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Introduction: Probabilistic predictions
▶ Let Y ∈ Y be an unknown future outcome.

▶ Temperature tomorrow at 12:00 in Cambridge. (Y ∈ Y = R)
▶ Event of rain tomorrow in London. (Y ∈ Y = {0, 1})
▶ Default of credit card client. (Y ∈ Y = {0, 1})
▶ Amount of precipitation tomorrow in Cambridge and Oxford. (Y ∈ Y = R2)

▶ We are interested in predictions for Y .

Questions that I will address:

▶ What is a probabilistic prediction for Y ? What is a point prediction for Y ? Are
there other predictions for Y ?

▶ When is a probabilistic prediction calibrated? (Lecture 1)

▶ How can calibrated probabilistic predictions be constructed? (Lecture 1)

▶ How can we compare probabilistic predictions? With proper scoring rules. (Lecture
2)

▶ How should point predictions be evaluated and compared? (Lecture 3)
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Probabilistic and point predictions

Forecast Observation Verification

“Tomorrow at 12:00
temperature will be 17.5°C.”

−2 0 2 −2 0 2 −2 0 2

“Tomorrow at 12:00
temperature will be N (17.5, σ2).”

−2 0 2 −2 0 2 −2 0 2
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Today: Probabilistic predictions

▶ Single valued “best guess” z ∈ Y does not quantify uncertainty.

▶ Better: Quantify uncertainty of Y by a probabilistic prediction F .
▶ F is a distribution on Y.

▶ If X is information available for prediction, F should approximate L(Y | X ).

▶ Other possibilities to quantify uncertainty of Y : prediction intervals,
predictions of some measure of variability, . . .

▶ Structurally, these are “point predictions” but they are often called
probabilistic predictions since they quantify uncertainty to some degree.
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Goal: Discuss quality criteria for probabilistic predictions

▶ What is calibration of probabilistic predictions?

▶ Are calibrated predictions good? When are predictions informative?

▶ How do we calibrate predictions?

▶ How do we compare predictions and how is this related to calibration?

▶ Forecasts are usually sequential but many concepts are easier to understand
in a “hypothetical” one-period setting.

▶ Future outcome Y and forecast F are both random and defined on a
probability space (Ω,F ,P).
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Binary outcomes: Calibration
▶ Y ∈ {0, 1}

▶ Event of rain tomorrow in London. (Y ∈ {0, 1})
▶ Default of credit card client. (Y ∈ {0, 1})

▶ Distribution of Y is characterised by probability of {Y = 1}:
Probabilistic prediction is random variable p ∈ [0, 1].

▶ Since P(Y = 1 | X ) = E(1{Y = 1} | X ),
▶ p is a prediction for the conditional distribution of Y (probabilistic prediction);
▶ p is a prediction for the conditional mean of Y (point prediction).

Definition
A probability prediction p ∈ [0, 1] for Y ∈ {0, 1} is calibrated (or reliable) if

P(Y = 1 | p) = p.

Predicted probabilities should align with observed frequencies.
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Example
Let X1 ∼ N (0, 1), X2 ∼ N (0, 2) be independent, and

P(Y = 1 | X1,X2) = Φ(X1 + X2).

Predictions:

p(0) = 1/2, p(1) = Φ
( X1√

3

)
, p(2) = Φ

( X2√
2

)
, p(3) = Φ(X1 + X2).

▶ All predictions are calibrated.

5 10 15 20 25

0.
0

0.
4

0.
8

1:n

Y

Ranjan and Gneiting (2010)
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Diagnostics to assess calibration: Reliability diagrams

Data: (p1,Y1), . . . , (pn,Yn)

Simulation example

X1 ∼ N (0, 1), X2 ∼ N (0, 2) independent, P(Y = 1 | X1,X2) = Φ(X1 + X2),

p(1) = Φ(X1/
√
3), p(2) = Φ

(
X2/

√
2), p(3) = Φ(X1 + X2), n = 200.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CORP Reliability−Diagramm for p1

Vorhersagewert

B
E

W

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CORP Reliability−Diagramm for p2

Vorhersagewert

B
E

W

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CORP Reliability−Diagramm for p3

Vorhersagewert

B
E

W

(Dimitriadis et al., 2021)
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Reliability diagrams
Forecasts and observations: (p1,Y1), . . . , (pn,Yn)

Binning: Classical approach

Choose m ∈ N, for example m = 10. Define

q̂j =
#
{
i | Yi = 1, j−1

m ≤ pi ≤ j
m

}
#
{
i | j−1

m ≤ pi ≤ j
m

} , j = 1, . . . ,m,

q̂j is an estimator of the conditional event probability (CEP)

P
(
Y = 1 | j − 1

m
≤ p ≤ j

m

)
, j = 1, . . . ,m.

For calibrated predictions, we have that

j − 1

m
≤ P

(
Y = 1 | j − 1

m
≤ p ≤ j

m

)
≤ j

m
.
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Reliability diagrams

Diagnostic tool to assess calibration

▶ Plot ((j − 1)/2, q̂j), j = 1, . . . ,m and joint points by a line.

▶ Add diagonal, that is, line from (0, 0) to (1, 1).

▶ Sometimes: Add histogram of p1, . . . , pn such that it fits.
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Hosmer-Lemeshow Test
Goodness-of-fit test for binary regression models. Is deviation from diagonal in
reliability diagram significant? (Hosmer and Lemeshow, 1980)

H0 = {P | P(Y | pi ) = pi , i = 1, . . . , n}
Test statistic

THL =
m∑
j=1

[
(O1j − E1j)

2

E1j
+

(O0j − E0j)
2

E0j

]
,

with
O1j = #

{
i | Yi = 1} ∩ Ij , O0j = #

{
i | Yi = 0} ∩ Ij ,

and
E1j =

∑
i∈Ij

pi , E0j =
∑
i∈Ij

(1− pi ),

where Ij = {i | (j − 1)/m ≤ pi ≤ j/m}. Then, THL ∼ χ2
m−1 asymptotically.
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Problems with Binning

▶ Visual impression of reliability diagram can look very different for different
m, say, m = 9, 10, 11. Can be misleading as a diagnostic tool.

▶ Choice of the bins influences the test substantially: p-values of the
Hosmer-Lemeshow test from 0.020 to 0.159 with six different statistical
software packages (Hosmer et al., 1997).

▶ Reordering a data set with ties can yield p-values from 0.01 to 0.95
(Bertolini et al., 2000).
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CORP Reliability Diagrams

Postulate that
p′ 7→ P(Y = 1 | p = p′)

is increasing.
For (p1,Y1), . . . , (pn,Yn) with p1 ≤ · · · ≤ pn compute the isotonic regression

(q
(iso)
1 , . . . , q

(iso)
n ) of Y given p. Then,

q
(iso)
i ≈ P(Y = 1 | p = pi )

under calibration
= pi .

▶ Plot (pi , q
(iso)
i ), i = 1, . . . , n and joint points by a line.

▶ Add diagonal.

▶ Sometimes: Add histogram of p1, . . . , pn such that it fits.

(Dimitriadis et al., 2021)
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For (p1,Y1), . . . , (pn,Yn) with p1 ≤ · · · ≤ pn, the isotonic regression

(q
(iso)
1 , . . . , q

(iso)
n ) of Y given p is the solution to the optimization problem

min
q isotone

n∑
i=1

(Yi − qi )
2,

where the minimum is taken over all vectors q = (q1, . . . , qn) ∈ [0, 1]T with
q1 ≤ · · · ≤ qn.
▶ Solution can be computed with the Pool Adjacent Violators Algorithm

(PAVA).
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(van Eeden, 1958; Barlow et al., 1972)
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Application example
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Reliability diagrams for probability of precipitation forecasts at prediction horizons of 1, 2, 3, 4

and 5 days, for the test period.

(Henzi et al., 2021b)
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CORP reliability diagrams for probability of precipitation forecasts at prediction horizons of 1,

2, 3, 4 and 5 days, for the test period.

(Henzi et al., 2021b)
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Summary

▶ Calibration assesses the statistical compatibility of forecasts and
observation: Evaluation of absolute forecast quality.

▶ Calibrated predictions can be uninformative.

▶ How can discrimination ability of probably forecasts be assessed?
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ROC curves assess discrimination ability
Use threshold t ∈ [0, 1) to construct a hard classifier 1{p > t} from the
probability prediction. Define the Hit Rate (HR)

HR(t) = P(p > t | Y = 1),

and the False Alarm Rate (FAR)

FAR(t) = P(p > t | Y = 0).

▶ Receiver operating characteristic (ROC) curve consists of the points
(FAR(t),HR(t)), t ∈ [0, 1).

Empirical ROC curve

Estimate HR(t), FAR(t) by

ĤR(t) =

∑n
i=1 1{Yi = 1, pi > t}∑n

i=1 1{Yi = 1} , F̂AR(t) =

∑n
i=1 1{Yi = 0, pi > t}∑n

i=1 1{Yi = 0} ,

respectively.
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Simulation example

X1 ∼ N (0, 1), X2 ∼ N (0, 2) independent, P(Y = 1 | X1,X2) = Φ(X1 + X2), p
(0) = 1/2,

p(1) = Φ(X1/
√
3), p(2) = Φ

(
X2/

√
2), p(3) = Φ(X1 + X2), n = 200.
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▶ If FAR(t) = HR(t), t ∈ (0, 1):
No discrimination, ROC is on the
diagonal.

▶ If ∃t such that
FAR(t) = 0,HR(t) = 1: Perfect
discrimination, ROC is in upper
left corner.
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Properties of ROC curves

ROC curve consists of the points (FAR(t),HR(t)), t ∈ [0, 1), where

HR(t) = P(p > t | Y = 1), FAR(t) = P(p > t | Y = 0).

▶ ROC curve is invariant under strictly increasing transformations of forecast
p: ROC ignores calibration.

▶ ROC discrimination ability or potential predictive ability, only!

▶ ROC curve is concave if and only if CEP p′ 7→ P(Y = 1 | p = p′) is
increasing.

▶ Hard classifier construction only makes sense if CEP is increasing!
Therefore, empirical ROC should be concave.

▶ Solution: Compute ROC curve from isotonically recalibrated predictions

q
(iso)
i , i = 1, . . . , n.
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Simulation example

X1 ∼ N (0, 1), X2 ∼ N (0, 2) independent, P(Y = 1 | X1,X2) = Φ(X1 + X2), p
(0) = 1/2,

p(1) = Φ(X1/
√
3), p(2) = Φ

(
X2/

√
2), p(3) = Φ(X1 + X2), n = 200.
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▶ Predictions can be differentiated
with respect to discrimination
ability.

(Gneiting and Vogel, 2022)
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Simulation example

X1 ∼ N (0, 1), X2 ∼ N (0, 2) independent, P(Y = 1 | X1,X2) = Φ(X1 + X2),

p(1) = Φ(X1/
√
3), p(4) = (Φ(X1 + X2))

3, n = 200.

Calibration

CORP reliability diagram

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast value

C
on

di
tio

na
l e

ve
nt

 p
ro

ba
bi

lit
y

Discrimination ability

ROC curve

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False alarm rate

H
it 

ra
te

(Dimitriadis et al., 2024)
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Comparing predictions with proper scoring rules
▶ Need a summary measure that takes calibration and discrimination ability

into account: Proper scoring rules.

Definition
A proper scoring rule is a map S : [0, 1]× {0, 1} → R such that

ES(p,Y ) ≤ ES(q,Y )

for all p, q ∈ [0, 1] and P(Y = 1) = p.

Give preference to forecaster with lower average score

1

n

n∑
i=1

S(pi ,Yi ).

Examples:

S(p,Y ) = (p − Y )2, S(p,Y ) = −Y log p − (1− Y ) log(1− p).
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Calibration
Real-valued outcomes
Multi-variate outcomes
Calibration and averaging
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Real-valued outcomes

▶ Y ∈ R.
▶ Temperature tomorrow at 12:00 in Cambridge. (Y ∈ R)

▶ Quantify uncertainty of Y by a probabilistic prediction F .
▶ F is a distribution on R (typically specified as a CDF).

▶ If X is information available for prediction, F should approximate L(Y | X ).
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Illustration: Point and probabilistic predictions
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Application example 1

Patient length of stay in Swiss intensive care units

Patient 1 Patient 2 Patient 3 Patient 4
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DIM Cox Regression Quantile Regression

(Henzi et al., 2021a)
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Application example 2

 Monetary Policy Report August 2021   Section 1: The economic outlook   6

Chart 1.3: Unemployment projection based on market 
interest rate expectations, other policy measures as 
announced

The fan chart depicts the probability of various outcomes for LFS unemployment. It has been 
conditioned on the assumptions in Table 1.A footnote (b). The coloured bands have the same 
interpretation as in Charts 1.1 and 1.2, and portray 90% of the probability distribution. The 
calibration of this fan chart takes account of the likely path dependency of the economy, where, 
for example, it is judged that shocks to unemployment in one quarter will continue to have some 
effect on unemployment in successive quarters. The fan begins in 2021 Q2, a quarter earlier than 
for CPI inflation. That is because Q2 is a staff projection for the unemployment rate, based in part 
on data for April and May. The unemployment rate was 4.8% in the three months to May, and is 
projected to be 4.8% in Q2 as a whole. A significant proportion of this distribution lies below 
Bank staff’s current estimate of the long-term equilibrium unemployment rate. There is therefore 
uncertainty about the precise calibration of this fan chart.

Chart 1.4: CPI inflation projection based on market 
interest rate expectations, other policy measures as 
announced

The fan chart depicts the probability of various outcomes for CPI inflation in the future. It has been 
conditioned on the assumptions in Table 1.A footnote (b). If economic circumstances identical to 
today’s were to prevail on 100 occasions, the MPC’s best collective judgement is that inflation in 
any particular quarter would lie within the darkest central band on only 30 of those occasions. The 
fan chart is constructed so that outturns of inflation are also expected to lie within each pair of the 
lighter red areas on 30 occasions. In any particular quarter of the forecast period, inflation is 
therefore expected to lie somewhere within the fans on 90 out of 100 occasions. And on the 
remaining 10 out of 100 occasions inflation can fall anywhere outside the red area of the fan chart. 
Over the forecast period, this has been depicted by the light grey background. See the box on 
pages 48–49 of the May 2002 Inflation Report for a fuller description of the fan chart and what it 
represents.

Comparison with the May Report projections
The projection for UK GDP is little changed compared to May. 
The projections for global and UK GDP are little changed since May (Table 1.B), although the level of UK GDP at the 
end of the forecast period is a bit higher. That in large part reflects a slightly smaller scarring effect from the pandemic, 
in particular reflecting a judgement that productivity has not been adversely affected by developments in corporate 
credit conditions during Covid.

The near-term projection for CPI inflation is much stronger than in May, but the medium-term outlook is similar. 
CPI inflation is projected to be around 1½ percentage points higher in 2021 Q4 and 2022 Q1 than in the May Report. 
Around a third of this news is accounted for by the direct effects of higher energy prices, reflecting continued  
pass-through from the recent rises in oil and wholesale gas prices. Other external price pressures also account for 
some of the upward revision: import prices are expected to be higher than was previously projected over the forecast 
period, particularly in the near term. CPI inflation in the medium term is projected to be close to the MPC’s target, 
very similar to the May Report. 

Policy decision
At its meeting ending on 4 August 2021, the MPC judged that the existing stance of monetary policy remained 
appropriate. The Committee voted to maintain Bank Rate at 0.1%. The Committee voted for the Bank of England to 
maintain the stock of sterling non-financial investment-grade corporate bond purchases, financed by the issuance of 
central bank reserves, at £20 billion. The Committee voted for the Bank of England to continue with its existing 
programme of UK government bond purchases, financed by the issuance of central bank reserves, maintaining  
the target for the stock of these government bond purchases at £875 billion and so the total target stock of  
asset purchases at £895 billion. The factors behind that decision are set out in the Monetary Policy Summary on  
pages i–ii of this Report and in more detail in the Minutes of the meeting.

(Bank of England, 2021)
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Calibration of probabilistic predictions
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Calibration: Compatibility between forecasts and observations

Probabilities derived from predictive distributions should align with observed
frequencies.

Most popular: Probabilistic calibration/“Flat PIT histogram”

Fi (Yi ) ∼ UNIF(0, 1) for all i

▶ Yi ∈ R, Fi predictive CDF for Yi

▶ Suitable randomization if Fi is not continuous

▶ Closely related to validity of conformal predictive systems

▶ Binary outcomes: Yi ∈ {0, 1} : P(Yi = 1|pi ) = pi

▶ Many notions of calibration, except for binary outcomes. . .
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Why PIT values?

Motivation 1
Let X be a random variable and G a (deterministic) continuous CDF. Then,

G (X ) ∼ UNIF(0, 1) ⇐⇒ X ∼ G .

Without continuity:

P(G (X ) ≤ α) ≤ α ≤ P(G (X−) ≤ α) ∀α ∈ (0, 1) ⇐⇒ X ∼ G .
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Proposition

Let X be a random variable and G a CDF. Then,

P(G (X ) ≤ α) ≤ α ≤ P(G (X−) ≤ α) ∀α ∈ (0, 1) ⇐⇒ X ∼ G .

Proof.
Let Y ∼ H. If G (z) < H(z) for some z , then, for α ∈ (G (z),H(z)),

α ≥ P(G (Y ) ≤ α) ≥ P(G (Y ) ≤ G (z)) ≥ P(Y ≤ z) = H(z) > α �.

If G (z) > H(z), then, for α ∈ (H(z),G (z)),

α ≤ P(G (Y−) ≤ α) ≤ P(G (Y−) < G (z)) ≤ P(Y ≤ z) = H(z) < α �.

For reverse: Recall that G (G−1(u)) ≥ u and G (G−1(u)−) ≤ u. Let U ∼ UNIF(0, 1),
then, G−1(U) ∼ G . Therefore,

P(G (Y ) ≤ α) = P(G (G−1(U)) ≤ α) ≤ P(U ≤ α) = α,

P(G (Y−) ≤ α) = P(G (G−1(U)−) ≤ α) ≥ P(U ≤ α) = α.

35 / 60



Calibration of
predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic predictions

Binary outcomes

Calibration

Discrimination ability

Comparison

Calibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and
conformal
prediction

References

Proposition

Let X be a random variable and G a CDF. Then,

P(G (X ) ≤ α) ≤ α ≤ P(G (X−) ≤ α) ∀α ∈ (0, 1) ⇐⇒ X ∼ G .

Proof.
Let Y ∼ H. If G (z) < H(z) for some z , then, for α ∈ (G (z),H(z)),

α ≥ P(G (Y ) ≤ α) ≥ P(G (Y ) ≤ G (z)) ≥ P(Y ≤ z) = H(z) > α �.

If G (z) > H(z), then, for α ∈ (H(z),G (z)),

α ≤ P(G (Y−) ≤ α) ≤ P(G (Y−) < G (z)) ≤ P(Y ≤ z) = H(z) < α �.

For reverse: Recall that G (G−1(u)) ≥ u and G (G−1(u)−) ≤ u. Let U ∼ UNIF(0, 1),
then, G−1(U) ∼ G . Therefore,

P(G (Y ) ≤ α) = P(G (G−1(U)) ≤ α) ≤ P(U ≤ α) = α,

P(G (Y−) ≤ α) = P(G (G−1(U)−) ≤ α) ≥ P(U ≤ α) = α.

35 / 60



Calibration of
predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic predictions

Binary outcomes

Calibration

Discrimination ability

Comparison

Calibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and
conformal
prediction

References

Proposition

Let X be a random variable and G a CDF. Then,

P(G (X ) ≤ α) ≤ α ≤ P(G (X−) ≤ α) ∀α ∈ (0, 1) ⇐⇒ X ∼ G .

Proof.
Let Y ∼ H. If G (z) < H(z) for some z , then, for α ∈ (G (z),H(z)),

α ≥ P(G (Y ) ≤ α) ≥ P(G (Y ) ≤ G (z)) ≥ P(Y ≤ z) = H(z) > α �.

If G (z) > H(z), then, for α ∈ (H(z),G (z)),

α ≤ P(G (Y−) ≤ α) ≤ P(G (Y−) < G (z)) ≤ P(Y ≤ z) = H(z) < α �.

For reverse: Recall that G (G−1(u)) ≥ u and G (G−1(u)−) ≤ u. Let U ∼ UNIF(0, 1),
then, G−1(U) ∼ G . Therefore,

P(G (Y ) ≤ α) = P(G (G−1(U)) ≤ α) ≤ P(U ≤ α) = α,

P(G (Y−) ≤ α) = P(G (G−1(U)−) ≤ α) ≥ P(U ≤ α) = α.

35 / 60



Calibration of
predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic predictions

Binary outcomes

Calibration

Discrimination ability

Comparison

Calibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and
conformal
prediction

References

Motivation 2
Time series (Yt)t∈N. Then,

(Ft(Yt))t∈N
iid∼ UNIF(0, 1) ⇐⇒ Ft = L(Yt | Y1, . . . ,Yt−1), t ∈ N.

▶ Ideal prediction is equivalent to independence and uniformity of PIT values.

▶ Restricted to very special information set and lag 1 predictions.

(Diebold et al., 1998)
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Evaluating probabilistic predictions

µ ∼ N (0, 1), Y ∼ N (µ, 0.09)
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Many notions of calibration . . .

Auto-calibration:
P(Yi > y | Fi ) = 1− Fi (y) ∀y

L(Yi | Fi ) = Fi

⇓
Isotonic calibration:
P(Yi > y | A(Fi )) = 1− Fi (y) ∀y

L(Yi | A(Fi )) = Fi
=⇒ =⇒

Threshold calibration:
P(Yi > y | Fi (y)) = 1− Fi (y) ∀y

⇓

Quantile calibration:
qα(Yi | F−1

i (α)) = F−1
i (α) ∀α

⇓

Marginal calibration:
P(Yi > y) = 1− EFi (y) ∀y

Probabilistic calibration:
Fi (Yi ) ∼ UNIF(0, 1)

P(Fi (Yi ) < α) ≤ α ≤ P(Fi (Yi−) ≤ α) ∀α

And if we want to focus on tails of Fi . . . (Allen et al., 2025b)

38 / 60



Calibration of
predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic predictions

Binary outcomes

Calibration

Discrimination ability

Comparison

Calibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and
conformal
prediction

References

Evaluating probabilistic predictions

µ ∼ N (0, 1), Y ∼ N (µ, 0.09)
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Auto-calibration

P(Y ≤ y | F ) = F (y) ∀y
L(Y | F ) = F

Proposition

The forecast F is auto-calibrated for Y ∈ R if and only if
ZF ∼ UNIF(0, 1) and ZF ⊥⊥ F .

Here,
ZF = F (Y−) + V (F (Y )− F (Y−)),

where V ∼ UNIF(0, 1) is independent of (Y ,F ).

(Strähl and Ziegel, 2017; Modeste, 2023)
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Empirical assessment of calibration
Probabilistic calibration: Typically PIT histograms
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(c)

Null hypothesis Fi (Yi ) ∼ UNIF(0, 1) for all t.

▶ At n: Estimate density of (Fi (Yi ))
n
i=1 by f̂n

▶ Define conditional e-value En+1 = f̂T (Yn+1)

▶ Monitor calibration with test martingale Mn =
∏n

i=1 Ei

(Arnold et al., 2023)
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Empirical assessment of calibration

Threshold calibration

▶ For each z ∈ R, F (z) is probability prediction for 1{Y ≤ z} ∈ {0, 1}.
▶ Plot reliability diagrams for several thresholds.
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Multi-variate outcomes

Let Y = Rd , forecast F is distribution over Rd .

▶ Auto-calibration is still an applicable theoretical concept: L(Y | F ) = F .

▶ More popular: Graphical tools similar to PIT histograms

▶ Mainly used: Multivariate rank histograms assessing calibration of
multivariate predictive distributions with finite support

Main idea
Reduce outcome Y and predictive distribution F to something univariate using
map ρ : Rd → R. Assess calibration of univariate summary.

(Gneiting et al., 2008; Ziegel and Gneiting, 2014; Thorarinsdottir et al., 2016; Allen et al., 2024)
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Calibration and averaging: A word of warning

If F and G are calibrated for Y , then (F + G )/2 will not be calibrated for Y .

Example

Suppose that F (Y ) ∼ UNIF(0, 1), G (Y ) ∼ UNIF(0, 1), and w1 + w2 = 1.
Then, (w1F + w2G )(Y ) has variance < 1

12 , so it cannot have distribution
UNIF(0, 1).

(Gneiting and Ranjan, 2013)
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Summary

▶ Probabilistic predictions should be calibrated and sharp/discriminative in
order to be trustworthy and informative.

▶ Ideally, probabilistic predictions should be auto-calibrated.

▶ Comparison of probabilistic predictions with proper scoring rules:
Assign a real-valued score assessing calibration and discrimination ability
simultaneously.

▶ Proper scoring rules allow to compare probabilistic predictions
simultaneously with respect to calibration and discrimination ability.
(Lecture 2)
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Calibration and conformal prediction
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Goal of conformal prediction

For data (X1,Y1), . . . , (Xn,Yn) and Xn+1, construct

▶ prediction set Cn+1 for Yn+1,

▶ predictive distribution Fn+1 for Yn+1

such that

▶ P(Yn+1 ∈ Cn+1) ≥ 1− α,

▶ P(Fn+1(Yn+1)) ≈ UNIF(0, 1).

▶ Finite sample (marginal) coverage/calibration guarantees.

▶ Many and rapidly evolving approaches to obtain conditional coverage
guarantees, understand training conditional coverage, work with
multivariate data,. . .
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What is at the heart of conformal prediction?

“In-sample calibration yields conformal calibration guarantees.”

Predictive system

A set Π ⊆ R× [0, 1] of the form

Π = {(y , τ) | Πℓ(y) ≤ τ ≤ Πu(y)}

with Πℓ ≤ Πu increasing, limy→−∞Πℓ(y) = 0, limy→∞ Πu(y) = 1.

Conformal calibration guarantee:
We can construct a predictive system that contains a calibrated CDF.
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Example of in-sample calibration:
Let w1, . . . ,wm ∈ R. Define

F (y) =
1

m

m∑
i=1

1{wi ≤ y}, y ∈ R.

Draw W uniformly at random from w1, . . . ,wm.
Then F is in-sample probabilistically calibrated, that is,

P(F (W ) < α) ≤ α ≤ P(F (W−) ≤ α), α ∈ (0, 1).

F (W ) ≈ UNIF(0, 1)
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Let W1, . . . ,Wn+1 ∈ R be exchangeable and define for w ∈ R

Fw (y) =
1

n + 1

n∑
i=1

1{Wi ≤ y}+ 1

n + 1
1{w ≤ y}, y ∈ R,

and
Πℓ(y) = inf{Fw (y) | w ∈ R}, Πu(y) = sup{Fw (y) | w ∈ R},

Then,
Πℓ(y) ≤ FWn+1(y) ≤ Πu(y), and

P(FWn+1(Wn+1) < α) ≤ α ≤ P(FWn+1(Wn+1−) ≤ α), α ∈ (0, 1).

Proof: Conditional on empirical distribution P̂n+1 of (Wi )
n+1
i=1 , Wn+1 is a random draw

from W1, . . . ,Wn+1. By in-sample probabilistic calibration:

P(FWn+1(Wn+1) < α | P̂n+1) ≤ α ≤ P(FWn+1(Wn+1−) ≤ α | P̂n+1) . . .
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(Classical) conformal prediction trick

Use conformity measure A(P̂, (x , y)) to lift the one-dimensional result to general
spaces X × Y.

Let (X1,Y1), . . . , (Xn+1,Yn+1) ∈ X × R be exchangeable.

▶ P̂y : Empirical distribution of (X1,Y1), . . . , (Xn,Yn), (Xn+1, y) for y ∈ R

▶ F̂ y : Empirical CDF of

W1 = A(P̂y , (X1,Y1)), . . . ,Wn = A(P̂y , (Xn,Yn)),w(y) = A(P̂y , (Xn+1, y))

▶ P(F̂Yn+1(w(Yn+1)) < α) ≤ α ≤ P(F̂Yn+1(w(Yn+1)−) ≤ α)

▶ This implies P(Yn+1 ∈ Cn+1) ≥ 1− α ≥ P(Yn+1 ∈ C−
n+1), where

Cn+1 = {y ∈ R | F̂ y (w(y)) ≥ α}.

▶ Predictive CDF available if y 7→ F̂ y (w(y)), y 7→ F̂ y (w(y)−) are increasing.
(Classical) conformal predictive system
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Alternative
Use other in-sample calibrated procedures.
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Auto-calibration
Let (x1, y1), . . . , (xm, ym) ∈ X × R.
▶ Let B1, . . . ,Bm′ be a partition of {1, . . . ,m}.
▶

Fxk (y) =
1

|Bi |
∑
j∈Bi

1{yj ≤ y}, k ∈ Bi , y ∈ R

is in-sample auto-calibrated, that is,

P̂m(Y ≤ y | FX ) = FX (y), y ∈ R,

hence, in particular, isotonically calibrated, threshold calibrated, quantile
calibrated, and probabilistically calibrated.
Here, (X ,Y ) ∼ P̂m, and P̂m is the empirical distribution of (xj , yj)

m
j=1.

▶ We call this a binning procedure.

▶ All in-sample auto-calibrated procedures are of this form.

▶ Choice: How is the partition constructed?
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Let (X1,Y1), . . . , (Xn+1,Yn+1) ∈ X × R be exchangeable.

Let Π be constructed with a binning procedure:

▶ Let F z
Xk

be the binning CDF constructed with
(X1,Y1), . . . , (Xn,Yn), (Xn+1, z).

▶ Define

Πℓ,Xn+1(y) = inf{F z
Xn+1

(y) | z ∈ R}, Πu,Xn+1(z) = sup{F z
Xn+1

(y) | z ∈ R},

Theorem (Conformal calibration guarantee)

Predictive system contains an auto-calibrated CDF:

F
Yn+1

Xn+1
(y) = P(Yn+1 ≤ y | FYn+1

Xn+1
), y ∈ R,

and
Πℓ,Xn+1(y) ≤ F

Yn+1

Xn+1
(y) ≤ Πu,Xn+1(y), y ∈ R
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Thickness of predictive systems

▶ Predictive systems are only useful if they are thin.

▶ Classical conformal predictive systems:
▶ Thickness is 1/(n + 1).

▶ Auto-calibration: Binning procedures, where bins are determined only based
on X1, . . . ,Xn+1 (example: k-means clustering):
▶ Thickness is 1/(size of bin containing n + 1).
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Case study: Length of stay in intensive care units

▶ Predictions for individual patients’ length of stay in ICU’s in Switzerland 24h after
admission1

Threshold calibration

1
Data provided by G.-R. Kleger and Schweizerische Gesellschaft für Intensivmedizin. Data is internal hospital data and not publicly

available.

56 / 60



Calibration of
predictions

Johanna Ziegel

Introduction

Motivation

Probabilistic predictions

Binary outcomes

Calibration

Discrimination ability

Comparison

Calibration

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

Calibration and
conformal
prediction

References

Summary

▶ In-sample calibration yields conformal calibration guarantees.

▶ Strong out-of-sample calibration guarantees are possible.

▶ Arguments can be extended to distribution shifts.

▶ Conformal binning is simple but works well.
Only example explored so far: k-means clustering.

▶ Conformal IDR is a further possibility that was not presented. Allows to
quantify alleatoric and epistemic uncertainty.

▶ Outlook: Conformal calibration guarantees for point predictions.

(Allen et al., 2025a)
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