information sets

» Uncalibrated predicitions/misspecified models

(Patton, 2020; Ziegel et al., 2020)

Forecast
comparison
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Does forecast comparison depend on the choice of the proper scoring rule 57
Generally, yes.

» Finite samples
» Non-nested information sets

» Uncalibrated predicitions/misspecified models
(Patton, 2020; Ziegel et al., 2020)

Can we avoid the choice of a proper scoring rule 57

Forecast
comparison

» For binary outcomes, sometimes yes (Murphy diagrams)

» Otherwise, no.
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Murphy diagrams

All proper scoring rules for binary outcomes Y € {0,1} can be written as

1
S(p,y)Z/0 Se(p, y) dH(0)

for some measure H on (0, 1).

» One-parameter family (So(p,y))¢ of elementary scores.

» Forecast p is better with respect to all proper scoring rules S
if and only if it is better with respect to all Sy, 6 € (0,1).

Mean elementary score

Murphy Reliability ROC
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Ehm et al. (2016); Kriiger and Ziegel (2021); Figure from Dimitriadis et al. (2024)

False alarm rate
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» They incentivize truthful (calibrated) and informative forecasts.
Let S be a (strictly) proper scoring rule.

Theorem
Let F=L(Y | X), G based on X . Then,

ES(F,Y) < ES(G, Y).

Equality implies that F = G almost surely.

Information sets
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Proper scoring

Why should we use proper scoring rules to evaluate predictions? e
» They incentivize truthful (calibrated) and informative forecasts. Johanna Ziegel

Let S be a (strictly) proper scoring rule.

Theorem

Let F=L(Y | X), G based on X . Then,

ES(F,Y) <ES(G,Y).
Equality implies that F = G almost surely.

Corollary
Let F=L(Y | X,Z), G=L(Y | X). Then,

Information sets

ES(F,Y) <ES(G,Y).

Equality happens if and only if Y and Z are conditionally independent given X.

(Holzmann and Eulert, 2014)
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Goal

Decompose
n

S(Fl’yl) Mo ;‘;,’H
k=1 Divergence and entrop

~ 1
§==:
n

into interpretable terms quantifying miscalibration (MCB), discrimination ability
(DSC), and uncertainty (UNC).

|dea B
ES(F,Y) =ES(F,Y) —ES(L(Y | F),Y) = (ES(L(Y),Y) —ES(L(Y | F),Y)) e
MCB DSC
+ES(L(Y),Y) eomposions
D e

UNC

» L(Y | F) is best auto-calibrated forecast given information F.

» L(Y) is uninformative but auto-calibrated.
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Empirical translation of the idea

Data: (Fl,y1)7 ceey (men)
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Empirical translation of the idea

Data: (F17Y1)7 LR (Fnayn)
Uncertainty: UNC = ES(L(Y),Y)

Miscalibration: MCB = ES(F,Y) — ES(L(Y | F),Y)

> Need estimate of £(Y | F) that is in-sample auto-calibrated and such that
MCB > 0. Generally not feasible.

» If S = CRPS, there is possible solution using isotonic distributional regression
(Henzi et al., 2021).

Discrimination: DSC =ES(L(Y),Y) —ES(L(Y | F),Y)

> Estimate DSC by 5§ — MCB — UNC.

Proper scoring
rules
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Data application

Compare probabilistic quantitative precipitation forecasts.

Numerical weather prediction models

» Physical model of the atmosphere is run with current (measured) inital conditions

» Initial conditions are measured with error: Several model runs with slightly
perturbed inital conditions yields ensemble of forecasts

» Forecast ensembles are interpreted as random draws from the conditional
distribution of the outcome

» Ensembles are usually biased and underdispersed: Statistical postprocessing

Bauer et al. (2015)

Proper scoring
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» Airport station observations at London and Zurich

» 52 member raw ensemble forecasts from European Centre for Medium-Range
Weather Forecasts (ECMWF)

» Training data from 2007-2014, evaluation data from 2015-2016
» Prediction horizons of 1-5 days
Postprocessing methods:
» Bayesian model averaging (BMA)
» Ensemble model output statistics (EMOS)
> Heteroscedastic censored logistic regression (HCLR)
>

Isotonic distributional regression (IDR)
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Probabilistic quantitative precipitation forecasts

London Zurich
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Uncertainty quantification on benchmark datasets in machine
learning

Dsc

Boston Concrete Power
UNC =476 MC Dropout e UNC =9.18 MC Dropout e UNC =9.81 MC Dropoute
Q Q
Laplace 2 2
Laplace
Single Gaussian
. Single Gaussian

Smooth Eas

Smooth

Laplace
-

Arnold et al. (2024)
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Proper scoring rules and extremes

» Evaluation of forecast behaviour with respect to extreme events requires
care (Lerch et al., 2017): Never condition on the outcomes when evaluating:

Forecasters dilemma.
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» Proper scoring rules are not necessarily directly useful: Expected scores
cannot distinguish different tail behaviour (Brehmer and Strokorb, 2019).
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Proper scoring rules and extremes e

Johanna Ziegel

» Evaluation of forecast behaviour with respect to extreme events requires
care (Lerch et al., 2017): Never condition on the outcomes when evaluating:
Forecasters dilemma.

» Proper scoring rules are not necessarily directly useful: Expected scores
cannot distinguish different tail behaviour (Brehmer and Strokorb, 2019).

» However, evaluating calibration of probabilistic predictions with regards to
tails is possible (Allen et al., 2025).

Limitations
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Proper scoring

Summary e
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» Probabilistic predictions should be calibrated and sharp.
> Ideally, probabilistic predictions should be auto-calibrated.

» Proper scoring rules allow to compare probabilistic predictions
simultaneously with respect to calibration and discrimination ability.

Summary
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