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A simple forecasting example

» On Monday, 1 September at 13:50, the weather forecast of MeteoSwiss for
Anzére on Sunday, 7 September at 17:00 stated that
the temperature will be 19.5°C,
and there is a 3% chance of rain.

» Difference between these two forecasts:

» Temperature forecast is a point forecast.
» “Chance of rain” forecast is a probabilistic forecast.

» A probabilistic forecast for temperature could be: N(19.5,02).
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Some notation

Let (2, F,Q) be a probability space.
» The future event Y is a real valued random variable.
» Let A C F be a sub o-algebra.

Probabilistic forecast

» Forecast is a probability measure P which is A-measurable.
(that is, a Markov kernel from (2, A) to (R, B(R)).

» Optimal prediction: P = L(Y|A).

Point forecast
» _A-measurable random variable X € A C Rk
» Optimal prediction?
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Point predictions

“Best” point forecasts and elicitability

Johanna Ziegel
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Forecast comparison using loss functions

Sequence of realizations yy,...,y, € R
Sequences of forecasts x11,...,X1p, X21,...,Xon € A
Strategy

» Choose a loss function L: A xR — R

» Compute realized average loss

1
*Z (x4 yj), k=1,2

3

» Give preference to forecaster with the lower average loss

> Assess significance of sign of the average loss difference by a
Diebold-Mariano test (Diebold and Mariano, 1995; Giacomini and White, 2006; Henzi and
Ziegel, 2022; Choe and Ramdas, 2024)
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A simulation study

We observe realizations y;, t = 1,2, ... of a volatile asset
Y, =72,

where
Z; ~ N(0,02),

and
02=0202%,+0.75062 ; 4 0.05.

(Gneiting, 2011)
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A realization
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Point forecasts

Statistician

Optimist

Pessimist
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A realization with predictions
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Evaluating the point forecasts

Loss functions

(x —y)?
Ix =yl

[(x = y)/y|
|(x = y)/x|

squared error (SE)

absolute error (AE)

absolute percentage error (APE)
relative error (RE)
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Point predictions

Evaluating the point forecasts ol Py

Johanna Ziegel
Loss functions

squared error (SE)

Simulation example

|x — y| absolute error (AE)
|(x —y)/y| absolute percentage error (APE)
|(x —y)/x| relative error (RE)

Mean error measures

Forecaster SE AE APE RE

Statistician  3.75 095 19796 0.97
Optimist 20.66 4.31 93820 0.86
Pessimist 531 0.94 939 18.77
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Mr. Bayes

Mr. Bayes issues the optimal point forecasts for the different scoring functions:

Xe = argmin Ejrq ,2)L(x, Z?)
X "t
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Mr. Bayes

Mr. Bayes issues the optimal point forecasts for the different scoring functions:

Xe = argmin Ejrq ,2)L(x, Z?)
X "t

Mean error measures

Forecaster SE AE APE RE

Statistician 3.75 0.95 19796 0.97
Optimist 20.66 4.31 93820 0.86
Pessimist 531 0.94 939 18.77
Mr. Bayes 3.75 0.83 1.00 0.75
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Optimal point forecasts

Loss function is given
Given L : A x Y — R, the optimal prediction is the Bayes rule,

X € arg miR E(L(x, Y)|.A).
xe
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Optimal point forecasts

Loss function is given
Given L : A x Y — R, the optimal prediction is the Bayes rule,

X € arg miR E(L(x, Y)|.A).
Xe

Functional is given
Let P be a class of probability measures on ),

T:P—A P~ T(P).

Examples: mean, median, some risk measure, ...
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Optimal point forecasts

Loss function is given
Given L : A x Y — R, the optimal prediction is the Bayes rule,

X € arg miR E(L(x, Y)|.A).
Xe

Functional is given
Let P be a class of probability measures on ),

T:P—A P~ T(P).

Examples: mean, median, some risk measure, ...
Optimal prediction is
X = T(L(Y|A)).
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Elicitability

Let P be a class of probability measures on ). Let

be a functional.

T:P—A P~ T(P)
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. HH Point predictions
El ICIta bl I Ity andteiljicitabtility
Let P be a class of probability measures on ). Let Johanna Ziegel

T:P—A P~ T(P)
be a functional. Definition

Definition
A loss function L : A x ) — R is consistent for T relative to P, if

EpL(T(P),Y) <EpL(x,Y), PeP,xeA

It is strictly consistent if “=" implies x = T(P).
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Elicitability

Let P be a class of probability measures on ). Let

be a functional.

Definition

T:P—A P~ T(P)

A loss function L : A x ) — R is consistent for T relative to P, if

EpL(T(P),Y) <EpL(x,Y), PeP,xeA

It is strictly consistent if “=" implies x = T(P).
The functional T is elicitable relative to P if there exists a loss function L that is

strictly consistent for it.

In other words,

T(P)=arg TGIR EpL(x,Y).

(Osband, 1985; Lambert et al., 2008; Gneiting, 2011)

Point predictions
and elicitability

Johanna Ziegel

Definition

16 /53



Some examples

» Mean: L(x,y) = (x — y)?

P Least squares regression
» Comparison of models/forecast performance in terms of MSE

» «a-Quantiles (VaR,): L(x,y) = (I{y < x} —a)(x — y)
» Quantile regression
> a-Expectiles: L(x,y) = (1{y < x} —a)(x — y)?

» Expectile regression (Newey and Powell, 1987)
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The mean: Bregman loss functions

Theorem

Let P be a class of probability measures with finite first moments. Let ¢ be a

(strictly) convex function such that Ep¢(Y') exists and is finite for all P € P.
Then,

L(x,y) = o(y) — o(x) — ¢'(x)(y — x)

is (strictly) consistent for the mean.
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Then,

L(x,y) = o(y) — o(x) — ¢'(x)(y — x)

is (strictly) consistent for the mean.

» Under suitable assumptions on P, the Bregman functions are the only
strictly consistent non-negative loss functions for the mean.
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The mean: Bregman loss functions

Theorem

Let P be a class of probability measures with finite first moments. Let ¢ be a
(strictly) convex function such that Ep¢(Y') exists and is finite for all P € P.

Then,
L(x,y) = o(y) — o(x) — ¢'(x)(y — x)

is (strictly) consistent for the mean.

» Under suitable assumptions on P, the Bregman functions are the only

strictly consistent non-negative loss functions for the mean.

» Choosing ¢(y) = y?/(1+ |y|) shows that the mean is elicitable with respect

to the class of all probability measures with finite first moment.

(Savage, 1971)
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Proof

Since ¢ is (strictly) convex, the subgradient inequality states

d(y) = o(x) + ¢’ (x)(y — x)

with equality if (and only if) x = y. Therefore,

EpL(x. ¥) ~ EpL(EpX. Y) = 6(EpX) — 6(X) = ¢/(x)(EpY —x) = 0

with equality if (and only if) x = EpX.
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Connection to characterization of proper scoring rules

Theorem

Let P be a class of probability measures with finite first moments. Let ¢ be a
(strictly) convex function such that Ep¢(Y') exists and is finite for all P € P.

Then,

L(x,y) = o(y) — ¢(x) = ¢'(x)(y — x)

is (strictly) consistent for the mean.
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Connection to characterization of proper scoring rules

Theorem
Let P be a class of probability measures with finite first moments. Let ¢ be a

(strictly) convex function such that Ep¢(Y') exists and is finite for all P € P.
Then,

Lx.y) = 6(y) — 6(x) — ¢/ ()Y — x)

is (strictly) consistent for the mean.

Theorem

A regular scoring rule S : P x Y — R is (strictly) proper if and only if there is a
(strictly) concave function H : P — R such that

S(F,y)=H(F)+ he(y) — / he(x) dF(x) = H(F) + / he(x) d(d, — F)(x)

for every F € P and y € ), where hg is a supergradient of H at F.
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Quantiles

Theorem
Let a € (0,1) and let P be a class of probability measures with unique

a-quantiles. Let g be a (strictly) increasing function such that Epg(Y') exists
and is finite for all P € P. Then,

L(x,y) = (I{x = y} = a)(g(x) — &(y))

is (strictly) consistent for the a-quantile.
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Quantiles

Theorem
Let a € (0,1) and let P be a class of probability measures with unique

a-quantiles. Let g be a (strictly) increasing function such that Epg(Y') exists
and is finite for all P € P. Then,

L(x,y) = (I{x = y} — a)(g(x) — &(¥))
is (strictly) consistent for the a-quantile.

» Under suitable assumptions on P, the asymmetric piecewise linear functions
are the only strictly consistent loss functions for the a-quantile.
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Quantiles

Theorem

Let a € (0,1) and let P be a class of probability measures with unique
a-quantiles. Let g be a (strictly) increasing function such that Epg(Y') exists

and is finite for all P € P. Then,

L(x,y) = (I{x = y} = a)(g(x) — &(y))

is (strictly) consistent for the a-quantile.

» Under suitable assumptions on P, the asymmetric piecewise linear functions

are the only strictly consistent loss functions for the a-quantile.

» Choosing g bounded and strictly increasing shows that the a-quantile is
elicitable with respect to the class of all probability measures with unique

a-quantiles.

(Thomson, 1979)
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Consistent loss functions and proper scoring rules Poin predictions

and elicitability

Johanna Ziegel

Theorem

Let T : P — A be an elicitable functional with consistent loss function L. Then, A
S:PxY—=R, P SP,y)=L(T(P),y)

is a proper scoring rule, which is typically not strictly proper.
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Theorem
If a functional T is elicitable, then it has convex level sets: For P, Q € P,
a € (0,1) with (1 — a)P + aQ € P it holds that

t=T(P)=T(Q) = t=T((1-a)P+aQ).

Non-elicitable functionals
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Point predictions

Necessary condition for elicitability e

Johanna Ziegel

Theorem
If a functional T is elicitable, then it has convex level sets: For P, Q € P,
a € (0,1) with (1 — )P+ aQ € P it holds that

t=T(P)=T(Q) = t=T((1—a)P+aQ).

Proof. R
Let x € A. Then

Eq—a)praql(t,Y) = (1 — a)EpL(t,Y) + aEqL(t,Y)
< (1 —a)EpL(x,Y)+aEqL(x,Y) = Eq_a)p+aql(x, Y),

hence t = T((1 — a)P + aQ). O

(Osband, 1985)
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Point predictions
and elicitability

Mean Johanna Ziegel
Let T =E and EpX = EgX = t. Then, E_oyp1agX = t.

Variance
Let T =var and X ~ P =N(0,1), Y ~ Q = N(1,1). Then,

EX?2=1, EY?=var(X)+ (EY)’=1+1=2.

Non-elicitable functionals
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Mean Johanna Ziegel
Let T =E and EpX = EgX = t. Then, E_oyp1agX = t.

Variance
Let T =var and X ~ P =N(0,1), Y ~ Q = N(1,1). Then,
EX?2=1, EY?=var(X)+ (EY)’=1+1=2.

Therefore, for a € (0,1),

T(1—a)P+aQ) = /x2d((1 —a)P+ aQ)(x) — </xd((1 —a)P + on)(x))2

=1l-a)+2a—((1—a)+a)
=a#l.
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Point predictions

Elicitable and non-elicitable functionals and ehicitability

Johanna Ziegel

Elicitable
» Mean, moments
» Median, quantiles

> EXpeCti les Non-elicitable functionals

Not elicitable
» Variance
» Expected shortfall (Gneiting, 2011)
» Range Value at Risk/Interquantile expectation
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Point predictions

Expected shortfall and Range Value at Risk ol Py

Johanna Ziegel

Let Y € R have distribution P.
Expected shortfall (ES)

Let « € (0,1). If Y has finite mean, we define if[,“l
1 o N
ESOC(P) = Oé/ qU(P) dU - E(Y‘ Y S q“(P)> ‘l\‘ll;\—e\icitablefunctionals
0 Highe der elicitabili

Range Value-at-Risk (RVaR) csc
For 0 < a < B < 1, we define

1 [
RVaRa,s(P) = ——— / qu(P)du = E(Y|q.,(P) <Y < q..(P)).
aq
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Why do we care about ES? Fond ehcabity

Johanna Ziegel
» ES is an important (coherent) risk measure in banking, finance and
insurance.
» Let Y ~ P be the profit of some financial asset or portfolio.
» We consider « close to zero (a = 0.01, ao = 0.025).
» VaR,(P) = ga(P): With probability «, a loss does not exceed this value Non-lictable functionls
» ES,(P): Average size of a loss that exceeds VaR,(P)

27/53



Point predictions

Why dO we care about ES? and elicitability

Johanna Ziegel
» ES is an important (coherent) risk measure in banking, finance and
insurance.
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» We consider « close to zero (a = 0.01, ao = 0.025).
>
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» ES,(P): Average size of a loss that exceeds VaR,(P)
Problem

» ES is not elicitable (Gneiting, 2011).
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Point predictions
Why do we care about ES? and hatabilty
Johanna Ziegel
» ES is an important (coherent) risk measure in banking, finance and
insurance.
» Let Y ~ P be the profit of some financial asset or portfolio.

» We consider « close to zero (a = 0.01, ao = 0.025).

» VaR,(P) = qo(P): With probability o, a loss does not exceed this value Non-alcableunconl
» ES,(P): Average size of a loss that exceeds VaR,(P)
Problem

» ES is not elicitable (Gneiting, 2011).
Not a solution...

» Expectiles are elicitable, coherent risk measures.

(Ziegel, 2016; Bellini and Bignozzi, 2015; Delbaen et al., 2016; Wang and Ziegel, 2015)
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Elicitability

Let P be a class of probability measures on ). Let

be a functional.

Definition

A loss function L : A x Y — R is consistent for T relative to P, if

T:P—>A, P T(P)

EpL(T(P),Y) <EpL(x,Y), Pe€P,xcA.

It is strictly consistent if “=" implies x = T(P).

The functional T is elicitable relative to P if there exists a loss function L that is

strictly consistent for it.

In other words,

T(P)=arg miR EpL(x,Y).
Xe

Point predictions
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Higher order elicitability
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Elicitability

Let P be a class of probability measures on ). Let
T:P—=A P—T(P)

be a functional. Elicitable if

T(P)=arg miR EpL(x,Y).
x€e

> All examples were with Yy = A =R.
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Elicitability

Let P be a class of probability measures on ). Let
T:P—=A P—T(P)

be a functional. Elicitable if

T(P)=arg miR EpL(x,Y).
x€e

> All examples were with Yy = A =R.
> Useful to consider A = Yk: k-elicitability.

Point predictions
and elicitability

Johanna Ziegel

Higher order elicitability
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Point predictions
and elicitability

Elicitable functionals

1-Elicitable Johanna Ziegel
» Mean, moments
» Median, quantiles
» Expectiles

2-Elicitable
» (Mean, variance)
» (Second moment, variance)
> (VaRa, ESQ) (Acerbi and Szekely, 2014; Fissler and Ziegel, 2016)

Higher order elicitability

3-Elicitable
> (VaRa, VaRg, RVaRa”g) (Fissler and Ziegel, 2021)

k-Elicitable
» Some spectral risk measures together with several quantiles at certain levels

(Fissler and Ziegel, 2016)
29/53



T = (VaR,, ES,)

Theorem

Let a € (0,1), and Ag := {x € R? : x; > xo}. Let P be a class of probability
measures on R with finite first moments and unique a-quantiles. Any loss
function L: Ag x R — R of the form

Lxixe,y) = (H{y < x} — a)gla) — Ly < xi}g(y)
Fole) (e 0y <3} - )2 1y <x)2) - o)

is consistent for T = (VaRq,ES,) if 1(_o x18 is P-integrable and
» g is increasing and ¢ is increasing and convex.
It is strictly consistent if, additionally,

» ¢ is strictly increasing and strictly convex.

(Fissler and Ziegel, 2016)

Point predictions
and elicitability

Johanna Ziegel

Higher order elicitability

30/53



7_::(VaRa’ESa) Point predictions

and elicitability

Johanna Ziegel

Theorem (Part 2)

If T(P) = Ao, the class P is rich enough and L fulfils some smoothness

conditions, all strictly consistent loss functions for T are of the above form (up
to equivalence).

Higher order elicitability
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T = (VaR,, ES,) el

Johanna Ziegel

Theorem (Part 2)

If T(P) = Ao, the class P is rich enough and L fulfils some smoothness
conditions, all strictly consistent loss functions for T are of the above form (up
to equivalence).

Higher order elicitability

Corollary

If the elements of P have finite first moment and unique a-quantiles, then the
pair T = (VaRq,ESy): P — Ao is elicitable.

(Fissler and Ziegel, 2016)
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Proof of sufficiency
For fixed x; € R, the function

X = L(x1,x2,y) = ({y < x} — a)g(xa) — Iy < xi}e(y)
+0/0a) (e (Ly <3} =) — Ly <x}7 ) — (),

::La(ley)

is a Bregman function. ~ arg min,, Ep [L(x1, %2, Y)] = —Ep [La(x1, Y)].

Point predictions
and elicitability

Johanna Ziegel
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Proof of sufficiency
For fixed x; € R, the function

X = L(x1,x2,y) = ({y < x} — a)g(xa) — Iy < xi}e(y)
+0/0a) (e (Ly <3} =) — Ly <x}7 ) — (),

::La(ley)
is a Bregman function. ~ arg min,, Ep [L(x1, %2, Y)] = —Ep [La(x1, Y)].
For fixed xo € R, the function

x1+ Lxi,x2,y) = ({y < x1} — @) Gy, (x1) — I{y < x1}Gy(y)
+ ¢ (x2)x2 — d(x2),

Gu(x1) = g(xa) + ¢/ (x2)

~1
«
is a strictly consistent loss function for VaR,.
~ argminy, Ep [L(x1, x2, Y)] = VaR,(P).

Point predictions
and elicitability

Johanna Ziegel

Non-elicital nal

Higher order elicitability
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Proof of necessity

Osband’s principle
» Osband’s principle originates from (Osband, 1985) and gives necessary
conditions for strictly consistent loss functions.

> It gives a connection between partial derivatives of the expected loss
function and an expected identification function.

Point predictions
and elicitability
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Higher order elicitability
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Proof of necessity

Osband’s principle

» Osband’s principle originates from (Osband, 1985) and gives necessary

conditions for strictly consistent loss functions.

> It gives a connection between partial derivatives of the expected loss

function and an expected identification function.

Definition

An P-identification function for a functional T is a function V: A x ) — R¥

such that
EpV(x,Y)=0 <
for all P € P and for all x € A.
Examples:
» Mean: V(x,y)=x—y
» a-quantile: V(x,y) = 1{y < x} — a.

x=T(P)

Point predictions
and elicitability

Johanna Ziegel

Higher order elicitability
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Osband's Principle

Theorem (Osband'’s Principle; Fissler and Z (2016))

Let P be a convex class of probability measures. Let T: P — A C RX be a
surjective, elicitable and identifiable functional with ‘P-identification function
V: A xY — Rk and a strictly P-consistent loss function L: A x ) — R. Under
some assumptions, there exists a matrix-valued function h: int(A) — RK*k such
that

V«<EpL(x,Y) = h(x)EpV(x,Y)

for all x € int(A) and P € P.

Point predictions
and elicitability

Johanna Ziegel

Higher order elicitability
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Osband's Principle

Theorem (Osband'’s Principle; Fissler and Z (2016))

Let P be a convex class of probability measures. Let T: P — A C RX be a
surjective, elicitable and identifiable functional with ‘P-identification function

V: A xY — Rk and a strictly P-consistent loss function L: A x ) — R. Under
some assumptions, there exists a matrix-valued function h: int(A) — RK*k such
that

V«<EpL(x,Y) = h(x)EpV(x,Y)
for all x € int(A) and P € P.

Key idea: Exploit the first order condition of the minimization problem:
~ VxEpL(x,Y)=0 for x = T(P) for all P € P.

“The gradient VL is an identification function.”

Point predictions
and elicitability

Johanna Ziegel

Higher order elicitability
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Osband’s Principle Fond ahcianilty
(Under some smoothness conditions) Johanna Ziegel

Second order conditions for the minimization problem: The Hessian
V2 [EpL(x, Y)] € Rk*k
must be symmetric for all x € A, P € P, and positive semi-definite at x = T(P).

Higher order elicitability
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Osband’s Principle Fond ahcianilty
(Under some smoothness conditions) Johanna Ziegel

Second order conditions for the minimization problem: The Hessian
V2 [EpL(x, Y)] € Rk*k
must be symmetric for all x € A, P € P, and positive semi-definite at x = T(P).

Higher order elicitability

» For k = 1 the necessary conditions of Osband's principle directly lead to
sufficient conditions: For an oriented identification function, choose some
h > 0 and integrate.
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Osband's Principle

(Under some smoothness conditions)
Second order conditions for the minimization problem: The Hessian

V2 [EpL(x, Y)] € Rk*k

must be symmetric for all x € A, P € P, and positive semi-definite at x = T(P).

» For k = 1 the necessary conditions of Osband's principle directly lead to
sufficient conditions: For an oriented identification function, choose some
h > 0 and integrate.
» Harder for k > 1:
> Symmetry/positive semi-definiteness of the Hessian imposes (complicated)
restrictions on the function h.
» Even if x — EpL(x, Y) has only one critical point and the Hessian is positive
definite there, we can only guarantee a local minimum!

» ~ Generally, we must verify sufficient conditions on a case by case basis.
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Application examples of Osband’s principle

In Fissler and Ziegel (2016), we considered:

» Functionals with elicitable components (vectors of quantiles, expectiles,
ratios of expectations,. . .)

» Spectral risk measures with finitely supported spectral measure
» In particular: (VaR,, ES,)

Point predictions
and elicitability

Johanna Ziegel

Higher order elicitability

36/53



Calibration




Point predictions

Optlmal predictions and elicitability

Johanna Ziegel

Probabilistic forecast
> Ideal: P=L(Y | A) = L(Y | 2)
» Auto-calibration: P = L(Y | P) (Take P as information proxy.)

Point forecast
» Ideal: X =T(Y | A)=T(Y|2) Calibration
» T-calibration: X = T(Y | X) (Take X as information proxy.)

Proposition
Auto-calibration implies T-calibration if T is identifiable.

(Gneiting and Resin, 2023)
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Predictions for the mean /expectation

Expectation-calibration means that

E[Y | X] = X.

Point predictions
and elicitability

Johanna Ziegel
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Predictions for the mean/expectation

Expectation-calibration means that

E[Y | X] = X.

> If E[Y | Z=2z] = g(z) and X = g(Z), then X is expectation-calibrated.

» The less information X has the “easier” it is to be calibrated.
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Predictions for the mean/expectation

Expectation-calibration means that

E[Y | X] = X.

> If E[Y | Z=2z] = g(z) and X = g(Z), then X is expectation-calibrated.
» The less information X has the “easier” it is to be calibrated.

» Reduces to classical notion of calibration for binary outcomes Y € {0, 1}
and probability predictions p € [0, 1].
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Point predictions

Assessing expectation-calibration: CORP reliability diagrams e

Johanna Ziegel

Data: (x1, Y1),...,(xn, Yn) with x;, Y; € R.
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Data: (x1, Y1),...,(xn, Yn) with x;, Y; € R.
Postulate that

is increasing.
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Assessing expectation-calibration: CORP reliability diagrams

Data: (x1, Y1),...,(xn, Yn) with x;, Y; € R.
Postulate that
x—=E[Y | X = x]
is increasing. Assume that x; < --- < x,. Compute isotonic regression

g{B) - 28%)  Then,

N{ under calibration
x,.('so) ~ E[Y | X = xj] = X

> Plot (x;, ('SO)), i=1,...,n and join points by a line.
> Add diagonal.

» Sometimes: Add histogram of xi, ..., x,.

(Gneiting and Resin, 2023)
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Example
MSE 1.027 MSE 1.684 ~ | MSE 1.315
MCB, 0.001 MCB, 0.001 MCB, 0.000
MCB. 0.091 MCB. 0.420 MCB. 0.210
DSC  0.981 DSC 0.653 ~ DSC  0.811
UNC 1.916 UNC 1.916 UNC 1.916
g F
o o o
§ & & o &
Oll —
z=m1(F) il z=m(F)
T T T T T T T T T T
-4 -2 0 2 -4 -2 4 -4 -2 0

Figure from Gneiting and Resin (2023)
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Non-elicitable functionals
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Interval forecasts
Calibration
Interval score
Score decomposition

Point predictions
and elicitability
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Interval forecasts

» Uncertainty quantification for an outcome Y is often given in form of a
prediction interval [L, U]. Conformal prediction. ..

Point predictions
and elicitability

Johanna Ziegel

Interval forecasts
Calibratiol
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Point predictions

Intervalforecasts and elicitability

Johanna Ziegel

» Uncertainty quantification for an outcome Y is often given in form of a
prediction interval [L, U].
> Typically it is assessed if
> marginal coverage is correct/conservative

P(Ye[L,U]) >1—a,

Interval forecasts

> prediction intervals are short on average, that is E[|U — L|] is small.

» Desirable criteria but unconditionall

43/53



Calibration

» Ideally, L is ov/2-quantile of conditional distribution of Y
U is (1 — a/2)-quantile of conditional distribution of Y.

Definition
An interval forecast [L, U] is auto-calibrated if

L:q%(Y|L’U)7 U:ql—%(Y|L’U)

P Auto-calibration implies correct coverage but is more stringent requirement.

(Allen et al., 2025)

Point predictions
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Winkler score

» Interval forecasts are typically assessed using the interval score, or
Winkler score:

1Sallf, uly) = lu— €]+ 21y < (0 —y) + 21y > u}(y — )
= % |:QSo¢/2(£7y) + Qsl—a/Z(uay)] :

» Winkler score is consistent for the central 1 — « prediction interval

» General (non-central) prediction intervals are not elicitable. (Fissler et al., 2021;
Brehmer and Gneiting, 2021)
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Assessing conditional calibration and discrimination ability

Decompose the expected interval score into miscalibration (MCB),
discrimination ability (DSC), and uncertainty (UNC):

]E[Isa([L’ U]? Y)] = E[Isu([Lv U]7 Y)] - E[Is(x([q%(y | L, U) ql—%(y | L, U)] Y)]
=MCB
- (]E[IS(,([C]%(Y) q17%(y)]s Y)] - E[IS(V([C/%(Y | L, U) CI17%(Y ‘ L, U)] Y)])

=DSC

+ El1Sa (g3 (V) a1 (V)] V)]

=UNC

> MCB: Expected score of prediction minus expected score of best calibrated
prediction.
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and elicitability
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Assessing conditional calibration and discrimination ability

Decompose the expected interval score into miscalibration (MCB),
discrimination ability (DSC), and uncertainty (UNC):

]E[Isa([L’ U]? Y)] = E[Isu([Lv U]7 Y)] - E[IS@([q%(Y | L, U) ql—%(y ‘ L, U)] Y)]
=MCB
— (BlSu(lgs (V) ar s (V] V)] — E[Sa(las (Y | L, U),qu s (Y | L UYL Y))

=DSC

+ El1Sa (g3 (V) a1 (V)] V)]

=UNC

> MCB: Expected score of prediction minus expected score of best calibrated
prediction.

> DSC: Expected score of best marginal prediction minus best calibrated
prediction.
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Assessing conditional calibration and discrimination ability v ehckaniing
Decompose the expected interval score into miscalibration (MCB), Johanna Ziegel

discrimination ability (DSC), and uncertainty (UNC):
]E[Isa([L, U], Y)] = E[Isu([Lv U]7 Y)] - E[IS@([q%(Y | L, U) ql—%(y ‘ L, U)] Y)]
—MCB .
o (E[IS”([C’%(Y)’ ql*%(y)]ﬁ V) - E[IS”([C/%(Y | L, V), Chf%(y | L, U)], Y)]) H ‘ ‘i ’ |
+E[ISa([q2 (Y), q1-2(Y)], V)] ———

=UNC

> MCB: Expected score of prediction minus expected score of best calibrated e

prediction.
> DSC: Expected score of best marginal prediction minus best calibrated

prediction.
» Practical challenge: Estimate the terms MCB, DSC, UNC
» Suggestion: Use isotonic regression.

(Allen et al., 2025) 4653



Data examples

Student-Teacher Achievement Ratio (STAR) in Tennessee, n = 433:

Original Recalibrated
STAR Interval score  Coverage Length  Coverage  Length
Ridge 0.22 0.87 0.17 0.87 - 0.91 0.17
Local Ridge 0.23 0.89 0.19 0.75 - 0.94 0.15
Neural Net 0.25 0.91 0.20 0.88 - 0.91 0.19
Local Neural Net 0.28 0.89 0.22 0.86 - 0.92 0.18
CQR Neural Net 0.26 0.88 0.19 0.87 - 0.92 0.18
Quantile Neural Net 0.23 0.91 0.20 0.84 - 0.93 0.17

Point predictions
and elicitability
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Data examples

Student-Teacher Achievement Ratio (STAR) in Tennessee, n = 433:

Original Recalibrated
STAR Interval score  Coverage Length  Coverage  Length
Ridge 0.22 0.87 0.17 0.87 - 0.91 0.17
Local Ridge 0.23 0.89 0.19 0.75 - 0.94 0.15
Neural Net 0.25 0.91 0.20 0.88 - 0.91 0.19
Local Neural Net 0.28 0.89 0.22 0.86 - 0.92 0.18
CQR Neural Net 0.26 0.88 0.19 0.87 - 0.92 0.18
Quantile Neural Net 0.23 0.91 0.20 0.84 - 0.93 0.17

Bike sharing system in Washington D.C., n = 2178:

Original Recalibrated
Bike Interval score  Coverage Length Coverage Length
Ridge 3.30 0.89 2.21 0.88 - 0.92 211
Local Ridge 2.99 0.89 2.18 0.81-0.93 1.87
Neural Net 1.30 0.89 0.73 0.86 - 0.93 0.67
Local Neural Net 1.15 0.88 0.65 0.85-0.93 0.60
CQR Neural Net 0.93 0.90 0.59 0.82 - 0.93 0.58
Quantile Neural Net 0.79 0.90 0.59 0.80 - 0.94 0.49
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Data examples
STAR Bike
0.061 //’ 3-
o .g)Net
& OORNeN
& ®Ridge (L) Net
0.04 1 5.
[6) [6)
7] )
a a
*Ridge (L)
0.024 i o
° ’ .35\
CARNet g et (1) ®RidggnC:®
Score decomposition
0.00 ol
0.06 0.08 0.00 0.25 0.50 075 1.00
MCB,

(Allen et al., 2025)
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Summary

» Predictions should be calibrated.

» Predictions should be compared with proper scoring rules or consistent loss
functions.

» Scoring rule decompositions allow to understand predictive performance in
terms of calibration and discrimination ability.

Thank you for listening and asking questions!

Point predictions
and elicitability
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