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A simple forecasting example

▶ On Monday, 1 September at 13:50, the weather forecast of MeteoSwiss for
Anzère on Sunday, 7 September at 17:00 stated that

the temperature will be 19.5°C,
and there is a 3% chance of rain.

▶ Difference between these two forecasts:
▶ Temperature forecast is a point forecast.
▶ “Chance of rain” forecast is a probabilistic forecast.

▶ A probabilistic forecast for temperature could be: N (19.5, σ2).
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Forecasts for real-valued quantities

Forecast Observation Verification

−2 0 2 −2 0 2 −2 0 2

−2 0 2 −2 0 2 −2 0 2
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Some notation

Let (Ω,F ,Q) be a probability space.

▶ The future event Y is a real valued random variable.

▶ Let A ⊆ F be a sub σ-algebra.
Our information today: Often specified as covariates Z , so A = σ(Z ).

Probabilistic forecast
▶ Forecast is a probability measure P which is A-measurable.

(that is, a Markov kernel from (Ω,A) to (R,B(R)).
▶ Optimal prediction: P = L(Y |A).

Point forecast
▶ A-measurable random variable X ∈ A ⊆ Rk

▶ Optimal prediction?
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“Best” point forecasts

“Give me your best point prediction x for Y !”

is (usually) not a well-defined task...
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Forecast comparison using loss functions

Sequence of realizations y1, . . . , yn ∈ R
Sequences of forecasts x11, . . . , x1n, x21, . . . , x2n ∈ A

Strategy

▶ Choose a loss function L : A× R → R
▶ Compute realized average loss

L̄k =
1

n

n∑
j=1

Li (xkj , yj), k = 1, 2

▶ Give preference to forecaster with the lower average loss

▶ Assess significance of sign of the average loss difference by a
Diebold-Mariano test (Diebold and Mariano, 1995; Giacomini and White, 2006; Henzi and

Ziegel, 2022; Choe and Ramdas, 2024)
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A simulation study

We observe realizations yt , t = 1, 2, . . . of a volatile asset

Yt = Z 2
t ,

where
Zt ∼ N (0, σ2

t ),

and
σ2
t = 0.20Z 2

t−1 + 0.75σ2
t−1 + 0.05.

(Gneiting, 2011)
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Point forecasts

Statistician
x̂t = E[Yt | σ2

t ] = σ2
t

Optimist
x̂t = 5

Pessimist
x̂t = 0.05
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A realization with predictions
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Evaluating the point forecasts

Loss functions

(x − y)2 squared error (SE)

|x − y | absolute error (AE)

|(x − y)/y | absolute percentage error (APE)

|(x − y)/x | relative error (RE)

Mean error measures

Forecaster SE AE APE RE

Statistician 3.75 0.95 19796 0.97
Optimist 20.66 4.31 93820 0.86
Pessimist 5.31 0.94 939 18.77
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Mr. Bayes

Mr. Bayes issues the optimal point forecasts for the different scoring functions:

x̂t = argmin
x

EN (0,σ2
t )
L(x ,Z 2)

Mean error measures

Forecaster SE AE APE RE

Statistician 3.75 0.95 19796 0.97
Optimist 20.66 4.31 93820 0.86
Pessimist 5.31 0.94 939 18.77

Mr. Bayes 3.75 0.83 1.00 0.75
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Optimal point forecasts

Loss function is given

Given L : A× Y → R, the optimal prediction is the Bayes rule,

X ∈ argmin
x∈A

E(L(x ,Y )|A).

Functional is given

Let P be a class of probability measures on Y,

T : P → A, P 7→ T (P).

Examples: mean, median, some risk measure, . . .
Optimal prediction is

X = T (L(Y |A)).

15 / 53



Point predictions
and elicitability

Johanna Ziegel

Introduction

Elicitability

Simulation example

Definition

Bregman loss functions

Quantiles

Loss functions and scoring
rules

Non-elicitable functionals

Higher order elicitability

Calibration

Interval forecasts

Calibration

Interval score

Score decomposition

Summary

References

Optimal point forecasts

Loss function is given

Given L : A× Y → R, the optimal prediction is the Bayes rule,

X ∈ argmin
x∈A

E(L(x ,Y )|A).

Functional is given

Let P be a class of probability measures on Y,

T : P → A, P 7→ T (P).

Examples: mean, median, some risk measure, . . .

Optimal prediction is
X = T (L(Y |A)).

15 / 53



Point predictions
and elicitability

Johanna Ziegel

Introduction

Elicitability

Simulation example

Definition

Bregman loss functions

Quantiles

Loss functions and scoring
rules

Non-elicitable functionals

Higher order elicitability

Calibration

Interval forecasts

Calibration

Interval score

Score decomposition

Summary

References

Optimal point forecasts

Loss function is given

Given L : A× Y → R, the optimal prediction is the Bayes rule,

X ∈ argmin
x∈A

E(L(x ,Y )|A).

Functional is given

Let P be a class of probability measures on Y,

T : P → A, P 7→ T (P).

Examples: mean, median, some risk measure, . . .
Optimal prediction is

X = T (L(Y |A)).

15 / 53



Point predictions
and elicitability

Johanna Ziegel

Introduction

Elicitability

Simulation example

Definition

Bregman loss functions

Quantiles

Loss functions and scoring
rules

Non-elicitable functionals

Higher order elicitability

Calibration

Interval forecasts

Calibration

Interval score

Score decomposition

Summary

References

Elicitability
Let P be a class of probability measures on Y. Let

T : P → A, P 7→ T (P)

be a functional.

Definition
A loss function L : A× Y → R is consistent for T relative to P, if

EPL(T (P),Y ) ≤ EPL(x ,Y ), P ∈ P, x ∈ A.

It is strictly consistent if “=” implies x = T (P).
The functional T is elicitable relative to P if there exists a loss function L that is
strictly consistent for it.

In other words,
T (P) = argmin

x∈A
EPL(x ,Y ).

(Osband, 1985; Lambert et al., 2008; Gneiting, 2011)
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Some examples

▶ Mean: L(x , y) = (x − y)2

▶ Least squares regression
▶ Comparison of models/forecast performance in terms of MSE

▶ α-Quantiles (VaRα): L(x , y) = (1{y ≤ x} − α)(x − y)

▶ Quantile regression

▶ α-Expectiles: L(x , y) = (1{y ≤ x} − α)(x − y)2

▶ Expectile regression (Newey and Powell, 1987)
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The mean: Bregman loss functions

Theorem
Let P be a class of probability measures with finite first moments. Let ϕ be a
(strictly) convex function such that EPϕ(Y ) exists and is finite for all P ∈ P.
Then,

L(x , y) = ϕ(y)− ϕ(x)− ϕ′(x)(y − x)

is (strictly) consistent for the mean.

▶ Under suitable assumptions on P, the Bregman functions are the only
strictly consistent non-negative loss functions for the mean.

▶ Choosing ϕ(y) = y2/(1 + |y |) shows that the mean is elicitable with respect
to the class of all probability measures with finite first moment.

(Savage, 1971)
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Proof

L(x , y) = ϕ(y)− ϕ(x)− ϕ′(x)(y − x)

Since ϕ is (strictly) convex, the subgradient inequality states

ϕ(y) ≥ ϕ(x) + ϕ′(x)(y − x)

with equality if (and only if) x = y . Therefore,

EPL(x ,Y )− EPL(EPX ,Y ) = ϕ(EPX )− ϕ(X )− ϕ′(x)(EPY︸ ︷︷ ︸
=EPX

−x) ≥ 0

with equality if (and only if) x = EPX .
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Connection to characterization of proper scoring rules

Theorem
Let P be a class of probability measures with finite first moments. Let ϕ be a
(strictly) convex function such that EPϕ(Y ) exists and is finite for all P ∈ P.
Then,

L(x , y) = ϕ(y)− ϕ(x)− ϕ′(x)(y − x)

is (strictly) consistent for the mean.

Theorem
A regular scoring rule S : P × Y → R is (strictly) proper if and only if there is a
(strictly) concave function H : P → R such that

S(F , y) = H(F ) + hF (y)−
∫

hF (x) dF (x) = H(F ) +

∫
hF (x) d(δy − F )(x)

for every F ∈ P and y ∈ Y, where hF is a supergradient of H at F .
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Quantiles

Theorem
Let α ∈ (0, 1) and let P be a class of probability measures with unique
α-quantiles. Let g be a (strictly) increasing function such that EPg(Y ) exists
and is finite for all P ∈ P. Then,

L(x , y) = (1{x ≥ y} − α)(g(x)− g(y))

is (strictly) consistent for the α-quantile.

▶ Under suitable assumptions on P, the asymmetric piecewise linear functions
are the only strictly consistent loss functions for the α-quantile.

▶ Choosing g bounded and strictly increasing shows that the α-quantile is
elicitable with respect to the class of all probability measures with unique
α-quantiles.

(Thomson, 1979)
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Consistent loss functions and proper scoring rules

Theorem
Let T : P → A be an elicitable functional with consistent loss function L. Then,

S : P × Y → R, P 7→ S(P, y) = L(T (P), y)

is a proper scoring rule, which is typically not strictly proper.
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Necessary condition for elicitability

Theorem
If a functional T is elicitable, then it has convex level sets: For P,Q ∈ P,
α ∈ (0, 1) with (1− α)P + αQ ∈ P it holds that

t = T (P) = T (Q) =⇒ t = T ((1− α)P + αQ).

Proof.
Let x ∈ A. Then

E(1−α)P+αQL(t,Y ) = (1− α)EPL(t,Y ) + αEQL(t,Y )

≤ (1− α)EPL(x ,Y ) + αEQL(x ,Y ) = E(1−α)P+αQL(x ,Y ),

hence t = T ((1− α)P + αQ).

(Osband, 1985)
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Mean
Let T = E and EPX = EQX = t. Then, E(1−α)P+αQX = t.

Variance
Let T = var and X ∼ P = N (0, 1), Y ∼ Q = N (1, 1). Then,

EX 2 = 1, EY 2 = var(X ) + (EY )2 = 1 + 1 = 2.

Therefore, for α ∈ (0, 1),

T ((1− α)P + αQ) =

∫
x2 d((1− α)P + αQ)(x)−

(∫
x d((1− α)P + αQ)(x)

)2

= (1− α) + 2α− ((1− α) + α)

= α ̸= 1.
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Elicitable and non-elicitable functionals

Elicitable

▶ Mean, moments

▶ Median, quantiles

▶ Expectiles

Not elicitable

▶ Variance

▶ Expected shortfall (Gneiting, 2011)

▶ Range Value at Risk/Interquantile expectation
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Expected shortfall and Range Value at Risk

Let Y ∈ R have distribution P.

Expected shortfall (ES)

Let α ∈ (0, 1). If Y has finite mean, we define

ESα(P) =
1

α

∫ α

0
qu(P) du = E

(
Y |Y ≤ qα(P)

)
.

Range Value-at-Risk (RVaR)

For 0 < α < β < 1, we define

RVaRα,β(P) =
1

α2 − α1

∫ α2

α1

qu(P) du = E
(
Y |qα1(P) ≤ Y ≤ qα2(P)

)
.
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Why do we care about ES?

▶ ES is an important (coherent) risk measure in banking, finance and
insurance.

▶ Let Y ∼ P be the profit of some financial asset or portfolio.

▶ We consider α close to zero (α = 0.01, α = 0.025).

▶ VaRα(P) = qα(P): With probability α, a loss does not exceed this value

▶ ESα(P): Average size of a loss that exceeds VaRα(P)

Problem

▶ ES is not elicitable (Gneiting, 2011).

Not a solution...

▶ Expectiles are elicitable, coherent risk measures.

(Ziegel, 2016; Bellini and Bignozzi, 2015; Delbaen et al., 2016; Wang and Ziegel, 2015)
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Elicitability
Let P be a class of probability measures on Y. Let

T : P → A, P 7→ T (P)

be a functional.

Definition
A loss function L : A× Y → R is consistent for T relative to P, if

EPL(T (P),Y ) ≤ EPL(x ,Y ), P ∈ P, x ∈ A.

It is strictly consistent if “=” implies x = T (P).
The functional T is elicitable relative to P if there exists a loss function L that is
strictly consistent for it.

In other words,
T (P) = argmin

x∈A
EPL(x ,Y ).
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Elicitability

Let P be a class of probability measures on Y. Let

T : P → A, P 7→ T (P)

be a functional. Elicitable if

T (P) = argmin
x∈A

EPL(x ,Y ).

▶ All examples were with Y = A = R.

▶ Useful to consider A = Yk : k-elicitability.
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Elicitable functionals
1-Elicitable
▶ Mean, moments
▶ Median, quantiles
▶ Expectiles

2-Elicitable
▶ (Mean, variance)
▶ (Second moment, variance)
▶ (VaRα,ESα) (Acerbi and Szekely, 2014; Fissler and Ziegel, 2016)

3-Elicitable
▶ (VaRα,VaRβ,RVaRα,β) (Fissler and Ziegel, 2021)

k-Elicitable
▶ Some spectral risk measures together with several quantiles at certain levels

(Fissler and Ziegel, 2016)
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T = (VaRα,ESα)

Theorem
Let α ∈ (0, 1), and A0 := {x ∈ R2 : x1 ≥ x2}. Let P be a class of probability
measures on R with finite first moments and unique α-quantiles. Any loss
function L : A0 × R → R of the form

L(x1,x2, y) =
(
1{y ≤ x1} − α

)
g(x1)− 1{y ≤ x1}g(y)

+ ϕ′(x2)
(
x2 +

1

α
(1{y ≤ x1} − α)

x1
α

− 1{y ≤ x1}
y

α

)
− ϕ(x2)

is consistent for T = (VaRα,ESα) if 1(−∞,x1]g is P-integrable and

▶ g is increasing and ϕ is increasing and convex.

It is strictly consistent if, additionally,

▶ ϕ is strictly increasing and strictly convex.

(Fissler and Ziegel, 2016)
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T = (VaRα,ESα)

Theorem (Part 2)

If T (P) = A0, the class P is rich enough and L fulfils some smoothness
conditions, all strictly consistent loss functions for T are of the above form (up
to equivalence).

Corollary

If the elements of P have finite first moment and unique α-quantiles, then the
pair T = (VaRα,ESα) : P → A0 is elicitable.

(Fissler and Ziegel, 2016)
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Proof of sufficiency
For fixed x1 ∈ R, the function

x2 7→L(x1, x2, y) =
(
1{y ≤ x1} − α

)
g(x1)− 1{y ≤ x1}g(y)

+ ϕ′(x2)
(
x2 +

(
1{y ≤ x1} − α

)x1
α

− 1{y ≤ x1}
y

α︸ ︷︷ ︸
=:Lα(x1,y)

)
− ϕ(x2),

is a Bregman function. ; argminx2 EP [L(x1, x2,Y )] = −EP [Lα(x1,Y )].

For fixed x2 ∈ R, the function

x1 7→ L(x1, x2, y) =
(
1{y ≤ x1} − α

)
Gx2(x1)− 1{y ≤ x1}Gx2(y)

+ ϕ′(x2)x2 − ϕ(x2),

Gx2(x1) = g(x1) + ϕ′(x2)
x1
α

is a strictly consistent loss function for VaRα.
; argminx1 EP [L(x1, x2,Y )] = VaRα(P).
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Proof of necessity

Osband’s principle

▶ Osband’s principle originates from (Osband, 1985) and gives necessary
conditions for strictly consistent loss functions.

▶ It gives a connection between partial derivatives of the expected loss
function and an expected identification function.

Definition
An P-identification function for a functional T is a function V : A× Y → Rk

such that
EPV (x ,Y ) = 0 ⇐⇒ x = T (P)

for all P ∈ P and for all x ∈ A.

Examples:

▶ Mean: V (x , y) = x − y

▶ α-quantile: V (x , y) = 1{y ≤ x} − α.
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Osband’s Principle

Theorem (Osband’s Principle; Fissler and Z (2016))

Let P be a convex class of probability measures. Let T : P → A ⊆ Rk be a
surjective, elicitable and identifiable functional with P-identification function
V : A× Y → Rk and a strictly P-consistent loss function L : A× Y → R. Under
some assumptions, there exists a matrix-valued function h : int(A) → Rk×k such
that

∇x EPL(x ,Y ) = h(x)EPV (x ,Y )

for all x ∈ int(A) and P ∈ P.

Key idea: Exploit the first order condition of the minimization problem:

; ∇x EPL(x ,Y ) = 0 for x = T (P) for all P ∈ P.

“The gradient ∇L is an identification function.”
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Osband’s Principle
(Under some smoothness conditions)
Second order conditions for the minimization problem: The Hessian

∇2
x [EPL(x ,Y )] ∈ Rk×k

must be symmetric for all x ∈ A,P ∈ P, and positive semi-definite at x = T (P).

▶ For k = 1 the necessary conditions of Osband’s principle directly lead to
sufficient conditions: For an oriented identification function, choose some
h > 0 and integrate.

▶ Harder for k > 1:
▶ Symmetry/positive semi-definiteness of the Hessian imposes (complicated)

restrictions on the function h.
▶ Even if x 7→ EPL(x ,Y ) has only one critical point and the Hessian is positive

definite there, we can only guarantee a local minimum!

▶ ; Generally, we must verify sufficient conditions on a case by case basis.
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Application examples of Osband’s principle

In Fissler and Ziegel (2016), we considered:

▶ Functionals with elicitable components (vectors of quantiles, expectiles,
ratios of expectations,. . . )

▶ Spectral risk measures with finitely supported spectral measure

▶ In particular: (VaRα,ESα)
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Calibration
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Optimal predictions

Probabilistic forecast
▶ Ideal: P = L(Y | A) = L(Y | Z )
▶ Auto-calibration: P = L(Y | P) (Take P as information proxy.)

Point forecast
▶ Ideal: X = T (Y | A) = T (Y | Z )
▶ T -calibration: X = T (Y | X ) (Take X as information proxy.)

Proposition

Auto-calibration implies T -calibration if T is identifiable.

(Gneiting and Resin, 2023)
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Predictions for the mean/expectation

Expectation-calibration means that

E[Y | X ] = X .

▶ If E[Y | Z = z] = g(z) and X = g(Z), then X is expectation-calibrated.

▶ The less information X has the “easier” it is to be calibrated.

▶ Reduces to classical notion of calibration for binary outcomes Y ∈ {0, 1}
and probability predictions p ∈ [0, 1].
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Assessing expectation-calibration: CORP reliability diagrams

Data: (x1,Y1),. . . ,(xn,Yn) with xi ,Yi ∈ R.

Postulate that
x 7→ E[Y | X = x ]

is increasing. Assume that x1 ≤ · · · ≤ xn. Compute isotonic regression

x̂
(iso)
1 , . . . , x̂

(iso)
n . Then,

x̂
(iso)
i ≈ E[Y | X = xi ]

under calibration
= xi

▶ Plot (xi , x̂
(iso)
i ), i = 1, . . . , n and join points by a line.

▶ Add diagonal.

▶ Sometimes: Add histogram of x1, . . . , xn.

(Gneiting and Resin, 2023)
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Example

3252 T. Gneiting and J. Resin

Fig 6. CORP empirical threshold (top, t = 1), mean (middle) and quantile (bottom, α = 0.10)
reliability diagrams for the perfect (left), unfocused (middle), and lopsided (right) forecast
from Examples 2.1 and 2.2 with 90% consistency bands and CORP score components under
the associated canonical loss function based on samples of size 400.

of the outcome, respectively. If all quantities in (26) are finite, we refer to

M̂CBS = Ŝ− Ŝrc, D̂SCS = Ŝmg − Ŝrc, and ÛNCS = Ŝmg (27)

as the miscalibration, discrimination and uncertainty components of the mean
score Ŝ. Our next result generalizes Theorem 1 of Dimitriadis, Gneiting and Jor-
dan (2021) and decomposes the mean score Ŝ into a signed sum of nonnegative,
readily interpretable components.
Theorem 3.3. Suppose that the functional T satisfies the conditions in As-
sumption 2.19. Let the scoring function S be of the form (17), suppose that
x̂1, . . . x̂n originate from tuples (x1, y1), . . . , (xn, yn) via Algorithm 1, and let all

Figure from Gneiting and Resin (2023)
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Interval forecasts
Calibration
Interval score
Score decomposition
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Interval forecasts

▶ Uncertainty quantification for an outcome Y is often given in form of a
prediction interval [L,U]. Conformal prediction. . .

▶ Typically it is assessed if
▶ marginal coverage is correct/conservative

P(Y ∈ [L,U]) ≥ 1− α,

▶ prediction intervals are short on average, that is E[|U − L|] is small.

▶ Desirable criteria but unconditional!
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Calibration

▶ Ideally, L is α/2-quantile of conditional distribution of Y ;
U is (1− α/2)-quantile of conditional distribution of Y .

Definition
An interval forecast [L,U] is auto-calibrated if

L = qα
2
(Y | L,U), U = q1−α

2
(Y | L,U)

P(Y < L | L,U) =
α

2
, P(Y > L | L,U) =

α

2
.

▶ Auto-calibration implies correct coverage but is more stringent requirement.

Assume unique quantiles for simplicity.

(Allen et al., 2025)
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Winkler score

▶ Interval forecasts are typically assessed using the interval score, or
Winkler score:

ISα([ℓ, u], y) = |u − ℓ|+ 2

α
1{y < ℓ}(ℓ− y) +

2

α
1{y > u}(y − u)

=
α

2

[
QSα/2(ℓ, y) +QS1−α/2(u, y)

]
.

▶ Winkler score is consistent for the central 1− α prediction interval

▶ General (non-central) prediction intervals are not elicitable. (Fissler et al., 2021;

Brehmer and Gneiting, 2021)

45 / 53



Point predictions
and elicitability

Johanna Ziegel

Introduction

Elicitability

Simulation example

Definition

Bregman loss functions

Quantiles

Loss functions and scoring
rules

Non-elicitable functionals

Higher order elicitability

Calibration

Interval forecasts

Calibration

Interval score

Score decomposition

Summary

References

Assessing conditional calibration and discrimination ability
Decompose the expected interval score into miscalibration (MCB),
discrimination ability (DSC), and uncertainty (UNC):

E[ISα([L,U],Y )] = E[ISα([L,U],Y )]− E[ISα([qα
2
(Y | L,U), q1−α

2
(Y | L,U)],Y )]︸ ︷︷ ︸

=MCB

−
(
E[ISα([qα

2
(Y ), q1−α

2
(Y )],Y )]− E[ISα([qα

2
(Y | L,U), q1−α

2
(Y | L,U)],Y )]︸ ︷︷ ︸

=DSC

)
+ E[ISα([qα

2
(Y ), q1−α

2
(Y )],Y )]︸ ︷︷ ︸

=UNC

▶ MCB: Expected score of prediction minus expected score of best calibrated
prediction.

▶ DSC: Expected score of best marginal prediction minus best calibrated
prediction.

▶ Practical challenge: Estimate the terms MCB, DSC, UNC
▶ Suggestion: Use isotonic regression.

(Allen et al., 2025)
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Data examples

Student-Teacher Achievement Ratio (STAR) in Tennessee, n = 433:
Original Recalibrated

STAR Interval score Coverage Length Coverage Length

Ridge 0.22 0.87 0.17 0.87 - 0.91 0.17
Local Ridge 0.23 0.89 0.19 0.75 - 0.94 0.15
Neural Net 0.25 0.91 0.20 0.88 - 0.91 0.19
Local Neural Net 0.28 0.89 0.22 0.86 - 0.92 0.18
CQR Neural Net 0.26 0.88 0.19 0.87 - 0.92 0.18
Quantile Neural Net 0.23 0.91 0.20 0.84 - 0.93 0.17

Bike sharing system in Washington D.C., n = 2178:
Original Recalibrated

Bike Interval score Coverage Length Coverage Length

Ridge 3.30 0.89 2.21 0.88 - 0.92 2.11
Local Ridge 2.99 0.89 2.18 0.81 - 0.93 1.87
Neural Net 1.30 0.89 0.73 0.86 - 0.93 0.67
Local Neural Net 1.15 0.88 0.65 0.85 - 0.93 0.60
CQR Neural Net 0.93 0.90 0.59 0.82 - 0.93 0.58
Quantile Neural Net 0.79 0.90 0.59 0.80 - 0.94 0.49

47 / 53



Point predictions
and elicitability

Johanna Ziegel

Introduction

Elicitability

Simulation example

Definition

Bregman loss functions

Quantiles

Loss functions and scoring
rules

Non-elicitable functionals

Higher order elicitability

Calibration

Interval forecasts

Calibration

Interval score

Score decomposition

Summary

References

Data examples

Student-Teacher Achievement Ratio (STAR) in Tennessee, n = 433:
Original Recalibrated

STAR Interval score Coverage Length Coverage Length

Ridge 0.22 0.87 0.17 0.87 - 0.91 0.17
Local Ridge 0.23 0.89 0.19 0.75 - 0.94 0.15
Neural Net 0.25 0.91 0.20 0.88 - 0.91 0.19
Local Neural Net 0.28 0.89 0.22 0.86 - 0.92 0.18
CQR Neural Net 0.26 0.88 0.19 0.87 - 0.92 0.18
Quantile Neural Net 0.23 0.91 0.20 0.84 - 0.93 0.17

Bike sharing system in Washington D.C., n = 2178:
Original Recalibrated

Bike Interval score Coverage Length Coverage Length

Ridge 3.30 0.89 2.21 0.88 - 0.92 2.11
Local Ridge 2.99 0.89 2.18 0.81 - 0.93 1.87
Neural Net 1.30 0.89 0.73 0.86 - 0.93 0.67
Local Neural Net 1.15 0.88 0.65 0.85 - 0.93 0.60
CQR Neural Net 0.93 0.90 0.59 0.82 - 0.93 0.58
Quantile Neural Net 0.79 0.90 0.59 0.80 - 0.94 0.49

47 / 53



Point predictions
and elicitability

Johanna Ziegel

Introduction

Elicitability

Simulation example

Definition

Bregman loss functions

Quantiles

Loss functions and scoring
rules

Non-elicitable functionals

Higher order elicitability

Calibration

Interval forecasts

Calibration

Interval score

Score decomposition

Summary

References

Data examples

(Allen et al., 2025)
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Summary

▶ Predictions should be calibrated.

▶ Predictions should be compared with proper scoring rules or consistent loss
functions.

▶ Scoring rule decompositions allow to understand predictive performance in
terms of calibration and discrimination ability.

Thank you for listening and asking questions!

50 / 53



Point predictions
and elicitability

Johanna Ziegel

Introduction

Elicitability

Simulation example

Definition

Bregman loss functions

Quantiles

Loss functions and scoring
rules

Non-elicitable functionals

Higher order elicitability

Calibration

Interval forecasts

Calibration

Interval score

Score decomposition

Summary

References

References I

C. Acerbi and B. Szekely. Backtesting expected shortfall. Risk Magazine, 27:76–81, 2014.

S. Allen, J. Burnello, and J. Ziegel. Assessing the conditional calibration of interval forecasts
using decompositions of the interval score. Preprint, arXiv: 2508. 18034 , 2025.

F. Bellini and V. Bignozzi. Elicitable risk measures. Quant. Finance, 15:725–733, 2015.

J. R. Brehmer and T. Gneiting. Scoring interval forecasts: Equal-tailed, shortest, and modal
interval. Bernoulli, 27:1993–2010, 2021. doi: 10.3150/20-BEJ1298. URL
https://doi.org/10.3150/20-BEJ1298.

Y. J. Choe and A. Ramdas. Comparing sequential forecasters. Operations Research, 72:
1368–1387, 2024.

F. Delbaen, F. Bellini, V. Bignozzi, and J. F. Ziegel. Risk measures with the CxLS property.
Finance and Stochastics, 20:433–453, 2016.

F. X. Diebold and R. S. Mariano. Comparing predictive accuracy. Journal of Business &
Economic Statistics, 13:253–263, 1995.

T. Fissler and J. F. Ziegel. Higher order elicitability and Osband’s principle. Annals of
Statistics, 44:1680–1707, 2016.

51 / 53

arXiv:2508.18034
https://doi.org/10.3150/20-BEJ1298


Point predictions
and elicitability

Johanna Ziegel

Introduction

Elicitability

Simulation example

Definition

Bregman loss functions

Quantiles

Loss functions and scoring
rules

Non-elicitable functionals

Higher order elicitability

Calibration

Interval forecasts

Calibration

Interval score

Score decomposition

Summary

References

References II

T. Fissler and J. F. Ziegel. On the elicitability of range value at risk. Statistics & Risk
Modeling, 38:25–46, 2021.
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