Calibration of predictions

Johanna Ziegel

ETH Zurich

CUSO Summer School 7–10 September 2025

Calibration of predictions

Johanna Ziegel

ntroduction

Motivation

Probabilistic predic

Binary outcome

Calibration

Comparison

alibration

anbracion

Multi-variate outcomes

Calibration and averaging

Calibration ar conformal prediction

- Let $Y \in \mathcal{Y}$ be an unknown future outcome.
 - ▶ Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathcal{Y} = \mathbb{R})$
 - ▶ Event of rain tomorrow in London. $(Y \in \mathcal{Y} = \{0,1\})$
 - ▶ Default of credit card client. $(Y \in \mathcal{Y} = \{0,1\})$
 - lacktriangle Amount of precipitation tomorrow in Cambridge and Oxford. $(Y \in \mathcal{Y} = \mathbb{R}^2)$
- ▶ We are interested in predictions for *Y*.

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Calibration

Discrimination abili

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averagin

Calibration an conformal prediction

- ▶ Let $Y \in \mathcal{Y}$ be an unknown future outcome.
 - ▶ Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathcal{Y} = \mathbb{R})$
 - lacktriangle Event of rain tomorrow in London. $(Y \in \mathcal{Y} = \{0,1\})$
 - ▶ Default of credit card client. $(Y \in \mathcal{Y} = \{0,1\})$
 - \blacktriangleright Amount of precipitation tomorrow in Cambridge and Oxford. $(Y \in \mathcal{Y} = \mathbb{R}^2)$
- ▶ We are interested in predictions for *Y*.

Questions that I will address:

▶ What is a probabilistic prediction for *Y*? What is a point prediction for *Y*? Are there other predictions for *Y*?

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Calibration

Comparison

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averagin

Calibration ar conformal prediction

- ▶ Let $Y \in \mathcal{Y}$ be an unknown future outcome.
 - ▶ Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathcal{Y} = \mathbb{R})$
 - lacktriangle Event of rain tomorrow in London. $(Y \in \mathcal{Y} = \{0,1\})$
 - ▶ Default of credit card client. $(Y \in \mathcal{Y} = \{0, 1\})$
 - lacktriangle Amount of precipitation tomorrow in Cambridge and Oxford. $(Y \in \mathcal{Y} = \mathbb{R}^2)$
- ▶ We are interested in predictions for *Y*.

Questions that I will address:

- ▶ What is a probabilistic prediction for *Y*? What is a point prediction for *Y*? Are there other predictions for *Y*?
- ▶ When is a probabilistic prediction calibrated? (Lecture 1)
- ▶ How can calibrated probabilistic predictions be constructed? (Lecture 1)

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Calibration

Comparison

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

- ▶ Let $Y \in \mathcal{Y}$ be an unknown future outcome.
 - ▶ Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathcal{Y} = \mathbb{R})$
 - ightharpoonup Event of rain tomorrow in London. $(Y \in \mathcal{Y} = \{0,1\})$
 - ▶ Default of credit card client. $(Y \in \mathcal{Y} = \{0, 1\})$
 - ightharpoonup Amount of precipitation tomorrow in Cambridge and Oxford. $(Y \in \mathcal{Y} = \mathbb{R}^2)$
- ▶ We are interested in predictions for *Y*.

Questions that I will address:

- ▶ What is a probabilistic prediction for *Y*? What is a point prediction for *Y*? Are there other predictions for *Y*?
- ▶ When is a probabilistic prediction calibrated? (Lecture 1)
- ▶ How can calibrated probabilistic predictions be constructed? (Lecture 1)
- ► How can we compare probabilistic predictions? With proper scoring rules. (Lecture 2)
- ► How should point predictions be evaluated and compared? (Lecture 3)

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

alibration

Discrimination Comparison

libration

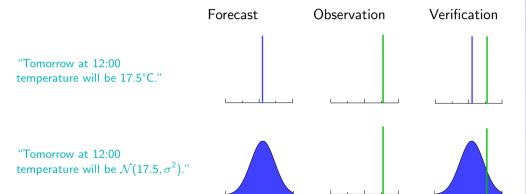
Real-valued outcomes

Multi-variate outcomes

Calibration and averagin

Calibration a conformal

Probabilistic and point predictions



Calibration of predictions

Johanna Ziegel

Introduct

Motivation

Probabilistic prediction

Calibration

Discrimination ability

ibration

Real-valued outcomes
Multi-variate outcomes
Calibration and averaging

Calibration a conformal prediction

▶ Single valued "best guess" $z \in \mathcal{Y}$ does not quantify uncertainty.

Calibration of predictions

Johanna Ziegel

Introduction

Probabilistic predictions

Binary outcome

Calibration

Comparison

libration

Real-valued outcomes
Multi-variate outcomes
Calibration and averagin

Calibration an conformal prediction

- ▶ Single valued "best guess" $z \in \mathcal{Y}$ does not quantify uncertainty.
- ▶ Better: Quantify uncertainty of *Y* by a *probabilistic prediction F*.
 - ightharpoonup F is a distribution on \mathcal{Y} .

Calibration of predictions

Johanna Ziegel

Introduction

Probabilistic predictions

Binary outcome

Comparison

alibration

libration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

- ▶ Single valued "best guess" $z \in \mathcal{Y}$ does not quantify uncertainty.
- ▶ Better: Quantify uncertainty of *Y* by a *probabilistic prediction F*.
 - ightharpoonup F is a distribution on \mathcal{Y} .
- ▶ If X is information available for prediction, F should approximate $\mathcal{L}(Y \mid X)$.

Calibration of predictions

Johanna Ziegel

ntroduction

Probabilistic predictions

Sinary outcome:

Discrimination al Comparison

Calibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration ar conformal prediction

- ▶ Single valued "best guess" $z \in \mathcal{Y}$ does not quantify uncertainty.
- ▶ Better: Quantify uncertainty of *Y* by a *probabilistic prediction F*.
 - ightharpoonup F is a distribution on \mathcal{Y} .
- ▶ If X is information available for prediction, F should approximate $\mathcal{L}(Y \mid X)$.
- ▶ Other possibilities to quantify uncertainty of *Y*: prediction intervals, predictions of some measure of variability, . . .
- Structurally, these are "point predictions" but they are often called probabilistic predictions since they quantify uncertainty to some degree.

Calibration of predictions

Johanna Ziegel

ntroduction

Probabilistic predictions

Binary outcome
Calibration

Discrimination ab Comparison

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration ar conformal

Goal: Discuss quality criteria for probabilistic predictions

▶ What is calibration of probabilistic predictions?

Calibration of predictions

Johanna Ziegel

Introduction

itioduction

Probabilistic predictions

Binary outcome

Calibration

Comparison

alibration

Real-valued outcomes
Multi-variate outcomes

Calibration ar conformal prediction

Goal: Discuss quality criteria for probabilistic predictions

- ▶ What is calibration of probabilistic predictions?
- ▶ Are calibrated predictions good? When are predictions informative?
- ► How do we calibrate predictions?
- ▶ How do we compare predictions and how is this related to calibration?

Calibration of predictions

Johanna Ziegel

Introduction

Probabilistic predictions

Binary outcomes

Discrimination ab

alibration

libration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration as conformal

Goal: Discuss quality criteria for probabilistic predictions

- ▶ What is calibration of probabilistic predictions?
- ▶ Are calibrated predictions good? When are predictions informative?
- ► How do we calibrate predictions?
- ▶ How do we compare predictions and how is this related to calibration?
- ► Forecasts are usually sequential but many concepts are easier to understand in a "hypothetical" one-period setting.
- Future outcome Y and forecast F are both random and defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Calibration of predictions

Johanna Ziegel

ntroduction

Probabilistic predictions

Binary outcomes

Calibration

Comparison

libration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

alibration and

Outline

Introduction

Motivation
Probabilistic predictions

Binary outcomes

Calibration
Discrimination ability
Comparison

Calibration

Real-valued outcomes Multi-variate outcomes Calibration and averaging

Calibration and conformal prediction

Calibration of predictions

Johanna Ziegel

ntroduction

Probabilistic predictions

nary outcome

Discrimination :

omparison

ibration

Real-valued outcomes Multi-variate outcomes Calibration and averaging

alibration and onformal rediction

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Binary outcomes

Calibration

Discrimination ability

Comparison

alibration

Multi-variate outcomes

Calibration and average

Calibration ar conformal prediction

References

Binary outcomes

Calibration
Discrimination ability
Comparison

- ▶ $Y \in \{0,1\}$
 - ightharpoonup Event of rain tomorrow in London. ($Y \in \{0,1\}$)
 - ▶ Default of credit card client. $(Y \in \{0,1\})$

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Binary outcomes

Calibration

Discrimination abil

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averagin

Calibration and conformal prediction

- ► $Y \in \{0, 1\}$
 - ▶ Event of rain tomorrow in London. $(Y \in \{0,1\})$
 - ▶ Default of credit card client. $(Y \in \{0,1\})$
- Distribution of Y is characterised by probability of $\{Y = 1\}$: Probabilistic prediction is random variable $p \in [0, 1]$.

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

binary outcome

Calibration

Comparison

libration

Real-valued outcomes
Multi-variate outcomes
Calibration and averagin

Calibration ar conformal prediction

- ▶ $Y \in \{0,1\}$
 - ▶ Event of rain tomorrow in London. $(Y \in \{0,1\})$
 - ▶ Default of credit card client. $(Y \in \{0,1\})$
- ▶ Distribution of Y is characterised by probability of $\{Y = 1\}$: Probabilistic prediction is random variable $p \in [0, 1]$.
- ► Since $\mathbb{P}(Y = 1 \mid X) = \mathbb{E}(\mathbb{1}\{Y = 1\} \mid X)$,
 - p is a prediction for the conditional distribution of Y (probabilistic prediction);
 - p is a prediction for the conditional mean of Y (point prediction).

Calibration of predictions

Johanna Ziegel

Introduction

Probabilistic prodiction

Probabilistic prediction

Calibration

Discrimination ability

Calibration

Real-valued outcomes
Multi-variate outcomes
Calibration and averagin

Calibration a conformal prediction

- ▶ $Y \in \{0,1\}$
 - ightharpoonup Event of rain tomorrow in London. ($Y \in \{0,1\}$)
 - ▶ Default of credit card client. $(Y \in \{0, 1\})$
- ▶ Distribution of Y is characterised by probability of $\{Y = 1\}$: Probabilistic prediction is random variable $p \in [0, 1]$.
- ► Since $\mathbb{P}(Y = 1 \mid X) = \mathbb{E}(\mathbb{1}\{Y = 1\} \mid X)$,
 - p is a prediction for the conditional distribution of Y (probabilistic prediction);
 - \triangleright p is a prediction for the conditional mean of Y (point prediction).

Definition

A probability prediction $p \in [0,1]$ for $Y \in \{0,1\}$ is *calibrated* (or *reliable*) if

$$\mathbb{P}(Y=1\mid p)=p.$$

Predicted probabilities should align with observed frequencies.

Calibration of predictions

Johanna Ziegel

Introduction

Postskilistis

Probabilistic predicti

Calibration

Discrimination ab

libration

Real-valued outcomes
Multi-variate outcomes

Calibration and conformal

Example

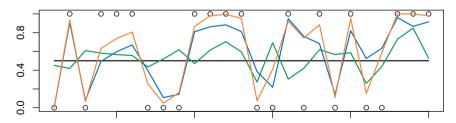
Let $X_1 \sim \mathcal{N}(0,1), X_2 \sim \mathcal{N}(0,2)$ be independent, and

$$\mathbb{P}(Y = 1 \mid X_1, X_2) = \Phi(X_1 + X_2).$$

Predictions:

$$p^{(0)} = 1/2, \quad p^{(1)} = \Phi\left(\frac{X_1}{\sqrt{3}}\right), \quad p^{(2)} = \Phi\left(\frac{X_2}{\sqrt{2}}\right), \quad p^{(3)} = \Phi(X_1 + X_2).$$

► All predictions are calibrated.



Calibration of predictions

Johanna Ziegel

Calibration

Diagnostics to assess calibration: Reliability diagrams

Data: $(p_1, Y_1), ..., (p_n, Y_n)$

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Binary outcome

Calibration

Discrimination abilit

libratio

Real-valued outcomes

Multi-variate outcomes

Calibration and averagin

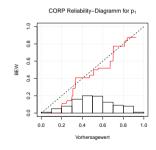
Calibration ar conformal prediction

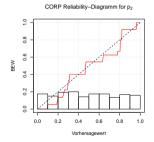
Diagnostics to assess calibration: Reliability diagrams

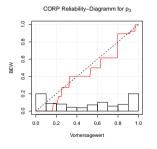
Data: $(p_1, Y_1), \dots, (p_n, Y_n)$

Simulation example

$$X_1 \sim \mathcal{N}(0,1), \ X_2 \sim \mathcal{N}(0,2)$$
 independent, $\mathbb{P}(Y=1 \mid X_1, X_2) = \Phi(X_1 + X_2), \ p^{(1)} = \Phi(X_1/\sqrt{3}), \ p^{(2)} = \Phi(X_2/\sqrt{2}), \ p^{(3)} = \Phi(X_1 + X_2), \ n = 200.$







(Dimitriadis et al., 2021)

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic predictions

Calibration

Discrimination ability

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration a conformal prediction

Reliability diagrams

Forecasts and observations: $(p_1, Y_1), \dots, (p_n, Y_n)$

Binning: Classical approach

Choose $m \in \mathbb{N}$, for example m = 10. Define

$$\hat{q}_{j} = \frac{\#\left\{i \mid Y_{i} = 1, \frac{j-1}{m} \leq p_{i} \leq \frac{j}{m}\right\}}{\#\left\{i \mid \frac{j-1}{m} \leq p_{i} \leq \frac{j}{m}\right\}}, \quad j = 1, \dots, m,$$

 \hat{q}_j is an estimator of the conditional event probability (CEP)

$$\mathbb{P}\left(Y=1\mid \frac{j-1}{m}\leq p\leq \frac{j}{m}\right),\quad j=1,\ldots,m.$$

For calibrated predictions, we have that

$$\frac{j-1}{m} \leq \mathbb{P}\left(Y = 1 \mid \frac{j-1}{m} \leq p \leq \frac{j}{m}\right) \leq \frac{j}{m}.$$

Calibration of predictions

Johanna Ziegel

ntroduction

Notivation

Probabilistic

Calibration

iscrimination a

libration

Indication

Real-valued outcomes
Multi-variate outcomes
Calibration and averaging

alibration and nformal

Calibration of predictions

Johanna Ziegel

ntroduction

Motivation

Probabilistic predicti

Binary outcome

Calibration

Comparison

alibration

Multi-variate outcomes

Calibration and averagi

Calibration as conformal prediction

References

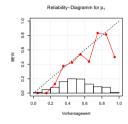
Reliability diagrams

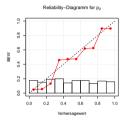
Diagnostic tool to assess calibration

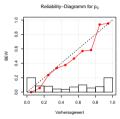
- ▶ Plot $((j-1)/2, \hat{q}_i)$, j = 1, ..., m and joint points by a line.
- \triangleright Add diagonal, that is, line from (0,0) to (1,1).
- ▶ Sometimes: Add histogram of p_1, \ldots, p_n such that it fits.

Simulation example

$$X_1 \sim \mathcal{N}(0,1), \ X_2 \sim \mathcal{N}(0,2)$$
 independent, $\mathbb{P}(Y=1 \mid X_1, X_2) = \Phi(X_1 + X_2), \ p^{(1)} = \Phi(X_1/\sqrt{3}), \ p^{(2)} = \Phi(X_2/\sqrt{2}), \ p^{(3)} = \Phi(X_1 + X_2), \ n = 200.$







Calibration of predictions

Johanna Ziegel

Introduction

Motivatio

Probabilistic predict

Calibration

Discrimination ability

alibration

Real-valued outcomes

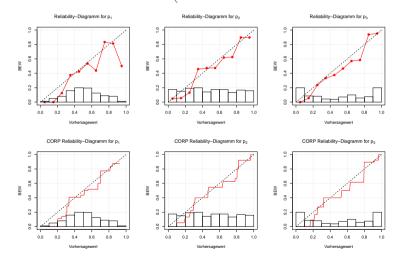
Multi-variate outcomes

Calibration and averaging

alibration ar onformal rediction

Simulation example

$$X_1 \sim \mathcal{N}(0,1), \ X_2 \sim \mathcal{N}(0,2)$$
 independent, $\mathbb{P}(Y=1 \mid X_1, X_2) = \Phi(X_1 + X_2), \ p^{(1)} = \Phi(X_1/\sqrt{3}), \ p^{(2)} = \Phi(X_2/\sqrt{2}), \ p^{(3)} = \Phi(X_1 + X_2), \ n = 200.$



Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Calibration

Discrimination ability

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

Hosmer-Lemeshow Test

Goodness-of-fit test for binary regression models. Is deviation from diagonal in reliability diagram significant? (Hosmer and Lemeshow, 1980)

$$\mathcal{H}_0 = \{ \mathbb{P} \mid \mathbb{P}(Y \mid p_i) = p_i, \ i = 1, \dots, n \}$$

Test statistic

$$T_{\mathsf{HL}} = \sum_{j=1}^m \left[rac{(O_{1j} - E_{1j})^2}{E_{1j}} + rac{(O_{0j} - E_{0j})^2}{E_{0j}}
ight],$$

with

$$O_{1j} = \# \{ i \mid Y_i = 1 \} \cap I_j, \quad O_{0j} = \# \{ i \mid Y_i = 0 \} \cap I_j,$$

and

$$E_{1j} = \sum_{i \in I_i} p_i, \quad E_{0j} = \sum_{i \in I_i} (1 - p_i),$$

where $I_j = \{i \mid (j-1)/m \le p_i \le j/m\}$. Then, $T_{\mathsf{HL}} \sim \chi^2_{m-1}$ asymptotically.

Calibration of predictions

Johanna Ziegel

troduction

Probabilistic pr

olnary out

Calibration

mparison

bration

Real-valued outcomes Multi-variate outcomes Calibration and averaging

llibration a nformal ediction

Problems with Binning

- Visual impression of reliability diagram can look very different for different m, say, m = 9, 10, 11. Can be misleading as a diagnostic tool.
- ► Choice of the bins influences the test substantially: p-values of the Hosmer-Lemeshow test from 0.020 to 0.159 with six different statistical software packages (Hosmer et al., 1997).
- ▶ Reordering a data set with ties can yield p-values from 0.01 to 0.95 (Bertolini et al., 2000).

Calibration of predictions

Johanna Ziegel

Introduction

Probabilistic prediction

Calibration

Discrimination ability

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

CORP Reliability Diagrams

Postulate that

$$p'\mapsto \mathbb{P}(Y=1\mid p=p')$$

is increasing.

For $(p_1, Y_1), \ldots, (p_n, Y_n)$ with $p_1 \leq \cdots \leq p_n$ compute the isotonic regression $(q_1^{(iso)}, \ldots, q_n^{(iso)})$ of Y given p. Then,

$$q_i^{(iso)} pprox \mathbb{P}(Y=1 \mid p=p_i) \overset{ ext{under calibration}}{=} p_i.$$

- Plot $(p_i, q_i^{(iso)})$, i = 1, ..., n and joint points by a line.
- Add diagonal.
- ▶ Sometimes: Add histogram of p_1, \ldots, p_n such that it fits.

(Dimitriadis et al., 2021)

Calibration of predictions

Johanna Ziegel

Introduction

Probabilistic predict

Calibration

Discrimination ability

libration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

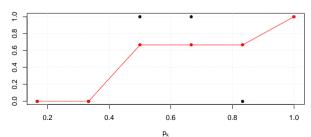
Calibration and conformal prediction

For $(p_1, Y_1), \ldots, (p_n, Y_n)$ with $p_1 \leq \cdots \leq p_n$, the isotonic regression $(q_1^{(iso)}, \ldots, q_n^{(iso)})$ of Y given p is the solution to the optimization problem

$$\min_{\mathbf{q} \text{ isotone}} \sum_{i=1}^{n} (Y_i - q_i)^2,$$

where the minimum is taken over all vectors $\mathbf{q} = (q_1, \dots, q_n) \in [0, 1]^T$ with $q_1 < \dots < q_n$.

► Solution can be computed with the Pool Adjacent Violators Algorithm (PAVA).



Calibration of predictions

Johanna Ziegel

ntroduction

Probabilis

D'annual and

Calibration

Discrimination al:

libration

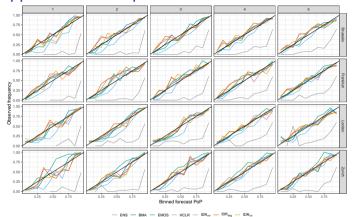
teal-valued outcomes Multi-variate outcomes

Calibration a conformal prediction

References

(van Eeden, 1958; Barlow et al., 1972)

Application example



Reliability diagrams for probability of precipitation forecasts at prediction horizons of 1, 2, 3, 4 and 5 days, for the test period.

(Henzi et al., 2021b)

Calibration of predictions

Johanna Ziegel

Introduction

Deskabilistis ---

Binary outcomes

Calibration

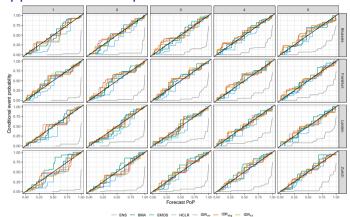
Discrimination ability
Comparison

alibration

Real-valued outcomes
Multi-variate outcomes

Calibration as conformal

Application example



CORP reliability diagrams for probability of precipitation forecasts at prediction horizons of 1, 2, 3, 4 and 5 days, for the test period.

(Henzi et al., 2021b)

Calibration of predictions

Johanna Ziegel

ntroduction

iviotivation

Probabilistic prediction

Calibration

Discrimination ability

libration

Real-valued outcomes

Multi-variate outcomes

Calibration and averagin

Calibration and

Summary

- ▶ Calibration assesses the statistical compatibility of forecasts and observation: Evaluation of absolute forecast quality.
- Calibrated predictions can be uninformative.
- ▶ How can discrimination ability of probably forecasts be assessed?

Calibration of predictions

Johanna Ziegel

Calibration

ROC curves assess discrimination ability

Use threshold $t \in [0,1)$ to construct a hard classifier $\mathbb{1}\{p>t\}$ from the probability prediction. Define the Hit Rate (HR)

$$\mathrm{HR}(t) = \mathbb{P}(\rho > t \mid Y = 1),$$

and the False Alarm Rate (FAR)

$$FAR(t) = \mathbb{P}(p > t \mid Y = 0).$$

Receiver operating characteristic (ROC) curve consists of the points $(FAR(t), HR(t)), t \in [0, 1).$

Calibration of predictions

Johanna Ziegel

Introduction

WOUVALION

Probabilistic

Calibration

Discrimination ability

alibration

Real-valued outcomes
Multi-variate outcomes

Calibration and

ROC curves assess discrimination ability

Use threshold $t \in [0,1)$ to construct a hard classifier $\mathbb{1}\{p > t\}$ from the probability prediction. Define the Hit Rate (HR)

$$\mathrm{HR}(t) = \mathbb{P}(p > t \mid Y = 1),$$

and the False Alarm Rate (FAR)

$$FAR(t) = \mathbb{P}(p > t \mid Y = 0).$$

Receiver operating characteristic (ROC) curve consists of the points $(FAR(t), HR(t)), t \in [0, 1)$.

Empirical ROC curve

Estimate HR(t), FAR(t) by

$$\widehat{HR}(t) = \frac{\sum_{i=1}^{n} \mathbb{1}\{Y_i = 1, p_i > t\}}{\sum_{i=1}^{n} \mathbb{1}\{Y_i = 1\}}, \quad \widehat{FAR}(t) = \frac{\sum_{i=1}^{n} \mathbb{1}\{Y_i = 0, p_i > t\}}{\sum_{i=1}^{n} \mathbb{1}\{Y_i = 0\}},$$

respectively.

Calibration of predictions

Johanna Ziegel

ntroduction

Motivation

Probabilistic |

alibration

Discrimination ability Comparison

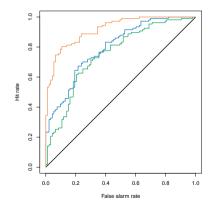
Calibration

eal-valued outcomes ulti-variate outcomes dibration and averaging

alibration a nformal ediction

Simulation example

$$X_1 \sim \mathcal{N}(0,1), \ X_2 \sim \mathcal{N}(0,2)$$
 independent, $\mathbb{P}(Y=1 \mid X_1, X_2) = \Phi(X_1 + X_2), \ p^{(0)} = 1/2, \ p^{(1)} = \Phi(X_1/\sqrt{3}), \ p^{(2)} = \Phi(X_2/\sqrt{2}), \ p^{(3)} = \Phi(X_1 + X_2), \ n = 200.$



- ▶ If FAR(t) = HR(t), $t \in (0, 1)$: No discrimination, ROC is on the diagonal.
- If ∃t such that FAR(t) = 0, HR(t) = 1: Perfect discrimination, ROC is in upper left corner.

Calibration of predictions

Johanna Ziegel

ntroduction

Probabilistic pre

Calibration

Discrimination ability

S - 101 --- - - 10 ---

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal

Properties of ROC curves

ROC curve consists of the points (FAR(t), HR(t)), $t \in [0,1)$, where

$$\mathrm{HR}(t) = \mathbb{P}(p > t \mid Y = 1), \quad \mathrm{FAR}(t) = \mathbb{P}(p > t \mid Y = 0).$$

- ▶ ROC curve is invariant under strictly increasing transformations of forecast p: ROC ignores calibration.
- ▶ ROC discrimination ability or potential predictive ability, only!

Calibration of predictions

Johanna Ziegel

Introduction

Probabilistic p

Calibration
Discrimination ability

Comparison

libration

Real-valued outcomes

Multi-variate outcomes

Calibration and averagin

Calibration a onformal orediction

ROC curve consists of the points (FAR(t), HR(t)), $t \in [0,1)$, where

$$\mathrm{HR}(t) = \mathbb{P}(p > t \mid Y = 1), \quad \mathrm{FAR}(t) = \mathbb{P}(p > t \mid Y = 0).$$

- ▶ ROC curve is invariant under strictly increasing transformations of forecast p: ROC ignores calibration.
- ▶ ROC discrimination ability or potential predictive ability, only!
- ▶ ROC curve is concave if and only if CEP $p' \mapsto \mathbb{P}(Y = 1 \mid p = p')$ is increasing.
- Hard classifier construction only makes sense if CEP is increasing! Therefore, empirical ROC should be concave.
- Solution: Compute ROC curve from isotonically recalibrated predictions $q_i^{(iso)}$, $i=1,\ldots,n$.

Johanna Ziegel

ntroduction

Motivation
Probabilistic p

Calibration

Discrimination ability Comparison

libration

Real-valued outcomes

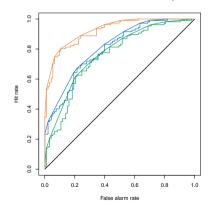
Multi-variate outcomes

Calibration and averagin

Calibration and onformal

Simulation example

$$X_1 \sim \mathcal{N}(0,1), \ X_2 \sim \mathcal{N}(0,2)$$
 independent, $\mathbb{P}(Y=1 \mid X_1, X_2) = \Phi(X_1 + X_2), \ p^{(0)} = 1/2, \ p^{(1)} = \Phi(X_1/\sqrt{3}), \ p^{(2)} = \Phi(X_2/\sqrt{2}), \ p^{(3)} = \Phi(X_1 + X_2), \ n = 200.$



 Predictions can be differentiated with respect to discrimination ability.

(Gneiting and Vogel, 2022)

Calibration of predictions

Johanna Ziegel

ntroduction

D-----

Sinary outcom

Discrimination ability

Calibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averagin

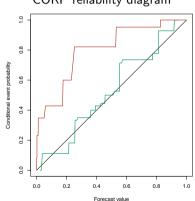
Calibration and conformal prediction

Simulation example

$$X_1 \sim \mathcal{N}(0,1), \ X_2 \sim \mathcal{N}(0,2)$$
 independent, $\mathbb{P}(Y=1 \mid X_1, X_2) = \Phi(X_1 + X_2), \ p^{(1)} = \Phi(X_1/\sqrt{3}), \ p^{(4)} = (\Phi(X_1 + X_2))^3, \ n = 200.$

Calibration

CORP reliability diagram



Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Calibration

Discrimination ability

alibration

Real-valued outcomes

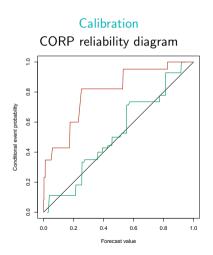
Multi-variate outcomes

Calibration and averagin

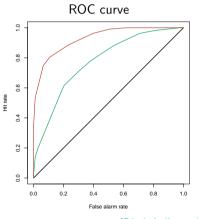
Calibration a conformal prediction

Simulation example

$$X_1 \sim \mathcal{N}(0,1), X_2 \sim \mathcal{N}(0,2)$$
 independent, $\mathbb{P}(Y=1 \mid X_1, X_2) = \Phi(X_1 + X_2), p^{(1)} = \Phi(X_1/\sqrt{3}), p^{(4)} = (\Phi(X_1 + X_2))^3, n = 200.$



Discrimination ability



(Dimitriadis et al., 2024)

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

omary out

Discrimination ability

alibration

Real-valued outcomes
Multi-variate outcomes
Calibration and averaging

Calibration a conformal

Comparing predictions with proper scoring rules

▶ Need a summary measure that takes calibration and discrimination ability into account: Proper scoring rules.

Definition

A proper scoring rule is a map $S:[0,1] imes\{0,1\} o\overline{\mathbb{R}}$ such that

$$\mathbb{E}S(p, Y) \leq \mathbb{E}S(q, Y)$$

for all $p, q \in [0, 1]$ and $\mathbb{P}(Y = 1) = p$.

Give preference to forecaster with lower average score

$$\frac{1}{n}\sum_{i=1}^n S(p_i,Y_i).$$

Examples:

$$S(p, Y) = (p - Y)^2$$
, $S(p, Y) = -Y \log p - (1 - Y) \log(1 - p)$.

Calibration of predictions

Johanna Ziegel

ntroduction

Motivation

Probabilistic prediction

alibration

Comparison

ibration

Real-valued outcomes Multi-variate outcomes Calibration and averaging

> libration ar nformal diction

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic predictions

Rinary outcome

Calibration

Comparison

_ ...

Calibration

Multi-variate outcomes

Calibration ar conformal prediction

References

Calibration

Real-valued outcomes Multi-variate outcomes Calibration and averaging

Real-valued outcomes

- $Y \in \mathbb{R}$.
 - ▶ Temperature tomorrow at 12:00 in Cambridge. $(Y \in \mathbb{R})$
- Quantify uncertainty of Y by a probabilistic prediction F.
 - ightharpoonup F is a distribution on \mathbb{R} (typically specified as a CDF).

Calibration of predictions

Johanna Ziegel

Real-valued outcomes

- $Y \in \mathbb{R}$
 - ightharpoonup Temperature tomorrow at 12:00 in Cambridge. ($Y \in \mathbb{R}$)
- Quantify uncertainty of Y by a probabilistic prediction F.
 - ightharpoonup F is a distribution on \mathbb{R} (typically specified as a CDF).
- ▶ If X is information available for prediction, F should approximate $\mathcal{L}(Y \mid X)$.

Calibration of predictions

Johanna Ziegel

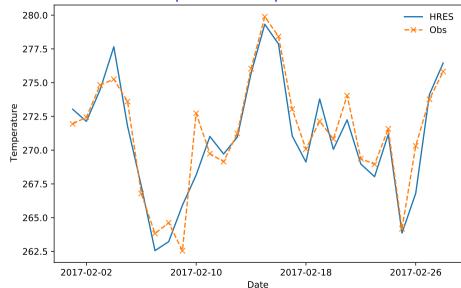
Real-valued outcomes

- $Y \in \mathbb{R}$
 - ightharpoonup Temperature tomorrow at 12:00 in Cambridge. ($Y \in \mathbb{R}$)
- Quantify uncertainty of Y by a probabilistic prediction F.
 - ightharpoonup F is a distribution on \mathbb{R} (typically specified as a CDF).
- ▶ If X is information available for prediction, F should approximate $\mathcal{L}(Y \mid X)$.

Calibration of predictions

Johanna Ziegel

Illustration: Point and probabilistic predictions



Calibration of predictions

Johanna Ziegel

ntroduction

Motivation

inary outcomes

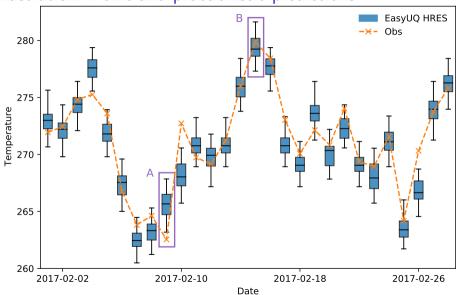
comparison

Real-valued outcomes

ulti-variate outcomes libration and averaging

Calibration a conformal prediction

Illustration: Point and probabilistic predictions



Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Inary outcomes

C 111 ...

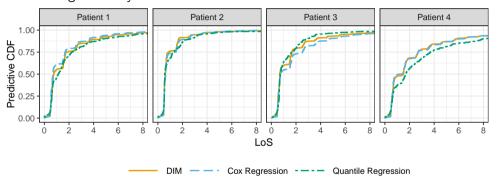
Real-valued outcomes

libration and averagin

alibration a onformal rediction

Application example 1

Patient length of stay in Swiss intensive care units



(Henzi et al., 2021a)

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

- robabilistic prediction:

alibration

Comparison

libration

Real-valued outcomes

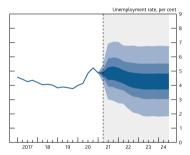
Multi-variate outcomes

Calibration and

onformal rediction

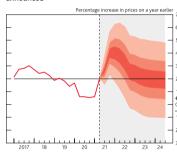
Application example 2

Chart 1.3: Unemployment projection based on market interest rate expectations, other policy measures as annual produced.



The fan chart depicts the probability of various outcomes for LFS unemployment, it has been conditioned on the assumption in Table 1A footnote (b). The coloured banks have the same interpretation as in Charts 1.1 and 1.2, and portray 90% of the probability distribution. The calibration of this fan chart takes account of the likely path dependency of the economy, where, for example, it is judged that shocks to unemployment in one quarter will continue to have some effect on unemployment in successive quarters. The table object in 2021 (2), a quarter eafler than for CP inflation. That is because Q2 is a staff projection for the unemployment rate, based in part projected for the value of the control of the depression of the staff that the CP inflation. That is because Q2 is a staff projection for the unemployment rate, based in part projected for the ABM in Q2 as a widow. A significant propertion of this distribution lies below. Bank staff's current estimate of the long-term equilibrium unemployment rate. There is therefore uncertainty about the projects calibration of this fact hards.

Chart 1.4: CPI inflation projection based on market interest rate expectations, other policy measures as announced



The fan chart depicts the probability of various outcomes for CP inflation in the future. It has been conditioned on the assumptions in Table 1.4 footnote (b), I recommic circumstances identical to today's were to prevail on 100 occasions; the MPC's best collective judgment is that inflation in any particular quarter would lei within the darkest central band on only 30 of those occasions. The fan chart is constructed so that outturns of inflation are also expected to lie within each pair of the lighter red areas on 30 occasions. In any particular quarter of the forecast protoin, flitation is therefore expected to lie somewhere within the fans on 90 out of 100 occasions. And on the remaining (10 out of 100 occasions hadion can fall anywhere custiske the red area of the flan chart. In the contract of the May 2002 in/Jation Report for a faller description of the flan chart and what it

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

alibration

Discrimination ability

libration

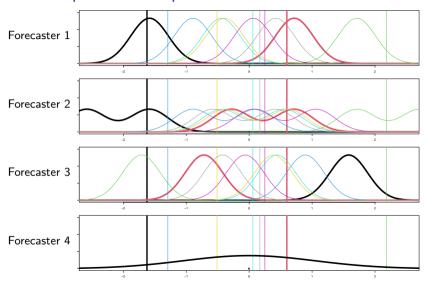
Real-valued outcomes

Multi variate outcomes

alibration and averaging

Calibration a conformal prediction

Calibration of probabilistic predictions



Calibration of predictions

Johanna Ziegel

Introduction

Motivation

D: .

Calibration

Discrimination ability Comparison

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and

Calibration: Compatibility between forecasts and observations

Probabilities derived from predictive distributions should align with observed frequencies.

Calibration of predictions

Johanna Ziegel

Introduction

Widelyacion

Probabilistic prediction

Calibration

Discrimination

.omparison

alibration

Real-valued outcomes

Multi-variate outcomes

alibration and averaging

alibration an onformal rediction

Calibration: Compatibility between forecasts and observations

Probabilities derived from predictive distributions should align with observed frequencies.

Most popular: Probabilistic calibration/"Flat PIT histogram"

$$F_i(Y_i) \sim \text{UNIF}(0,1)$$
 for all i

- $Y_i \in \mathbb{R}$. F_i predictive CDF for Y_i
- Suitable randomization if F_i is not continuous
- Closely related to validity of conformal predictive systems

Calibration of predictions

Johanna Ziegel

Calibration: Compatibility between forecasts and observations

Probabilities derived from predictive distributions should align with observed frequencies.

Most popular: Probabilistic calibration/"Flat PIT histogram"

$$F_i(Y_i) \sim \text{UNIF}(0,1)$$
 for all i

- $Y_i \in \mathbb{R}$. F_i predictive CDF for Y_i
- Suitable randomization if F_i is not continuous
- Closely related to validity of conformal predictive systems
- **Binary outcomes**: $Y_i \in \{0,1\}$: $\mathbb{P}(Y_i = 1|p_i) = p_i$
- Many notions of calibration, except for binary outcomes...

Calibration of predictions

Johanna Ziegel

Why PIT values?

Motivation 1

Let X be a random variable and G a (deterministic) continuous CDF. Then,

$$G(X) \sim \mathsf{UNIF}(0,1) \iff X \sim G.$$

Without continuity:

$$\mathbb{P}(G(X) \leq \alpha) \leq \alpha \leq \mathbb{P}(G(X-) \leq \alpha) \quad \forall \alpha \in (0,1) \iff X \sim G.$$

Calibration of predictions

Johanna Ziegel

Introduction

Probabilistic prediction

Calibration

Discrimination Comparison

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration a conformal prediction

Proposition

Let X be a random variable and G a CDF. Then,

$$\mathbb{P}(G(X) \le \alpha) \le \alpha \le \mathbb{P}(G(X-) \le \alpha) \quad \forall \alpha \in (0,1) \iff X \sim G.$$

Proof.

Let $Y \sim H$. If G(z) < H(z) for some z, then, for $\alpha \in (G(z), H(z))$,

$$\alpha \geq \mathbb{P}(G(Y) \leq \alpha) \geq \mathbb{P}(G(Y) \leq G(z)) \geq \mathbb{P}(Y \leq z) = H(z) > \alpha$$
 7.

Calibration of predictions

Johanna Ziegel

ntroduction

D--b-bili-ti-

Probabilistic prediction

Calibration

Comparison

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration a conformal prediction

Proposition

Let X be a random variable and G a CDF. Then,

$$\mathbb{P}(G(X) \le \alpha) \le \alpha \le \mathbb{P}(G(X-) \le \alpha) \quad \forall \alpha \in (0,1) \iff X \sim G.$$

Proof

Let $Y \sim H$. If G(z) < H(z) for some z, then, for $\alpha \in (G(z), H(z))$,

$$\alpha \geq \mathbb{P}(G(Y) \leq \alpha) \geq \mathbb{P}(G(Y) \leq G(z)) \geq \mathbb{P}(Y \leq z) = H(z) > \alpha$$
 7.

If G(z) > H(z), then, for $\alpha \in (H(z), G(z))$.

$$\alpha \leq \mathbb{P}(G(Y-) \leq \alpha) \leq \mathbb{P}(G(Y-) < G(z)) \leq \mathbb{P}(Y \leq z) = H(z) < \alpha$$
 7.

Calibration of predictions

Johanna Ziegel

Proposition

Let X be a random variable and G a CDF. Then,

$$\mathbb{P}(G(X) \leq \alpha) \leq \alpha \leq \mathbb{P}(G(X-) \leq \alpha) \quad \forall \alpha \in (0,1) \iff X \sim G.$$

Proof.

Let $Y \sim H$. If G(z) < H(z) for some z, then, for $\alpha \in (G(z), H(z))$,

$$\alpha \geq \mathbb{P}(G(Y) \leq \alpha) \geq \mathbb{P}(G(Y) \leq G(z)) \geq \mathbb{P}(Y \leq z) = H(z) > \alpha$$
 7.

If G(z) > H(z), then, for $\alpha \in (H(z), G(z))$,

$$\alpha \leq \mathbb{P}(G(Y-) \leq \alpha) \leq \mathbb{P}(G(Y-) < G(z)) \leq \mathbb{P}(Y \leq z) = H(z) < \alpha$$

For reverse: Recall that $G(G^{-1}(u)) \ge u$ and $G(G^{-1}(u)-) \le u$. Let $U \sim \text{UNIF}(0,1)$, then, $G^{-1}(U) \sim G$. Therefore,

$$\mathbb{P}(G(Y) \le \alpha) = \mathbb{P}(G(G^{-1}(U)) \le \alpha) \le \mathbb{P}(U \le \alpha) = \alpha,$$

$$\mathbb{P}(G(Y-) \le \alpha) = \mathbb{P}(G(G^{-1}(U)-) \le \alpha) \ge \mathbb{P}(U \le \alpha) = \alpha.$$

Calibration of predictions

Johanna Ziegel

ntroduction

Probabilistic pr

ary outcomes

mparison

alibration

Real-valued outcomes Multi-variate outcomes

alibration and onformal

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Calibration

Comparison

alibratio

Real-valued outcomes

Multi-variate outcomes

Calibration and

conformal prediction

References

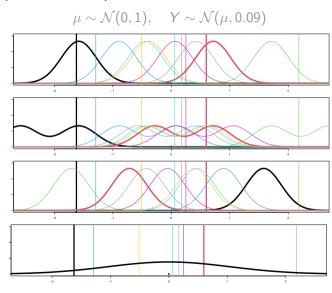
Motivation 2

Time series $(Y_t)_{t\in\mathbb{N}}$. Then,

$$(F_t(Y_t))_{t\in\mathbb{N}}\stackrel{\mathsf{iid}}{\sim}\mathsf{UNIF}(0,1)\quad\Longleftrightarrow\quad F_t=\mathcal{L}(Y_t\mid Y_1,\ldots,Y_{t-1}),\;t\in\mathbb{N}.$$

- ▶ Ideal prediction is equivalent to independence and uniformity of PIT values.
- Restricted to very special information set and lag 1 predictions.

(Diebold et al., 1998)



Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Calibration

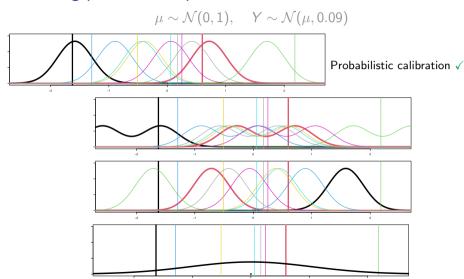
Discrimination ability Comparison

alibration

Real-valued outcomes

alibration and averaging

Calibration and



Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Binary outcome

Calibration

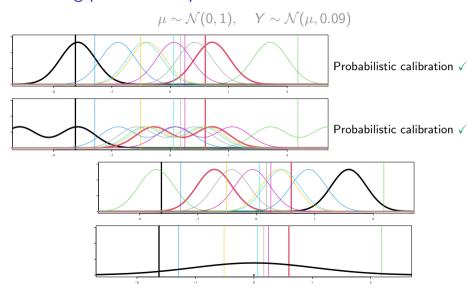
Comparison

alibration

Real-valued outcomes

alibration and averaging

Calibration a conformal prediction



Calibration of predictions

Johanna Ziegel

Introduction

Probabilistic prediction

Calibration

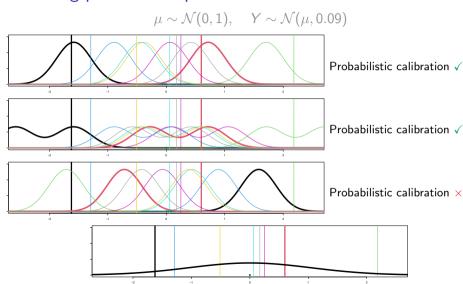
Discrimination ability

Calibration

Real-valued outcomes

Multi-variate outcomes Calibration and averagi

Calibration as



Calibration of predictions

Johanna Ziegel

ntroduction

Probabilistic prediction

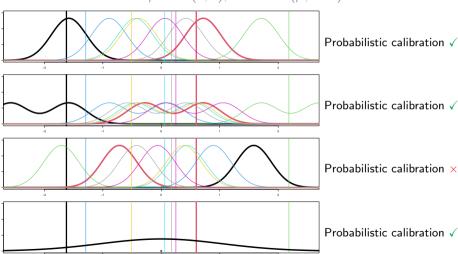
Sinary outo

Comparison

alibration

Real-valued outcomes

Calibration and conformal



Calibration of predictions

Johanna Ziegel

ntroduction

Probabilistic predict

Calibration

Discrimination a

alibration

Real-valued outcomes

alibration and

Many notions of calibration . . .

Auto-calibration:

$$\mathbb{P}(Y_i > y \mid F_i) = 1 - F_i(y) \,\forall y$$

$$\mathcal{L}(Y_i \mid F_i) = F_i$$

Isotonic calibration:

$$\mathbb{P}(Y_i > y \mid \mathcal{A}(F_i)) = 1 - F_i(y) \ \forall y$$

$$\mathcal{L}(Y_i \mid \mathcal{A}(F_i)) = F_i$$

Threshold calibration:

$$\mathbb{P}(Y_i > y \mid F_i(y)) = 1 - F_i(y) \ \forall y$$

Quantile calibration:

$$q_{\alpha}(Y_i \mid F_i^{-1}(\alpha)) = F_i^{-1}(\alpha) \ \forall \alpha$$

Marginal calibration:

$$\mathbb{P}(Y_i > y) = 1 - \mathbb{E}F_i(y) \ \forall y$$

Probabilistic calibration:

$$F_i(Y_i) \sim \text{UNIF}(0,1)$$

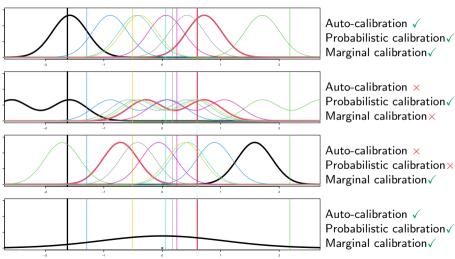
$$\mathbb{P}(F_i(Y_i) < \alpha) \le \alpha \le \mathbb{P}(F_i(Y_i -) \le \alpha) \ \forall \alpha$$

And if we want to focus on tails of F_i ... (Allen et al., 2025b)

Calibration of predictions

Johanna Ziegel

$$\mu \sim \mathcal{N}(0,1), \quad Y \sim \mathcal{N}(\mu, 0.09)$$



Calibration of predictions

Johanna Ziegel

troduction

Motivation

Binary outco

Calibration Discrimination abili

alibration

Real-valued outcomes

Calibration and averagin

conformal prediction

Auto-calibration

$$\mathbb{P}(Y \le y \mid F) = F(y) \ \forall y$$
$$\mathcal{L}(Y \mid F) = F$$

Proposition

The forecast F is auto-calibrated for $Y \in \mathbb{R}$ if and only if $Z_F \sim \mathit{UNIF}(0,1)$ and $Z_F \perp \!\!\! \perp F$.

Here,

$$Z_F = F(Y-) + V(F(Y) - F(Y-)),$$

where $V \sim \text{UNIF}(0,1)$ is independent of (Y, F).

(Strähl and Ziegel, 2017; Modeste, 2023)

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Calibration

Discrimination

alibration

alibration

Real-valued outcomes

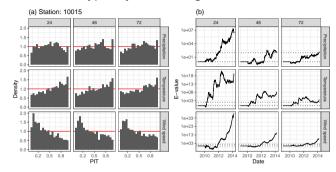
fulti-variate outcomes

Calibration and

prediction

Empirical assessment of calibration

Probabilistic calibration: Typically PIT histograms



Null hypothesis $F_i(Y_i) \sim \text{UNIF}(0,1)$ for all t.

- ▶ At n: Estimate density of $(F_i(Y_i))_{i=1}^n$ by \hat{f}_n
- ▶ Define conditional e-value $E_{n+1} = \hat{f}_T(Y_{n+1})$
- ▶ Monitor calibration with test martingale $M_n = \prod_{i=1}^n E_i$

Calibration of predictions

Johanna Ziegel

ntroduction

D. I. I. II.

Probabilistic prediction

Calibration

Comparison

ibration

Real-valued outcomes

alibration and averagi

Calibration an onformal rediction

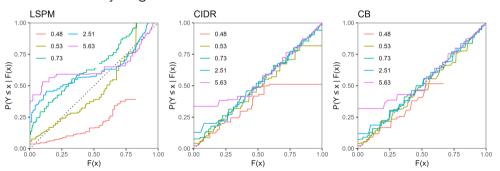
References

(Arnold et al., 2023)

Empirical assessment of calibration

Threshold calibration

- ▶ For each $z \in \mathbb{R}$, F(z) is probability prediction for $\mathbb{1}\{Y \le z\} \in \{0,1\}$.
- ▶ Plot reliability diagrams for several thresholds.



Calibration of predictions

Johanna Ziegel

ntroduction

Motivation

Probabilistic prediction

Calibration

Comparison

alibration

Real-valued outcomes

Calibration a conformal

Comparison

Calibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and

Calibration a conformal prediction

References

Let $\mathcal{Y} = \mathbb{R}^d$, forecast F is distribution over \mathbb{R}^d .

- ▶ Auto-calibration is still an applicable theoretical concept: $\mathcal{L}(Y \mid F) = F$.
- ▶ More popular: Graphical tools similar to PIT histograms
- ► Mainly used: Multivariate rank histograms assessing calibration of multivariate predictive distributions with finite support

Main idea

Reduce outcome Y and predictive distribution F to something univariate using map $\rho: \mathbb{R}^d \to \mathbb{R}$. Assess calibration of univariate summary.

(Gneiting et al., 2008; Ziegel and Gneiting, 2014; Thorarinsdottir et al., 2016; Allen et al., 2024)

Calibration and averaging: A word of warning

If F and G are calibrated for Y, then (F+G)/2 will not be calibrated for Y.

Example

Suppose that $F(Y) \sim \text{UNIF}(0,1)$, $G(Y) \sim \text{UNIF}(0,1)$, and $w_1 + w_2 = 1$. Then, $(w_1F + w_2G)(Y)$ has variance $<\frac{1}{12}$, so it cannot have distribution UNIF(0,1).

(Gneiting and Ranjan, 2013)

Calibration of predictions

Johanna Ziegel

Introduction

Probabilistic predi

Probabilistic predictions

ary outcomes

Discrimination at

libration

al-valued outcomes

Calibration and averaging

Calibration a conformal

Summary

- ▶ Probabilistic predictions should be calibrated and sharp/discriminative in order to be trustworthy and informative.
- Ideally, probabilistic predictions should be auto-calibrated.
- Comparison of probabilistic predictions with proper scoring rules: Assign a real-valued score assessing calibration and discrimination ability simultaneously.
- Proper scoring rules allow to compare probabilistic predictions simultaneously with respect to calibration and discrimination ability. (Lecture 2)

Calibration of predictions

Johanna Ziegel

Calibration and averaging

Calibration of predictions

Johanna Ziegel

Introduction

Masimalan

Probabilistic predictions

Binary outcome

Calibration

Calibration and conformal prediction

Discrimination

alibration

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

Goal of conformal prediction

For data $(X_1, Y_1), \ldots, (X_n, Y_n)$ and X_{n+1} , construct

- ightharpoonup prediction set C_{n+1} for Y_{n+1} ,
- ightharpoonup predictive distribution F_{n+1} for Y_{n+1}

Calibration of predictions

Johanna Ziegel

Introduction

D. I. L'II' .'

Probabilistic prediction

ontcome

Discrimination al

...

alibration

Real-valued outcomes Multi-variate outcomes Calibration and averaging

Calibration and conformal prediction

Goal of conformal prediction

For data $(X_1, Y_1), \dots, (X_n, Y_n)$ and X_{n+1} , construct

- ightharpoonup prediction set C_{n+1} for Y_{n+1} ,
- ▶ predictive distribution F_{n+1} for Y_{n+1}

such that

- $P(Y_{n+1} \in C_{n+1}) \geq 1 \alpha,$
- $\blacktriangleright \mathbb{P}(F_{n+1}(Y_{n+1})) \approx \text{UNIF}(0,1).$

Calibration of predictions

Johanna Ziegel

ntroduction

Deskabilistic

Probabilistic prediction

Calibration

Comparison

libration

Real-valued outcomes
Multi-variate outcomes

Calibration and conformal prediction

Goal of conformal prediction

For data $(X_1, Y_1), \dots, (X_n, Y_n)$ and X_{n+1} , construct

- ightharpoonup prediction set C_{n+1} for Y_{n+1} ,
- ightharpoonup predictive distribution F_{n+1} for Y_{n+1}

such that

- $P(Y_{n+1} \in C_{n+1}) \geq 1 \alpha,$
- $\blacktriangleright \mathbb{P}(F_{n+1}(Y_{n+1})) \approx \text{UNIF}(0,1).$
- Finite sample (marginal) coverage/calibration guarantees.
- Many and rapidly evolving approaches to obtain conditional coverage guarantees, understand training conditional coverage, work with multivariate data,...

Calibration of predictions

Johanna Ziegel

ntroduction

Notivation

Probabilistic prediction

Calibration

Discrimination a

alibration

Real-valued outcomes
Multi-variate outcomes

Calibration and conformal prediction

What is at the heart of conformal prediction?

"In-sample calibration yields conformal calibration guarantees."

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Binary outcomes

Calibration

Comparison

alibration

ilibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averagin

Calibration and conformal prediction

What is at the heart of conformal prediction?

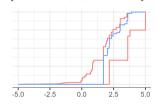
"In-sample calibration yields conformal calibration guarantees."

Predictive system

A set $\Pi \subseteq \mathbb{R} \times [0,1]$ of the form

$$\Pi = \{(y, \tau) \mid \Pi_{\ell}(y) \le \tau \le \Pi_{u}(y)\}$$

with $\Pi_{\ell} \leq \Pi_u$ increasing, $\lim_{y \to -\infty} \Pi_{\ell}(y) = 0$, $\lim_{y \to \infty} \Pi_u(y) = 1$.



Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

....

Lalibration

Comparison

Calibratio

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

What is at the heart of conformal prediction?

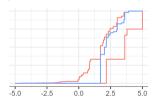
"In-sample calibration yields conformal calibration guarantees."

Predictive system

A set $\Pi \subseteq \mathbb{R} \times [0,1]$ of the form

$$\Pi = \{(y,\tau) \mid \Pi_{\ell}(y) \le \tau \le \Pi_{u}(y)\}$$

with $\Pi_{\ell} \leq \Pi_{u}$ increasing, $\lim_{v \to -\infty} \Pi_{\ell}(y) = 0$, $\lim_{v \to \infty} \Pi_{u}(y) = 1$.



Conformal calibration guarantee:

We can construct a predictive system that contains a calibrated CDF.

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

alibration

Comparison

Calibration

Real-valued outcomes
Multi-variate outcomes

Calibration and averaging Calibration and conformal

prediction
References

Example of in-sample calibration:

Let $w_1, \ldots, w_m \in \mathbb{R}$. Define

$$F(y) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{w_i \leq y\}, \quad y \in \mathbb{R}.$$

Draw W uniformly at random from w_1, \ldots, w_m . Then F is *in-sample* probabilistically calibrated, that is,

$$\mathbb{P}(F(W) < \alpha) \le \alpha \le \mathbb{P}(F(W-) \le \alpha), \quad \alpha \in (0,1).$$

$$F(W) \approx \text{UNIF}(0,1)$$

Calibration of predictions

Johanna Ziegel

ntroduction

Motivation

Probabilistic predictions

Calibration

Comparison

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

Let $W_1, \ldots, W_{n+1} \in \mathbb{R}$ be exchangeable and define for $w \in \mathbb{R}$

$$F^{w}(y) = \frac{1}{n+1} \sum_{i=1}^{n} \mathbb{1}\{W_{i} \leq y\} + \frac{1}{n+1} \mathbb{1}\{w \leq y\}, \quad y \in \mathbb{R},$$

and

$$\Pi_{\ell}(y) = \inf\{F^w(y) \mid w \in \mathbb{R}\}, \quad \Pi_u(y) = \sup\{F^w(y) \mid w \in \mathbb{R}\},$$

Then,

$$\Pi_{\ell}(y) \leq F^{W_{n+1}}(y) \leq \Pi_{u}(y), \quad \text{and}$$

$$\mathbb{P}(F^{W_{n+1}}(W_{n+1}) < \alpha) \leq \alpha \leq \mathbb{P}(F^{W_{n+1}}(W_{n+1}-) \leq \alpha), \quad \alpha \in (0,1).$$

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Binary outcome

Calibration

Discrimination abi

. It house the se

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

Let $W_1, \ldots, W_{n+1} \in \mathbb{R}$ be exchangeable and define for $w \in \mathbb{R}$

$$F^{w}(y) = \frac{1}{n+1} \sum_{i=1}^{n} \mathbb{1}\{W_{i} \leq y\} + \frac{1}{n+1} \mathbb{1}\{w \leq y\}, \quad y \in \mathbb{R},$$

and

$$\Pi_{\ell}(y) = \inf\{F^w(y) \mid w \in \mathbb{R}\}, \quad \Pi_u(y) = \sup\{F^w(y) \mid w \in \mathbb{R}\},$$

Then,

$$\Pi_{\ell}(y) \leq F^{W_{n+1}}(y) \leq \Pi_{u}(y), \quad \text{and}$$

$$\mathbb{P}(F^{W_{n+1}}(W_{n+1}) < \alpha) \leq \alpha \leq \mathbb{P}(F^{W_{n+1}}(W_{n+1}-) \leq \alpha), \quad \alpha \in (0,1).$$

Proof: Conditional on empirical distribution $\hat{\mathbb{P}}_{n+1}$ of $(W_i)_{i=1}^{n+1}$, W_{n+1} is a random draw from W_1, \ldots, W_{n+1} . By in-sample probabilistic calibration:

$$\mathbb{P}(F^{W_{n+1}}(W_{n+1}) < \alpha \mid \hat{\mathbb{P}}_{n+1}) \le \alpha \le \mathbb{P}(F^{W_{n+1}}(W_{n+1}) \le \alpha \mid \hat{\mathbb{P}}_{n+1}) \dots$$

Calibration of predictions

Johanna Ziegel

Introduction

Probabilistic pro

Sinary outcomes

Discrimination

alibratio

Real-valued outcomes
Multi-variate outcomes
Calibration and averaging

Calibration and averagin

Calibration and conformal

prediction
References

Use conformity measure $A(\hat{\mathbb{P}},(x,y))$ to lift the one-dimensional result to general spaces $\mathcal{X} \times \mathcal{Y}$.

Calibration of predictions

Johanna Ziegel

ntroduction

Motivation

Probabilistic predictions

nary outcomes

iscrimination

Comparison

Calibration

ilibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

Use conformity measure $A(\hat{\mathbb{P}},(x,y))$ to lift the one-dimensional result to general spaces $\mathcal{X} \times \mathcal{Y}$.

Let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \in \mathcal{X} \times \mathbb{R}$ be exchangeable.

- $ightharpoonup \hat{\mathbb{P}}^y$: Empirical distribution of $(X_1,Y_1),\ldots,(X_n,Y_n),(X_{n+1},y)$ for $y\in\mathbb{R}$
- $ightharpoonup \hat{F}^y$: Empirical CDF of

$$W_1 = A(\hat{\mathbb{P}}^y, (X_1, Y_1)), \dots, W_n = A(\hat{\mathbb{P}}^y, (X_n, Y_n)), w(y) = A(\hat{\mathbb{P}}^y, (X_{n+1}, y))$$

 $\mathbb{P}(\hat{F}^{Y_{n+1}}(w(Y_{n+1})) < \alpha) \le \alpha \le \mathbb{P}(\hat{F}^{Y_{n+1}}(w(Y_{n+1})-) \le \alpha)$

Calibration of predictions

Johanna Ziegel

ntroduction

Motivation

Probabilistic pro-

Probabilistic prediction

Calibration

Comparison

alibration

Real-valued outcomes
Multi-variate outcomes
Calibration and averaging

Calibration and conformal prediction

Use conformity measure $A(\hat{\mathbb{P}},(x,y))$ to lift the one-dimensional result to general spaces $\mathcal{X} \times \mathcal{Y}$.

Let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \in \mathcal{X} \times \mathbb{R}$ be exchangeable.

- ightharpoons $hat{\mathbb{P}}^y$: Empirical distribution of $(X_1,Y_1),\ldots,(X_n,Y_n),(X_{n+1},y)$ for $y\in\mathbb{R}$
- $ightharpoonup \hat{F}^y$: Empirical CDF of

$$W_1 = A(\hat{\mathbb{P}}^y, (X_1, Y_1)), \dots, W_n = A(\hat{\mathbb{P}}^y, (X_n, Y_n)), w(y) = A(\hat{\mathbb{P}}^y, (X_{n+1}, y))$$

- $\mathbb{P}(\hat{F}^{Y_{n+1}}(w(Y_{n+1})) < \alpha) \le \alpha \le \mathbb{P}(\hat{F}^{Y_{n+1}}(w(Y_{n+1})) \le \alpha)$
- ▶ This implies $\mathbb{P}(Y_{n+1} \in C_{n+1}) \ge 1 \alpha \ge \mathbb{P}(Y_{n+1} \in C_{n+1}^-)$, where

$$C_{n+1} = \{ y \in \mathbb{R} \mid \hat{F}^y(w(y)) \geq \alpha \}.$$

Calibration of predictions

Johanna Ziegel

ntroduction

Motivation

Probabilistic pr

Probabilistic prediction

Calibration

...

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

Use conformity measure $A(\hat{\mathbb{P}},(x,y))$ to lift the one-dimensional result to general spaces $\mathcal{X} \times \mathcal{Y}$.

Let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \in \mathcal{X} \times \mathbb{R}$ be exchangeable.

- ightharpoons $hat{\mathbb{P}}^{y}$: Empirical distribution of $(X_{1}, Y_{1}), \ldots, (X_{n}, Y_{n}), (X_{n+1}, y)$ for $y \in \mathbb{R}$
- $ightharpoonup \hat{F}^y$: Empirical CDF of

$$W_1 = A(\hat{\mathbb{P}}^y, (X_1, Y_1)), \dots, W_n = A(\hat{\mathbb{P}}^y, (X_n, Y_n)), w(y) = A(\hat{\mathbb{P}}^y, (X_{n+1}, y))$$

- $\mathbb{P}(\hat{F}^{Y_{n+1}}(w(Y_{n+1})) < \alpha) \le \alpha \le \mathbb{P}(\hat{F}^{Y_{n+1}}(w(Y_{n+1})) \le \alpha)$
- ▶ This implies $\mathbb{P}(Y_{n+1} \in C_{n+1}) \ge 1 \alpha \ge \mathbb{P}(Y_{n+1} \in C_{n+1}^-)$, where

$$C_{n+1} = \{ y \in \mathbb{R} \mid \hat{F}^y(w(y)) \geq \alpha \}.$$

▶ Predictive CDF available if $y \mapsto \hat{F}^y(w(y))$, $y \mapsto \hat{F}^y(w(y)-)$ are increasing. (Classical) conformal predictive system

Calibration of predictions

Johanna Ziegel

ntroduction

Motivation

Probabilistic pre

Binary outcomes

llibration scrimination abilit

alibration

Real-valued outcomes Multi-variate outcomes Calibration and averaging

Calibration and conformal prediction

Calibration of predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic prediction

Binary outcomes

Calibration

Discrimination ability

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averagin

Calibration and conformal prediction

References

Alternative

Use other in-sample calibrated procedures.

Let $(x_1, y_1), \ldots, (x_m, y_m) \in \mathcal{X} \times \mathbb{R}$.

▶ Let $B_1, \ldots, B_{m'}$ be a partition of $\{1, \ldots, m\}$.

$$F_{\mathsf{x}_k}(y) = \frac{1}{|B_i|} \sum_{j \in B_i} \mathbb{1}\{y_j \le y\}, \quad k \in B_i, y \in \mathbb{R}$$

Calibration of predictions

Johanna Ziegel

Introduction

Desk-bilistic -

Probabilistic prediction

Calibration

Comparison

Calibration

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

Let $(x_1, y_1), \ldots, (x_m, y_m) \in \mathcal{X} \times \mathbb{R}$.

▶ Let $B_1, \ldots, B_{m'}$ be a partition of $\{1, \ldots, m\}$.

١

$$F_{\mathsf{x}_k}(y) = \frac{1}{|B_i|} \sum_{j \in B_i} \mathbb{1}\{y_j \le y\}, \quad k \in B_i, y \in \mathbb{R}$$

is in-sample auto-calibrated, that is,

$$\hat{\mathbb{P}}_m(Y \leq y \mid F_X) = F_X(y), \quad y \in \mathbb{R},$$

hence, in particular, isotonically calibrated, threshold calibrated, quantile calibrated, and probabilistically calibrated.

Here, $(X,Y) \sim \hat{\mathbb{P}}_m$, and $\hat{\mathbb{P}}_m$ is the empirical distribution of $(x_j,y_j)_{j=1}^m$.

Calibration of predictions

Johanna Ziegel

Introduction

Notivation

Probabilistic prediction

Calibration

Comparison

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

Let $(x_1, y_1), \ldots, (x_m, y_m) \in \mathcal{X} \times \mathbb{R}$.

▶ Let $B_1, \ldots, B_{m'}$ be a partition of $\{1, \ldots, m\}$.

$$F_{\mathsf{x}_k}(y) = \frac{1}{|B_i|} \sum_{j \in B_i} \mathbb{1}\{y_j \le y\}, \quad k \in B_i, y \in \mathbb{R}$$

is in-sample auto-calibrated, that is,

$$\hat{\mathbb{P}}_m(Y \leq y \mid F_X) = F_X(y), \quad y \in \mathbb{R},$$

hence, in particular, isotonically calibrated, threshold calibrated, quantile calibrated, and probabilistically calibrated.

Here, $(X,Y) \sim \hat{\mathbb{P}}_m$, and $\hat{\mathbb{P}}_m$ is the empirical distribution of $(x_j,y_j)_{j=1}^m$.

► We call this a *binning procedure*.

Calibration of predictions

Johanna Ziegel

Introduction

D. I. I. II.

Probabilistic predictions

Calibration

Comparison

alibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

Let $(x_1, y_1), \ldots, (x_m, y_m) \in \mathcal{X} \times \mathbb{R}$.

▶ Let $B_1, \ldots, B_{m'}$ be a partition of $\{1, \ldots, m\}$.

$$F_{x_k}(y) = \frac{1}{|B_i|} \sum_{j \in B_i} \mathbb{1}\{y_j \le y\}, \quad k \in B_i, y \in \mathbb{R}$$

is in-sample auto-calibrated, that is,

$$\hat{\mathbb{P}}_m(Y \leq y \mid F_X) = F_X(y), \quad y \in \mathbb{R},$$

hence, in particular, isotonically calibrated, threshold calibrated, quantile calibrated, and probabilistically calibrated.

Here, $(X,Y) \sim \hat{\mathbb{P}}_m$, and $\hat{\mathbb{P}}_m$ is the empirical distribution of $(x_j,y_j)_{j=1}^m$.

- ▶ We call this a *binning procedure*.
- All in-sample auto-calibrated procedures are of this form.
- Choice: How is the partition constructed?

Calibration of predictions

Johanna Ziegel

Introduction

Deskabilistis --

Pinany autoomore

alibration

Comparison

ibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

Let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \in \mathcal{X} \times \mathbb{R}$ be exchangeable.

Let Π be constructed with a binning procedure:

- Let $F_{X_k}^z$ be the binning CDF constructed with $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, z)$.
- Define

$$\Pi_{\ell,X_{n+1}}(y) = \inf\{F_{X_{n+1}}^z(y) \mid z \in \mathbb{R}\}, \quad \Pi_{u,X_{n+1}}(z) = \sup\{F_{X_{n+1}}^z(y) \mid z \in \mathbb{R}\},$$

Theorem (Conformal calibration guarantee)

Predictive system contains an auto-calibrated CDF:

$$F_{X_{n+1}}^{Y_{n+1}}(y) = \mathbb{P}(Y_{n+1} \le y \mid F_{X_{n+1}}^{Y_{n+1}}), \quad y \in \mathbb{R},$$

and

$$\Pi_{\ell,X_{n+1}}(y) \leq F_{X_{n+1}}^{Y_{n+1}}(y) \leq \Pi_{u,X_{n+1}}(y), \quad y \in \mathbb{R}$$

Calibration of predictions

Johanna Ziegel

troduction

Probabilistic predictions

Calibration

a lithografia a

Real-valued outcomes
Multi-variate outcomes
Calibration and averaging

Calibration and conformal prediction

Thickness of predictive systems

- ▶ Predictive systems are only useful if they are thin.
- ► Classical conformal predictive systems:
 - ▶ Thickness is 1/(n+1).
- Auto-calibration: Binning procedures, where bins are determined only based on X_1, \ldots, X_{n+1} (example: k-means clustering):
 - ▶ Thickness is 1/(size of bin containing n+1).

Calibration of predictions

Johanna Ziegel

Introduction

D. J. L. W. J.

Probabilistic predictions

Calibration

Discrimination

alibration

alibration

Real-valued outcomes Multi-variate outcomes

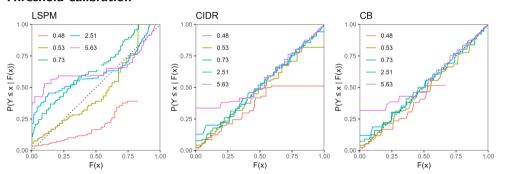
Calibration and

prediction

Case study: Length of stay in intensive care units

Predictions for individual patients' length of stay in ICU's in Switzerland 24h after admission¹

Threshold calibration



Calibration of predictions

Johanna Ziegel

troduction

Motivation

alibration

omparison

ibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and conformal prediction

¹Data provided by *G.-R. Kleger and Schweizerische Gesellschaft für Intensivmedizin*. Data is internal hospital data and not publicly available.

Summary

Calibration of predictions

Johanna Ziegel

Calibration and conformal prediction

- In-sample calibration yields conformal calibration guarantees.
- Strong out-of-sample calibration guarantees are possible.
- Arguments can be extended to distribution shifts.
- Conformal binning is simple but works well. Only example explored so far: k-means clustering.
- Conformal IDR is a further possibility that was not presented. Allows to quantify alleatoric and epistemic uncertainty.
- Outlook: Conformal calibration guarantees for point predictions.

(Allen et al., 2025a)

References I

- S. Allen, J. Ziegel, and D. Ginsbourger. Assessing the calibration of multivariate probabilistic forecasts. *Quarterly Journal of the Royal Meteorological Society*, 150:1315–1335, 2024.
- S. Allen, G. Gavrilopoulos, A. Henzi, G.-R. Kleger, and J. Ziegel. In-sample calibration yields conformal calibration guarantees. *Preprint, arXiv: 2503.03841*, 2025a.
- S. Allen, J. Koh, J. Segers, and J. Ziegel. Tail calibration of probabilistic forecasts. *Journal of the American Statistical Association*, 2025b. To appear.
- S. Arnold, A. Henzi, and J. F. Ziegel. Sequentially valid tests for forecast calibration. Annals of Applied Statistics, 17:1909–1935, 2023.
- Bank of England. Monetary policy report, August 2021. URL www.bankofengland.co.uk/monetary-policy-report/2021/august-2021.
- R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. *Statistical inference under order restrictions*. John Wiley & Sons Ltd., London, 1972.
- G. Bertolini, R. D'Amico, D. Nardi, A. Tinazzi, and G. Apoleone. One model, several results: the paradox of the Hosmer-Lemeshow goodness-of-fit tests for the logistic regression model. *Journal of Epidemiology and Biostatistics*, 5:251–253, 2000.
- F. X. Diebold, T. A. Gunther, and A. S. Tay. Evaluating density forecasts with applications to financial risk management. *International Economic Review*, 39:863–883, 1998.

Calibration of predictions

Johanna Ziegel

ntroduction

Motivation Probabilistic pred

> ary outcomes bration

Comparison

libration

Real-valued outcomes Multi-variate outcomes Calibration and averaging

Calibration a onformal prediction

inary outcom

omparison

libration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration as conformal

- T. Dimitriadis, T. Gneiting, and A. I. Jordan. Stable reliability diagrams for probabilistic classifiers. *Proceedings of the National Academy of Sciences*. 118:e2016191118. 2021.
- T. Dimitriadis, T. Gneiting, A. I. Jordan, and P. Vogel. Evaluating probabilistic classifiers: The triptych. *International Journal of Forecasting*, 40:1101–1122, 2024.
- T. Gneiting and R. Ranjan. Combining predictive distributions. *Electronic Journal of Statistics*, 7:1747–1782, 2013.
- T. Gneiting and P. Vogel. Receiver Operator Characteristic (ROC) curves. *Machine Learning*, 111:2147–2159, 2022.
- T. Gneiting, L. I. Stanberry, E. P. Grimit, L. Held, and N. A. Johnson. Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. *Test*, 17:211–235, 2008.
- A. Henzi, G.-R. Kleger, M. P. Hilty, P. D. Wendel Garcia, and J. F. Ziegel. Probabilistic analysis of COVID-19 patients' individual length of stay in Swiss intensive care units. *PLOS ONE*, 16(2):e0247265, 2021a.
- A. Henzi, J. F. Ziegel, and T. Gneiting. Isotonic distributional regression. *Journal of the Royal Statistical Society: Series B*, 85:963–993, 2021b.

References III

- D. W. Hosmer and S. Lemeshow. Goodness of fit tests for the multiple logistic regression model. *Communications in Statistics Theory and Methods*, 9:1043–1069, 1980.
- D. W. Hosmer, T. Hosmer, S. le Cessie, and S. Lemeshow. A comparison of goodness-of-fit tests for the logistic regression model. *Statistics in Medicine*, 16:965–980, 1997.
- T. Modeste. Évaluation et construction des prévisions probabilistes : score et calibration dans un cadre dynamique. PhD thesis, Université Claude Bernard Lyon 1, 2023.
- R. Ranjan and T. Gneiting. Combining probability forecasts. *Journal of the Royal Statistical Society: Series B*, 72:71–91, 2010.
- C. Strähl and J. F. Ziegel. Cross-calibration of probabilistic forecasts. *Electronic Journal of Statistics*, 11:608–639, 2017.
- T. L. Thorarinsdottir, M. Scheuerer, and C. Heinz. Assessing the calibration of high-dimensional ensemble forecasts using rank histograms. *Journal of Computational and Graphical Statistics*, 25:105–122, 2016.
- C. van Eeden. Testing and estimating ordered parameters of probability distributions. PhD thesis, University of Amsterdam, 1958.
- J. F. Ziegel and T. Gneiting. Copula calibration. *Electronic Journal of Statistics*, 8:2619–2638, 2014.

Calibration of predictions

Johanna Ziegel

ntroduction

Probabilistic pr

inary outcon

alibration

omparison

libration

Real-valued outcomes
Multi-variate outcomes

alibration ar onformal rediction