Asymptotics of ABC

Christian P. Robert
U. Paris Dauphine PSL \& Warwick U. \& CREST ENSAE

IAM-PIMS Colloquium, 9 Dec. 2019

Co-authors

- Jean-Marie Cornuet, Arnaud Estoup (INRA Montpellier)
- David Frazier, Gael Martin (Monash U)
- Jean-Michel Marin (U Montpellier)
- Kerrie Mengersen (QUT)
- Espen Bernton, Pierre Jacob, Natesh Pillai (Harvard U)
- Judith Rousseau (U Oxford)
- Grégoire Clarté, Robin Ryder, Julien Stoehr (U Paris Dauphine)

Outline

Chapman \& Hall/CRC Handbooks of Modern Statistical Methods

Handbook of Approximate Bayesian

Computation

Edited by
Scott A. Sisson
Yanan Fan
Mark A. Beaumont

(CBC) CRC Press

ACHARmavi \& HALL BOO

DAUPHINE PSLA

Posterior distribution

Central concept of Bayesian inference:

Drives

- derivation of optimal decisions
- assessment of uncertainty
- model selection
- prediction
[McElreath, 2015]

Monte Carlo representation

Exploration of Bayesian posterior $\pi\left(\theta \mid x^{\mathrm{obs}}\right)$ may (!) require to produce sample

$$
\theta_{1}, \ldots, \theta_{\mathrm{T}}
$$

distributed from $\pi\left(\theta \mid x^{\text {obs }}\right)$ (or asymptotically by Markov chain Monte Carlo aka MCMC)
[McElreath, 2015]

Difficulties

MCMC = workhorse of practical Bayesian analysis (BUGS, JAGS, Stan, \&tc.), except when product

$$
\pi(\theta) \times \mathrm{L}\left(\theta \mid \chi^{\mathrm{obs}}\right)
$$

well-defined but numerically unavailable or too costly to compute
Only partial solutions are available:

Difficulties

MCMC $=$ workhorse of practical Bayesian analysis (BUGS, JAGS, Stan, \&tc.), except when product

$$
\pi(\theta) \times \mathrm{L}\left(\theta \mid \chi^{\mathrm{obs}}\right)
$$

well-defined but numerically unavailable or too costly to compute
Only partial solutions are available:

- demarginalisation (latent variables)
- exchange algorithm (auxiliary variables)
- pseudo-marginal (unbiased estimator)

Example 1: Dynamic mixture

Mixture model

$$
\left\{1-w_{\mu, \tau}(x)\right\} f_{\beta, \lambda}(x)+w_{\mu, \tau}(x) g_{\varepsilon, \sigma}(x) \quad x>0
$$

where

- $f_{\beta, \lambda}$ Weibull density,
- $g_{\varepsilon, \sigma}$ generalised Pareto density, and
$\boldsymbol{\nu}_{\mu, \tau}$ Cauchy (arctan) cdf
Intractable normalising constant

$$
\mathfrak{C}(\mu, \tau, \beta, \lambda, \varepsilon, \sigma)=\int_{0}^{\infty}\left\{\left(1-w_{\mu, \tau}(x)\right) f_{\beta, \lambda}(x)+w_{\mu, \tau}(x) g_{\varepsilon, \sigma}(x)\right\} d x
$$

[Frigessi, Haug \& Rue, 2002]

DALSHNE | PSLA RODSE
FARCE

Example 2: truncated Normal

Given set $\mathcal{A} \subset \mathbb{R}^{k}$ (k large), truncated Normal model

$$
f(x \mid \mu, \Sigma, \mathcal{A}) \propto \exp \left\{-(x-\mu)^{\mathrm{T}} \Sigma^{-1}(x-\mu) / 2\right\} \mathbb{I}_{\mathcal{A}}(x)
$$

with intractable normalising constant

$$
\mathfrak{C}(\mu, \Sigma, \mathcal{A})=\int_{\mathcal{A}} \exp \left\{-(x-\mu)^{\mathrm{T}} \Sigma^{-1}(x-\mu) / 2\right\} \mathrm{d} x
$$

Example 3: robust Normal statistics

Normal sample

$$
x_{1}, \ldots, x_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

summarised into (insufficient)

$$
\hat{\mu}_{n}=\operatorname{med}\left(x_{1}, \ldots, x_{n}\right)
$$

and

$$
\begin{aligned}
\hat{\sigma}_{n} & =\operatorname{mad}\left(x_{1}, \ldots, x_{n}\right) \\
& =\operatorname{med}\left|x_{i}-\hat{\mu}_{n}\right|
\end{aligned}
$$

Under a conjugate prior $\pi\left(\mu, \sigma^{2}\right)$, posterior close to intractable.

Example 3: robust Normal statistics

Normal sample

$$
x_{1}, \ldots, x_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

summarised into (insufficient)

$$
\hat{\mu}_{n}=\operatorname{med}\left(x_{1}, \ldots, x_{n}\right)
$$

and

$$
\begin{aligned}
\hat{\sigma}_{n} & =\operatorname{mad}\left(x_{1}, \ldots, x_{n}\right) \\
& =\operatorname{med}\left|x_{i}-\hat{\mu}_{n}\right|
\end{aligned}
$$

Under a conjugate prior $\pi\left(\mu, \sigma^{2}\right)$, posterior close to intractable. but simulation of $\left(\hat{\mu}_{n}, \hat{\sigma}_{n}\right)$ straightforward

Example 4: exponential random graph

ERGM: binary random vector x indexed by all edges on set of nodes plus graph

$$
f(x \mid \theta)=\frac{1}{\mathfrak{C}(\theta)} \exp \left(\theta^{\mathrm{T}} S(x)\right)
$$

with $S(x)$ vector of statistics and $\mathfrak{C}(\theta)$ intractable normalising constant

[Grelaud \& al., 2009; Everitt, 2012; Bouranis \& al., 2017]

Realistic[er] applications

- Kingman's coalescent in population genetics
[Tavaré et al., 1997; Beaumont et al., 2003]
- α-stable distributions
[Peters et al, 2012]
- complex networks
[Dutta et al., 2018]
- astrostatistics \& cosmostatistics
[Cameron \& Pettitt, 2012; Ishida et al., 2015]

Concept

A?B?C?

- A stands for approximate [wrong likelihood]
- B stands for Bayesian [right prior]
- C stands for computation [producing a parameter sample]

A?B?C?

- Rough version of the data [from dot to ball]
- Non-parametric approximation of the likelihood [near actual observation]
- Use of non-sufficient statistics [dimension reduction]
- Monte Carlo error [and no unbiasedness]

A seemingly naïve representation

When likelihood $f(x \mid \theta)$ not in closed form, likelihood-free rejection technique:

For an observation $\chi^{\text {obs }} \sim f(x \mid \theta)$, under the prior $\pi(\theta)$, keep jointly simulating

$$
\theta^{\prime} \sim \pi(\theta), z \sim \mathrm{f}\left(z \mid \theta^{\prime}\right),
$$

until the auxiliary variable z is equal to the observed value,

[Diggle \& Gratton, 1984; Rubin, 1984; Tavaré et al., 1997]

A seemingly naïve representation

When likelihood $f(x \mid \theta)$ not in closed form, likelihood-free rejection technique:

ABC-AR algorithm

For an observation $\chi^{\text {obs }} \sim f(x \mid \theta)$, under the prior $\pi(\theta)$, keep jointly simulating

$$
\theta^{\prime} \sim \pi(\theta), z \sim f\left(z \mid \theta^{\prime}\right),
$$

until the auxiliary variable z is equal to the observed value,

$$
z=x^{\mathrm{obs}}
$$

[Diggle \& Gratton, 1984; Rubin, 1984; Tavaré et al., 1997]

Why does it work?

The mathematical proof is trivial:

$$
\begin{aligned}
f\left(\theta_{\mathfrak{i}}\right) & \propto \sum_{z \in \mathcal{D}} \pi\left(\theta_{\mathfrak{i}}\right) \mathrm{f}\left(\boldsymbol{z} \mid \theta_{\mathfrak{i}}\right) \mathbb{I}_{\mathbf{y}}(\boldsymbol{z}) \\
& \propto \pi\left(\theta_{\mathfrak{i}}\right) \mathbf{f}\left(\mathbf{y} \mid \theta_{\mathfrak{i}}\right) \\
& =\pi\left(\theta_{\mathfrak{i}} \mid \mathbf{y}\right)
\end{aligned}
$$

[Accept-Reject 101]
But very impractical when
$\mathbb{P}_{\theta}\left(Z=x^{\text {obs }}\right) \approx 0$

Why does it work?

The mathematical proof is trivial:

$$
\begin{aligned}
f\left(\theta_{i}\right) & \propto \sum_{z \in \mathcal{D}} \pi\left(\theta_{i}\right) f\left(z \mid \theta_{i}\right) \mathbb{I}_{\mathbf{y}}(\boldsymbol{z}) \\
& \propto \pi\left(\theta_{i}\right) f\left(\mathbf{y} \mid \theta_{i}\right) \\
& =\pi\left(\theta_{i} \mid \mathbf{y}\right)
\end{aligned}
$$

[Accept-Reject 101]
But very impractical when

$$
\mathbb{P}_{\theta}\left(Z=x^{\mathrm{obs}}\right) \approx 0
$$

A as approximative

When y is a continuous random variable, strict equality

$$
z=x^{\mathrm{obs}}
$$

is replaced with a tolerance zone

$$
\rho\left(x^{\text {obs }}, z\right) \leq \varepsilon
$$

where ρ is a distance
Output distributed from

$$
\pi(\theta) \mathrm{P}_{\theta}\left\{\rho\left(x^{\mathrm{obs}}, z\right)<\varepsilon\right\} \stackrel{\text { def }}{\propto} \pi\left(\theta \mid \rho\left(x^{\mathrm{obs}}, z\right)<\varepsilon\right)
$$

[Pritchard et al., 1999]

A as approximative

When y is a continuous random variable, strict equality

$$
z=x^{\mathrm{obs}}
$$

is replaced with a tolerance zone

$$
\rho\left(x^{\text {obs }}, z\right) \leq \varepsilon
$$

where ρ is a distance
Output distributed from

$$
\pi(\theta) P_{\theta}\left\{\rho\left(x^{\mathrm{obs}}, z\right)<\varepsilon\right\} \stackrel{\text { def }}{\propto} \pi\left(\theta \mid \rho\left(x^{\mathrm{obs}}, z\right)<\varepsilon\right)
$$

[Pritchard et al., 1999]

ABC algorithm

```
Algorithm 1 Likelihood-free rejection sampler
    for \(i=1\) to N do
        repeat
        generate \(\theta^{\prime}\) from prior \(\pi(\cdot)\)
        generate \(z\) from sampling density \(f\left(\cdot \mid \theta^{\prime}\right)\)
        until \(\rho\left\{\eta(z), \eta\left(x^{\text {obs }}\right)\right\} \leq \varepsilon\)
        set \(\theta_{i}=\theta^{\prime}\)
    end for
```

where $\eta\left(x^{\text {obs }}\right)$ defines a (not necessarily sufficient) statistic

ABC algorithm

```
Algorithm 2 Likelihood-free rejection sampler
    for \(i=1\) to N do
        repeat
        generate \(\theta^{\prime}\) from prior \(\pi(\cdot)\)
        generate \(z\) from sampling density \(f\left(\cdot \mid \theta^{\prime}\right)\)
        until \(\rho\left\{\eta(z), \eta\left(x^{\text {obs }}\right)\right\} \leq \varepsilon\)
        set \(\theta_{i}=\theta^{\prime}\)
    end for
```

where η ($\left.x^{\text {obs }}\right)$ defines a (not necessarily sufficient) statistic Custom: $\eta\left(x^{\text {obs }}\right)$ called summary statistic

Example 3: robust Normal statistics

```
mu=rnorm(N<-1e6) #prior
sig=sqrt(rgamma(N,2,2))
medobs=median(obs)
madobs=mad(obs) #summary
for(t in diz<-1:N){
    psud=rnorm(1e2)/sig[t]+mu[t]
    medpsu=median(psud)-medobs
    madpsu=mad(psud)-madobs
    diz[t]=medpsu^2+madpsu^2}
\#ABC subsample
subz=which(diz<quantile(diz,.1))
```


Exact ABC posterior

Algorithm samples from marginal in z of [exact] posterior

$$
\pi_{\varepsilon}^{\mathrm{ABC}}\left(\theta, z \mid \mathrm{x}^{\mathrm{obs}}\right)=\frac{\pi(\theta) \mathrm{f}(z \mid \theta) \mathbb{I}_{\mathcal{A}_{\varepsilon, \mathrm{xobs}}}(z)}{\int_{A_{\varepsilon, \mathrm{xobs}} \times \Theta} \pi(\theta) \mathrm{f}(z \mid \theta) \mathrm{d} z \mathrm{~d} \theta}
$$

where $A_{\varepsilon, \text { xobs }^{\text {ob }}}=\left\{z \in \mathcal{D} \mid \rho\left\{\eta(z), \eta\left(x^{\text {obs }}\right)\right\}<\varepsilon\right\}$.
Intuition that proper summary statistics coupled with small tolerance $\varepsilon=\varepsilon_{\eta}$ should provide good approximation of the posterior distribution:

Exact ABC posterior

Algorithm samples from marginal in z of [exact] posterior

$$
\pi_{\varepsilon}^{\mathrm{ABC}}\left(\theta, z \mid \mathrm{x}^{\text {obs }}\right)=\frac{\pi(\theta) \mathrm{f}(z \mid \theta) \mathbb{I}_{\varepsilon, \text {, obs }}}{}(z),
$$

where $A_{\varepsilon, x^{\text {obs }}}=\left\{z \in \mathcal{D} \mid \rho\left\{\eta(z), \eta\left(x^{\text {obs }}\right)\right\}<\varepsilon\right\}$.
Intuition that proper summary statistics coupled with small tolerance $\varepsilon=\varepsilon_{\eta}$ should provide good approximation of the posterior distribution:

$$
\pi_{\varepsilon}^{\mathrm{ABC}}\left(\theta \mid \chi^{\mathrm{obs}}\right)=\int \pi_{\varepsilon}^{\mathrm{ABC}}\left(\theta, z \mid x^{\mathrm{obs}}\right) \mathrm{d} z \approx \pi\left\{\theta \mid \eta\left(x^{\mathrm{obs}}\right)\right\}
$$

Why summaries?

- reduction of dimension
- improvement of signal to noise ratio
- reduce tolerance ε considerably
- whole data may be unavailable (as in Example 3)
medobs=median(obs)
madobs=mad(obs) \#summary

Example 6: MA inference

Moving average model MA(2):

$$
x_{\mathrm{t}}=\varepsilon_{\mathrm{t}}+\theta_{1} \varepsilon_{\mathrm{t}-1}+\theta_{2} \varepsilon_{\mathrm{t}-2} \quad \varepsilon_{\mathrm{t}} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0,1)
$$

Comparison of raw series:

Example 6: MA inference

Moving average model MA(2):

$$
x_{\mathrm{t}}=\varepsilon_{\mathrm{t}}+\theta_{1} \varepsilon_{\mathrm{t}-1}+\theta_{2} \varepsilon_{\mathrm{t}-2} \quad \varepsilon_{\mathrm{t}} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0,1)
$$

[Feller, 1970]
Comparison of acf's:

Example 6: MA inference

Summary vs. raw:

Why not summaries?

- loss of sufficient information when $\pi^{\mathrm{ABC}}\left(\theta \mid x^{\mathrm{obs}}\right)$ replaced with $\pi^{\mathrm{ABC}}\left(\theta \mid \eta\left(x^{\mathrm{obs}}\right)\right)$
- arbitrariness of summaries
- uncalibrated approximation
- whole data may be available (at same cost as summaries)
- (empirical) distributions may be compared (Wasserstein distances)
[Bernton et al., 2019]

Summary selection strategies

Fundamental difficulty of selecting summary statistics when there is no non-trivial sufficient statistic [except when done by experimenters from the field]

Summary selection strategies

Fundamental difficulty of selecting summary statistics when there is no non-trivial sufficient statistic [except when done by experimenters from the field]

1. Starting from large collection of summary statistics, Joyce and Marjoram (2008) consider the sequential inclusion into the ABC target, with a stopping rule based on a likelihood ratio test

Summary selection strategies

Fundamental difficulty of selecting summary statistics when there is no non-trivial sufficient statistic [except when done by experimenters from the field]
2. Based on decision-theoretic principles, Fearnhead and Prangle (2012) end up with $\mathbb{E}\left[\theta \mid x^{\mathrm{obs}}\right]$ as the optimal summary statistic

Summary selection strategies

Fundamental difficulty of selecting summary statistics when there is no non-trivial sufficient statistic [except when done by experimenters from the field]
3. Use of indirect inference by Drovandi, Pettit, \& Paddy (2011) with estimators of parameters of auxiliary model as summary statistics

Summary selection strategies

Fundamental difficulty of selecting summary statistics when there is no non-trivial sufficient statistic [except when done by experimenters from the field]
4. Starting from large collection of summary statistics, Raynal \& al. $(2018,2019)$ rely on random forests to build estimators and select summaries

Summary selection strategies

Fundamental difficulty of selecting summary statistics when there is no non-trivial sufficient statistic [except when done by experimenters from the field]
5. Starting from large collection of summary statistics, Sedki \& Pudlo (2012) use the Lasso to eliminate summaries

Semi-automated ABC

Use of summary statistic $\eta(\cdot)$, importance proposal $g(\cdot)$, kernel $K(\cdot) \leq 1$ with bandwidth $h \downarrow 0$ such that

$$
(\theta, z) \sim g(\theta) f(z \mid \theta)
$$

accepted with probability (hence the bound)

$$
\mathrm{K}\left[\left\{\eta(z)-\eta\left(x^{\mathrm{obs}}\right)\right\} / h\right]
$$

and the corresponding importance weight defined by

$$
\pi(\theta) / g(\theta)
$$

Theorem
[Fearnhead \& Prangle, 2012; Sisson et al., 2019]

Semi-automated ABC

Use of summary statistic $\eta(\cdot)$, importance proposal $g(\cdot)$, kernel $K(\cdot) \leq 1$ with bandwidth $h \downarrow 0$ such that

$$
(\theta, z) \sim g(\theta) f(z \mid \theta)
$$

accepted with probability (hence the bound)

$$
\mathrm{K}\left[\left\{\eta(z)-\eta\left(x^{\mathrm{obs}}\right)\right\} / \mathrm{h}\right]
$$

and the corresponding importance weight defined by

$$
\pi(\theta) / g(\theta)
$$

Theorem Optimality of posterior expectation $\mathbb{E}\left[\theta \mid \chi^{\mathrm{obs}}\right]$ of parameter of interest as summary statistics η ($\left.\chi^{\text {obs }}\right)$
[Fearnhead \& Prangle, 2012; Sisson et al., 2019]

Random forests

Technique that stemmed from Leo Breiman's bagging (or bootstrap aggregating) machine learning algorithm for both classification [testing] and regression [estimation]
[Breiman, 1996]

Improved performances by averaging over classification schemes of randomly generated training sets, creating a "forest" of (CART) decision trees, inspired by Amit and Geman (1997) ensemble learning
[Breiman, 2001]

Growing the forest

Breiman's solution for inducing random features in the trees of the forest:

- boostrap resampling of the dataset and
- random subset-ing [of size $\sqrt{\mathrm{t}}$] of the covariates driving the classification or regression at every node of each tree
Covariate (summary) x_{τ} that drives the node separation

$$
x_{\tau} \gtrless c_{\tau}
$$

and the separation bound c_{τ} chosen by minimising entropy or Gini index

ABC with random forests

Idea: Starting with

- possibly large collection of summary statistics $\left(\eta_{1}, \ldots, \eta_{p}\right)$ (from scientific theory input to available statistical softwares, methodologies, to machine-learning alternatives)
- ABC reference table involving model index, parameter values and summary statistics for the associated simulated pseudo-data
run R randomforest to infer \mathfrak{M} or θ from $\left(\eta_{1 i}, \ldots, \eta_{\text {pi }}\right)$

ABC with random forests

Idea: Starting with

- possibly large collection of summary statistics $\left(\eta_{1}, \ldots, \eta_{p}\right)$ (from scientific theory input to available statistical softwares, methodologies, to machine-learning alternatives)
- ABC reference table involving model index, parameter values and summary statistics for the associated simulated pseudo-data
run R randomforest to infer \mathfrak{M} or θ from $\left(\eta_{1 i}, \ldots, \eta_{p i}\right)$

Average of the trees is resulting summary statistics, highly non-linear predictor of the model index

ABC with random forests

Idea: Starting with

- possibly large collection of summary statistics $\left(\eta_{1}, \ldots, \eta_{p}\right)$ (from scientific theory input to available statistical softwares, methodologies, to machine-learning alternatives)
- ABC reference table involving model index, parameter values and summary statistics for the associated simulated pseudo-data
run R randomforest to infer \mathfrak{M} or θ from $\left(\eta_{1 i}, \ldots, \eta_{p i}\right)$

Potential selection of most active summaries, calibrated against pure noise

WARWICK

Classification of summaries by random forests

Given large collection of summary statistics, rather than selecting a subset and excluding the others, estimate each parameter by random forests

- handles thousands of predictors
- ignores useless components
- fast estimation with good local properties
- automatised with few calibration steps
- substitute to Fearnhead and Prangle (2012) preliminary estimation of $\hat{\theta}\left(y^{\text {obs }}\right)$
- includes a natural (classification) distance measure that avoids choice of either distance or tolerance
[Marin et al., 2016, 2018]

Calibration of tolerance

Calibration of threshold ε

- from scratch [how small is small?]
- from k-nearest neighbour perspective [quantile of prior predictive]
subz=which(diz<quantile(diz,.1))
- from asymptotics [convergence speed]
- related with choice of distance [automated selection by random forests]
[Fearnhead \& Prangle, 2012; Biau et al., 2013; Liu \& Fearnhead 2018]

Implementation

Sofware

Several ABC R packages for performing parameter estimation and model selection

Name	References	Stand-alone	Platform	Models
abc	Csilléry et al. (2012)	No (R package)	All	General
ABCreg	Thornton (2009)	Yes	Linux, OS X	General
easyABC	Jabot et al. (2013)	No (R package)	All	General
ABCtoolbox	Wegmann et al. (2010)	Yes	Linux, Windows	Genetics
Bayes-SSC	Anderson et al. (2005)	Yes	Genetics	
DIY-ABC	Cornuet et al. (2008, 2010, 2014)	Yes	All	Genetics
msBayes	Hickerson et al. (2007)	Yes	All	Linux, OS X
MTML-msBayes	Huang et al. (2011)	Yes	Ginux, OS X	Genetics
onesamp	Tallmon et al. (2008)	Yes (web interface)	All	Genetics
PopABC	Lopes et al. (2009)	Yes	All	Genetics
REJECTOR	Jobin and Mountain (2008)	Yes	Genetics	
EP-ABC	Barthelmé and Chopin (2014)	No (MATLAB tool-	All	State space models
		box)	(and related)	
ABC-SDE	Picchini (2013)	No (MATLAB tool-	All	Stochastic differen-
		box)	tial equations	
ABC-SysBio	Liepe et al. (2010)	Yes (Python scripts)	All	Systems biology

Table 1: Software for ABC. "All" regarding platform refers to Linux, OS X (Mac) and Windows.
[Nunes \& Prangle, 2017]

DAUPGNE | PSL

Sofware

Several ABC R packages for performing parameter estimation and model selection

Name	References	Stand-alone	Platform	Models
abc	Csilléry et al. (2012)	No (R package)	All	General
ABCreg	Thornton (2009)	Yes	Linux, OS X	General
easyABC	Jabot et al. (2013)	No (R package)	All	General
ABCtoolbox	Wegmann et al. (2010)	Yes	Linux, Windows	Genetics
Bayes-SSC	Anderson et al. (2005)	Yes	Genetics	
DIY-ABC	Cornuet et al. (2008,2010, 2014)	Yes	Gll	Genetics
msBayes	Hickerson et al. (2007)	Yes	All	Linux, OS X
MTML-msBayes	Huang et al. (2011)	Yes	Genetics	
onesamp	Tallmon et al. (2008)	Yes (web interface)	Linux, OS X	Genetics
PopABC	Lopes et al. (2009)	Yes	Genetics	
REJECTOR	Jobin and Mountain (2008)	Yes	All	Genetics
EP-ABC	Barthelmé and Chopin (2014)	No (MATLAB tool-	All	All
	box)	State space models		
ABC-SDE	Picchini (2013)	No (MATLAB tool-	All	(and related)
		box)	Stochastic differen-	
ABC-SysBio	Liepe et al. (2010)	Yes (Python scripts)	All	tial equations
			Systems biology	

Table 1: Software for ABC. "All" regarding platform refers to Linux, OS X (Mac) and Windows.
[Nunes \& Prangle, 2017]
abctools R package tuning ABC analyses

Sofware

Several ABC R packages for performing parameter estimation and model selection

Name	References	Stand-alone	Platform	Models
$a b c$	Csilléry et al. (2012)	No (R package)	All	General
ABCreg	Thornton (2009)	Yes	Linux, OS X	General
easyABC	Jabot et al. (2013)	No (R package)	All	General
ABCtoolbox	Wegmann et al. (2010)	Yes	Linux, Windows	Genetics
Bayes-SSC	Anderson et al. (2005)	Yes	All	Genetics
DIY-ABC	Cornuet et al. (2008, 2010, 2014)	Yes	All	Genetics
msBayes	Hickerson et al. (2007)	Yes	Linux, OS X	Genetics
MTML-msBayes	Huang et al. (2011)	Yes	Linux, OS X	Genetics
onesamp	Tallmon et al. (2008)	Yes (web interface)	All	Genetics
PopABC	Lopes et al. (2009)	Yes	All	Genetics
REJECTOR	Jobin and Mountain (2008)	Yes	All	Genetics
EP-ABC	Barthelmé and Chopin (2014)	No (MATLAB toolbox)	All	State space models (and related)
ABC-SDE	Picchini (2013)	No (MATLAB toolbox)	All	Stochastic differential equations
ABC-SysBio	Liepe et al. (2010)	Yes (Python scripts)	All	Systems biology

Table 1: Software for ABC. "All" regarding platform refers to Linux, OS X (Mac) and Windows.
[Nunes \& Prangle, 2017]
abcrf R package $A B C$ via random forests

DAUPHMNE \mid PSL *

Sofware

Several ABC R packages for performing parameter

 estimation and model selection| Name | References | Stand-alone | Platform | Models |
| :--- | :--- | :--- | :--- | :--- |
| abc | Csilléry et al. (2012) | No (R package) | All | General |
| ABCreg | Thornton (2009) | Yes | Linux, OS X | General |
| easyABC | Jabot et al. (2013) | No (R package) | All | General |
| ABCtoolbox | Wegmann et al. (2010) | Yes | Linux, Windows | Genetics |
| Bayes-SSC | Anderson et al. (2005) | Yes | Gll | Genetics |
| DIY-ABC | Cornuet et al. (2008, 2010, 2014) | Yes | Genetics | |
| msBayes | Hickerson et al. (2007) | Yes | All | Genux, OS X |
| MTML-msBayes | Huang et al. (2011) | Yes | Genetics | |
| onesamp | Tallmon et al. (2008) | Yes (web interface) | Linux, OS X | Genetics |
| PopABC | Lopes et al. (2009) | Yes | Genetics | |
| REJECTOR | Jobin and Mountain (2008) | Yes | All | Genetics |
| EP-ABC | Barthelmé and Chopin (2014) | No (MATLAB tool- | All | All |
| | box) | Senetics | | |
| ABC-SDE | Picchini (2013) | No (MATLAB tool- | All | (and related) |
| | | box) | Stochastic differen- | |
| ABC-SysBio | Liepe et al. (2010) | Yes (Python scripts) | All | tial equations |
| | | | Systems biology | |

Table 1: Software for ABC. "All" regarding platform refers to Linux, OS X (Mac) and Windows.
[Nunes \& Prangle, 2017]

EasyABC R package several algorithms for performing efficient ABC sampling schemes, including four sequential sampling schemes and 3 MCMC schemes

Sofware

Several ABC R packages for performing parameter estimation and model selection

Name	References	Stand-alone	Platform	Models
abc	Csilléry et al. (2012)	No (R package)	All	General
ABCreg	Thornton (2009)	Yes	Linux, OS X	General
easyABC	Jabot et al. (2013)	No (R package)	All	General
ABCtoolbox	Wegmann et al. (2010)	Yes	Linux, Windows	Genetics
Bayes-SSC	Anderson et al. (2005)	Yes	All	Genetics
DIY-ABC	Cornuet et al. $(2008,2010,2014)$	Yes	All	Genetics
msBayes	Hickerson et al. (2007)	Yes	Linux, OS X	Genetics
MTML-msBayes	Huang et al. (2011)	Yes	Linux, OS X	Genetics
onesamp	Tallmon et al. (2008)	Yes (web interface)	All	Genetics
PopABC	Lopes et al. (2009)	Yes	All	Genetics
REJECTOR	Jobin and Mountain (2008)	Yes	Genetics	
EP-ABC	Barthelmé and Chopin (2014)	No (MATLAB tool-	All	State space models
		box)	(and related)	
ABC-SDE	Picchini (2013)	No (MATLAB tool-	All	Stochastic differen-
		box)	tial equations	
ABC-SysBio	Liepe et al. (2010)	Yes (Python scripts)	All	Systems biology

Table 1: Software for ABC. "All" regarding platform refers to Linux, OS X (Mac) and Windows.
[Nunes \& Prangle, 2017]

DIYABC non R software for population genetics

ABC-IS

Basic ABC algorithm limitations

- blind [no learning]
- inefficient [curse of dimension]
- inapplicable to improper priors
importance density $\mathrm{g}(\theta)$
bounded kernel function K_{h} with bandwidth h
acceptance probability of
$K_{h}\left\{\rho\left[\eta\left(\chi^{\text {obs }}\right), \eta(x\{\theta\})\right]\right\} \pi(\theta) / g(\theta) \max _{\theta} A_{\theta}$
[Fearnhead \& Prangle, 2012]

ABC-IS

Basic ABC algorithm limitations

- blind [no learning]
- inefficient [curse of dimension]
- inapplicable to improper priors

Importance sampling version

- importance density $g(\theta)$
- bounded kernel function K_{h} with bandwidth h
- acceptance probability of

$$
\mathrm{K}_{\mathrm{h}}\left\{\rho\left[\eta\left(x^{\mathrm{obs}}\right), \eta(x\{\theta\})\right]\right\} \pi(\theta) / g(\theta) \max _{\theta} A_{\theta}
$$

[Fearnhead \& Prangle, 2012]

ABC-MCMC

Markov chain $\left(\theta^{(t)}\right)$ created via transition function

$$
\theta^{(t+1)}= \begin{cases}\theta^{\prime} \sim K_{\omega}\left(\theta^{\prime} \mid \theta^{(t)}\right) & \text { if } x \sim f\left(x \mid \theta^{\prime}\right) \text { is such that } x \approx y \\ & \text { and } u \sim \mathcal{U}(0,1) \leq \frac{\pi\left(\theta^{\prime}\right) K_{\omega}\left(\theta^{(t)} \mid \theta^{\prime}\right)}{\pi\left(\theta^{(t)}\right) K_{\omega}\left(\theta^{\prime} \theta^{(t)}\right)}, \\ \theta^{(t)} & \text { otherwise, }\end{cases}
$$

has the posterior $\pi(\theta \mid y)$ as stationary distribution
[Marjoram et al, 2003]

ABC-MCMC

Algorithm 3 Likelihood-free MCMC sampler

get $\left(\theta^{(0)}, z^{(0)}\right)$ by Algorithm ??
for $t=1$ to N do
generate θ^{\prime} from $K_{\omega}\left(\cdot \mid \theta^{(t-1)}\right), z^{\prime}$ from $f\left(\cdot \mid \theta^{\prime}\right)$, u from $\mathcal{U}_{[0,1]}$, if $u \leq \frac{\pi\left(\theta^{\prime}\right) K_{\omega}\left(\theta^{(t-1)} \mid \theta^{\prime}\right)}{\pi\left(\theta^{(t-1)} K_{\omega}\left(\left.\theta^{\prime}\right|^{(t-1)}\right)\right.} \mathbb{I}_{\mathcal{A}_{\varepsilon, \text { x }} \text { obs }}\left(z^{\prime}\right)$ then

$$
\operatorname{set}\left(\theta^{(\mathrm{t})}, z^{(\mathrm{t})}\right)=\left(\theta^{\prime}, z^{\prime}\right)
$$

else

$$
\left.\left(\theta^{(\mathrm{t})}, z^{(\mathrm{t})}\right)\right)=\left(\theta^{(\mathrm{t}-1)}, z^{(\mathrm{t}-1)}\right)
$$

end if
end for

ABC-PMC

Generate a sample at iteration t by

$$
\hat{\pi}_{t}\left(\theta^{(t)}\right) \propto \sum_{j=1}^{N} \omega_{j}^{(t-1)} K_{t}\left(\theta^{(t)} \mid \theta_{j}^{(t-1)}\right)
$$

modulo acceptance of the associated χ_{t}, with tolerance $\varepsilon_{\mathrm{t}} \downarrow$, and use importance weight associated with accepted simulation $\theta_{i}^{(t)}$

$$
\omega_{i}^{(\mathrm{t})} \propto \pi\left(\theta_{i}^{(\mathrm{t})}\right) / \hat{\pi}_{\mathrm{t}}\left(\theta_{i}^{(\mathrm{t})}\right)
$$

(C) Still likelihood free
[Sisson et al., 2007; Beaumont et al., 2009]

ABC-SMC

Use of a kernel K_{t} associated with target $\pi_{\varepsilon_{\mathrm{t}}}$ and derivation of the backward kernel

$$
\mathrm{L}_{\mathrm{t}-1}\left(z, z^{\prime}\right)=\frac{\pi_{\varepsilon_{\mathrm{t}}}\left(z^{\prime}\right) \mathrm{K}_{\mathrm{t}}\left(z^{\prime}, z\right)}{\pi_{\varepsilon_{\mathrm{t}}}(z)}
$$

Update of the weights

$$
\omega_{i}^{(\mathrm{t})} \propto \omega_{i}^{(\mathrm{t}-1)} \frac{\sum_{m=1}^{M} \mathbb{I}_{\mathcal{A}_{\varepsilon_{\mathrm{t}}}}\left(x_{i m}^{(\mathrm{t})}\right)}{\sum_{m=1}^{M} \mathbb{I}_{{\mathcal{\varepsilon _ { \varepsilon }}}_{\mathrm{t}-1}}\left(x_{i m}^{(\mathrm{t}-1)}\right)}
$$

when $x_{\mathfrak{i m}}^{(\mathrm{t})} \sim \mathrm{K}_{\mathrm{t}}\left(\mathrm{x}_{\mathfrak{i}}^{(\mathrm{t}-1)}, \cdot\right)$
[Del Moral, Doucet \& Jasra, 2009]

ABC-NP

Better usage of [prior] simulations by adjustement: instead of throwing away θ^{\prime} such that $\rho\left(\eta(z), \eta\left(\chi^{\text {obs }}\right)\right)>\varepsilon$, replace θ 's with locally regressed transforms

$$
\theta^{*}=\theta-\left\{\eta(z)-\eta\left(x^{\mathrm{obs}}\right)\right\}^{\mathrm{T}} \widehat{\beta}
$$

[Csilléry et al., TEE, 2010]
where $\hat{\beta}$ is obtained by $[N P]$ weighted least square regression on $\left(\eta(z)-\eta\left(x^{\mathrm{obs}}\right)\right)$ with weights

$$
\mathrm{K}_{\delta}\left\{\rho\left(\eta(z), \eta\left(x^{\mathrm{obs}}\right)\right)\right\}
$$

[Beaumont et al., 2002, Genetics]

$\mathrm{ABC}-\mathrm{NN}$

Incorporating non-linearities and heterocedasticities:

$$
\theta^{*}=\hat{m}\left(\eta\left(x^{\mathrm{obs}}\right)\right)+[\theta-\hat{\mathrm{m}}(\eta(z))] \frac{\hat{\sigma}\left(\eta\left(x^{\mathrm{obs}}\right)\right)}{\hat{\sigma}(\eta(z))}
$$

where
$\widehat{m}(\mathrm{n})$ estimated by non-linear regression (e.g., neural network)
$\hat{\sigma}(\eta)$ estimated by non-linear regression on residuals

$$
\log \left\{\theta_{i}-\hat{M}\left(\eta_{i}\right)\right\}^{2}=\log \sigma^{2}\left(\eta_{i}\right)+\xi_{i}
$$

[Blum \& François, 2009]

$\mathrm{ABC}-\mathrm{NN}$

Incorporating non-linearities and heterocedasticities:

$$
\theta^{*}=\hat{m}\left(\eta\left(x^{\mathrm{obs}}\right)\right)+[\theta-\hat{\mathrm{m}}(\eta(z))] \frac{\hat{\sigma}\left(\eta\left(x^{\mathrm{obs}}\right)\right)}{\hat{\sigma}(\eta(z))}
$$

where

- $\hat{m}(\eta)$ estimated by non-linear regression (e.g., neural network)
- $\hat{\sigma}(\eta)$ estimated by non-linear regression on residuals

$$
\log \left\{\theta_{i}-\hat{m}\left(\eta_{i}\right)\right\}^{2}=\log \sigma^{2}\left(\eta_{i}\right)+\xi_{i}
$$

[Blum \& François, 2009]

Convergence

Asymptotics of ABC

Since $\pi^{\mathrm{ABC}}\left(\cdot \mid x^{\mathrm{obs}}\right)$ is an approximation of $\pi\left(\cdot \mid x^{\mathrm{obs}}\right)$ or $\pi\left(\cdot \mid \eta\left(x^{\mathrm{obs}}\right)\right)$ coherence of ABC-based inference need be established on its own
[Li \& Fearnhead, 2018a,b; Frazier et al., 2018,2020]

Meaning

establishing large sample (n) properties of ABC posteriors and ABC procedures
finding sufficient conditions and checks on summary statistics $\eta(\cdot)$
determining proper rate $\varepsilon=\varepsilon_{\imath}$ of convergence of tolerance to 0

Asymptotics of ABC

Since $\pi^{\mathrm{ABC}}\left(\cdot \mid \chi^{\mathrm{obs}}\right)$ is an approximation of $\pi\left(\cdot \mid \chi^{\mathrm{obs}}\right)$ or $\pi\left(\cdot \mid \eta\left(\chi^{\text {obs }}\right)\right)$ coherence of ABC-based inference need be established on its own
[Li \& Fearnhead, 2018a,b; Frazier et al., 2018,2020]
Meaning

- establishing large sample (n) properties of ABC posteriors and ABC procedures
- finding sufficient conditions and checks on summary statistics $\eta(\cdot)$
- determining proper rate $\varepsilon=\varepsilon_{n}$ of convergence of tolerance to 0
- [mostly] ignoring Monte Carlo errors

Consistency of ABC posteriors

ABC algorithm Bayesian consistent at θ_{0} if for any $\delta>0$,

$$
\Pi\left(\left\|\theta-\theta_{0}\right\|>\delta \mid \rho\left\{\eta\left(x^{\mathrm{obs}}\right), \eta(Z)\right\} \leq \varepsilon\right) \rightarrow 0
$$

as $n \rightarrow+\infty, \varepsilon \rightarrow 0$
Bayesian consistency implies that sets containing $\boldsymbol{\theta}_{0}$ have posterior probability tending to one as $n \rightarrow+\infty$, with implication being the existence of a specific rate of concentration

Consistency of ABC posteriors

ABC algorithm Bayesian consistent at θ_{0} if for any $\delta>0$,

$$
\Pi\left(\left\|\theta-\theta_{0}\right\|>\delta \mid \rho\left\{\eta\left(x^{\mathrm{obs}}\right), \eta(Z)\right\} \leq \varepsilon\right) \rightarrow 0
$$

as $n \rightarrow+\infty, \varepsilon \rightarrow 0$

- Concentration around true value and Bayesian consistency impose less stringent conditions on the convergence speed of tolerance ε_{n} to zero, when compared with asymptotic normality of ABC posterior
- asymptotic normality of ABC posterior mean does not require asymptotic normality of ABC posterior

Asymptotic setup

Assumptions:

- asymptotic: $x^{\mathrm{obs}}=\chi^{\mathrm{obs}(\mathfrak{n})} \sim \mathbb{P}_{\theta_{0}}^{n}$ and $\varepsilon=\varepsilon_{n}, n \rightarrow+\infty$
- parametric: $\theta \in \mathbb{R}^{k}$, k fixed concentration of summary statistic $\eta\left(z^{\mathfrak{n}}\right)$:
$\exists \mathrm{b}: \theta \rightarrow \mathrm{b}(\theta) \quad \eta\left(z^{\mathfrak{n}}\right)-\mathrm{b}(\theta)=\mathrm{o}_{\mathbb{P}_{\theta}}(1), \quad \forall \theta$
- identifiability of parameter $b(\theta) \neq b\left(\theta^{\prime}\right)$ when $\theta \neq \theta^{\prime}$

Consistency of ABC posteriors

- Concentration of summary $\eta(z)$: there exists $b(\theta)$ such that

$$
\eta(z)-b(\theta)=o_{\mathbb{P}_{\theta}}(1)
$$

- Consistency:

$$
\Pi_{\varepsilon_{n}}\left(\left\|\theta-\theta_{0}\right\| \leq \delta \mid \eta\left(x^{\mathrm{obs}}\right)\right)=1+\mathrm{o}_{\mathrm{p}}(1)
$$

- Convergence rate: there exists $\delta_{n}=o(1)$ such that

$$
\Pi_{\varepsilon_{n}}\left(\left\|\theta-\theta_{0}\right\| \leq \delta_{n} \mid \eta\left(\chi^{\mathrm{obs}}\right)\right)=1+o_{p}(1)
$$

Consistency of ABC posteriors

- Consistency:

$$
\Pi_{\varepsilon_{n}}\left(\left\|\theta-\theta_{0}\right\| \leq \delta \mid \eta\left(\chi^{\mathrm{obs}}\right)\right)=1+\mathrm{o}_{\mathrm{p}}(1)
$$

- Convergence rate: there exists $\delta_{n}=\mathrm{o}(1)$ such that

$$
\Pi_{\varepsilon_{n}}\left(\left\|\theta-\theta_{0}\right\| \leq \delta_{n} \mid \eta\left(x^{\mathrm{obs}}\right)\right)=1+o_{p}(1)
$$

- Point estimator consistency

$$
\begin{aligned}
& \hat{\theta}_{\varepsilon}=\mathbb{E}_{A B C}\left[\theta \mid \eta\left(x^{\mathrm{obs}(\mathfrak{n})}\right)\right], \quad \mathbb{E}_{A B C}\left[\theta \mid \eta\left(x^{\mathrm{obs}}(\mathfrak{n})\right]-\theta_{0}=o_{p}(1)\right. \\
& \nu_{n}\left(\mathbb{E}_{A B C}\left[\theta \mid \eta\left(x^{\mathrm{obs}(\mathfrak{n})}\right)\right]-\theta_{0}\right) \Rightarrow \mathrm{N}(0, \underset{\text { wasmoc }}{v)}
\end{aligned}
$$

Asymptotic shape of posterior distribution

Shape of

$$
\Pi\left(\cdot \mid\left\|\eta\left(\chi^{\mathrm{obs}}\right), \eta(z)\right\| \leq \varepsilon_{n}\right)
$$

depending on relation between ε_{n} and rate σ_{n} at which $\eta\left(x^{\text {obs }}{ }^{n}\right)$ satisfy CLT

Three different regimes:

1. $\sigma_{\mathrm{n}}=\mathrm{o}\left(\varepsilon_{\mathrm{n}}\right) \longrightarrow$ Uniform limit
2. $\sigma_{n} \asymp \varepsilon_{n} \longrightarrow$ perturbated Gaussian limit
3. $\sigma_{n} \gg \varepsilon_{n} \longrightarrow$ Gaussian limit

Asymptotic behaviour of posterior mean

When $k_{\eta}=\operatorname{dim}\left(\eta\left(x^{\mathrm{obs}}\right)\right)=\mathrm{k}_{\theta}=\operatorname{dim}(\theta)$ and $\varepsilon_{n}=\mathrm{o}\left(\mathrm{n}^{-3 / 10}\right)$

$$
\mathbb{E}_{A B C}\left[v_{n}\left(\theta-\theta_{0}\right) \mid x^{\mathrm{obs}}\right] \Rightarrow \mathrm{N}\left(0,\left\{\left(\nabla \mathbf{b}^{\mathrm{o}}\right)^{\top} \Sigma^{-1} \nabla \mathrm{~b}^{\mathrm{o}}\right\}^{-1}\right.
$$

[Li \& Fearnhead (2018a)]
In fact, if $\varepsilon_{n}^{\beta+1} \sqrt{n}=o(1)$, with β Hölder-smoothness of π
$\mathbb{E}_{A B C}\left[\left(\theta-\theta_{0}\right) \mid x^{\mathrm{obs}}\right]=\frac{\left(\nabla b^{o}\right)^{-1} Z^{o}}{\sqrt{n}}+\sum_{j=1}^{k} h_{j}\left(\theta_{0}\right) \varepsilon_{n}^{2 j}+o_{p}(1), \quad 2 k=\lfloor\beta\rfloor$
[Fearnhead \& Prangle, 2012]

Asymptotic behaviour of posterior mean

When $k_{\eta}=\operatorname{dim}\left(\eta\left(x^{\mathrm{obs}}\right)\right)=\mathrm{k}_{\theta}=\operatorname{dim}(\theta)$ and $\varepsilon_{n}=\mathrm{o}\left(\mathrm{n}^{-3 / 10}\right)$

$$
\mathbb{E}_{A B C}\left[v_{n}\left(\theta-\theta_{0}\right) \mid x^{\mathrm{obs}}\right] \Rightarrow \mathrm{N}\left(0,\left\{\left(\nabla \mathrm{~b}^{\mathrm{o}}\right)^{\top} \Sigma^{-1} \nabla \mathrm{~b}^{\mathrm{o}}\right\}^{-1}\right.
$$

[Li \& Fearnhead (2018a)]
Iterating for fixed k_{θ} mildly interesting: if

$$
\tilde{\eta}\left(\chi^{\mathrm{obs}}\right)=\mathbb{E}_{A B C}\left[\theta \mid \chi^{\mathrm{obs}}\right]
$$

then

$$
\mathbb{E}_{A B C}\left[\theta \mid \tilde{\eta}\left(x^{\mathrm{obs}}\right)\right]=\theta_{0}+\frac{\left(\nabla b^{o}\right)^{-1} Z^{o}}{\sqrt{n}}+\frac{\pi^{\prime}\left(\theta_{0}\right)}{\pi\left(\theta_{0}\right)} \varepsilon_{n}^{2}+\mathrm{o}()
$$

[Fearnhead \& Prangle, 2012]

Curse of dimension

- for reasonable statistical behavior, decline of acceptance α_{n} the faster the larger the dimension of θ, k_{θ}, but unaffected by dimension of η, k_{η}
- theoretical justification for dimension reduction methods that process parameter components individually and independently of other components
[Fearnhead \& Prangle, 2012; Martin \& al., 2016]
importance sampling approach of Li \& Fearnhead (2018a) yields acceptance rates $\alpha_{n}=O(1)$, when $\varepsilon_{n}=O\left(1 / v_{n}\right)$

Curse of dimension

- for reasonable statistical behavior, decline of acceptance α_{n} the faster the larger the dimension of θ, k_{θ}, but unaffected by dimension of η, k_{η}
- theoretical justification for dimension reduction methods that process parameter components individually and independently of other components
[Fearnhead \& Prangle, 2012; Martin \& al., 2016]
- importance sampling approach of Li \& Fearnhead (2018a) yields acceptance rates $\alpha_{n}=\mathrm{O}(1)$, when $\varepsilon_{n}=\mathrm{O}\left(1 / v_{n}\right)$

Monte Carlo error

Link the choice of ε_{n} to Monte Carlo error associated with N_{n} draws in ABC Algorithm

Conditions (on ε_{n}) under which

$$
\hat{\alpha}_{n}=\alpha_{n}\left\{1+o_{p}(1)\right\}
$$

where $\hat{\alpha}_{n}=\sum_{i=1}^{N_{n}} \mathbb{I}\left[d\{\eta(y), \eta(z)\} \leq \varepsilon_{n}\right] / N_{n}$ proportion of accepted draws from N_{n} simulated draws of θ

Either

(i) $\varepsilon_{n}=\mathrm{o}\left(v_{n}^{-1}\right)$ and $\left(v_{n} \varepsilon_{n}\right)^{-k_{n}} \varepsilon_{n}^{-k_{\theta}} \leq M N_{n}$
or
(ii) $\varepsilon_{n} \gtrsim v_{n}^{-1}$ and $\varepsilon_{n}^{-k_{\theta}} \leq M N_{n}$
for M large enough

Bayesian model choice

Model candidates M_{1}, M_{2}, \ldots to be compared for dataset $x^{\text {obs }}$ making model index \mathcal{M} part of inference
Use of a prior distribution. $\pi(\mathcal{M}=\mathfrak{m})$, plus a prior distribution on the parameter conditional on the value m of the model index, $\pi_{m}\left(\theta_{\mathrm{m}}\right)$
Goal to derive the posterior distribution of M, challenging computational target when models are complex
[Savage, 1964; Berger, 1980]

Generic ABC for model choice

Algorithm 4 Likelihood-free model choice sampler (ABC-MC) for $t=1$ to T do

repeat

Generate \mathfrak{m} from the prior $\pi(\mathcal{M}=\mathfrak{m})$
Generate θ_{m} from the prior $\pi_{\mathrm{m}}\left(\theta_{\mathrm{m}}\right)$
Generate z from the model $\mathrm{f}_{\mathrm{m}}\left(z \mid \theta_{\mathrm{m}}\right)$ until $\rho\left\{\eta(z), \eta\left(x^{\text {obs }}\right)\right\}<\varepsilon$ Set $m^{(t)}=m$ and $\theta^{(t)}=\theta_{m}$ end for
[Cornuet et al., DIYABC, 2009]

ABC model choice consistency

Leaving approximations aside, limiting ABC procedure is Bayes factor based on $\eta\left(x^{\text {obs }}\right)$

$$
\mathrm{B}_{12}\left(\eta\left(\mathrm{x}^{\mathrm{obs}}\right)\right)
$$

Potential loss of information at the testing level
[Robert et al., 2010]
[Marin et al., 2013]

WARWICK

ABC model choice consistency

Leaving approximations aside, limiting ABC procedure is Bayes factor based on $\eta\left(x^{\text {obs }}\right)$

$$
\mathrm{B}_{12}\left(\eta\left(\mathrm{x}^{\mathrm{obs}}\right)\right)
$$

Potential loss of information at the testing level
[Robert et al., 2010]
When is Bayes factor based on insufficient statistic η ($\left.\chi^{\text {obs }}\right)$ consistent?
[Marin et al., 2013]

Example 7: Gauss versus Laplace

Model $\mathfrak{M}_{1}: \chi^{\text {obs }} \sim \mathcal{N}\left(\theta_{1}, 1\right)^{\otimes n}$ opposed to model \mathfrak{M}_{2} : $x^{\text {obs }} \sim \mathcal{L}\left(\theta_{2}, 1 / \sqrt{2}\right)^{\otimes n}$, Laplace distribution with mean θ_{2} and variance one

Four possible statistics $\eta\left(x^{\text {obs }}\right)$

1. sample mean $\overline{\chi^{\text {obs }}}$ (sufficient for \mathfrak{M}_{1} if not \mathfrak{M});
2. sample median $\operatorname{med}\left(x^{\text {obs }}\right)$ (insufficient);
3. sample variance $\operatorname{var}\left(x^{\mathrm{obs}}\right)$ (ancillary);
4. median absolute deviation $\operatorname{mad}\left(x^{\text {obs }}\right)=\operatorname{med}\left(\left|x^{\text {obs }}-\operatorname{med}\left(x^{\text {obs }}\right)\right|\right) ;$

Example 7: Gauss versus Laplace

Model $\mathfrak{M}_{1}: \chi^{\text {obs }} \sim \mathcal{N}\left(\theta_{1}, 1\right)^{\otimes n}$ opposed to model \mathfrak{M}_{2} : $\chi^{\text {obs }} \sim \mathcal{L}\left(\theta_{2}, 1 / \sqrt{2}\right)^{\otimes n}$, Laplace distribution with mean θ_{2} and variance one

Consistency

Summary statistics

$$
\eta\left(x^{\mathrm{obs}}\right)=\left(\tau_{1}\left(x^{\mathrm{obs}}\right), \tau_{2}\left(x^{\mathrm{obs}}\right), \cdots, \tau_{d}\left(x^{\mathrm{obs}}\right)\right) \in \mathbb{R}^{\mathrm{d}}
$$

with
\Rightarrow true distribution $\eta \sim G_{n}$, true mean μ_{0},

- distribution $\mathcal{G}_{i, n}$ under model $\mathfrak{M}_{\mathfrak{i}}$, corresponding posteriors $\pi_{i}\left(\cdot \mid \eta^{n}\right)$

Assumptions of central limit theorem and large deviations for $\eta\left(x^{\text {obs }}\right)$ under true, plus usual Bayesian asymptotics with d_{i} effective dimension of the parameter)
[Pillai et al., 2013]

Asymptotic marginals

Asymptotically

$$
m_{i, n}(t)=\int_{\Theta_{i}} g_{i, n}\left(t \mid \theta_{i}\right) \pi_{i}\left(\theta_{i}\right) d \theta_{i}
$$

such that
(i) if $\inf \left\{\left|\mu_{i}\left(\theta_{i}\right)-\mu_{0}\right| ; \theta_{i} \in \Theta_{i}\right\}=0$,

$$
C_{l} \sqrt{n}^{d-d_{i}} \leq m_{i, n}\left(\eta^{n}\right) \leq C_{u} \sqrt{n}^{d-d_{i}}
$$

and
(ii) if $\inf \left\{\left|\mu_{i}\left(\theta_{i}\right)-\mu_{0}\right| ; \theta_{i} \in \Theta_{i}\right\}>0$

$$
m_{i, n}\left(\eta^{n}\right)=o_{P^{n}}\left[\sqrt{n}^{d-\tau_{i}}+\sqrt{n}^{d-\alpha_{i}}\right]
$$

Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes factor is driven by the asymptotic mean value $\mu(\theta)$ of η^{n} under both models. And only by this mean value!

Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes factor is driven by the asymptotic mean value $\mu(\theta)$ of η^{n} under both models. And only by this mean value!

Indeed, if

$$
\inf \left\{\left|\mu_{0}-\mu_{2}\left(\theta_{2}\right)\right| ; \theta_{2} \in \Theta_{2}\right\}=\inf \left\{\left|\mu_{0}-\mu_{1}\left(\theta_{1}\right)\right| ; \theta_{1} \in \Theta_{1}\right\}=0
$$

then

$$
C_{l} \sqrt{n}^{-\left(d_{1}-d_{2}\right)} \leq m_{1, n}\left(\eta^{n}\right) / m_{2}\left(\eta^{n}\right) \leq C_{u} \sqrt{n}^{-\left(d_{1}-d_{2}\right)}
$$

where $C_{l}, C_{u}=O_{P n}(1)$, irrespective of the true model.
(C) Only depends on the difference $d_{1}-d_{2}$: no consistency

Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes factor is driven by the asymptotic mean value $\mu(\theta)$ of η^{n} under both models. And only by this mean value!

Else, if

$$
\inf \left\{\left|\mu_{0}-\mu_{2}\left(\theta_{2}\right)\right| ; \theta_{2} \in \Theta_{2}\right\}>\inf \left\{\left|\mu_{0}-\mu_{1}\left(\theta_{1}\right)\right| ; \theta_{1} \in \Theta_{1}\right\}=0
$$

then

$$
\frac{m_{1, n}\left(\eta^{n}\right)}{m_{2, n}\left(\eta^{n}\right)} \geq C_{u} \min \left(\sqrt{n}^{-\left(d_{1}-\alpha_{2}\right)}, \sqrt{n}-\left(d_{1}-\tau_{2}\right)\right)
$$

Checking for adequate statistics

Run a practical check of the relevance (or non-relevance) of η^{n} null hypothesis that both models are compatible with the statistic η^{n}

$$
\mathfrak{H}_{0}: \inf \left\{\left|\mu_{2}\left(\theta_{2}\right)-\mu_{0}\right| ; \theta_{2} \in \Theta_{2}\right\}=0
$$

against

$$
\mathfrak{H}_{1}: \inf \left\{\left|\mu_{2}\left(\theta_{2}\right)-\mu_{0}\right| ; \theta_{2} \in \Theta_{2}\right\}>0
$$

testing procedure provides estimates of mean of η^{n} under each model and checks for equality

ABC under misspecification

ABC methods rely on simulations $z(\theta)$ from the model to identify those close to $\mathrm{x}^{\text {obs }}$ What is happening when the model is wrong?

```
for some tolerance sequences }\mp@subsup{\varepsilon}{n}{}\downarrow\mp@subsup{\varepsilon}{}{*}\mathrm{ , well-behaved ABC
posteriors that concentrate posterior mass on pseudo-true
value
if }\mp@subsup{\varepsilon}{n}{}\mathrm{ too large, asymptotic limit of ABC posterior uniform
with radius of order }\mp@subsup{\varepsilon}{n}{}-\mp@subsup{\varepsilon}{}{*
even if }\sqrt{}{n}{\mp@subsup{\varepsilon}{\imath\imath}{}-\mp@subsup{\varepsilon}{}{*}}->2c\in\mathbb{R}\mathrm{ , limiting distribution no
longer Gaussian
ABC credible sets invalid confidence sets
```

[Frazier et al., 2020]

ABC under misspecification

ABC methods rely on simulations $z(\theta)$ from the model to identify those close to $x^{\text {obs }}$

What is happening when the model is wrong?

- for some tolerance sequences $\varepsilon_{n} \downarrow \varepsilon^{*}$, well-behaved ABC posteriors that concentrate posterior mass on pseudo-true value
- if ε_{n} too large, asymptotic limit of ABC posterior uniform with radius of order $\varepsilon_{n}-\varepsilon^{*}$
- even if $\sqrt{n}\left\{\varepsilon_{n}-\varepsilon^{*}\right\} \rightarrow 2 c \in \mathbb{R}$, limiting distribution no longer Gaussian
- ABC credible sets invalid confidence sets

> [Frazier et al., 2020]

Example 8: Normal model with wrong variance

Assumed data generating process (DGP) is $\boldsymbol{z} \sim \mathcal{N}(\theta, 1)$ but actual DGP is $\chi^{\mathrm{obs}} \sim \mathcal{N}\left(\theta, \tilde{\sigma}^{2}\right)$
Use of summaries
\Rightarrow sample mean $\eta_{1}\left(x^{\text {obs }}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

- centered summary $\eta_{2}\left(x^{\mathrm{obs}}\right)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\eta_{1}\left(x^{\mathrm{obs}}\right)^{2}-1\right.$ Three ABC:
- ABC-AR: accept/reject approach with $\mathrm{K}_{\varepsilon}\left(\mathrm{d}\left\{\eta(z), \eta\left(\chi^{\mathrm{obs}}\right)\right\}\right)=\mathbb{I}\left[\mathrm{d}\left\{\eta(z), \eta\left(\mathrm{x}^{\mathrm{obs}}\right)\right\} \leq \varepsilon\right]$ and $d\{x, y\}=\|x-y\|$
- ABC-K: smooth rejection approach, with $\mathrm{K}_{\varepsilon}\left(\mathrm{d}\left\{\eta(z), \eta\left(\chi^{\mathrm{obs}}\right)\right\}\right)$ univariate Gaussian kernel
- ABC-Reg: post-processing ABC approach with weighted linear regression adjustment

Example 8: Normal model with wrong variance

$$
n=50, N=50,000, \text { True Value: } \theta=1
$$

- posterior means for $\mathrm{ABC}-\mathrm{AR}, \mathrm{ABC}-\mathrm{K}$ and ABC -Reg as σ^{2} increases ($N=50,000$ simulated data sets)
- $\alpha_{n}=n^{-5 / 9}$ quantile for ABC-AR
- ABC-K and ABC-Reg bandwidth of $\mathfrak{n}^{-5 / 9}$
[Frazier et al., 2020]

ABC misspecification

- data $x^{\text {obs }}$ with true distribution P_{0} assumed issued from model $P_{\theta} \theta \in \Theta \subset \mathbb{R}^{k_{\theta}}$ and summary statistic
$\eta\left(x^{\text {obs }}\right)=\left(\eta_{1}\left(x^{\mathrm{obs}}\right), \ldots, \eta_{\mathrm{k}_{\eta}}\left(x^{\mathrm{obs}}\right)\right)$
- misspecification

$$
\inf _{\theta \in \Theta} \mathcal{D}\left(P_{0} \| P_{\theta}\right)=\inf _{\theta \in \Theta} \int \log \left\{\frac{d P_{0}(x)}{d P_{\theta}(x)}\right\} d P_{0}(y)>0
$$

with

$$
\theta^{*}=\arg \inf _{\theta \in \Theta} \mathcal{D}\left(P_{0} \| P_{\theta}\right)
$$

[Muller, 2013]

- ABC misspecification: for $b_{0}($ resp. $b(\theta))$ limit of $\eta\left(x^{\mathrm{obs}}\right)$ (resp. $\eta(z)$)

$$
\inf _{\theta \in \Theta} d\left\{b_{0}, b(\theta)\right\}>0
$$

ABC misspecification

- data $x^{\text {obs }}$ with true distribution P_{0} assumed issued from model $P_{\theta} \theta \in \Theta \subset \mathbb{R}^{k_{\theta}}$ and summary statistic
$\eta\left(x^{\mathrm{obs}}\right)=\left(\eta_{1}\left(x^{\mathrm{obs}}\right), \ldots, \eta_{\mathrm{k}_{\eta}}\left(x^{\mathrm{obs}}\right)\right)$
- ABC misspecification:
for $b_{0}($ resp. $b(\theta))$ limit of $\eta\left(x^{\mathrm{obs}}\right)$ (resp. $\eta(z)$)

$$
\inf _{\theta \in \Theta} d\left\{b_{0}, b(\theta)\right\}>0
$$

- ABC pseudo-true value:

$$
\theta^{*}=\arg \inf _{\theta \in \Theta} \mathrm{d}\left\{\mathrm{~b}_{0}, \mathrm{~b}(\theta)\right\} .
$$

Minimum tolerance

Under identification conditions on $b(\cdot) \in \mathbb{R}^{k_{n}}$, there exists ε^{*} such that

$$
\varepsilon^{*}=\inf _{\theta \in \Theta} \mathrm{d}\left\{\mathrm{~b}_{0}, \mathrm{~b}(\theta)\right\}>0
$$

Once $\varepsilon_{n}<\varepsilon^{*}$ no draw of θ to be selected and posterior $\Pi_{\varepsilon}\left[A \mid \eta\left(x^{\mathrm{obs}}\right)\right]$ ill-conditioned

But appropriately chosen tolerance sequence $\left(\varepsilon_{n}\right)_{n}$ allows ABC-based posterior to concentrate on distance-dependent pseudo-true value θ^{*}

Minimum tolerance

Under identification conditions on $\mathrm{b}(\cdot) \in \mathbb{R}^{k_{n}}$, there exists ε^{*} such that

$$
\varepsilon^{*}=\inf _{\theta \in \Theta} \mathrm{d}\left\{\mathrm{~b}_{0}, \mathrm{~b}(\theta)\right\}>0
$$

Once $\varepsilon_{n}<\varepsilon^{*}$ no draw of θ to be selected and posterior $\Pi_{\varepsilon}\left[A \mid \eta\left(x^{\mathrm{obs}}\right)\right]$ ill-conditioned

But appropriately chosen tolerance sequence $\left(\varepsilon_{n}\right)_{n}$ allows ABC-based posterior to concentrate on distance-dependent pseudo-true value θ^{*}

WARWICK

Minimum tolerance

Under identification conditions on $\mathfrak{b}(\cdot) \in \mathbb{R}^{k_{n}}$, there exists ε^{*} such that

$$
\varepsilon^{*}=\inf _{\theta \in \Theta} d\left\{b_{0}, b(\theta)\right\}>0
$$

Once $\varepsilon_{n}<\varepsilon^{*}$ no draw of θ to be selected and posterior $\Pi_{\varepsilon}\left[A \mid \eta\left(\chi^{\text {obs }}\right)\right]$ ill-conditioned

But appropriately chosen tolerance sequence $\left(\varepsilon_{n}\right)_{n}$ allows ABC-based posterior to concentrate on distance-dependent pseudo-true value θ^{*}

ABC concentration under misspecification

Assumptions

[A0] Existence of unique b_{0} such that $d\left(\eta\left(x^{o b s}\right), b_{0}\right)=o_{P_{0}}(1)$ and of sequence $\nu_{0, n} \rightarrow+\infty$ such that

$$
\liminf _{n \rightarrow+\infty} P_{0}\left[d\left(\eta\left(x_{n}^{\mathrm{obs}}\right), b_{0}\right) \geq v_{0, n}^{-1}\right]=1
$$

ABC concentration under misspecification

Assumptions

[A1] Existence of injective map $\mathrm{b}: \Theta \rightarrow \mathcal{B} \subset \mathbb{R}^{k_{n}}$ and function $\rho_{\mathfrak{n}}$ with $\rho_{\mathfrak{n}}(\cdot) \downarrow 0$ as $\mathfrak{n} \rightarrow+\infty$, and $\rho_{\mathfrak{n}}(\cdot)$ non-increasing, such that

$$
P_{\theta}[d(\eta(Z), b(\theta))>u] \leq c(\theta) \rho_{n}(u), \quad \int_{\Theta} c(\theta) d \Pi(\theta)<\infty
$$

and assume either
(i) Polynomial deviations: existence of $\nu_{\mathrm{n}} \uparrow+\infty$ and $u_{0}, \kappa>0$ such that $\rho_{n}(u)=v_{n}^{-k} u^{-k}$, for $u \leq u_{0}$
(ii) Exponential deviations:

ABC concentration under misspecification

Assumptions

[A1] Existence of injective map $\mathrm{b}: \Theta \rightarrow \mathcal{B} \subset \mathbb{R}^{k_{n}}$ and function ρ_{n} with $\rho_{\mathrm{n}}(\cdot) \downarrow 0$ as $\mathrm{n} \rightarrow+\infty$, and $\rho_{\mathrm{n}}(\cdot)$ non-increasing, such that

$$
P_{\theta}[d(\eta(Z), b(\theta))>u] \leq c(\theta) \rho_{n}(u), \quad \int_{\Theta} c(\theta) d \Pi(\theta)<\infty
$$

and assume either
(i) Polynomial deviations:
(ii) Exponential deviations: existence of $h_{\theta}(\cdot)>0$ such that $P_{\theta}[d(\eta(z), b(\theta))>u] \leq c(\theta) e^{-h_{\theta}\left(u v_{n}\right)}$ and existence of $m, C>0$ such that

$$
\int_{\Theta} c(\theta) e^{-h_{\theta}\left(u v_{n}\right)} d \Pi(\theta) \leq C e^{-m \cdot\left(u v_{n}\right)^{\tau}}, \text { for } u \leq u_{0}
$$

ABC concentration under misspecification

Assumptions

[A2] existence of $D>0$ and $M_{0}, \delta_{0}>0$ such that, for all $\delta_{0} \geq \delta>0$ and $M \geq M_{0}$, existence of $S_{\delta} \subset\left\{\theta \in \Theta: d\left(b(\theta), b_{0}\right)-\varepsilon^{*} \leq \delta\right\}$ for which
(i) In case (i), $D<K$ and $\int_{S_{\delta}}\left(1-\frac{c(\theta)}{M}\right) d \Pi(\theta) \gtrsim \delta^{D}$.
(ii) In case (ii), $\int_{S_{\delta}}\left(1-c(\theta) e^{-h_{\theta}(M)}\right) d \Pi(\theta) \gtrsim \delta^{D}$.

Consistency

Assume $[\mathrm{A} 0]-[\mathrm{A} 2]$, with $\varepsilon_{\mathrm{n}} \downarrow \varepsilon^{*}$ with

$$
\varepsilon_{n} \geq \varepsilon^{*}+M v_{n}^{-1}+v_{0, n}^{-1}
$$

for M large enough. Let $M_{n} \uparrow \infty$ and $\delta_{n} \geq M_{n}\left(\varepsilon_{n}-\varepsilon^{*}\right)$, then

$$
\Pi_{\varepsilon}\left[d\left(b(\theta), b_{0}\right) \geq \varepsilon^{*}+\delta_{n} \mid \eta\left(x^{\mathrm{obs}}\right)\right]=\mathrm{o}_{\mathrm{P}_{0}}(1)
$$

1. if $\delta_{n} \geq M_{n} \nu_{n}^{-1} u_{n}^{-D / \kappa}=o(1)$ in case (i)
2. if $\delta_{n} \geq M_{n} v_{n}^{-1}\left|\log \left(u_{n}\right)\right|^{1 / \tau}=o(1)$ in case (ii)
with $u_{n}=\varepsilon_{n}-\left(\varepsilon^{*}+M v_{n}^{-1}+v_{0, n}^{-1}\right) \geq 0$.
[Bernton et al., 2017; Frazier et al., 2020]

Regression adjustement under misspecification

Accepted value θ artificially related to $\eta\left(x^{\text {obs }}\right)$ and $\eta(z)$ through local linear regression model

$$
\theta^{\prime}=\mu+\beta^{\top}\left\{\eta\left(x^{\mathrm{obs}}\right)-\eta(z)\right\}+v,
$$

where v_{i} model residual
[Beaumont et al., 2003]
Asymptotic behavior of ABC-Reg posterior

$$
\tilde{\Pi}_{\varepsilon}\left[\cdot \mid \eta\left(x^{\mathrm{obs}}\right)\right]
$$

determined by behavior of

$$
\Pi_{\varepsilon}\left[\cdot \eta\left(x^{\text {obs }}\right)\right], \hat{\beta} \text {, and }\left\{\eta\left(x^{\text {obs }}\right)-\eta(z)\right\}
$$

WARWICK

Regression adjustement under misspecification

Accepted value θ artificially related to $\eta\left(x^{\text {obs }}\right)$ and $\eta(z)$ through local linear regression model

$$
\theta^{\prime}=\mu+\beta^{\top}\left\{\eta\left(x^{\mathrm{obs}}\right)-\eta(z)\right\}+v,
$$

where v_{i} model residual
[Beaumont et al., 2003]
Asymptotic behavior of ABC-Reg posterior

$$
\widetilde{\Pi}_{\varepsilon}\left[\cdot \mid \eta\left(x^{\mathrm{obs}}\right)\right]
$$

determined by behavior of

$$
\Pi_{\varepsilon}\left[\cdot \mid \eta\left(x^{\mathrm{obs}}\right)\right], \widehat{\beta}, \text { and }\left\{\eta\left(x^{\mathrm{obs}}\right)-\eta(z)\right\}
$$

Regression adjustement under misspecification

- ABC-Reg takes draws of asymptotically optimal θ, perturbed in a manner that need not preserve original optimality
- for $\left\|\beta_{0}\right\|$ large, pseudo-true value $\tilde{\theta}^{*}$ possibly outside Θ
- extends to nonlinear regression adjustments [Blum \& François, 2010]
- potential correction of the adjustment [Frazier et al., 2020]
- local regression adjustments with smaller posterior variability than ABC-AR but fake precision

Example 9: misspecified $\mathrm{g}-\&-\mathrm{k}$

Quantile function of Tukey's g-\&-k model:

$$
\mathrm{F}^{-1}(\mathrm{q})=\mathrm{a}+\mathrm{b}\left(1+0.8 \frac{1-\exp (-\mathrm{gz}(\mathrm{q}))}{1+\exp (-\mathrm{gz}(\mathrm{q}))}\right)\left(1+z(\mathrm{q})^{2}\right)^{k} z(\mathrm{q})
$$

where $z(q)$ q-th $\mathcal{N}(0,1)$ quantile
But data generated from a mixture distribution with minor bi-modality

Example 9: misspecified $g-\&-k$

Advanced topics

Computational bottleneck

Time per iteration increases with sample size n of the data: cost of sampling $\mathrm{O}\left(\mathrm{n}^{1+?}\right)$ associated with a reasonable acceptance probability makes ABC infeasible for large datasets

- surrogate models to get samples (e.g., using copulas)
- direct sampling of summary statistics (e.g., synthetic likelihood)
[Wood, 2010]
- borrow from proposals for scalable MCMC (e.g., divide \& conquer)

Approximate ABC [AABC]

Idea approximations on both parameter and model spaces by resorting to bootstrap techniques.

[Buzbas \& Rosenberg, 2015]

Procedure scheme

1. Sample $\left(\theta_{i}, x_{i}\right), \mathfrak{i}=1, \ldots, m$, from prior predictive
2. Simulate $\theta^{*} \sim \pi(\cdot)$ and assign weight w_{i} to dataset $x_{(i)}$ simulated under k-closest θ_{i} to θ^{*}
3. Generate dataset χ^{*} as bootstrap weighted sample from $\left(x_{(1)}, \ldots, x_{(k)}\right)$

Approximate ABC [AABC]

Procedure scheme

1. Sample $\left(\theta_{i}, x_{i}\right), \mathfrak{i}=1, \ldots, m$, from prior predictive
2. Simulate $\theta^{*} \sim \pi(\cdot)$ and assign weight w_{i} to dataset $x_{(i)}$ simulated under k-closest θ_{i} to θ^{*}
3. Generate dataset χ^{*} as bootstrap weighted sample from $\left(x_{(1)}, \ldots, x_{(k)}\right)$

Drawbacks

- If m too small, prior predictive sample may miss informative parameters
- large error and misleading representation of true posterior
- only suited for models with very few parameters

Divide-and-conquer perspectives

1. divide the large dataset into smaller batches
2. sample from the batch posterior
3. combine the result to get a sample from the targeted posterior

Alternative via ABC-EP
[Barthelmé \& Chopin, 2014]

Divide-and-conquer perspectives

1. divide the large dataset into smaller batches
2. sample from the batch posterior
3. combine the result to get a sample from the targeted posterior

Alternative via ABC-EP
[Barthelmé \& Chopin, 2014]

Geometric combination: WASP

Subset posteriors given partition $X_{[1]}^{\text {obs }}, \ldots, x_{[B]}^{\text {obs }}$ of observed data $x^{\text {obs }}$, let define

$$
\pi\left(\theta \mid x_{[b]}^{\mathrm{obs}}\right) \propto \pi(\theta) \prod_{j \in[b]} f\left(x_{j}^{\mathrm{obs}} \mid \theta\right)^{\mathrm{B}}
$$

[Srivastava et al., 2015]
Subset posteriors are combined via Wasserstein barycenter
[Cuturi, 2014]

Geometric combination: WASP

Subset posteriors given partition $\chi_{[1]}^{\text {obs }}, \ldots, \chi_{[B]}^{\text {obs }}$ of observed data $x^{\text {obs }}$, let define

$$
\pi\left(\theta \mid x_{[b]}^{\mathrm{obs}}\right) \propto \pi(\theta) \prod_{j \in[b]} f\left(\chi_{j}^{\mathrm{obs}} \mid \theta\right)^{\mathrm{B}} .
$$

[Srivastava et al., 2015]
Subset posteriors are combined via Wasserstein barycenter
[Cuturi, 2014]
Drawback require sampling from $f(\cdot \mid \theta)^{B}$ by ABC means. Should be feasible for latent variable (z) representations when $f(x \mid z, \theta)$ available in closed form
[Doucet \& Robert, 2001]

Geometric combination: WASP

Subset posteriors given partition $\chi_{[1]}^{\mathrm{obs}}, \ldots, \chi_{[B]}^{\mathrm{obs}}$ of observed data $x^{\text {obs }}$, let define

$$
\pi\left(\theta \mid x_{[b]}^{\mathrm{obs}}\right) \propto \pi(\theta) \prod_{j \in[b]} f\left(x_{j}^{\mathrm{obs}} \mid \theta\right)^{\mathrm{B}} .
$$

[Srivastava et al., 2015]
Subset posteriors are combined via Wasserstein barycenter
[Cuturi, 2014]
Alternative backfeed subset posteriors as priors to other subsets, partitioning summaries

Consensus ABC

Naïve scheme

- For each data batch $b=1, \ldots, B$

1. Sample $\left(\theta_{1}^{[\mathrm{b}]}, \ldots, \theta_{n}^{[\mathrm{b}]}\right)$ from diffused prior $\tilde{\pi}(\cdot) \propto \pi(\cdot)^{1 / \mathrm{B}}$
2. Run ABC to sample from batch posterior $\hat{\pi}\left(\cdot \mid \mathrm{d}\left(\mathrm{S}\left(\mathrm{x}_{[b]}^{\mathrm{obs}}\right), S\left(\mathrm{x}_{[\mathrm{b}]}\right)\right)<\varepsilon\right)$
3. Compute sample posterior variance Σ_{b}^{-1}

- Combine batch posterior approximations

$$
\theta_{j}=\sum_{b=1}^{B} \Sigma_{b} \theta_{j}^{[b]} / \sum_{b=1}^{B} \Sigma_{b}
$$

Remark Diffuse prior $\tilde{\pi}(\cdot)$ non informative calls for

ABC-MCMC stens

Consensus ABC

Naïve scheme

- For each data batch $b=1, \ldots, B$

1. Sample $\left(\theta_{1}^{[\mathrm{b}]}, \ldots, \theta_{n}^{[\mathrm{b}]}\right)$ from diffused prior $\tilde{\pi}(\cdot) \propto \pi(\cdot)^{1 / \mathrm{B}}$
2. Run ABC to sample from batch posterior $\pi\left(\cdot \mid \mathrm{d}\left(\mathrm{S}\left(\mathrm{x}_{[b]}^{\mathrm{obs}}\right), S\left(\mathrm{x}_{[b]}\right)\right)<\varepsilon\right)$
3. Compute sample posterior variance Σ_{b}^{-1}

- Combine batch posterior approximations

$$
\theta_{j}=\sum_{b=1}^{B} \Sigma_{b} \theta_{j}^{[b]} / \sum_{b=1}^{B} \Sigma_{b}
$$

Remark Diffuse prior $\tilde{\pi}(\cdot)$ non informative calls for ABC-MCMC steps

Big parameter issues

Curse of dimension: as $\operatorname{dim}(\Theta)=k_{\theta}$ increases

- exploration of parameter space gets harder
- summary statistic η forced to increase, since at least of dimension $k_{\eta} \geq \operatorname{dim}(\Theta)$
Some solutions
- adopt more local algorithms like ABC-MCMC or ABC-SMC
- aim at posterior marginals and approximate joint posterior by copula
[Li et al., 2016]
- run ABC-Gibbs
[Clarté et al., 2016]

Example 11: Hierarchical MA(2)

- $x_{i} \stackrel{\text { iid }}{\sim} \operatorname{MA}_{2}\left(\mu_{i}, \sigma_{i}\right)$
$\Rightarrow \mu_{i}=\left(\beta_{i, 1}-\beta_{i, 2}, 2\left(\beta_{i, 1}+\beta_{i, 2}\right)-1\right)$ with $\left(\beta_{i, 1}, \beta_{i, 2}, \beta_{i, 3}\right) \stackrel{\text { iid }}{\sim} \operatorname{Dir}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$
- $\sigma_{i} \stackrel{\text { iid }}{\sim} \mathcal{I} \mathcal{G}\left(\sigma_{1}, \sigma_{2}\right)$
- $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, with prior $\mathcal{E}(1)^{\otimes 3}$
- $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ with prior $\mathcal{C}(1)^{+\otimes 2}$

Example 11: Hierarchical MA(2)

Vanilla ABC

© Based on 10^{6} prior and 10^{3} posteriors simulations, 3 n summary statistics, and series of length 100, ABC-Rej posterior hardly distinguishable from prior!

ABC-Gibbs

When parameter decomposed into $\theta=\left(\theta_{1}, \ldots, \theta_{\mathrm{n}}\right)$

```
Algorithm 5 ABC-Gibbs sampler
starting point \(\theta^{(0)}=\left(\theta_{1}^{(0)}, \ldots, \theta_{n}^{(0)}\right)\), observation \(\chi^{\text {obs }}\)
for \(i=1, \ldots, N\) do
    for \(j=1, \ldots, n\) do
    \(\theta_{j}^{(i)} \sim \pi_{\varepsilon_{j}}\left(\cdot \mid x^{\star}, s_{j}, \theta_{1}^{(i)}, \ldots, \theta_{j-1}^{(i)}, \theta_{j+1}^{(i-1)}, \ldots, \theta_{n}^{(i-1)}\right)\)
        end for
end for
```

one tolerance ε_{j} for each parameter θ_{j}
one statistic s; for each narameter $\theta_{\text {; }}$

ABC-Gibbs

When parameter decomposed into $\theta=\left(\theta_{1}, \ldots, \theta_{\mathfrak{n}}\right)$

Algorithm 6 ABC-Gibbs sampler

starting point $\theta^{(0)}=\left(\theta_{1}^{(0)}, \ldots, \theta_{n}^{(0)}\right)$, observation $\chi^{\text {obs }}$ for $i=1, \ldots, N$ do
for $j=1, \ldots, n$ do
$\theta_{j}^{(i)} \sim \pi_{\varepsilon_{j}}\left(\cdot \mid x^{\star}, s_{j}, \theta_{1}^{(i)}, \ldots, \theta_{j-1}^{(i)}, \theta_{j+1}^{(i-1)}, \ldots, \theta_{n}^{(i-1)}\right)$
end for
end for

Divide \& conquer:

- one tolerance ε_{j} for each parameter θ_{j}
\downarrow one statistic s_{j} for each parameter θ_{j}

Compatibility

When using ABC-Gibbs conditionals with different acceptance events, e.g., different statistics

$$
\pi(\alpha) \pi\left(s_{\alpha}(\mu) \mid \alpha\right) \text { and } \pi(\mu) f\left(s_{\mu}\left(x^{\star}\right) \mid \alpha, \mu\right)
$$

conditionals are incompatible

```
ABC-Gibbs does not necessarily converge (even for
tolerance equal to zero)
potential limiting distribution
    * not a genuine posterior (double use of data)
    * unknown
    * possibly far from genuine posterior(s)
```


Compatibility

When using ABC-Gibbs conditionals with different acceptance events, e.g., different statistics

$$
\pi(\alpha) \pi\left(s_{\alpha}(\mu) \mid \alpha\right) \text { and } \pi(\mu) f\left(s_{\mu}\left(x^{\star}\right) \mid \alpha, \mu\right)
$$

conditionals are incompatible

- ABC-Gibbs does not necessarily converge (even for tolerance equal to zero)
- potential limiting distribution
\% not a genuine posterior (double use of data)
- unknown [except for a specific version]
- possibly far from genuine posterior(s)
[Clarté et al., 2016]

DAUPHNE \mid PSL $\begin{gathered}\text { PODSE } \\ \text { FADCE }\end{gathered}$

Convergence

In hierarchical case $\mathfrak{n}=2$,
Theorem If there exists $0<k<1 / 2$ such that

$$
\sup _{\theta_{1}, \tilde{\theta}_{1}}\left\|\pi_{\varepsilon_{2}}\left(\cdot \mid \chi^{\star}, s_{2}, \theta_{1}\right)-\pi_{\varepsilon_{2}}\left(\cdot \mid \chi^{\star}, s_{2}, \tilde{\theta}_{1}\right)\right\|_{T V}=\kappa
$$

ABC-Gibbs Markov chain geometrically converges in total variation to stationary distribution v_{ε}, with geometric rate $1-2$ к.

Example 11: Hierarchical MA(2)

Separation from the prior for identical number of simulations

DAUPHINE PSL太

Explicit limiting distribution

For model

$$
x_{\mathrm{j}}\left|\mu_{\mathrm{j}} \sim \pi\left(x_{\mathrm{j}} \mid \mu_{\mathrm{j}}\right), \quad \mu_{\mathrm{j}}\right| \alpha \stackrel{\text { i.i.d. }}{\sim} \pi\left(\mu_{\mathrm{j}} \mid \alpha\right), \quad \alpha \sim \pi(\alpha)
$$

alternative ABC based on:

$$
\begin{aligned}
\tilde{\pi}\left(\alpha, \mu \mid x^{\star}\right) \propto & \pi(\alpha) q(\mu) \int \overbrace{\pi(\tilde{\mu} \mid \alpha) 1_{\eta\left(s_{\alpha}(\mu), s_{\alpha}(\tilde{\mu})\right)<\varepsilon_{\alpha}} d \tilde{\mu}}^{\text {generate a new } \mu} \\
& \times \int f(\tilde{x} \mid \mu) \pi\left(x^{\star} \mid \mu\right) 1_{\eta\left(s_{\mu}\left(x^{\star}\right), s_{\mu}(\tilde{x})\right)<\varepsilon_{\mu}} d \tilde{x}
\end{aligned}
$$

with q arbitrary distribution on μ

Explicit limiting distribution

For model

$$
x_{j}\left|\mu_{j} \sim \pi\left(x_{j} \mid \mu_{j}\right), \quad \mu_{j}\right| \alpha \stackrel{\text { i.i.d. }}{\sim} \pi\left(\mu_{j} \mid \alpha\right), \quad \alpha \sim \pi(\alpha)
$$

induces full conditionals

$$
\tilde{\pi}(\alpha \mid \mu) \propto \pi(\alpha) \int \pi(\tilde{\mu} \mid \alpha) 1_{\eta\left(s_{\alpha}(\mu), s_{\alpha}(\tilde{\mu})\right)<\varepsilon_{\alpha}} \mathrm{d} \tilde{x}
$$

and

$$
\begin{aligned}
\tilde{\pi}\left(\mu \mid \alpha, x^{\star}\right) \propto & q(\mu) \int \pi(\tilde{\mu} \mid \alpha) 1_{\mathfrak{\eta}\left(s_{\alpha}(\mu), s_{\alpha}(\tilde{\mu})\right)<\varepsilon_{\alpha}} d \tilde{\mu} \\
& \times \int f(\tilde{x} \mid \mu) \pi\left(x^{\star} \mid \mu\right) 1_{\mathfrak{\eta}\left(s_{\mu}\left(x^{\star}\right), s_{\mu}(\tilde{x})\right)<\varepsilon_{\mu}} d \tilde{x}
\end{aligned}
$$

now compatible with new artificial joint

Explicit limiting distribution

For model

$$
x_{\mathrm{j}}\left|\mu_{\mathrm{j}} \sim \pi\left(x_{\mathrm{j}} \mid \mu_{\mathrm{j}}\right), \quad \mu_{\mathrm{j}}\right| \alpha \stackrel{\text { i.i.d. }}{\sim} \pi\left(\mu_{\mathrm{j}} \mid \alpha\right), \quad \alpha \sim \pi(\alpha)
$$

that is,

- prior simulations of $\alpha \sim \pi(\alpha)$ and of $\tilde{\mu} \sim \pi(\tilde{\mu} \mid \alpha)$ until $\eta\left(s_{\alpha}(\mu), s_{\alpha}(\tilde{\mu})\right)<\varepsilon_{\alpha}$
- simulation of μ from instrumental $\mathrm{q}(\mu)$ and of auxiliary variables $\tilde{\mu}$ and \tilde{x} until both constraints satisfied

Explicit limiting distribution

For model

$$
x_{\mathrm{j}}\left|\mu_{\mathrm{j}} \sim \pi\left(x_{\mathrm{j}} \mid \mu_{\mathrm{j}}\right), \quad \mu_{\mathrm{j}}\right| \alpha \stackrel{\text { i.i.d. }}{\sim} \pi\left(\mu_{\mathrm{j}} \mid \alpha\right), \quad \alpha \sim \pi(\alpha)
$$

Resulting Gibbs sampler stationary for posterior proportional to

$$
\pi(\alpha, \mu) \underbrace{q\left(s_{\alpha}(\mu)\right)}_{\text {projection }} \underbrace{f\left(s_{\mu}\left(\chi^{\star}\right) \mid \mu\right)}_{\text {projection }}
$$

that is, for likelihood associated with $s_{\mu}\left(x^{\star}\right)$ and prior distribution proportional to $\pi(\alpha, \mu) q\left(s_{\alpha}(\mu)\right)$ [exact!]

Incoming ABC workshops

- [A]BayesComp, Gainesville, Florida, Jan 7-10 2020
- ABC in Grenoble, France, March 18-19 2020
- ISBA(BC), Kunming, China, June 26-30 2020
- ABC in Longyearbyen, Svalbard, April 11-13 2021

ABC postdoc positions

2 post-doc positions with the ABSint research grant:

- Focus on approximate Bayesian techniques like ABC, variational Bayes, PAC-Bayes, Bayesian non-parametrics, scalable MCMC, and related topics. A potential direction of research would be the derivation of new Bayesian tools for model checking in such complex environments.
- Terms: up to 24 months, no teaching duty attached, primarily located in Université Paris-Dauphine, with supported periods in Oxford (J. Rousseau) and visits to Montpellier (J.-M. Marin). No hard deadline.
- If interested, send application to me:
bayesianstatistics@gmail.com

