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Outline



Posterior distribution

Central concept of Bayesian inference:

π( θ︸︷︷︸
parameter

| xobs︸︷︷︸
observation

)

proportional︷︸︸︷
∝ π(θ)︸︷︷︸

prior

× L(θ | xobs)︸ ︷︷ ︸
likelihood

Drives

I derivation of optimal decisions

I assessment of uncertainty

I model selection

I prediction

[McElreath, 2015]



Monte Carlo representation

Exploration of Bayesian posterior π(θ|xobs) may (!) require to
produce sample

θ1, . . . , θT

distributed from π(θ|xobs) (or asymptotically by Markov chain
Monte Carlo aka MCMC)

[McElreath, 2015]



Difficulties

MCMC = workhorse of practical Bayesian analysis (BUGS,
JAGS, Stan, &tc.), except when product

π(θ)× L(θ | xobs)

well-defined but numerically unavailable or too costly to
compute
Only partial solutions are available:

I demarginalisation (latent variables)

I exchange algorithm (auxiliary variables)

I pseudo-marginal (unbiased estimator)
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Example 1: Dynamic mixture

Mixture model

{1−wµ,τ(x)}fβ,λ(x) +wµ,τ(x)gε,σ(x) x > 0

where

I fβ,λ Weibull density,

I gε,σ generalised Pareto density, and

I wµ,τ Cauchy (arctan) cdf

Intractable normalising constant

C(µ, τ, β, λ, ε, σ) =

∫∞
0

{(1−wµ,τ(x))fβ,λ(x) +wµ,τ(x)gε,σ(x)} dx

[Frigessi, Haug & Rue, 2002]



Example 2: truncated Normal

Given set A ⊂ Rk (k large), truncated Normal model

f(x | µ, Σ,A) ∝ exp{−(x− µ)TΣ−1(x− µ)/2} IA(x)

with intractable normalising constant

C(µ, Σ,A) =
∫
A

exp{−(x− µ)TΣ−1(x− µ)/2}dx



Example 3: robust Normal statistics

Normal sample
x1, . . . , xn ∼ N (µ, σ2)

summarised into (insufficient)

µ̂n = med(x1, . . . , xn)

and

σ̂n = mad(x1, . . . , xn)

= med |xi − µ̂n|

Under a conjugate prior π(µ, σ2), posterior close to intractable.
but simulation of (µ̂n, σ̂n) straightforward
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Example 4: exponential random graph

ERGM: binary random vector x indexed
by all edges on set of nodes plus graph

f(x | θ) =
1

C(θ)
exp(θTS(x))

with S(x) vector of statistics and C(θ)
intractable normalising constant

[Grelaud & al., 2009; Everitt, 2012; Bouranis & al., 2017]



Realistic[er] applications

I Kingman’s coalescent in population genetics
[Tavaré et al., 1997; Beaumont et al., 2003]

I α-stable distributions
[Peters et al, 2012]

I complex networks
[Dutta et al., 2018]

I astrostatistics & cosmostatistics
[Cameron & Pettitt, 2012; Ishida et al., 2015]



Concept



A?B?C?

I A stands for approximate [wrong
likelihood]

I B stands for Bayesian [right prior]

I C stands for computation [producing
a parameter sample]



A?B?C?

I Rough version of the data [from dot
to ball]

I Non-parametric approximation of
the likelihood [near actual
observation]

I Use of non-sufficient statistics
[dimension reduction]

I Monte Carlo error [and no
unbiasedness]



A seemingly näıve representation

When likelihood f(x|θ) not in closed form, likelihood-free
rejection technique:

ABC-AR algorithm

For an observation xobs ∼ f(x|θ), under the prior π(θ), keep
jointly simulating

θ′ ∼ π(θ) , z ∼ f(z|θ′) ,

until the auxiliary variable z is equal to the observed value,

z = xobs

[Diggle & Gratton, 1984; Rubin, 1984; Tavaré et al., 1997]
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Why does it work?

The mathematical proof is trivial:

f(θi) ∝
∑
z∈D

π(θi)f(z|θi)Iy(z)

∝ π(θi)f(y|θi)
= π(θi|y)

[Accept–Reject 101]

But very impractical when

Pθ(Z = xobs) ≈ 0
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A as approximative

When y is a continuous random variable, strict equality

z = xobs

is replaced with a tolerance zone

ρ(xobs, z) ≤ ε

where ρ is a distance
Output distributed from

π(θ)Pθ{ρ(x
obs, z) < ε}

def∝ π(θ|ρ(xobs, z) < ε)

[Pritchard et al., 1999]
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ABC algorithm

Algorithm 1 Likelihood-free rejection sampler

for i = 1 to N do
repeat

generate θ ′ from prior π(·)
generate z from sampling density f(·|θ ′)

until ρ{η(z), η(xobs)} ≤ ε
set θi = θ

′

end for

where η(xobs) defines a (not necessarily sufficient) statistic
Custom: η(xobs) called summary statistic
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Example 3: robust Normal statistics

mu=rnorm(N<-1e6) #prior

sig=sqrt(rgamma(N,2,2))

medobs=median(obs)

madobs=mad(obs) #summary

for(t in diz<-1:N){

psud=rnorm(1e2)/sig[t]+mu[t]

medpsu=median(psud)-medobs

madpsu=mad(psud)-madobs

diz[t]=medpsu^2+madpsu^2}

#ABC subsample

subz=which(diz<quantile(diz,.1))



Exact ABC posterior

Algorithm samples from marginal in z of [exact] posterior

πABC
ε (θ, z|xobs) =

π(θ)f(z|θ)IA
ε,xobs

(z)∫
A
ε,xobs

×Θ π(θ)f(z|θ)dzdθ
,

where Aε,xobs = {z ∈ D|ρ{η(z), η(xobs)} < ε}.

Intuition that proper summary statistics coupled with small
tolerance ε = εη should provide good approximation of the
posterior distribution:

πABC
ε (θ|xobs) =

∫
πABC
ε (θ, z|xobs)dz ≈ π{θ|η(xobs)}
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Why summaries?

I reduction of dimension

I improvement of signal to noise ratio

I reduce tolerance ε considerably

I whole data may be unavailable (as in Example 3)

medobs=median(obs)

madobs=mad(obs) #summary



Example 6: MA inference

Moving average model MA(2):

xt = εt + θ1εt−1 + θ2εt−2 εt
iid
∼ N (0, 1)

Comparison of raw series:



Example 6: MA inference

Moving average model MA(2):

xt = εt + θ1εt−1 + θ2εt−2 εt
iid
∼ N (0, 1)

[Feller, 1970]
Comparison of acf’s:



Example 6: MA inference

Summary vs. raw:



Why not summaries?

I loss of sufficient information when πABC(θ|xobs) replaced
with πABC(θ|η(xobs))

I arbitrariness of summaries

I uncalibrated approximation

I whole data may be available (at same cost as summaries)

I (empirical) distributions may be compared (Wasserstein
distances)

[Bernton et al., 2019]



Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic [except when done by
experimenters from the field]



Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic [except when done by
experimenters from the field]

1. Starting from large collection of summary statistics, Joyce
and Marjoram (2008) consider the sequential inclusion into the
ABC target, with a stopping rule based on a likelihood ratio test



Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic [except when done by
experimenters from the field]

2. Based on decision-theoretic principles, Fearnhead and
Prangle (2012) end up with E[θ|xobs] as the optimal summary
statistic



Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic [except when done by
experimenters from the field]

3. Use of indirect inference by Drovandi, Pettit, & Paddy
(2011) with estimators of parameters of auxiliary model as
summary statistics



Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic [except when done by
experimenters from the field]

4. Starting from large collection of summary statistics, Raynal
& al. (2018, 2019) rely on random forests to build estimators
and select summaries



Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic [except when done by
experimenters from the field]

5. Starting from large collection of summary statistics, Sedki &
Pudlo (2012) use the Lasso to eliminate summaries



Semi-automated ABC

Use of summary statistic η(·), importance proposal g(·), kernel
K(·) ≤ 1 with bandwidth h ↓ 0 such that

(θ, z) ∼ g(θ)f(z|θ)

accepted with probability (hence the bound)

K[{η(z) − η(xobs)}/h]

and the corresponding importance weight defined by

π(θ)
/
g(θ)

Theorem Optimality of posterior expectation E[θ|xobs] of
parameter of interest as summary statistics η(xobs)

[Fearnhead & Prangle, 2012; Sisson et al., 2019]
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Random forests

Technique that stemmed from Leo Breiman’s bagging (or
bootstrap aggregating) machine learning algorithm for both
classification [testing] and regression [estimation]

[Breiman, 1996]

Improved performances by averaging over classification schemes
of randomly generated training sets, creating a “forest” of
(CART) decision trees, inspired by Amit and Geman (1997)
ensemble learning

[Breiman, 2001]



Growing the forest

Breiman’s solution for inducing random features in the trees of
the forest:

I boostrap resampling of the dataset and

I random subset-ing [of size
√
t] of the covariates driving the

classification or regression at every node of each tree

Covariate (summary) xτ that drives the node separation

xτ ≷ cτ

and the separation bound cτ chosen by minimising entropy or
Gini index



ABC with random forests

Idea: Starting with

I possibly large collection of summary statistics (η1, . . . , ηp)
(from scientific theory input to available statistical
softwares, methodologies, to machine-learning alternatives)

I ABC reference table involving model index, parameter
values and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer M or θ from (η1i, . . . , ηpi)
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Average of the trees is resulting summary statistics, highly
non-linear predictor of the model index



ABC with random forests

Idea: Starting with

I possibly large collection of summary statistics (η1, . . . , ηp)
(from scientific theory input to available statistical
softwares, methodologies, to machine-learning alternatives)

I ABC reference table involving model index, parameter
values and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer M or θ from (η1i, . . . , ηpi)

Potential selection of most active summaries, calibrated against
pure noise



Classification of summaries by random forests

Given large collection of summary statistics, rather than
selecting a subset and excluding the others, estimate each
parameter by random forests

I handles thousands of predictors

I ignores useless components

I fast estimation with good local properties

I automatised with few calibration steps

I substitute to Fearnhead and Prangle (2012) preliminary
estimation of θ̂(yobs)

I includes a natural (classification) distance measure that
avoids choice of either distance or tolerance

[Marin et al., 2016, 2018]



Calibration of tolerance

Calibration of threshold ε

I from scratch [how small is small?]

I from k-nearest neighbour perspective [quantile of prior
predictive]

subz=which(diz<quantile(diz,.1))

I from asymptotics [convergence speed]

I related with choice of distance [automated selection by
random forests]

[Fearnhead & Prangle, 2012; Biau et al., 2013; Liu & Fearnhead 2018]



Implementation



Sofware

Several ABC R packages for performing parameter
estimation and model selection

[Nunes & Prangle, 2017]



Sofware

Several ABC R packages for performing parameter
estimation and model selection

[Nunes & Prangle, 2017]

abctools R package tuning ABC analyses



Sofware

Several ABC R packages for performing parameter
estimation and model selection

[Nunes & Prangle, 2017]

abcrf R package ABC via random forests



Sofware

Several ABC R packages for performing parameter
estimation and model selection

[Nunes & Prangle, 2017]

EasyABC R package several algorithms for performing
efficient ABC sampling schemes, including four sequential
sampling schemes and 3 MCMC schemes



Sofware

Several ABC R packages for performing parameter
estimation and model selection

[Nunes & Prangle, 2017]

DIYABC non R software for population genetics



ABC-IS

Basic ABC algorithm limitations

I blind [no learning]

I inefficient [curse of dimension]

I inapplicable to improper priors

Importance sampling version

I importance density g(θ)

I bounded kernel function Kh with bandwidth h

I acceptance probability of

Kh{ρ[η(x
obs), η(x{θ})]}π(θ)

/
g(θ)max

θ
Aθ

[Fearnhead & Prangle, 2012]
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ABC-MCMC

Markov chain (θ(t)) created via transition function

θ(t+1) =


θ′ ∼ Kω(θ

′|θ(t)) if x ∼ f(x|θ′) is such that x ≈ y
and u ∼ U(0, 1) ≤ π(θ′)Kω(θ(t)|θ′)

π(θ(t))Kω(θ′|θ(t))
,

θ(t) otherwise,

has the posterior π(θ|y) as stationary distribution
[Marjoram et al, 2003]



ABC-MCMC

Algorithm 3 Likelihood-free MCMC sampler

get (θ(0), z(0)) by Algorithm ??
for t = 1 to N do

generate θ ′ from Kω
(
·|θ(t−1)

)
, z ′ from f(·|θ ′), u from U[0,1],

if u ≤ π(θ ′)Kω(θ(t−1)|θ ′)
π(θ(t−1)Kω(θ ′|θ(t−1))

IA
ε,xobs

(z ′) then

set (θ(t), z(t)) = (θ ′, z ′)
else
(θ(t), z(t))) = (θ(t−1), z(t−1)),

end if
end for



ABC-PMC

Generate a sample at iteration t by

π̂t(θ
(t)) ∝

N∑
j=1

ω
(t−1)
j Kt(θ

(t)|θ
(t−1)
j )

modulo acceptance of the associated xt, with tolerance εt ↓, and

use importance weight associated with accepted simulation θ
(t)
i

ω
(t)
i ∝ π(θ

(t)
i )
/
π̂t(θ

(t)
i )

c© Still likelihood free
[Sisson et al., 2007; Beaumont et al., 2009]



ABC-SMC

Use of a kernel Kt associated with target πεt and derivation of
the backward kernel

Lt−1(z, z
′) =

πεt(z
′)Kt(z

′, z)

πεt(z)

Update of the weights

ω
(t)
i ∝ ω

(t−1)
i

∑M
m=1 IAεt (x

(t)
im)∑M

m=1 IAεt−1 (x
(t−1)
im )

when x
(t)
im ∼ Kt(x

(t−1)
i , ·)

[Del Moral, Doucet & Jasra, 2009]



ABC-NP

Better usage of [prior] simulations by
adjustement: instead of throwing
away θ ′ such that ρ(η(z), η(xobs)) > ε,
replace θ’s with locally regressed
transforms

θ∗ = θ− {η(z) − η(xobs)}Tβ̂ [Csilléry et al., TEE, 2010]

where β̂ is obtained by [NP] weighted least square regression on
(η(z) − η(xobs)) with weights

Kδ

{
ρ(η(z), η(xobs))

}
[Beaumont et al., 2002, Genetics]



ABC-NN

Incorporating non-linearities and heterocedasticities:

θ∗ = m̂(η(xobs)) + [θ− m̂(η(z))]
σ̂(η(xobs))

σ̂(η(z))

where

I m̂(η) estimated by non-linear regression (e.g., neural
network)

I σ̂(η) estimated by non-linear regression on residuals

log{θi − m̂(ηi)}
2 = logσ2(ηi) + ξi

[Blum & François, 2009]
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Convergence



Asymptotics of ABC

Since πABC(· | xobs) is an approximation of π(· | xobs) or
π(· | η(xobs)) coherence of ABC-based inference need be
established on its own

[Li & Fearnhead, 2018a,b; Frazier et al., 2018,2020]

Meaning

I establishing large sample (n) properties of ABC posteriors
and ABC procedures

I finding sufficient conditions and checks on summary
statistics η(·)

I determining proper rate ε = εn of convergence of tolerance
to 0

I [mostly] ignoring Monte Carlo errors
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Consistency of ABC posteriors

ABC algorithm Bayesian consistent at θ0 if for any δ > 0,

Π
(
‖θ− θ0‖ > δ | ρ{η(xobs), η(Z)} ≤ ε

)→ 0

as n→ +∞, ε→ 0

Bayesian consistency implies that sets containing θ0 have
posterior probability tending to one as n→ +∞, with
implication being the existence of a specific rate of
concentration



Consistency of ABC posteriors

ABC algorithm Bayesian consistent at θ0 if for any δ > 0,

Π
(
‖θ− θ0‖ > δ | ρ{η(xobs), η(Z)} ≤ ε

)→ 0

as n→ +∞, ε→ 0

I Concentration around true value and Bayesian consistency
impose less stringent conditions on the convergence speed
of tolerance εn to zero, when compared with asymptotic
normality of ABC posterior

I asymptotic normality of ABC posterior mean does not
require asymptotic normality of ABC posterior



Asymptotic setup

Assumptions:

I asymptotic: xobs = xobs
(n)

∼ Pnθ0 and ε = εn, n→ +∞
I parametric: θ ∈ Rk, k fixed concentration of summary

statistic η(zn):

∃b : θ→ b(θ) η(zn) − b(θ) = oPθ(1), ∀θ

I identifiability of parameter b(θ) 6= b(θ ′) when θ 6= θ ′



Consistency of ABC posteriors

I Concentration of summary η(z): there exists b(θ) such that

η(z) − b(θ) = oPθ(1)

I Consistency:

Πεn

(
‖θ− θ0‖ ≤ δ | η(xobs)

)
= 1+ op(1)

I Convergence rate: there exists δn = o(1) such that

Πεn

(
‖θ− θ0‖ ≤ δn | η(xobs)

)
= 1+ op(1)



Consistency of ABC posteriors

I Consistency:

Πεn

(
‖θ− θ0‖ ≤ δ | η(xobs)

)
= 1+ op(1)

I Convergence rate: there exists δn = o(1) such that

Πεn

(
‖θ− θ0‖ ≤ δn | η(xobs)

)
= 1+ op(1)

I Point estimator consistency

θ̂ε = EABC[θ|η(xobs
(n)

)], EABC[θ | η(xobs
(n)

)] − θ0 = op(1)

vn(EABC[θ | η(xobs
(n)

)] − θ0)⇒ N(0, v)



Asymptotic shape of posterior distribution

Shape of

Π
(
· | ‖η(xobs), η(z)‖ ≤ εn

)
depending on relation between εn and rate σn at which η(xobs

n
)

satisfy CLT

Three different regimes:

1. σn = o(εn) −→ Uniform limit

2. σn � εn −→ perturbated Gaussian limit

3. σn � εn −→ Gaussian limit



Asymptotic behaviour of posterior mean

When kη = dim(η(xobs)) = kθ = dim(θ) and εn = o(n−3/10)

EABC[νn(θ− θ0) | xobs]⇒ N(0,
{
(∇bo)TΣ−1∇bo

}−1
[Li & Fearnhead (2018a)]

In fact, if εβ+1n

√
n = o(1), with β Hölder-smoothness of π

EABC[(θ−θ0) | xobs] =
(∇bo)−1Zo√

n
+

k∑
j=1

hj(θ0)ε
2j
n+op(1), 2k = bβc

[Fearnhead & Prangle, 2012]



Asymptotic behaviour of posterior mean

When kη = dim(η(xobs)) = kθ = dim(θ) and εn = o(n−3/10)

EABC[νn(θ− θ0) | xobs]⇒ N(0,
{
(∇bo)TΣ−1∇bo

}−1
[Li & Fearnhead (2018a)]

Iterating for fixed kθ mildly interesting: if

η̃(xobs) = EABC[θ | xobs]

then

EABC[θ|η̃(xobs)] = θ0 +
(∇bo)−1Zo√

n
+
π ′(θ0)

π(θ0)
ε2n + o()

[Fearnhead & Prangle, 2012]



Curse of dimension

I for reasonable statistical behavior, decline of acceptance αn
the faster the larger the dimension of θ, kθ, but unaffected
by dimension of η, kη

I theoretical justification for dimension reduction methods
that process parameter components individually and
independently of other components

[Fearnhead & Prangle, 2012; Martin & al., 2016]

I importance sampling approach of Li & Fearnhead (2018a)
yields acceptance rates αn = O(1), when εn = O(1/vn)
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I theoretical justification for dimension reduction methods
that process parameter components individually and
independently of other components

[Fearnhead & Prangle, 2012; Martin & al., 2016]

I importance sampling approach of Li & Fearnhead (2018a)
yields acceptance rates αn = O(1), when εn = O(1/vn)



Monte Carlo error

Link the choice of εn to Monte Carlo error associated with Nn
draws in ABC Algorithm

Conditions (on εn) under which

α̂n = αn{1+ op(1)}

where α̂n =
∑Nn
i=1 I [d{η(y), η(z)} ≤ εn] /Nn proportion of

accepted draws from Nn simulated draws of θ
Either
(i) εn = o(v−1n ) and (vnεn)

−kηε−kθn ≤MNn
or
(ii) εn & v−1n and ε−kθn ≤MNn
for M large enough



Bayesian model choice

Model candidates M1,M2, . . . to be compared for dataset xobs

making model index M part of inference
Use of a prior distribution. π(M = m), plus a prior distribution
on the parameter conditional on the value m of the model
index, πm(θm)
Goal to derive the posterior distribution of M, challenging
computational target when models are complex

[Savage, 1964; Berger, 1980]



Generic ABC for model choice

Algorithm 4 Likelihood-free model choice sampler (ABC-MC)

for t = 1 to T do
repeat

Generate m from the prior π(M = m)
Generate θm from the prior πm(θm)
Generate z from the model fm(z|θm)

until ρ{η(z), η(xobs)} < ε
Set m(t) = m and θ(t) = θm

end for

[Cornuet et al., DIYABC, 2009]



ABC model choice consistency

Leaving approximations aside, limiting ABC procedure is Bayes
factor based on η(xobs)

B12(η(x
obs))

Potential loss of information at the testing level
[Robert et al., 2010]

When is Bayes factor based on insufficient statistic η(xobs)
consistent?

[Marin et al., 2013]



ABC model choice consistency

Leaving approximations aside, limiting ABC procedure is Bayes
factor based on η(xobs)

B12(η(x
obs))

Potential loss of information at the testing level
[Robert et al., 2010]

When is Bayes factor based on insufficient statistic η(xobs)
consistent?

[Marin et al., 2013]



Example 7: Gauss versus Laplace

Model M1: x
obs ∼ N (θ1, 1)

⊗n opposed to model M2:
xobs ∼ L(θ2, 1/

√
2)⊗n, Laplace distribution with mean θ2 and

variance one
Four possible statistics η(xobs)

1. sample mean xobs (sufficient for M1 if not M);

2. sample median med(xobs) (insufficient);

3. sample variance var(xobs) (ancillary);

4. median absolute deviation
mad(xobs) = med(|xobs − med(xobs)|);
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Consistency

Summary statistics

η(xobs) = (τ1(x
obs), τ2(x

obs), · · · , τd(xobs)) ∈ Rd

with

I true distribution η ∼ Gn, true mean µ0,

I distribution Gi,n under model Mi, corresponding posteriors
πi(· | ηn)

Assumptions of central limit theorem and large deviations for
η(xobs) under true, plus usual Bayesian asymptotics with di
effective dimension of the parameter)

[Pillai et al., 2013]



Asymptotic marginals

Asymptotically

mi,n(t) =

∫
Θi

gi,n(t|θi)πi(θi) dθi

such that
(i) if inf{|µi(θi) − µ0|; θi ∈ Θi} = 0,

Cl
√
n
d−di ≤ mi,n(η

n) ≤ Cu
√
n
d−di

and
(ii) if inf{|µi(θi) − µ0|; θi ∈ Θi} > 0

mi,n(η
n) = oPn [

√
n
d−τi +

√
n
d−αi ].



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value µ(θ) of ηn under
both models. And only by this mean value!



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value µ(θ) of ηn under
both models. And only by this mean value!

Indeed, if

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} = inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0

then

Cl
√
n
−(d1−d2) ≤ m1,n(η

n)
/
m2(η

n) ≤ Cu
√
n
−(d1−d2),

where Cl, Cu = OPn(1), irrespective of the true model.
c© Only depends on the difference d1 − d2: no consistency



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value µ(θ) of ηn under
both models. And only by this mean value!

Else, if

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} > inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0

then

m1,n(η
n)

m2,n(ηn)
≥ Cu min

(√
n
−(d1−α2),

√
n
−(d1−τ2)

)



Checking for adequate statistics

Run a practical check of the relevance (or non-relevance) of ηn

null hypothesis that both models are compatible with the
statistic ηn

H0 : inf{|µ2(θ2) − µ0|; θ2 ∈ Θ2} = 0

against
H1 : inf{|µ2(θ2) − µ0|; θ2 ∈ Θ2} > 0

testing procedure provides estimates of mean of ηn under each
model and checks for equality



ABC under misspecification

ABC methods rely on simulations z(θ) from the model to
identify those close to xobs

What is happening when the model is wrong?

I for some tolerance sequences εn ↓ ε∗, well-behaved ABC
posteriors that concentrate posterior mass on pseudo-true
value

I if εn too large, asymptotic limit of ABC posterior uniform
with radius of order εn − ε

∗

I even if
√
n{εn − ε

∗}→ 2c ∈ R, limiting distribution no
longer Gaussian

I ABC credible sets invalid confidence sets

[Frazier et al., 2020]
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Example 8: Normal model with wrong variance

Assumed data generating process (DGP) is z ∼ N (θ, 1) but
actual DGP is xobs ∼ N (θ, σ̃2)
Use of summaries

I sample mean η1(x
obs) = 1

n

∑n
i=1 xi

I centered summary η2(x
obs) = 1

n−1

∑n
i=1(xi − η1(x

obs)2 − 1

Three ABC:

I ABC-AR: accept/reject approach with
Kε(d{η(z), η(x

obs)}) = I
[
d{η(z), η(xobs)} ≤ ε

]
and

d{x, y} = ‖x− y‖
I ABC-K: smooth rejection approach, with
Kε(d{η(z), η(x

obs)}) univariate Gaussian kernel

I ABC-Reg: post-processing ABC approach with weighted
linear regression adjustment



Example 8: Normal model with wrong variance

I posterior means for ABC-AR, ABC-K and ABC-Reg as σ2

increases (N = 50, 000 simulated data sets)

I αn = n−5/9 quantile for ABC-AR

I ABC-K and ABC-Reg bandwidth of n−5/9

[Frazier et al., 2020]



ABC misspecification

I data xobs with true distribution P0 assumed issued from
model Pθ θ ∈ Θ ⊂ Rkθ and summary statistic
η(xobs) = (η1(x

obs), ..., ηkη(x
obs))

I misspecification

inf
θ∈Θ
D(P0||Pθ) = inf

θ∈Θ

∫
log

{
dP0(x)

dPθ(x)

}
dP0(y) > 0,

with
θ∗ = arg inf

θ∈Θ
D(P0||Pθ)

[Muller, 2013]

I ABC misspecification:
for b0 (resp. b(θ)) limit of η(xobs) (resp. η(z))

inf
θ∈Θ

d{b0, b(θ)} > 0



ABC misspecification

I data xobs with true distribution P0 assumed issued from
model Pθ θ ∈ Θ ⊂ Rkθ and summary statistic
η(xobs) = (η1(x

obs), ..., ηkη(x
obs))

I ABC misspecification:
for b0 (resp. b(θ)) limit of η(xobs) (resp. η(z))

inf
θ∈Θ

d{b0, b(θ)} > 0

I ABC pseudo-true value:

θ∗ = arg inf
θ∈Θ

d{b0, b(θ)}.



Minimum tolerance

Under identification conditions on b(·) ∈ Rkη , there exists ε∗

such that
ε∗ = inf

θ∈Θ
d{b0, b(θ)} > 0

Once εn < ε
∗ no draw of θ to be selected and posterior

Πε[A|η(x
obs)] ill-conditioned

But appropriately chosen tolerance sequence (εn)n allows
ABC-based posterior to concentrate on distance-dependent
pseudo-true value θ∗
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Minimum tolerance

Under identification conditions on b(·) ∈ Rkη , there exists ε∗

such that
ε∗ = inf

θ∈Θ
d{b0, b(θ)} > 0

Once εn < ε
∗ no draw of θ to be selected and posterior

Πε[A|η(x
obs)] ill-conditioned

But appropriately chosen tolerance sequence (εn)n allows
ABC-based posterior to concentrate on distance-dependent
pseudo-true value θ∗



ABC concentration under misspecification

Assumptions

[A0] Existence of unique b0 such that d(η(xobs), b0) = oP0(1)
and of sequence v0,n → +∞ such that

lim inf
n→+∞ P0

[
d(η(xobsn ), b0) ≥ v−10,n

]
= 1.



ABC concentration under misspecification

Assumptions

[A1] Existence of injective map b : Θ→ B ⊂ Rkη and function
ρn with ρn(·) ↓ 0 as n→ +∞, and ρn(·) non-increasing,
such that

Pθ [d(η(Z), b(θ)) > u] ≤ c(θ)ρn(u),
∫
Θ

c(θ)dΠ(θ) <∞
and assume either

(i) Polynomial deviations: existence of vn ↑ +∞ and
u0, κ > 0 such that ρn(u) = v

−κ
n u

−κ, for u ≤ u0
(ii) Exponential deviations:



ABC concentration under misspecification

Assumptions

[A1] Existence of injective map b : Θ→ B ⊂ Rkη and function
ρn with ρn(·) ↓ 0 as n→ +∞, and ρn(·) non-increasing,
such that

Pθ [d(η(Z), b(θ)) > u] ≤ c(θ)ρn(u),
∫
Θ

c(θ)dΠ(θ) <∞
and assume either

(i) Polynomial deviations:
(ii) Exponential deviations: existence of hθ(·) > 0 such

that Pθ[d(η(z), b(θ)) > u] ≤ c(θ)e−hθ(uvn) and
existence of m,C > 0 such that∫

Θ

c(θ)e−hθ(uvn)dΠ(θ) ≤ Ce−m·(uvn)τ , for u ≤ u0.



ABC concentration under misspecification

Assumptions

[A2] existence of D > 0 and M0, δ0 > 0 such that, for all
δ0 ≥ δ > 0 and M ≥M0, existence of
Sδ ⊂ {θ ∈ Θ : d(b(θ), b0) − ε

∗ ≤ δ} for which

(i) In case (i), D < κ and
∫
Sδ

(
1− c(θ)

M

)
dΠ(θ) & δD.

(ii) In case (ii),
∫
Sδ

(
1− c(θ)e−hθ(M)

)
dΠ(θ) & δD.



Consistency

Assume [A0] – [A2], with εn ↓ ε∗ with

εn ≥ ε∗ +Mv−1n + v−10,n,

for M large enough. Let Mn ↑ ∞ and δn ≥Mn(εn − ε
∗), then

Πε

[
d(b(θ), b0) ≥ ε∗ + δn | η(xobs)

]
= oP0(1),

1. if δn ≥Mnv
−1
n u

−D/κ
n = o(1) in case (i)

2. if δn ≥Mnv
−1
n | log(un)|

1/τ = o(1) in case (ii)

with un = εn − (ε∗ +Mv−1n + v−10,n) ≥ 0 .
[Bernton et al., 2017; Frazier et al., 2020]



Regression adjustement under misspecification

Accepted value θ artificially related to η(xobs) and η(z) through
local linear regression model

θ′ = µ+ βᵀ{η(xobs) − η(z)}+ ν,

where νi model residual
[Beaumont et al., 2003]

Asymptotic behavior of ABC-Reg posterior

Π̃ε[· | η(xobs)]

determined by behavior of

Πε[· | η(xobs)], β̂, and {η(xobs) − η(z)}
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θ′ = µ+ βᵀ{η(xobs) − η(z)}+ ν,

where νi model residual
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Regression adjustement under misspecification

I ABC-Reg takes draws of asymptotically optimal θ,
perturbed in a manner that need not preserve original
optimality

I for ‖β0‖ large, pseudo-true value θ̃∗ possibly outside Θ

I extends to nonlinear regression adjustments [Blum
& François, 2010]

I potential correction of the adjustment [Frazier et al., 2020]

I local regression adjustments with smaller posterior
variability than ABC-AR but fake precision



Example 9: misspecified g-&-k

Quantile function of Tukey’s g-&-k model:

F−1(q) = a+ b

(
1+ 0.8

1− exp(−gz(q))

1+ exp(−gz(q))

)(
1+ z(q)2

)k
z(q),

where z(q) q-th N (0, 1) quantile

But data generated from a mixture distribution with minor
bi-modality



Example 9: misspecified g-&-k



Advanced topics



Computational bottleneck

Time per iteration increases with sample size n of the data:
cost of sampling O(n1+?) associated with a reasonable
acceptance probability makes ABC infeasible for large datasets

I surrogate models to get samples (e.g., using copulas)

I direct sampling of summary statistics (e.g., synthetic
likelihood)

[Wood, 2010]

I borrow from proposals for scalable MCMC (e.g., divide
& conquer)



Approximate ABC [AABC]

Idea approximations on both parameter and model spaces by
resorting to bootstrap techniques.

[Buzbas & Rosenberg, 2015]

Procedure scheme

1. Sample (θi, xi), i = 1, . . . ,m, from prior predictive

2. Simulate θ∗ ∼ π(·) and assign weight wi to dataset x(i)
simulated under k-closest θi to θ∗

3. Generate dataset x∗ as bootstrap weighted sample from
(x(1), . . . , x(k))

Drawbacks

I If m too small, prior predictive sample may miss
informative parameters

I large error and misleading representation of true posterior

I only suited for models with very few parameters
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Divide-and-conquer perspectives

1. divide the large dataset into smaller batches

2. sample from the batch posterior

3. combine the result to get a sample from the targeted
posterior

Alternative via ABC-EP
[Barthelmé & Chopin, 2014]
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3. combine the result to get a sample from the targeted
posterior

Alternative via ABC-EP
[Barthelmé & Chopin, 2014]



Geometric combination: WASP

Subset posteriors given partition xobs[1] , . . . , x
obs
[B] of observed

data xobs, let define

π(θ | xobs[b] ) ∝ π(θ)
∏
j∈[b]

f(xobsj | θ)B.

[Srivastava et al., 2015]
Subset posteriors are combined via Wasserstein barycenter

[Cuturi, 2014]



Geometric combination: WASP

Subset posteriors given partition xobs[1] , . . . , x
obs
[B] of observed

data xobs, let define

π(θ | xobs[b] ) ∝ π(θ)
∏
j∈[b]

f(xobsj | θ)B.

[Srivastava et al., 2015]
Subset posteriors are combined via Wasserstein barycenter

[Cuturi, 2014]

Drawback require sampling from f(· | θ)B by ABC means.
Should be feasible for latent variable (z) representations when
f(x | z, θ) available in closed form

[Doucet & Robert, 2001]



Geometric combination: WASP

Subset posteriors given partition xobs[1] , . . . , x
obs
[B] of observed

data xobs, let define

π(θ | xobs[b] ) ∝ π(θ)
∏
j∈[b]

f(xobsj | θ)B.

[Srivastava et al., 2015]
Subset posteriors are combined via Wasserstein barycenter

[Cuturi, 2014]

Alternative backfeed subset posteriors as priors to other
subsets, partitioning summaries



Consensus ABC

Näıve scheme

I For each data batch b = 1, . . . , B

1. Sample (θ
[b]
1 , . . . , θ

[b]
n ) from diffused prior π̃(·) ∝ π(·)1/B

2. Run ABC to sample from batch posterior
π̂(· | d(S(xobs[b] ), S(x[b])) < ε)

3. Compute sample posterior variance Σ−1
b

I Combine batch posterior approximations

θj =

B∑
b=1

Σbθ
[b]
j

/ B∑
b=1

Σb

Remark Diffuse prior π̃(·) non informative calls for
ABC-MCMC steps
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Σbθ
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Σb

Remark Diffuse prior π̃(·) non informative calls for
ABC-MCMC steps



Big parameter issues

Curse of dimension: as dim(Θ) = kθ increases

I exploration of parameter space gets harder

I summary statistic η forced to increase, since at least of
dimension kη ≥ dim(Θ)

Some solutions

I adopt more local algorithms like ABC-MCMC or
ABC-SMC

I aim at posterior marginals and approximate joint posterior
by copula

[Li et al., 2016]

I run ABC-Gibbs
[Clarté et al., 2016]



Example 11: Hierarchical MA(2)

I xi
iid
∼ MA2(µi, σi)

I µi = (βi,1 − βi,2, 2(βi,1 + βi,2) − 1) with

(βi,1, βi,2, βi,3)
iid
∼ Dir(α1, α2, α3)

I σi
iid
∼ IG(σ1, σ2)

I α = (α1, α2, α3), with prior E(1)⊗3

I σ = (σ1, σ2) with prior C(1)+⊗2

α

µ1 µ2 µn. . .

x1 x2 xn. . .

σ

σ1 σ2 σn. . .



Example 11: Hierarchical MA(2)

c© Based on 106 prior and 103 posteriors simulations, 3n
summary statistics, and series of length 100, ABC-Rej posterior
hardly distinguishable from prior!



ABC-Gibbs

When parameter decomposed into θ = (θ1, . . . , θn)

Algorithm 5 ABC-Gibbs sampler

starting point θ(0) = (θ
(0)
1 , . . . , θ

(0)
n ), observation xobs

for i = 1, . . . ,N do
for j = 1, . . . , n do

θ
(i)
j ∼ πεj(· | x?, sj, θ

(i)
1 , . . . , θ

(i)
j−1, θ

(i−1)
j+1 , . . . , θ

(i−1)
n )

end for
end for

Divide & conquer:

I one tolerance εj for each parameter θj
I one statistic sj for each parameter θj

[Clarté et al., 2019]



ABC-Gibbs

When parameter decomposed into θ = (θ1, . . . , θn)

Algorithm 6 ABC-Gibbs sampler

starting point θ(0) = (θ
(0)
1 , . . . , θ

(0)
n ), observation xobs

for i = 1, . . . ,N do
for j = 1, . . . , n do

θ
(i)
j ∼ πεj(· | x?, sj, θ

(i)
1 , . . . , θ

(i)
j−1, θ

(i−1)
j+1 , . . . , θ

(i−1)
n )

end for
end for

Divide & conquer:

I one tolerance εj for each parameter θj
I one statistic sj for each parameter θj

[Clarté et al., 2019]



Compatibility

When using ABC-Gibbs conditionals with different acceptance
events, e.g., different statistics

π(α)π(sα(µ) | α) and π(µ)f(sµ(x
?) | α, µ).

conditionals are incompatible

I ABC-Gibbs does not necessarily converge (even for
tolerance equal to zero)

I potential limiting distribution

not a genuine posterior (double use of data)
unknown [except for a specific version]
possibly far from genuine posterior(s)

[Clarté et al., 2016]
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Convergence

In hierarchical case n = 2,

Theorem If there exists 0 < κ < 1/2 such that

sup
θ1,θ̃1

‖πε2(· | x
?, s2, θ1) − πε2(· | x

?, s2, θ̃1)‖TV = κ

ABC-Gibbs Markov chain geometrically converges in total
variation to stationary distribution νε, with geometric rate
1− 2κ.



Example 11: Hierarchical MA(2)

Separation from the prior for identical number of simulations



Explicit limiting distribution

For model

xj | µj ∼ π(xj | µj) , µj | α
i.i.d.
∼ π(µj | α) , α ∼ π(α)

alternative ABC based on:

π̃(α, µ | x?) ∝ π(α)q(µ)
∫ generate a new µ︷ ︸︸ ︷
π(µ̃ | α)1η(sα(µ),sα(µ̃))<εα dµ̃

×
∫
f(x̃ | µ)π(x? | µ)1η(sµ(x?),sµ(x̃))<εµ dx̃,

with q arbitrary distribution on µ



Explicit limiting distribution

For model

xj | µj ∼ π(xj | µj) , µj | α
i.i.d.
∼ π(µj | α) , α ∼ π(α)

induces full conditionals

π̃(α | µ) ∝ π(α)
∫
π(µ̃ | α)1η(sα(µ),sα(µ̃))<εα dx̃

and

π̃(µ | α, x?) ∝ q(µ)
∫
π(µ̃ | α)1η(sα(µ),sα(µ̃))<εα dµ̃

×
∫
f(x̃ | µ)π(x? | µ)1η(sµ(x?),sµ(x̃))<εµ dx̃

now compatible with new artificial joint



Explicit limiting distribution

For model

xj | µj ∼ π(xj | µj) , µj | α
i.i.d.
∼ π(µj | α) , α ∼ π(α)

that is,

I prior simulations of α ∼ π(α) and of µ̃ ∼ π(µ̃ | α) until
η(sα(µ), sα(µ̃)) < εα

I simulation of µ from instrumental q(µ) and of auxiliary
variables µ̃ and x̃ until both constraints satisfied



Explicit limiting distribution

For model

xj | µj ∼ π(xj | µj) , µj | α
i.i.d.
∼ π(µj | α) , α ∼ π(α)

Resulting Gibbs sampler stationary for posterior proportional to

π(α, µ)q(sα(µ))︸ ︷︷ ︸
projection

f(sµ(x
?) | µ)︸ ︷︷ ︸

projection

that is, for likelihood associated with sµ(x
?) and prior

distribution proportional to π(α, µ)q(sα(µ)) [exact!]



Incoming ABC workshops

I [A]BayesComp, Gainesville, Florida, Jan 7-10 2020

I ABC in Grenoble, France, March 18-19 2020

I ISBA(BC), Kunming, China, June 26-30 2020

I ABC in Longyearbyen, Svalbard, April 11-13 2021



ABC postdoc positions

2 post-doc positions with the ABSint research grant:

I Focus on approximate Bayesian techniques like ABC,
variational Bayes, PAC-Bayes, Bayesian non-parametrics,
scalable MCMC, and related topics. A potential direction
of research would be the derivation of new Bayesian tools
for model checking in such complex environments.

I Terms: up to 24 months, no teaching duty attached,
primarily located in Université Paris-Dauphine, with
supported periods in Oxford (J. Rousseau) and visits to
Montpellier (J.-M. Marin). No hard deadline.

I If interested, send application to me:
bayesianstatistics@gmail.com


