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Introduction: Probabilistic predictions

» Let Y € )Y be an unknown future outcome.

» Temperature tomorrow at 12:00 in Cambridge. (Y € Y = R)

P Event of rain tomorrow in London. (Y € Y = {0,1})

» Default of credit card client. (Y € Y ={0,1})

» Amount of precipitation tomorrow in Cambridge and Oxford. (Y € Y = R?)

» We are interested in predictions for Y.
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predictions
» Let Y € Y be an unknown future outcome. Johanna Zicgel
» Temperature tomorrow at 12:00 in Cambridge. (Y € Y = R)
P Event of rain tomorrow in London. (Y € Y = {0,1}) Merivation

Probabilistic predictions

» Default of credit card client. (Y € Y ={0,1})
» Amount of precipitation tomorrow in Cambridge and Oxford. (Y € Y = R?) Catbratio

» We are interested in predictions for Y.
Questions that | will address:

» What is a probabilistic prediction for Y? What is a point prediction for Y7 Are
there other predictions for Y7

» When is a probabilistic prediction calibrated? (Lecture 1)
How can calibrated probabilistic predictions be constructed? (Lecture 1)

How can we compare probabilistic predictions? With proper scoring rules. (Lecture
2)

» How should point predictions be evaluated and compared? (Lecture 3)
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Probabilistic and point predictions

Forecast

“Tomorrow at 12:00
temperature will be 17.5°C.”

Observation

Verification

“Tomorrow at 12:00
temperature will be N(17.5,5°)."
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Probabilistic predictions

» Single valued “best guess” z € ) does not quantify uncertainty.
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Today: Probabilistic predictions pe

Johanna Ziegel

» Single valued “best guess” z € ) does not quantify uncertainty. ol prdiciens
> Better: Quantify uncertainty of Y by a probabilistic prediction F.
» F is a distribution on V.

» If X is information available for prediction, F should approximate L(Y | X).

» Other possibilities to quantify uncertainty of Y: prediction intervals,
predictions of some measure of variability, ...

» Structurally, these are “point predictions” but they are often called
probabilistic predictions since they quantify uncertainty to some degree.
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Goal: Discuss quality criteria for probabilistic predictions

» What is calibration of probabilistic predictions?
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» What is calibration of probabilistic predictions? Probatilstic predictions
> Are calibrated predictions good? When are predictions informative?
» How do we calibrate predictions?

» How do we compare predictions and how is this related to calibration?
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Goal: Discuss quality criteria for probabilistic predictions

vVvyYyy

What is calibration of probabilistic predictions?
Are calibrated predictions good? When are predictions informative?
How do we calibrate predictions?

How do we compare predictions and how is this related to calibration?

Forecasts are usually sequential but many concepts are easier to understand
in a “hypothetical” one-period setting.

Future outcome Y and forecast F are both random and defined on a
probability space (2, F,P).
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Binary outcomes: Calibration
> Y e{0,1}

» Event of rain tomorrow in London. (Y € {0,1})
» Default of credit card client. (Y € {0,1})
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> Y e{0,1}
>
>

» Distribution of Y is characterised by probability of {Y = 1}:
Probabilistic prediction is random variable p € [0, 1].
» Since P(Y =1| X) =E(L1{Y =1} | X),
> pis a prediction for the conditional distribution of Y (probabilistic prediction);
» pis a prediction for the conditional mean of Y (point prediction).
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Binary outcomes: Calibration orcirsions
> Y S {0, 1} Johanna Ziegel

P Event of rain tomorrow in London. (Y € {0,1})
P Default of credit card client. (Y € {0,1})
» Distribution of Y is characterised by probability of {Y = 1}:
Probabilistic prediction is random variable p € [0, 1].
» Since P(Y =1| X) =E(L1{Y =1} | X),
> pis a prediction for the conditional distribution of Y (probabilistic prediction);
» pis a prediction for the conditional mean of Y (point prediction).

Calibration

Definition
A probability prediction p € [0,1] for Y € {0, 1} is calibrated (or reliable) if

P(Y=1]p)=p.

Predicted probabilities should align with observed frequencies.
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Exa m ple C;Iriebdriactti;r;:f
Let X; ~ N(0,1), X2 ~ N(0,2) be independent, and Johanna Ziegel

P(Y =1 X1, X2) = &(Xy + X2).

Predictions:

X X
pO =1/ p)— ¢(71§>, p@ — ¢(72§), P = B(X; + Xa).

» All predictions are calibrated.

AV N VY

Ranjan and Gneiting (2010)
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Diagnostics to assess calibration: Reliability diagrams
Data: (pla Yl)v SRR (pna Yn)
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Calibration of

Diagnostics to assess calibration: Reliability diagrams b
Data: (p]_, Y]_), cey (pn’ Yn) Johanna Ziegel

Simulation example
X1 ~N(0,1), Xo ~ N(0,2) independent, P(Y = 1| X1, X2) = ®(X1 + X2),
p(l) — (D(Xl/\/g), p(2) — d) <X2/\/§), , nh= 200 Calibration

CORP Reliability-Diagramm for p; CORP Reliability-Diagramm for p, CORP Reliability-Diagramm for p3

BEW
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L L

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 06 08 1.0 0.0 0.2 04 0.6 08 1.0

Vorhersagewert Vorhersagewert Vorhersagewert

(Dimitriadis et al., 2021)
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Calibration of

Rellablllty dlagrams predictions
Forecasts and observations: (p1, Y1), ..., (Pn, Yn) Johanna Ziegel

Binning: Classical approach
Choose m € N, for example m = 10. Define

Calibration
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3

For calibrated predictions, we have that

o - o
Locp(v=11—<p<i)<L
m m m
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Reliability diagrams
Diagnostic tool to assess calibration

» Plot ((j —1)/2,G;), j=1,...,m and joint points by a line.

» Add diagonal, that is, line from (0,0) to (1,1).

» Sometimes: Add histogram of py, ...

, Pn such that it fits.
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Calibration
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Calibration of

Simulation example predictions
X1 ~N(0,1), Xo ~ N(0,2) independent, P(Y = 1| X1, Xz) = (X1 + X2), Johanna Ziegel
P = (% /V3), p? = &(%/v2), . n = 200.

Reliability-Diagramm for py

Reliability-Diagramm for p; Reliability-Diagramm for p,
o o
2 | r,:'i\ . Calibration
A\
8 1 R N 81
z AN \ z
e o w 2 o]
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Simulation example

X1 ~N(0,1), Xo ~ N(0,2) independent, P(Y = 1| X1, Xz) = (X1 + X2),

p) = &(X,/V3), p?) = ¢(x2/ﬂ), . n = 200.

Reliability-Diagramm for p; Reliability-Diagramm for p, Reliability-Diagramm for py

BEW

Vorhersagewert Vorhersagewert Vorhersagewert

CORP Reliability-Diagramm for p; CORP Reliability-Diagramm for p, CORP Reliability-Diagramm for ps

Vorhersagewert Vorhersagewert Vorhersagewert
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Calibration of

Hosmer-Lemeshow Test predictions
Goodness-of-fit test for binary regression models. Is deviation from diagonal in Johanna Ziegel
reliability diagram significant? (Hosmer and Lemeshow, 1980)

’HOZ{P‘P(Y|,D,')ZP,', i:]_,...,n}

Calibration

Test statistic

zm: [ Oy — ElJ L (0o = 501)2]
-1 Eoj ’

with
oy=#{ilYi=13nh, Oy=#{i|vi=0}ny,

Ej=> pi. Eoj=) (1-p),

icl; icl;

and

where [ = {i | (j —1)/m < p; < j/m}. Then, Ty ~ x2,_; asymptotically.
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Problems with Binning

» Visual impression of reliability diagram can look very different for different
m, say, m=9,10,11. Can be misleading as a diagnostic tool.

» Choice of the bins influences the test substantially: p-values of the
Hosmer-Lemeshow test from 0.020 to 0.159 with six different statistical
software packages (Hosmer et al., 1997).

> Reordering a data set with ties can yield p-values from 0.01 to 0.95
(Bertolini et al., 2000).
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predictions

Johanna Ziegel

Calibration
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CORP Reliability Diagrams

Postulate that

pP—=PY=1|p=p)

is increasing.
For (p1, Y1), .-, (pn, Yn) with p1 < --- < p, compute the isotonic regression

(q

(iso) (iso))

1 - n of Y given p. Then,

1

(iso)

qgiso) ~ P(Y -1 ‘ p= Pi) under cazlibration p

[

» Plot (pi,q; '), i =1,...,n and joint points by a line.

» Add diagonal.

» Sometimes: Add histogram of py, ...

, pn such that it fits.

(Dimitriadis et al., 2021)
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For (p1, Y1), .-, (pn, Yn) with p; < --- < p,, the isotonic regression

(qgiso), ey qf,iso)) of Y given p is the solution to the optimization problem
n
[ % — 4 2)
q irsT;Itgne z_:( q )

where the minimum is taken over all vectors q = (q1, ..., q,) € [0,1] " with
g1 << qn

» Solution can be computed with the Pool Adjacent Violators Algorithm

(PAVA).
o
0‘.2 0.‘4 O‘.G 0.‘8 1‘.0

P

(van Eeden, 1958; Barlow et al., 1972)
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0z 0%

0z 0% ors
Binned forecast PoP

Reliability diagrams for probability of precipitation forecasts at prediction horizons of 1, 2, 3, 4

and 5 days, for the test period.

(Henzi et al., 2021b)
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Motivation

Probabilistic predictions

050

Calibration

Discrimination ability

Comparison

Conditional event probability

Real-valued outcomes

Multi-variate outcomes

Calibration and averaging

075 i
I | |
| |
050 | | | )
025 “ ] P ¥
= ~ ——T —
000 —— = —
ofo o2 0% 07 100000 0% 0B 075 100000 02 050 075 L0000 025 050 075 100000
Forecast PoP
— ENS — BMA — EMOS — HCLR — DR — DRy — IDR

CORP reliability diagrams for probability of precipitation forecasts at prediction horizons of 1,
2, 3, 4 and 5 days, for the test period.

(Henzi et al., 2021b)
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Calibration of

S umm a ry predictions
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Calibration

P Calibration assesses the statistical compatibility of forecasts and
observation: Evaluation of absolute forecast quality.

» Calibrated predictions can be uninformative.

» How can discrimination ability of probably forecasts be assessed?
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ROC curves assess discrimination ability

Use threshold t € [0, 1) to construct a hard classifier 1{p > t} from the
probability prediction. Define the Hit Rate (HR)

HR(t)=P(p>t| Y =1),
and the False Alarm Rate (FAR)
FAR(t)=P(p>t|Y =0).

» Receiver operating characteristic (ROC) curve consists of the points
(FAR(t),HR(t)), t € [0,1).
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Calibration of

ROC curves assess discrimination ability b

Use threshold t € [0,1) to construct a hard classifier 1{p > t} from the Johanna Ziegel
probability prediction. Define the Hit Rate (HR)

HR(t)=P(p>t| Y =1),
and the False Alarm Rate (FAR)
FAR(t)=P(p>t|Y =0).

Discrimination ability

» Receiver operating characteristic (ROC) curve consists of the points
(FAR(t),HR(t)), t € [0,1).

Empirical ROC curve

Estimate HR(t), FAR(t) by

?:1 ]]‘{\/l = 17,Di > t}
27:1 {y; =1}

27:1 MY' = 0} ’

HR(t) = 2 ., FAR(t) = 2

respectively. 2160



Calibration of

predictions
Simulation example Johanna Ziegel
Xi ~ N(0,1), X» ~ N(0,2) independent, P(Y = 1| X1, X) = &(X; + X), p©@ = 1/2,
P = 0(X1/v3), p? = &(X/V2), =200

3 > If FAR(t) = HR(t), t € (0,1):

i No discrimination, ROC is on the

< diagonal.

Hit rate

] » |If 3t such that

FAR(t) = 0, HR(t) = 1: Perfect
discrimination, ROC is in upper
left corner.

0.4

0.0

False alarm rate
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Calibration of

Properties of ROC curves predictions
ROC curve consists of the points (FAR(t), HR(t)), t € [0,1), where

Johanna Ziegel
HR(t)=P(p>t|Y =1), FAR(t)=P(p>t|Y =0).

Discrimination ability

» ROC curve is invariant under strictly increasing transformations of forecast
p: ROC ignores calibration.

» ROC discrimination ability or potential predictive ability, only!
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Calibration of

Properties of ROC curves predictions
ROC curve consists of the points (FAR(t), HR(t)), t € [0,1), where

Johanna Ziegel

HR(t)=P(p>t| Y =1), FAR(t)=P(p>t]|Y =0).

Discrimination ability

» ROC curve is invariant under strictly increasing transformations of forecast
p: ROC ignores calibration.

» ROC discrimination ability or potential predictive ability, only!

» ROC curve is concave if and only if CEP p' = P(Y =1|p=p')is
increasing.

» Hard classifier construction only makes sense if CEP is increasing!
Therefore, empirical ROC should be concave.

> S(()Iu)tion: Compute ROC curve from isotonically recalibrated predictions

) i=1,....n

I
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Calibration of

predictions
Simulation example Johanna Ziegel
Xi ~ N(0,1), Xo ~ N(0,2) independent, P(Y =1 | X1, X3) = &(X; + Xz), p® = 1/2,
p) = &(X,/V3), p) = ¢(X2/\/§), . n = 200.

<
i

Discrimination ability

» Predictions can be differentiated
with respect to discrimination
ha ablllty

Hit rate

o (Gneiting and Vogel, 2022)

False alarm rate

24./60



Simulation example

X1 NN(O 1), Xo ~ N(O 2) independent, P(
®(X1/V3), p

Conditional event probability

1.0

0.8

0.6

0.4

0.2

0.0

CORRP reliability diagram

Calibration

Forecast value

Y=1 | Xl,Xz)
( (X1+X2)) , n=200.

= O(X1 + X2),
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Calibration of
predictions

Simulation example
X1 NN(O 1), Xa NN(O 2) independent, P(
(X1/V3)., p

Y=1 | Xl,Xz)
( (X1+X2)) , n=200.

= O(X1 + X2),

Johanna Ziegel

N N . . . . oy Probabilistic predictions
Calibration Discrimination ability
CORRP reliability diagram ROC curve T
° Discrimination ability
2 =i mp
o © R
Multi-
Z i
1 :
L E
:s 3
3
° T T T T T T ° T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Forecast value

False alarm rate

(Dimitriadis et al., 2024)
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Calibration of

Comparing predictions with proper scoring rules e

Johanna Ziegel

> Need a summary measure that takes calibration and discrimination ability
into account: Proper scoring rules.

Definition B
A proper scoring rule is a map S : [0,1] x {0,1} — R such that

ES(p,Y) <ES(q,Y)

for all p,g €10,1] and P(Y =1) = p.
Give preference to forecaster with lower average score

1 n
i=1
Examples:

S(p,Y)=(p-Y)? S(p,Y)=—-Ylogp—(1—Y)log(l - p).
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Calibration of

Real-valued outcomes mredictions

Johanna Ziegel

> YeR
» Temperature tomorrow at 12:00 in Cambridge. (Y € R)

» Quantify uncertainty of Y by a probabilistic prediction F. oot o
> F is a distribution on R (typically specified as a CDF). -

28 /60



Calibration of
Real-valued outcomes e

Johanna Ziegel

> YeR e
» Temperature tomorrow at 12:00 in Cambridge. (Y € R) Comparsn
» Quantify uncertainty of Y by a probabilistic prediction F. )
> F is a distribution on R (typically specified as a CDF). R

» If X is information available for prediction, F should approximate L(Y | X).
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> YeR e
» Temperature tomorrow at 12:00 in Cambridge. (Y € R) Comparsn
» Quantify uncertainty of Y by a probabilistic prediction F. )
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lllustration: Point and probabilistic predictions e

280.0 X HRES Johanna Ziegel
277.5 Motivation
Probabilistic predictions
275.0 1 Calibration
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) Comparison
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©
] Real-valued outcomes
Q Multi-variate outcomes
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lllustration: Point and probabilistic predictions
B I EasyUQ HRES
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Application example 1

Patient length of stay in Swiss intensive care units

1.00

Predictive CDF
o o o
x> 8 &

Patient 1 Patient 2 Patient 3 Patient 4
’
o 2 4 6 80 2 4 2 4 6 8
LoS
DIM — —

Cox Regression - === Quantile Regression

(Henzi et al., 2021a)
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Application example 2

Chart 1.3: Unemployment projection based on market
interest rate expectations, other policy measures as
announced

Unemployment rate, per cent 5

TP I U IR O OO I I
2017 18 19 20 21 22 23 24

The fan chart depicts the probability of various outcomes for LFS unemployment. It has been
conditioned on the assumptions in Table 1A footnote (b). The coloured bands have the same
interpretation as in Charts 1.1and 1.2, and portray 90% of the probability distribution. The
calibration of this fan chart takes account of the likely path dependency of the economy, where,
for example, it is judged that shocks to unemployment in one quarter will continue to have some
effect on unemployment in successive quarters. The fan begins in 2021 Q2, a quarter earlier than
for CPlinflation. That is because Q2 is a staff projection for the unemployment rate, based in part
on data for April and May. The unemployment rate was 4.8% in the three months to May, and is
projected to be 4.8% in Q2 as a whole. A significant proportion of this distribution lies below
Bank staff's current estimate of the long-term equilibrium unemployment rate. There is therefore
uncertainty about the precise calibration of this fan chart

Chart 1.4: CPl inflation projection based on market
interest rate expectations, other policy measures as
announced

Percentage ncrease in prices on  year earler _

C

| I AT A |
207 18 19 20

A I I P
21 22 23 24

The fan chart depicts the probability of various outcomes for CP inflation in the future. It has been
conditioned on the assumptions in Table 1.A footnote (b). If economic circumstances identical to
today's were to prevail on 100 occasions, the MPC's best collective judgement i that inflation in
any particular quarter would lie within the darkest central band on only 30 of those occasions. The
fan chart is constructed so that outturns of inflation are also expected to lie within each pair of the
lighter red areas on 30 occasions. In any particular quarter of the forecast period, inflation is
therefore expected to lie somewhere within the fans on 90 out of 100 occasions. And on the
remaining 10 out of 100 occasions inflation can fall anywhere outside the red area of the fan chart.
Over the forecast period, this has been depicted by the light grey background. See the box on
pages 48-49 of the May 2002 Inflation Report for a fuller description of the fan chart and what it
represents,

(Bank of England, 2021)
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Calibration of probabilistic predictions

Forecaster 1 |

,//

N

Forecaster 2 |

Forecaster 3 |

_ \ -
—.
3

Forecaster 4 |
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Real-valued outcomes
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Calibration: Compatibility between forecasts and observations

Probabilities derived from predictive distributions should align with observed
frequencies.
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Calibration: Compatibility between forecasts and observations e

Johanna Ziegel

Probabilities derived from predictive distributions should align with observed
frequencies. A

Most popular: Probabilistic calibration/"Flat PIT histogram”

F,(\/,) ~ UNIF(O, 1) for all i Real-valuedautcomers

> Y; € R, F; predictive CDF for Y;
» Suitable randomization if F; is not continuous

» Closely related to validity of conformal predictive systems
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Calibration of

Calibration: Compatibility between forecasts and observations e

Johanna Ziegel

Probabilities derived from predictive distributions should align with observed
frequencies.

Most popular: Probabilistic calibration/"Flat PIT histogram”
F,(\/,) ~ UNIF(O, 1) for all i Real-valuedrautcromes

Y; € R, F; predictive CDF for Y;
Suitable randomization if F; is not continuous
Closely related to validity of conformal predictive systems

Binary outcomes: Y; € {0,1} : P(Y; = 1|p;) = p;i

vV V.V VvV Y

Many notions of calibration, except for binary outcomes. ..

33/60



Why PIT values? orcirsions

Johanna Ziegel

Motivation 1
Let X be a random variable and G a (deterministic) continuous CDF. Then,

G(X) ~UNIF(0,1) <= X~G.

Real-valued outcomes

Without continuity:

P(G(X)<a)<a<P(G(X-)<a) VYae(0,1) < X~G&.

34/60



i Calibrati f
Proposition ot
Let X be a random variable and G a CDF. Then, Iefrere Zie

P(G(X)<a)<a<P(G(X-)<a) Vae(0,1) <— X~G.

Proof.
Let Y ~ H. If G(z) < H(z) for some z, then, for a € (G(z), H(z)),

a>P(G(Y)<a)>P(G(Y)<G(2))>P(Y <z)=H(z)>a %

Real-valued outcomes
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Calibration of

PropOSItlon predictions
Let X be a random variable and G a CDF. Then, Iefrere Zie

P(G(X)<a)<a<P(G(X-)<a) Vae(0,1) <— X~G.

Proof.
Let Y ~ H. If G(z) < H(z) for some z, then, for a € (G(z), H(z)),

a>P(G(Y)<a)>P(G(Y)<G(2))>P(Y <z)=H(z)>a %

If G(z) > H(z), then, for a € (H(z), G(z)),

a<P(G(Y-)<a)<P(G(Y-)< G(2)) <P(Y <z)=H(z) < « 4.
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Calibration of

PropOSItlon predictions
Let X be a random variable and G a CDF. Then, Iefrere Zie

P(G(X)<a)<a<P(G(X-)<a) Vae(0,1) <— X~G.
Proof.
Let Y ~ H. If G(z) < H(z) for some z, then, for a € (G(z), H(z)),

a>P(G(Y)<a)>P(G(Y)<G(2))>P(Y <z)=H(z)>a %

If G(z) > H(z), then, for a € (H(z), G(2)),
a<P(G(Y-)<a)<P(G(Y-)< G(2)) <P(Y <z)=H(z) < « 4.

For reverse: Recall that G(G~*(u)) > v and G(G~Y(u)—) < u. Let U ~ UNIF(0,1),
then, G1(U) ~ G. Therefore,

) =a,

P(G(Y) < a)=P(G(GHU)) <a)<P(U<a
P(U<a)=a. O

P(G(Y-) < a)=P(G(G(U)-) < a) >
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Calibration of
predictions

Johanna Ziegel

Motivation 2
Time series (Y:)ten. Then,

(Fe(Yo)een " UNIF(0,1) <= Fo=L(Ye|Yi,...,Ye1), teN.

Real-valued outcomes

» Ideal prediction is equivalent to independence and uniformity of PIT values.

P Restricted to very special information set and lag 1 predictions.

(Diebold et al., 1998)

36 /60



Evaluating probabilistic predictions S
predictions
L~ J\"(O_ 1), Y~ ./\e“"(/l. 0.09) Johanna Ziegel
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Evaluating probabilistic predictions

/L ~/ J‘\"(O. 1)

Y ~ N (u,0.09)
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N

N

XN

Probabilistic calibration v/
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Evaluating probabilistic predictions

o~ N

0,1), Y ~ N(u,0.09)

/

r

Probabilistic calibration v/

Probabilistic calibration v

Probabilistic calibration x
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Evaluating probabilistic predictions

pw~N(0,1),

i

/

r

Y ~ N (u,0.09)

Probabilistic calibration v/

Probabilistic calibration v

Probabilistic calibration x

Probabilistic calibration v

Calibration of
predictions

Johanna Ziegel

Real-valued outcomes
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Calibration of

Many notions of calibration ... e

. . Johanna Ziegel
Auto-calibration:

P(Y; >y | Fi) =1-Fi(y) Yy
[(% ‘ F,) = F, Motivation

(8
Isotonic calibration:
P(Y; >y | A(Fi)) =1 - Fi(y) Vy
LY | A(F) = F

Threshold calibration: Quantile calibration: o
B(Y; >y | Fily) = 1 — Fily) ¥y 6 (Y: | () = F(a) Va
4 4
) o Probabilistic calibration:
Marginal calibration: Fi(Yi) ~ UNIF(0,1)

P(Y; > y)=1—-EF(y)Vy P(Fi(Y:) < a) <a<P(Fi(Yi—) < o) Vu

And if we want to focus on tails of F;...(Allen et al., 2025b)
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Evaluating probabilistic predictions

o~

N(0,1), Y ~ N(p,0.09)

o

i

r

Auto-calibration v
Probabilistic calibrationv’
Marginal calibrationv’

Auto-calibration x
Probabilistic calibrationv’
Marginal calibration x

Auto-calibration x
Probabilistic calibration x
Marginal calibrationv’

Auto-calibration v
Probabilistic calibrationv’
Marginal calibrationv’

Calibration of
predictions

Johanna Ziegel

Real-valued outcomes
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Auto-calibration

P(Y <y|F)=F(y)Vy
L(Y|F)=F
Proposition

The forecast F is auto-calibrated for Y € R if and only if
Zr ~ UNIF(0,1) and Z¢ 1L F.

Here,
Zr=F(Y=)+ V(F(Y) - F(Y-)),

where V' ~ UNIF(0,1) is independent of (Y, F).

(Strahl and Ziegel, 2017; Modeste, 2023)

Calibration of
predictions

Johanna Ziegel
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Calibration of

Empirical assessment of calibration B
Probabilistic calibration: Typically PIT histograms Johanna Ziegel

(a) Station: 10015

48 | 72
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o ®
3 3 tic predictions
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s 1e+01 el
L B ibratio
1e+18 nination ability
g o @
g 2les E Comparison
5 Fieos 3
g e+ o
S W £
3 16403 | @

Real-valued outcomes

1e+33 Multi-variate outcomes

1e+23
Calibrat

1e+13

poads puim
paads pum

1e+03

Fkk

02 05 08 02 05 08 02 05 08 2010 2012 2014 2010 2012 2014 2010 2012 2014
PIT

Null hypothesis F;(Y;) ~ UNIF(0,1) for all t.
> At n: Estimate density of (F;(Y;))™, by f,
» Define conditional e-value E, 1 = fT(Y,,H)
> Monitor calibration with test martingale M, = []_; E;

(Arnold et al., 2023)
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Empirical assessment of calibration

Threshold calibration
» For each z € R, F(z) is probability prediction for 1{Y < z} € {0,1}.

> Plot reliability diagrams for several thresholds.

LSPM CIDR CB
1.00 1.00 1.00
— 048 — 251 — o048 — o048
—— 0.53 —— 5.63 —— 0.53 —— 0.53
0751 _ o7a 0751 _ o7s 0751 _ 07s
X = — 251 = — 251
w w w
< 0.50 < 050{ — 563 = 0504 — 583
\" \ Vi
z z z
o o o
0.251 0251
0.00 1+ T T T 0.00 T T T 0.00 T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75
F(x) F(x) F(x)

1.00

Calibration of
predictions
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Motivation

Probabilistic predictions

Calibration
Discrimination ability

Comparison

Real-valued outcomes

Multi-varia

Calibratior
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Multi-variate outcomes Calibration of

predictions

Johanna Ziegel

Let ) = RY forecast F is distribution over RY.
» Auto-calibration is still an applicable theoretical concept: L(Y | F) = F.
» More popular: Graphical tools similar to PIT histograms
» Mainly used: Multivariate rank histograms assessing calibration of

multivariate predictive distributions with finite support

Main idea

Reduce outcome Y and predictive distribution F to something univariate using
map p : RY — R. Assess calibration of univariate summary.

Multi-variate outcomes

(Gneiting et al., 2008; Ziegel and Gneiting, 2014; Thorarinsdottir et al., 2016; Allen et al., 2024)
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Calibration and averaging: A word of warning

If F and G are calibrated for Y, then (F + G)/2 will not be calibrated for Y.

Example

Suppose that F(Y) ~ UNIF(0,1), G(Y) ~ UNIF(0,1), and w; + ws = 1.
Then, (wiF + w2 G)(Y) has variance < 75, so it cannot have distribution
UNIF(0, 1).

(Gneiting and Ranjan, 2013)

Calibration of
predictions

Johanna Ziegel

Motivation
Probabilistic predictions
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Calibration of

S umm a ry predictions

Johanna Ziegel

» Probabilistic predictions should be calibrated and sharp/discriminative in
order to be trustworthy and informative.

P Ideally, probabilistic predictions should be auto-calibrated.

» Comparison of probabilistic predictions with proper scoring rules:
Assign a real-valued score assessing calibration and discrimination ability
simultaneously.

Calibration and averaging

» Proper scoring rules allow to compare probabilistic predictions
simultaneously with respect to calibration and discrimination ability.
(Lecture 2)
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Calibration and conformal prediction




Goal of conformal prediction

For data (X1, Y1),...,(Xn, Yn) and X,t1, construct
» prediction set Cpy1 for Yni1,
> predictive distribution F,y1 for Y41

Calibration of
predictions

Johanna Ziegel

Calibration and
conformal
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Goal of conformal prediction

For data (X1, Y1),...,(Xn, Yn) and X,t1, construct
» prediction set Cpy1 for Yni1,
> predictive distribution F,y1 for Y41
such that
» P(Ypt1 € Coy1) > 1—a,
» P(Fpi1(Yat1)) =~ UNIF(0,1).

Calibration of
predictions
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Calibration and
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Goal of conformal prediction

For data (X1, Y1),...,(Xn, Yn) and X,t1, construct
» prediction set Cpy1 for Yni1,
> predictive distribution F,y1 for Y41
such that
» P(Ypt1 € Coy1) > 1—a,
» P(Fpi1(Yat1)) =~ UNIF(0,1).

» Finite sample (marginal) coverage/calibration guarantees.

» Many and rapidly evolving approaches to obtain conditional coverage
guarantees, understand training conditional coverage, work with
multivariate data,. ..

Calibration of
predictions

Johanna Ziegel

Calibration and
conformal
prediction
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Calibration of

What is at the heart of conformal prediction? e

Johanna Ziegel

“In-sample calibration yields conformal calibration guarantees.”

Motivation

Probabilistic predictions

Calibration
Discrimination ability

Comparison

Real-valued outcomes
Multi-variate outcomes

Calibration and averaging

Calibration and
conformal
prediction
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Calibration of
predictions

What is at the heart of conformal prediction?

“In-sample calibration yields conformal calibration guarantees.”

Johanna Ziegel

Predictive system
A set I C R x [0, 1] of the form

N={(y,7) | Ne(y) <7 <Mu(y)}

with M, < T, increasing, limy_,_o My(y) =0, limy_o My(y) = 1.

Calibration and
conformal
prediction

50 25 0.0 25 50
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What is at the heart of conformal prediction?

“In-sample calibration yields conformal calibration guarantees.”

Predictive system
A set 1 C R x [0, 1] of the form

N={(y,7) | Ne(y) <7 <Mu(y)}

with M, < T, increasing, limy_,_o My(y) =0, limy_o My(y) = 1.

50 25 0.0 25 50

Conformal calibration guarantee:
We can construct a predictive system that contains a calibrated CDF.

Calibration of
predictions

Johanna Ziegel

Calit

Calibration and
conformal
prediction
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Example of in-sample calibration:
Let wy,...,wn, € R. Define

1 m
F(y) = mzll{wl' <y}, yeR

Draw W uniformly at random from wy, ..., wp,.
Then F is in-sample probabilistically calibrated, that is,

P(F(W) < a) < a < P(F(W-) <a), ac(0,1).

Calibration of
predictions

Johanna Ziegel

Calibration and
conformal
prediction
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Let Wq,..., Wyot1 € R be exchangeable and define for w € R

n

1 1
v = — Hw; < —1 <y} R,
() P { _y}+n+1 {w<y}, ye
and
Me(y) = inf{F"(y) |w e R}, Ty(y) =sup{F“(y) | w € R},
Then,

Me(y) < FW1(y) < My(y), and

P(FWn+1(Wn+1) < a) S 6] S P(FWH+1(WH+1—) S O[), o€ (0, 1)

Calibration of
predictions

Johanna Ziegel

Calibration and
conformal
prediction
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. Calibration of
Let Wq,..., Wyot1 € R be exchangeable and define for w € R redictions

Johanna Ziegel

1 <« 1
FY(y)= —— Y 1{W, < — 1{w < y}, R,
(v) P { _y}+n+1 {w<y}, ye
and
Me(y) = inf{F¥(y) | w € R}, Tu(y) =sup{F“(y) | w € R},
Then,

Me(y) < F¥1(y) < Mu(y), and
P(FY (Woya) < ) < o < B((FY (Woi=) Sa), a € (0,1) e
prediction

Proof: Conditional on empirical distribution P,,; of (\/\/,-);’*11, W41 is a random draw
from Wi, ..., W,11. By in-sample probabilistic calibration:

P(FY 1 (Whi1) < a | Pryy) < o S P(FY 1 (Wi —) < o | Prya) ...
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(Classical) conformal prediction trick

Use conformity measure A(P, (x, y)) to lift the one-dimensional result to general
spaces X x V.

Calibration of
predictions
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Calibration of

(Classical) conformal prediction trick predictions

Johanna Ziegel

Use conformity measure A(P, (x, y)) to lift the one-dimensional result to general
spaces X x V.
Let (X1, Y1),..., (Xnt1, Ya+1) € & X R be exchangeable.

» Y. Empirical distribution of (X1, Y1)y oo (Xny Ya), (Xag1,y) for y € R
> ﬁy:EmpkkaICDFof
Wi = AP, (X1, V1)), ..., Wo = AP, (X, V), w(y) = AP, (Xa11,y))

> P(FY 1 (w(Ypi1)) < @) < a Callatsolan
prediction
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(Classical) conformal prediction trick

Use conformity measure A(P, (x, y)) to lift the one-dimensional result to general
spaces X x V.
Let (X1, Y1),..., (Xnt1, Ya+1) € & X R be exchangeable.

» Y. Empirical distribution of (X1, Y1)y oo (Xny Ya), (Xag1,y) for y € R
> Fr Empirical CDF of

Wy = AP, (X1, Y1), ..., Wy = A(PY, (X, Y2)), w(y) = AR, (Xns1,y))

> P(F (w(Yn41)) <a) < a

» This implies P(Yp41 € Coy1) > 1 —« , where

Cor1={y eR| P (w(y)) > a}.

Calibration of
predictions

Johanna Ziegel

Calibration and
conformal
prediction
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(Classical) conformal prediction trick

Use conformity measure A(P, (x, y)) to lift the one-dimensional result to general
spaces X x V.
Let (X1, Y1),..., (Xnt1, Ya+1) € & X R be exchangeable.

» Y. Empirical distribution of (X1, Y1)y oo (Xny Ya), (Xag1,y) for y € R
> Fr Empirical CDF of

Wy = AP, (X1, Y1), ..., Wy = A(PY, (X, Y2)), w(y) = AR, (Xns1,y))

> P(F (w(Yn41)) <a) < a

» This implies P(Yp41 € Coy1) > 1 —« , where
Cor1 ={y €R| F'(w(y)) > a}.

> Predictive CDF available if y — FY(w(y)), are increasing.

Calibration of
predictions
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Calibration and
conformal
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Motiv

Probabilistic predictions

Calibratio

ation ability

Discri

Comparison

Alternative
Use other in-sample calibrated procedures.

Calibration and
conformal
prediction
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Auto-calibration
Let (x1,y1),---, (Xm,ym) € X X R.
> Let By,...,
>

jGB

B,y be a partition of {1,...,

m}.

Calibration of
predictions

Johanna Ziegel

ke Bj,yeR

Calibration and
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Auto-calibration
Let (x1,y1),---, (Xm,ym) € X X R.
» Let By,..., B,y be a partition of {1,..., m}.
>

Fo(y) = ‘B|Zﬂ{yj<y} keBy€eR
JEB;

is in-sample auto-calibrated, that is,
Pm(Y <y|Fx)=Fx(y), y€eR,

hence, in particular, isotonically calibrated, threshold calibrated, quantile

calibrated, and probabilistically calibrated.
Here, (X, Y) ~ P,,, and I, is the empirical distribution of (xj, yj)’"

Calibration of
predictions

Johanna Ziegel

Calibration and
conformal
prediction
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Auto-calibration
Let (x1,y1),---, (Xm,ym) € X X R.
» Let By,..., B,y be a partition of {1,..., m}.

| 2
Fo(y) = ‘B|Zﬂ{yj<y} keBy€eR
JEB;

is in-sample auto-calibrated, that is,
Pm(Y <y|Fx)=Fx(y), y€eR,

hence, in particular, isotonically calibrated, threshold calibrated, quantile

calibrated, and probabilistically calibrated.
Here, (X, Y) ~ P, and P, is the empirical distribution of (x;, yj)'"

» We call this a binning procedure.

Calibration of
predictions
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prediction
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Calibration of

Auto-calibration e
Let (x1,¥1),--+, (Xm, ¥Ym) € X X R. Johanna Ziegel
» Let By,..., B,y be a partition of {1,..., m}.
>
F.(¥) \B| d 1{y; <y}, keBiyeR
JEB;
is in-sample auto-calibrated, that is,

Pn(Y <y|Fx)=Fx(y), yeR,

Calibration and
conformal

hence, in particular, , threshold calibrated, quantile it
calibrated, and probabilistically calibrated.

» We call this a binning procedure.
» All in-sample auto-calibrated procedures are of this form.

» Choice: How is the partition constructed?
53 /60



Let (X1, Y1),...,(Xnt1, Yat1) € X X R be exchangeable.

Let 1 be constructed with a binning procedure:

> Let F)Z<k be the binning CDF constructed with
(X17 y1)7 R (Xm Yn)7 (Xn+17 Z)'

| 4

Define

ne,Xn+l (y) = inf{F)ZCH,l (.y) ‘ zE R}7

Theorem (Conformal calibration guarantee)

Predictive system contains an auto-calibrated CDF:

and

Y,
Fxra )

M, (y) <

= P(Yoi1 <y | Fy"),

Yn+1
- FXn+1

n+1

(v) < Nux, (),

Mux,..(2) = sup{Fx,,(¥) | z€ R},

y €R,

yeR

Calibration of
predictions
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Thickness of predictive systems

» Predictive systems are only useful if they are thin.

» Classical conformal predictive systems:
» Thickness is 1/(n + 1).
» Auto-calibration: Binning procedures, where bins are determined only based
on Xi,...,Xnt1 (example: k-means clustering):
» Thickness is 1/(size of bin containing n+ 1).

Calibration of
predictions

Johanna Ziegel

Calibration and
conformal
prediction
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Case study: Length of stay in intensive care units

» Predictions for individual patients’ length of stay in ICU’s in Switzerland 24h after

admission?!

Threshold calibration

LSPM CIDR CB
1.00 1.00 1,00
— 048 — 251 — 048 — 048
— 053 — 563 — 053 — 053
— 073 0757 o713 0751 — o3
= — 251 = — 251
w w
<0504 — 563 < 050{ — %83
\ Vi
> >
T e
0.25 0251
0.00 . . . 0.00 . . . 0.00 . . .
0.0 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 025 050 0.75 1.00
F(x) F(x) F(x)

1Data provided by G.-R. Kleger and Schweizerische Gesellschaft fiir Intensivmedizin. Data is internal hospital data and not publicly

available.
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Calibration of

S umm a ry predictions

Johanna Ziegel

In-sample calibration yields conformal calibration guarantees.
Strong out-of-sample calibration guarantees are possible.

Arguments can be extended to distribution shifts.

vVvVvyYyy

Conformal binning is simple but works well.
Only example explored so far: k-means clustering.

A\

Conformal IDR is a further possibility that was not presented. Allows to et et
quantify alleatoric and epistemic uncertainty. conformal

prediction

» Outlook: Conformal calibration guarantees for point predictions.

(Allen et al., 2025a)
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