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Posterior distribution

Central concept of Bayesian inference:

Drives
derivation of optimal decisions
assessment of uncertainty
model selection

prediction
[McElreath, 2015]
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Monte Carlo representation

Exploration of Bayesian posterior 7t(8]x°”*) may (!) require to
produce sample

01,...,07

distributed from 7t(6]x°"®) (or asymptotically by Markov chain
Monte Carlo aka MCMC)
[McElreath, 2015]

o=
V¥ U | PSL%
WARWICK FADCER.



Difficulties

MCMC = workhorse of practical Bayesian analysis (BUGS,
JAGS, Stan, &tc.), except when product

well-defined but numerically unavailable or too costly to
compute
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Difficulties

MCMC = workhorse of practical Bayesian analysis (BUGS,
JAGS, Stan, &tc.), except when product

well-defined but numerically unavailable or too costly to
compute
Only partial solutions are available:
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Example 1: Dynamic mixture

Mixture model

{1— Wu,T(X)}fﬁ,)\(X) + WH,T(X)géZ,O‘(X) x>0

where
fg,n Weibull density,
ge,o generalised Pareto density, and
wy,« Cauchy (arctan) cdf
Intractable

[e.e]

C(w,T,B,A g,0) = L {1 = Wu,T(X))fB,?\(X) + Wu,T(X)ga,U(X)}dX

[Frigessi, Haug & Rue, 2002]
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Example 2: truncated Normal

Given set A C R¥ (k large), truncated Normal model
x| 1y I, A) o< exp{—(x = WTE7 (x — ) /21 La(x)

with intractable

%, A) = L expl—(x — )T (x — p)/2dx
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Example 3: robust Normal statistics

Normal sample

X1)---)XnNN(u)02)

summarised into (insufficient)

in = med(x7,...,%n)
and
0n = mad(xq,...,Xn)

= med [x; — fin]

Under a conjugate prior 7t(p, 0%), posterior close to intractable.
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Example 3: robust Normal statistics

Normal sample

X1)---)XnNN(u)02)

summarised into (insufficient)

in = med(x7,...,%n)
and
0n = mad(xq,...,Xn)

= med [x; — fin]

Under a conjugate prior 7t(p, 0%), posterior close to intractable.
but
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Example 4: exponential random graph

ERGM: binary random vector x indexed
by all edges on set of nodes plus graph

f(x]0) = exp(07S(x))

(o)

with S(x) vector of statistics and €(0)

[Grelaud & al., 2009; Everitt, 2012; Bouranis & al., 2017]
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Realistic[er] applications

Kingman’s coalescent in population genetics
[Tavaré et al., 1997; Beaumont et al., 2003]

o-stable distributions
[Peters et al, 2012]

complex networks
[Dutta et al., 2018]

astrostatistics & cosmostatistics
[Cameron & Pettitt, 2012; Ishida et al., 2015]
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Concept
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A?B7C?

stands for

stands for

stands for =/ eSSt
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Rough version of the data |[from dot
to ball]

Non-parametric approximation of
the likelihood [near actual
observation]

Use of non-sufficient statistics
[dimension reduction]

Monte Carlo error [and no

unbiasedness]

VY 0N PSL*
WARWICK FARCER._



A seemingly naive representation

When likelihood f(x|0) not in closed form, likelihood-free
rejection technique:
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A seemingly naive representation

When likelihood f(x|0) not in closed form, likelihood-free
rejection technique:

For an observation x°P

jointly simulating

~ f(x|0), under the prior 7t(0), keep

0 ~ 71(9) yZ f(z|el) )
until the auxiliary variable z is
z=x

[Diggle & Gratton, 1984; Rubin, 1984; Tavaré et al., 1997]
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Why does it work?

The mathematical proof is trivial:

0; O(Zﬁ f(z[0;)Iy(2)

zeD
oc 71(0)f(yl63)
= 7(0ily)

[Accept—Reject 101]
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Why does it work?

The mathematical proof is trivial:

0; O(Zﬁ f(z[0;)Iy(2)

zeD
oc 71(0)f(yl63)
= 7(0ily)

[Accept—Reject 101]

But very impractical when

Pg(Z = x°*) ~ 0
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A as approximative

When y is a continuous random variable, strict equality

is replaced with a

where p is a distance
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A as approximative

When y is a continuous random variable, strict equality

is replaced with a

where p is a distance
Output distributed from

71(0) Pofp(x, z) < €} X m(Olp(x°*, 2) < ¢)

[Pritchard et al., 1999]

o=
V¥ U | PSL%
WARWICK FADCER.



ABC algorithm

Algorithm 1 Likelihood-free rejection sampler

for i=1to N do
repeat
generate 0/ from prior 7(-)
generate z from sampling density f(-/0’)
until p{n(z),n(x°>)} < ¢

set 0; = 0’
end for
where 1(x°%) defines a (not necessarily sufficient) statistic
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ABC algorithm

Algorithm 2 Likelihood-free rejection sampler

for i=1to N do
repeat
generate 0/ from prior 7(-)
generate z from sampling density f(-/0’)
until p{n(z),n(x°>)} < ¢

set 0; = 0’
end for
where 1(x°%) defines a (not necessarily sufficient) statistic

n(x°Ps) called
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Example 3: robust Normal statistics

mu=rnorm(N<-1e6) #prior
sig=sqrt(rgamma(N,2,2))
medobs=median (obs)

madobs=mad (obs) #summary
for(t in diz<-1:N){
psud=rnorm(le2)/sig[t]+mult]
medpsu=median (psud)-medobs
madpsu=mad (psud) -madobs
diz[t]=medpsu”2+madpsu”2}
#ABC subsample
subz=which(diz<quantile(diz,.1))
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Exact ABC posterior

Algorithm samples from marginal in z of posterior

TABC( obs) _ m(0)f(zl0)la . (2) |
| JA, e xe (0)f(210)d2d0

0, z|x

where A, yobs = {z € Dlpn(z),n(x°"%)} < €}.
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Exact ABC posterior

Algorithm samples from marginal in z of posterior

TABC( obs) _ m(0)f(zl0)la . (2) |
| JA, e xe (0)f(210)d2d0

0, z|x

where A, yobs = {z € Dlpn(z),n(x°"%)} < €}.

Intuition that proper summary statistics coupled with small
tolerance € = ¢, should provide good approximation of the
posterior distribution:

mABC(ah) = | mAC(0, 2z m(OIn(x7))
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Why summaries?

reduction of dimension

improvement of signal to noise ratio

reduce tolerance ¢ considerably

whole data may be unavailable (as in Example 3)

medobs=median (obs)
madobs=mad (obs) #summary
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Example 6: MA inference

Moving average model MA(2):

iid
Xt =€+ 0161 + 0261 e ~ N(0,1)

Comparison of raw series:

Xt
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Example 6: MA inference

Moving average model MA(2):

iid
Xt = €t + 01611 + 62612 £t < N(0,1)

[Feller, 1970]
Comparison of acf’s:

0.6
I

acf,
0.4
|

0.2

0.0
|
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Example 6: MA inference

Summary vs. raw:

o
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Why not summaries?

loss of sufficient information when wABC(9[x°bs)

with 7tABC(0n(x°Ps))

arbitrariness of summaries

replaced

uncalibrated approximation
whole data may be available (at same cost as summaries)

(empirical) distributions may be compared (Wasserstein
distances)
[Bernton et al., 2019]
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Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic
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Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic

Starting from large collection of summary statistics, Joyce
and Marjoram (2008) consider the sequential inclusion into the
ABC target, with a stopping rule based on a likelihood ratio test
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Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic

Based on decision-theoretic principles, Fearnhead and
Prangle (2012) end up with E[0]x°P8] as the optimal summary
statistic
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Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic

Use of indirect inference by Drovandi, Pettit, & Paddy
(2011) with estimators of parameters of auxiliary model as
summary statistics
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Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic

Starting from large collection of summary statistics, Raynal
& al. (2018, 2019) rely on random forests to build estimators
and select summaries
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Summary selection strategies

Fundamental difficulty of selecting summary statistics when
there is no non-trivial sufficient statistic

Starting from large collection of summary statistics, Sedki &
Pudlo (2012) use the Lasso to eliminate summaries
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Semi-automated ABC

Use of summary statistic n(-), importance proposal g(-), kernel
K(-) <1 with bandwidth h | 0 such that

(6,2) ~ g(0)f(zl6)
accepted with probability (hence the bound)
Kln(z) —n(x***)}/h]

and the corresponding importance weight defined by

m(0)/g(0)
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Semi-automated ABC

Use of summary statistic n(-), importance proposal g(-), kernel
K(-) <1 with bandwidth h | 0 such that

(6,2) ~ g(8)f(z/0)
accepted with probability (hence the bound)
Kln(z) —n(x**)}/n]
and the corresponding importance weight defined by
m(0)/9g(0)

Theorem

[Fearnhead & Prangle, 2012; Sisson et al., 2019]
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Random forests

Technique that stemmed from Leo Breiman’s bagging (or
bootstrap aggregating) machine learning algorithm for both
classification and regression

[Breiman, 1996]

Improved performances by averaging over classification schemes
of randomly generated training sets, creating a “forest” of
(CART) decision trees, inspired by Amit and Geman (1997)
ensemble learning

[Breiman, 2001]

o=
V¥ U | PSL%
WARWICK FADCER.



Growing the forest

Breiman’s solution for inducing random features in the trees of
the forest:

boostrap resampling of the dataset and

random subset-ing [of size v/t] of the covariates driving the
classification or regression at every node of each tree

Covariate (summary) x; that drives the node separation
Xt 2 Cr
and the separation bound c; chosen by minimising entropy or

Gini index
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ABC with random forests

Starting with

possibly large collection of summary statistics (n1,...,Mp)
(from scientific theory input to available statistical
softwares, methodologies, to machine-learning alternatives)

ABC reference table involving model index, parameter
values and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer 9t or 6 from (M1, ..., Mpi)
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ABC with random forests

Starting with

possibly large collection of summary statistics (m1,...,7p)
(from scientific theory input to available statistical
softwares, methodologies, to machine-learning alternatives)

ABC reference table involving model index, parameter
values and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer 9t or 0 from (M1, ..., Mpi)

Average of the trees is resulting summary statistics, highly
non-linear predictor of the model index
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ABC with random forests

Starting with

possibly large collection of summary statistics (m1,...,7p)
(from scientific theory input to available statistical
softwares, methodologies, to machine-learning alternatives)

ABC reference table involving model index, parameter
values and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer 9t or 0 from (M1, ..., Mpi)

Potential selection of most active summaries, calibrated against
pure noise
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Classification of summaries by random forests

Given large collection of summary statistics, rather than
selecting a subset and excluding the others, estimate each
parameter by random forests

handles thousands of predictors

ignores useless components

fast estimation with good local properties

automatised with few calibration steps

substitute to Fearnhead and Prangle (2012) preliminary
estimation of @(yObS)

includes a natural (classification) distance measure that
avoids choice of either distance or tolerance

[Marin et al., 2016, 2018]
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Calibration of tolerance

Calibration of threshold ¢
from scratch

from k-nearest neighbour perspective

subz=which(diz<quantile(diz,.1))
from asymptotics

related with choice of distance

[Fearnhead & Prangle, 2012; Biau et al., 2013; Liu & Fearnhead 2018]
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Implementation

o=
v DAUPHINE | PSL%
WARWICK FADCER.



Sofware

Several for performing parameter
estimation and model selection

Name References Stand-alone Platform Models

abc Csilléry etal. (2012) No (R package) All General

ABCreg Thornton (2009) es Linux, 05 X General

easyABC Jabot et al. (2013) No (R package) All General

ABCtoolbox Wegmann et al. (2010) Yes Linux, Windows ~ Genetics

BﬂyeS—SSC Anderson et al. (2005) Yes All Genetics

DIY-ABC Cornuet et al. (2008, 2010,2014)  Yes All Genetics

msBayes Hickerson et al. (2007) Yes Linux, 05 X Genetics

MTML-msBayes  Huang etal. (2011) Yes. Linux, OS X Genetics

onesamp Tallmon et al. (2008) Yes (web interface) Al Genetics

PopABC Lopes et al. (2009) Yes All Genetics

REJECTOR Jobin and Mountain (2008) s All Genetics

EP-ABC Barthelmé and Chopin (2014)  No (MATLAB tool- All State space models
box) (and related)

ABC-SDE Picchini (2013) No (MATLAB tool- All Stochastic differen-
box) tial equations

ABC-SysBio Liepe et al. (2010) Yes (Python scripts) Al Systems biology

Table 1: Software for ABC. “All” regarding platform refers to Linux, OS X (Mac) and Windows.

[Nunes & Prangle, 2017]
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Sofware

Several for performing parameter
estimation and model selection

Name References Stand-alone Platform Models
abc Csilléry et al. (2012) No (R package) All General
ABCreg Thornfon (2009) Yes Linux, 05 X General
easyABC Jabot et al. (2013) No (R package) All General
ABCtoolbox Wegmann et al. (2010) Yes. Linux, Windows ~ Genetics
Bayes-55C Anderson et al. (2005) Yes All Genetics
Cornuet et al. (2008, 2010, 2014)  Yes All Genetics
Hickerson et al. (2007) Yes Linux, 05 X Genetics
MTML-msBayes Huang et al. (2011) Yes Linux, OS X Genetics
onesamp Tallmon et al. (2008) Yes (web interface)  All Genetics
PopABC Lopes et al Yes All Genetics
REJECTOR Jobin and Mountain (2008) Yes All Genetics
EP-ABC Sarthelmé and Chopin (2014)  No (MATLAB tool-  All State space models
box) (and related)
ABC-SDE Picchini (2013) No (MATLAB tool- All Stochastic differen-
box) tial equations
ABC-SysBio Liepe et al. (2010) Yes (Python scripts) Al Systems biology

Table 1: Software for ABC. “All” regarding platform refers to Linux, OS X (Mac) and Windows.

[Nunes & Prangle, 2017]

tuning ABC analyses
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Sofware

Several for performing parameter
estimation and model selection

Name References Stand-alone Platform Models
abc Csilléry et al. (2012) No (R package) All General
ABCreg Thornfon (2009) Yes Linux, 05 X General
easyABC Jabot et al. (2013) No (R package) All General
ABCtoolbox Wegmann et al. (2010) Yes. Linux, Windows ~ Genetics
Bayes-55C Anderson et al. (2005) Yes All Genetics
Cornuet et al. (2008, 2010, 2014)  Yes All Genetics
Hickerson et al. (2007) Yes Linux, 05 X Genetics
MTML-msBayes Huang et al. (2011) Yes Linux, OS X Genetics
onesamp Tallmon et al. (2008) Yes (web interface)  All Genetics
PopABC Lopes et al Yes All Genetics
REJECTOR Jobin and Mountain (2008) Yes All Genetics
EP-ABC Sarthelmé and Chopin (2014)  No (MATLAB tool-  All State space models
box) (and related)
ABC-SDE Picchini (2013) No (MATLAB tool- All Stochastic differen-
box) tial equations
ABC-SysBio Liepe et al. (2010) Yes (Python scripts) Al Systems biology

Table 1: Software for ABC. “All” regarding platform refers to Linux, OS X (Mac) and Windows.

[Nunes & Prangle, 2017]

ABC via random forests
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Sofware

Several for performing parameter
estimation and model selection
Name References Stand-alone Platform Models
abe Csilléry etal. (2 No (R package) All General
ABCreg Thornton (; Yes Linux, OS X General
easyABC Jabot et al No (R package) All General
ABCtoolbox Wegmann et a D Yes Linux, Windows  Genetics
Bayes-SSC Anderson et al. Yes All Genetics
DIY-ABC 1 ,2010,2014)  Yes All Genetics
msBayes Hickerson et al. (2007) Yes Linux, 0$ X Genetics
MTML-msBayes Huang et al. (2011) Yes Linux, OS X Genetics
onesamp Tallmon et al. (2008) Yes (web interface) Al Genetics
PopABC Lopes et al. Yes All Genetics
REJECTOR Jobin and Mountain (2008) Yes All Genetics
EP-ABC Barthelmé and C hnpm (2014) No (MATLAB tool- All State space models
box) (and related)
ABC-SDE Picchini (2013) No (MATLAB tool- All Stochastic differen-
box) tial equations
ABC-SysBio Liepe et al. (2010) Yes (Python scripts) Al Systems biology

Table 1: Software for ABC. “All” regarding platform refers to Linux, OS X (Mac) and Windows.

[Nunes & Prangle, 2017]

several algorithms for performing
efficient ABC sampling schemes, including four sequential
sampling schemes and 3 MCMC schemes oA
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Sofware

Several for performing parameter
estimation and model selection

Name References Stand-alone Platform Models
abc Csilléry et al. (2012) No (R package) All General
ABCreg Thornfon (2009) Yes Linux, 05 X General
easyABC Jabot et al. (2013) No (R package) All General
ABCtoolbox Wegmann et al. (2010) Yes. Linux, Windows ~ Genetics
Bayes-55C Anderson et al. (2005) Yes All Genetics
Cornuet et al. (2008, 2010, 2014)  Yes All Genetics
Hickerson et al. (2007) Yes Linux, 05 X Genetics
MTML-msBayes Huang et al. (2011) Yes Linux, OS X Genetics
onesamp Tallmon et al. (2008) Yes (web interface)  All Genetics
PopABC Lopes et al Yes All Genetics
REJECTOR Jobin and Mountain (2008) Yes All Genetics
EP-ABC Sarthelmé and Chopin (2014)  No (MATLAB tool-  All State space models
box) (and related)
ABC-SDE Picchini (2013) No (MATLAB tool- All Stochastic differen-
box) tial equations
ABC-SysBio Liepe et al. (2010) Yes (Python scripts) Al Systems biology

Table 1: Software for ABC. “All” regarding platform refers to Linux, OS X (Mac) and Windows.

[Nunes & Prangle, 2017]

non R software for population genetics
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ABC-IS

Basic ABC algorithm limitations
blind
inefficient

inapplicable to improper priors
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ABC-IS

Basic ABC algorithm limitations
blind
inefficient

inapplicable to improper priors

importance density g(0)
bounded kernel function Ky, with bandwidth h

acceptance probability of
Knfpm(x*™),n(x{8})1} 7(8)/g(0 ) max Ag

[Fearnhead & Prangle, 2012]
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ABC-MCMC

Markov chain (6Y)) created via transition function

0 ~ Ko (0/101)) if x ~ f(x|0’) is such that x ~ y

(t+1) _ 71(0")Kw (01V)]07)
0 = anduNZ/{(O,”SW,

ot otherwise,

has the posterior 7t(0|y) as stationary distribution
[Marjoram et al, 2003]
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ABC-MCMC

Algorithm 3 Likelihood-free MCMC sampler
get (009, z(0) by Algorithm ??
for t=1to N do
generate 0/ from K, (-lG(t_U), z' from f(-0'), u from Uy 1y,
m(6")Kw (6110

if u< n(eﬂ*”Kw(eqe(tf]J)HAE,xobs (z') then
set (0 z(V) = (97, 2)
else
(e(tJ)Z(t))) — (e(t—ﬂ)z(t—”),
end if
end for
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ABC-PMC

Generate a sample at iteration t by

modulo acceptance of the associated x{, with tolerance ¢¢ |, and

use importance weight associated with accepted simulation th)

w!Y o m(olY) /e (01Y)

[Sisson et al., 2007; Beaumont et al., 2009]
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ABC-SMC

Use of a kernel K; associated with target 7., and derivation of
the backward kernel

e, (Z')Ki (2, 2)

Li(z2) =
o e, (2)
Update of the weights
M (t)
_ _1Ia, (X
wgt) O( wgt 1) Zm71 A t( 1m)

M (t=1)
Zmz] HAet,1 (Xim )

[Del Moral, Doucet & Jasra, 2009]
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ABC-NP

Better usage of [prior] simulations by
adjustement: instead of throwing

away 0’ such that p(n(z),n(x°")) > e, Vo
replace 0’s with locally regressed B% L—
transforms
0* =0 —{n(z) —n(x*>)N"PB [Csilléry et al., TEE, 2010]
where 6 is obtained by weighted least square regression on

(M(z) —n(x°b®)) with weights

Ks {p(m(z),n(x) }

[Beaumont et al., 2002, Genetics]
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ABC-NN

Incorporating non-linearities and heterocedasticities:

6(n(x"))

0" = Mn(x™)) + [0~ n(z))) "5
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ABC-NN

Incorporating non-linearities and heterocedasticities:

6(n(x"))

0" = Mn(x™)) + [0~ n(z))) "5

where

m(n) estimated by non-linear regression (e.g., neural
network)

0(n) estimated by non-linear regression on residuals
log{8; — (ny)} = log 0% (ns) + &

[Blum & Francois, 2009]
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Convergence
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Asymptotics of ABC

Since mTABC(. | x°bs)
(- | n(x°P*))

is an approximation of 7t(- | x°"%) or

[Li & Fearnhead, 2018a,b; Frazier et al., 2018,2020]
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Asymptotics of ABC

Since mTABC(. | x°bs)

7i(- [m(x°P%))

is an approximation of 7t(- | x°"%) or

[Li & Fearnhead, 2018a,b; Frazier et al., 2018,2020]

Meaning

establishing large sample (n) properties of ABC posteriors
and ABC procedures

finding sufficient conditions and checks on summary
statistics ()

determining proper rate ¢ = ¢,, of convergence of tolerance
to 0
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Consistency of ABC posteriors

Bayesian consistent

Bayesian consistency implies that sets containing 0 have
posterior probability tending to one as n — +oo, with
implication being the existence of a specific rate of
concentration

o
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Consistency of ABC posteriors

Bayesian consistent

Concentration around true value and Bayesian consistency
impose less stringent conditions on the convergence speed
of tolerance ¢, to zero, when compared with asymptotic
normality of ABC posterior

asymptotic normality of ABC posterior mean does not
require asymptotic normality of ABC posterior
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Asymptotic setup

Assumptions:
xobs — xobs(™) P§, and &€ = en, N — 400
0 € R¥, k fixed concentration of summary
statistic n(z™):
db: 6 —=b(6) n(z")—b(6) =op,(1), VO

b(0) # b(6’) when 0 # 6’
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Consistency of ABC posteriors

: there exists b(0) such that

N(z) — b(0) = op,y (1)

Me, (110 = 00]l <8 M(x"™)) =1+ 0p(1)

there exists &, = o(1) such that

Me, (116 = 80ll < 8 [M(x™)) =1+ 0p(1)

P
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Consistency of ABC posteriors

Mo, (118 = 8ol <8 [ n(x)) =1+ 0, (1)

there exists &, = o(1) such that

Me, (118 = 80ll < 8 IM(x™)) =1+ 0p(1)

0. = ]EABC[9|H(XObS(n))]> EapclO | T](XObS(n))] — 00 = op(1)

va(Eapcl® (™)1 —00) = N(O,v) .
WARWICK FARCER



Asymptotic shape of posterior distribution

Shape of
1 (- HinGe™),m(z)]) < en)

depending on relation between e, and rate oy at which n(x°P")
satisfy CLT

1. on = o(en) — Uniform limit
2. on < &gy — perturbated Gaussian limit

3. on > ¢, — Gaussian limit
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Asymptotic behaviour of posterior mean

When k; = dim(n(x°?*)) = k¢ = dim(0) and ¢, = o(n=>/1%)

obs o\Ts—1 o -
Eapclvn(0 —00) | x ]=>N(O,{(Vb 's-'vob }

[Li & Fearnhead (2018a)]
In fact, if eﬁﬂ\/ﬁ =o(1), with f Holder-smoothness of 7t

k

> ml60) +op(1), 2k =[]

j=1

Vbo —1 Zo
Bapcl(0—6o) | ) = (VO 2%

[Fearnhead & Prangle, 2012]
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Asymptotic behaviour of posterior mean

When kn = dim(ﬂ(XObs)) = ke = dlm(e) and &n = 0(n73/10)

obs o\Tsg—1 o -
Eapc[vn(6 —00) | x ]=>N(0,{(Vb TZ71vo }

[Li & Fearnhead (2018a)]
Iterating for fixed kg mildly interesting: if

A(x°%) = Eapcl[0 | x°]
then

(Vo) 1z° N 7' (80)

EasclOfi(x°*)] = 0o + 7(8o)

+0o()

[Fearnhead & Prangle, 2012]
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Curse of dimension

for reasonable statistical behavior, decline of acceptance o,
the faster the larger the dimension of 0, kg, but unaffected
by dimension of 1, ky,

theoretical justification for dimension reduction methods
that process parameter components individually and

independently of other components
[Fearnhead & Prangle, 2012; Martin & al., 2016]
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Curse of dimension

for reasonable statistical behavior, decline of acceptance o,
the faster the larger the dimension of 0, kg, but unaffected
by dimension of 1, ky,

theoretical justification for dimension reduction methods
that process parameter components individually and

independently of other components
[Fearnhead & Prangle, 2012; Martin & al., 2016]

importance sampling approach of Li & Fearnhead (2018a)
yields acceptance rates o, = O(1), when ¢, = O(1/vy)

o=
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Monte Carlo error

Link the choice of ¢, to Monte Carlo error associated with N,
draws in ABC Algorithm

Conditions (on &) under which
Bn = an{l 4+ 0p(1)}

where &, = Z]l\]:ﬁ I[d{n(y),n(z)} < enl /Ny, proportion of
accepted draws from N;, simulated draws of 0
Either

(i) en = o(vy") and (vnen) enf® < MN,,

or

(i) en = vy, and e, < MN,

for M large enough

P
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Bayesian model choice

Model candidates My, Ma, ... to be compared for dataset x°

making
Use of a prior distribution. 7t(M = m), plus a prior distribution
on the parameter conditional on the value m of the model
index, 7t (0m)
Goal to derive the posterior distribution of M, challenging
computational target when models are complex

[Savage, 1964; Berger, 1980]
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Generic ABC for model choice

Algorithm 4 Likelihood-free model choice sampler (ABC-MC)

fort=1toTdo
repeat
Generate m from the prior (M = m)
Generate 0y, from the prior 7, (0 )
Generate z from the model f,,(z|0m)
until p{n(z),n(x°)} < ¢
Set mY = m and 0V = 0,,
end for

[Cornuet et al., DIYABC, 2009]
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ABC model choice consistency

Leaving approximations aside, limiting ABC procedure is Bayes
factor based on n(x°P%)

B12(n(x™))

Potential loss of information at the testing level
[Robert et al., 2010]
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ABC model choice consistency

Leaving approximations aside, limiting ABC procedure is Bayes
factor based on n(x°P%)

B12(n(x™))

Potential loss of information at the testing level
[Robert et al., 2010]

[Marin et al., 2013]
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Example 7: Gauss versus Laplace

Model Dty: x°P5 ~ A7(07,1)®™ opposed to model My:
x°Ps ~ £(07,1/4/2)®", Laplace distribution with mean 6, and
variance one

sample mean x°bs (sufficient for 9 if not M);
sample median med(x°"®) (insufficient);
sample variance var(x°P®) (ancillary);

median absolute deviation
mad (x°P%) = med(|x°" — med(x°")));

o
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Example 7: Gauss versus Laplace

Model My x°Ps ~ A(07,1)®™ opposed to model M,:
x°Ps ~ £(0,,1/4/2)®™, Laplace distribution with mean 0, and
variance one

=100 n=100
~ R 2
S A T B
Bl : ©
N
ER - :
: o :
< 3 :
S :
o : ’ -
3 / < :
; 3 . :
o : :
° : :
: o :
N | : l;|
S H .
H =3 ———
21 . S
T T T T
Gauss Laplace Gauss Laplace
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Consistency

Summary statistics

ObS) ObS)

n(x*) = (1 (), 1 (x*), -, 1a(x*™)) € R

with
distribution n ~ Gy, mean o,
distribution Gj, under model 9;, corresponding posteriors
(- ™)
Assumptions of central limit theorem and large deviations for
n(x°P%) under true, plus usual Bayesian asymptotics with d;

effective dimension of the parameter)
[Pillai et al., 2013]
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Asymptotic marginals
ymj g

Asymptotically

min(t) = J@A gi,n(t]0;) 7;(01) dO;

1

such that
(i) ,
d—d; d—d;
Cl\/H < mi,n(nn) < Cu\/H
and
(ii)
Min (™) = opn [V ™ 4 v,

—

VA 2R TN N
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Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value u(6) of n™ under
both models. And only by this mean value!
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Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value u(6) of n™ under
both models. And only by this mean value!

Indeed, if
inf{lno — 12(62)1;02 € ©2} = inf{luo — p1(61)[;01 € ©:1} =0
then
Con T < myp ) fma(n) < Cuvi T,
where Cy, C, = Opn(1), irrespective of the true model.
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Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value u(6) of n™ under
both models. And only by this mean value!

Else, if
inf{[no — 12(02)};02 € Oz} > inf{|uo — w1(01)[;67 € ©1} =0
then

n
ml,n(n ) > C, min (\/ﬁ—(m—&z))\/ﬁ—(dl—ﬁ))
man(n™)

P
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Checking for adequate statistics

Run a practical check of the relevance (or non-relevance) of n™
null hypothesis that both models are compatible with the
statistic n™

$o : inf{ln2(02) — pol; 02 € B2} =0
against

1 1 inf{|pa(02) — pol; 02 € G2} >0

testing procedure provides estimates of mean of n™ under each
model and checks for equality
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ABC under misspecification

ABC methods rely on simulations z(0) from the model to
identify those close to x°P
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ABC under misspecification

ABC methods rely on simulations z(0) from the model to
identify those close to x°P

for some tolerance sequences ¢, | €*, well-behaved ABC
posteriors that concentrate posterior mass on pseudo-true
value

if e, too large, asymptotic limit of ABC posterior uniform
with radius of order ¢, — ¢*

even if \/n{e, — e¢*} — 2¢ € R, limiting distribution no
longer Gaussian

ABC credible sets invalid confidence sets

[Frazier et al., 2020]
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Example 8: Normal model with wrong variance

(DGP) is z~ N (6,1) but
is x°> ~ (0, 62)
Use of summaries
)=t i
centered summary 1, (x°P%) = % > (xi—my (x°bs)2 — 1
Three ABC:
ABC-AR: accept/reject approach with
Ke(dn(=),n(x™)) = I [dfn(z),n(x>)} < €] and
d{X,U} = ||X - y”
ABC-K: smooth rejection approach, with
Ke (dm(z),n(x°")}) univariate Gaussian kernel

sample mean 17 (x

ABC-Reg: post-processing ABC approach with weighted
linear regression adjustment

P
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Example 8: Normal model with wrong variance

n=50, N=>50,000, True Value: § =1

En[0]n(y)]

055

posterior means for ABC-AR, ABC-K and ABC-Reg as 0
increases (N = 50,000 simulated data sets)

oy =n /7 quantile for ABC-AR
ABC-K and ABC-Reg bandwidth of n=>/7
[Frazier et al., 2020]
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ABC misspecification

data x°P® with true distribution Py assumed issued from

model Pg 8 € © C R¥ and summary statistic
N(x°%) = (1(x°9), veoy My (x°7%))

misspecification

: : dPo(x)
f D(Pol|Pg) = inf |1 dP 0
it DIPolP) =t [tog { S0 L apofy) >

0" = arg inf D(Py||P
rgel ( OH 9)

[Muller, 2013]
for by (resp. b(0)) limit of n(x°P%) (resp. n(z))

P
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ABC misspecification

data x°P® with true distribution Py assumed issued from

model Pg 8 € ® C R* and summary statistic
n(x°P%) = (M (x°"%), .oy i, (x°P%))

for by (resp. b(0)) limit of n(x°"%) (resp. n(z))

inf
inf d{bo, b(6)} >0

0* = arg inf d{by, b(0)}.
argelge)d{ 0,b(0)}
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Minimum tolerance

Under identification conditions on b(-) € R*1, there exists ¢*
such that
¢* = inf d{bg,b(0)} >0
0€O

o
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Minimum tolerance

Under identification conditions on b(-) € R*1, there exists ¢*
such that
¢* = inf d{bg,b(0)} >0
0€O

Once ¢, < €* no draw of 8 to be selected and posterior
T [Aln(x°P%)] ill-conditioned
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Minimum tolerance

Under identification conditions on b(-) € R*1, there exists ¢*
such that
¢* = inf d{bg,b(0)} >0
0€O

Once ¢, < €* no draw of 8 to be selected and posterior
T [Aln(x°P%)] ill-conditioned

But appropriately chosen tolerance sequence (&, )y allows
ABC-based posterior to concentrate on distance-dependent
pseudo-true value 0*
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ABC concentration under misspecification

Assumptions

Existence of unique by such that d(n(x°"), by) = op, (1)
and of sequence vo,, — +o00 such that

lim inf Py | d(n(x2*), bo) ZVO—H —1.

n—-+oo

o=
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ABC concentration under misspecification

Assumptions

Existence of injective map b: ® — B C R* and function
pn with pn(-) | 0 as n — +oo, and p,(+) non-increasing,
such that

Pg [d(n(Z),b(0)) > u] < ¢(8)pn(u), J@C(G)dﬂ(e) <00

and assume either

(i) Polynomial deviations: existence of vy T 400 and
Up, K > 0 such that pn(u) =v*u™, for u <y

(ii) Ezponential deviations:

P
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ABC concentration under misspecification

Assumptions
Existence of injective map b: ©® — B € R and function
pn with pn(-) L 0 as m — 400, and pn(-) non-increasing,
such that

Po [d(M(Z),b(6)) > ul < ¢(6)pn(w), J@c(e)dﬂ(e) < o0

and assume either

(i) Polynomial deviations:

(ii) Ezponential deviations: existence of hg(-) > 0 such
that Pold(n(z),b(0)) > u] < c(8)e Me(wn) and
existence of m, C > 0 such that

J@ c(0)e MewWnlgrr(9) < Ce ™ W)™ for u < u.
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ABC concentration under misspecification

Assumptions

existence of D > 0 and My, 69 > 0 such that, for all
8o >8>0 and M > My, existence of
Ss C {0 €O:d(b(0),by) — e* < &} for which

In case (i), D < k and fsé (1 — %) dri(e) > &v.
In case (ii), f55 (1 —c(8)e ™M) dr1(g) > &P.
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Consistency

Assume , with &, | €* with
en > €+ My +vg],

for M large enough. Let M;,, T oo and 6., > My (e, — €*), then

Cif O > My, 1, P/* = o(1) in case (i)

- if & > My log(un)[V/® = o(1) in case (ii)
with up, = e, — (* + l\/lvg1 +v&ll) >0.
[Bernton et al., 2017; Frazier et al., 2020]
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Si adjus " MISS ificati
Regression adjustement under mi ecification

Accepted value 0 artificially related to 1(x°™) and n(z) through
local linear regression model

0’ =+ BTME) —n(z)} + v,

where v; model residual
[Beaumont et al., 2003]
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Si adjus " MISS ificati
Regression adjustement under mi ecification

Accepted value 0 artificially related to 1(x°™) and n(z) through
local linear regression model

0’ =+ BTME) —n(z)} + v,

where v; model residual
[Beaumont et al., 2003]

Asymptotic behavior of ABC-Reg posterior
Mel- [m(x*™)]
determined by behavior of

Mel- [n(x**)], B, and ((x*™) —n(z)}
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Regression adjustement under misspecification
te)

ABC-Reg takes draws of asymptotically optimal 0,

perturbed in a manner that original
optimality
for ||Bo]| large, pseudo-true value 0* possibly C]

extends to nonlinear regression adjustments [Blum
& Frangois, 2010]

potential correction of the adjustment [Frazier et al., 2020]

local regression adjustments with smaller posterior
variability than ABC-AR but
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Example 9: misspecified g-&-k

Quantile function of Tukey’s g-&-k model:

ey 1 —exp(—gz(q)) 2\
F'q=a+b (1 +0.8 +6Xp(_gz(q))> (1 +z(q) ) z(q),

where z(q) g-th N'(0,1) quantile

But data generated from a mixture distribution with minor
bi-modality
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Example 9:

AR RegN NN
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0.4 | 50 1 '
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Advanced topics
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Computational bottleneck

Time per iteration increases with sample size n of the data:
cost of sampling O(n'*?) associated with a reasonable
acceptance probability makes ABC infeasible for large datasets

surrogate models to get samples (e.g., using copulas)

direct sampling of summary statistics (e.g., synthetic
likelihood)

[Wood, 2010]
borrow from proposals for scalable MCMC (e.g., divide
& conquer)
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Approximate ABC [AABC]

approximations on both parameter and model spaces by
resorting to bootstrap techniques.

[Buzbas & Rosenberg, 2015]

1. Sample (0i,%xi), 1 =1,..., m, from prior predictive
2. Simulate 0% ~ 7t(-) and assign weight w; to dataset x;)
simulated under k-closest 0; to 0*

3. Generate dataset x* as bootstrap weighted sample from
(X(1)5 -+ +» X))
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Approximate ABC [AABC]

1. Sample (0i,%;), i =1,...,m, from prior predictive
2. Simulate 0* ~ 7t(-) and assign weight w; to dataset x;)
simulated under k-closest 0; to 8*

3. Generate dataset x* as bootstrap weighted sample from
(X(1)y -y X))

, prior predictive sample may miss
informative parameters

VA 2R TN N
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Divide-and-conquer perspectives

1. divide the large dataset into smaller batches
2. sample from the batch posterior

3. combine the result to get a sample from the targeted
posterior

VLN

— 0|5 s (6 | x°™)

TN | PSL
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Divide-and-conquer perspectives

1. divide the large dataset into smaller batches
2. sample from the batch posterior
3. combine the result to get a sample from the targeted

posterior

Alternative via
[Barthelmé & Chopin, 2014]

VLN

— 0|5 s (6 | x°™)
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WARWICK FARDCER.




Geometric combination: WASP

given partition xﬁ?s, ceny xObS of observed

data x°", let define

(9|X0bs Hf obsle

[Srivastava et al., 2015]
Subset posteriors are combined via Wasserstein barycenter
[Cuturi, 2014]
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Geometric combination: WASP

given partition x‘ﬁ?s, ceny xﬁzs of observed
data x°P, let define

(9|X0bs Hf obsle

[Srivastava et al., 2015]
Subset posteriors are combined via Wasserstein barycenter
[Cuturi, 2014]

require sampling from f(- | ) by ABC means.
Should be feasible for latent variable (z) representations when
f(x | z,0) available in closed form
[Doucet & Robert, 2001]
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Geometric combination: WASP

given partition x‘fﬁs, ceny x’fé’]s of observed
data x°Ps, let define

(9|X0bs Hf obsle

[Srivastava et al., 2015]
Subset posteriors are combined via Wasserstein barycenter
[Cuturi, 2014]
backfeed subset posteriors as priors to other
subsets, partitioning summaries
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Consensus ABC

For each data batchb=1,...,B
1. Sample (Sgb], ceey 61[?]) from diffused prior 7t(-) o 7t(-)"/B
2. Run ABC to sample from batch posterior
R(- | d(S(XP), Slxpp))) < €)
3. Compute sample posterior variance X !

Combine batch posterior approximations

B B
6 => 5.0/ &,
b=1 b=1
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Consensus ABC

For each data batchb=1,...,B
1. Sample (Sgb], ceey 61[?]) from diffused prior 7t(-) o 7t(-)"/B
2. Run ABC to sample from batch posterior
R(- | d(S(XP), Slxpp))) < €)
3. Compute sample posterior variance X !

Combine batch posterior approximations
B . B
b
o=y nal /3 =,
b=1 b=1

Diffuse prior 7t(-) non informative calls for
ABC-MCMC steps

O
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Big parameter issues

as dim(®) = kg increases
exploration of parameter space gets harder
summary statistic n forced to increase, since at least of
dimension k,, > dim(O)
Some solutions
adopt more local algorithms like ABC-MCMC or

ABC-SMC
aim at posterior marginals and approximate joint posterior
by copula
[Li et al., 2016]
run

[Clarté et al., 2016]
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Example 11: Hierarchical MA(2)

iid
xi ~ MA; (i, o3)
Wi = (Bi,1 — Bi2y 2(Bi1 + Bi2) — 1) with

iid .
(Bi,15 Bi2y B,3) ~ Dir(ou, 02, &3)

id
~u~ ZG(o1,02)

o = (1, 002, ®3), with prior £(1)®3
o = (07, 02) with prior C(1)T®2

//\

WooH2 e

lll

X1 X2 +ee Xn

TTT

()'] 0'2

\\/
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Example 11: Hierarchical MA(2)

Vanila ABC

71I.0 fOI.S 050 0‘.5 1t0
Based on 10 prior and 103 posteriors simulations, 3n

summary statistics, and series of length 100, ABC-Rej posterior
hardly distinguishable from prior!
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ABC-Gibbs

When parameter decomposed into 0 = (01,...,0,)

Algorithm 5 ABC-Gibbs sampler

obs

starting point 0(©) = (Ggo), ceey 91(10)), observation x
fori=1,...,N do
forj=1,...,ndo
0 ~ e (- | 1,5, 007, .., 07,005 o)
end for
end for

>
V¥ U | PSL%
WARWICK FADCER.



ABC-Gibbs

When parameter decomposed into 0 = (01,...,0,)

Algorithm 6 ABC-Gibbs sampler

obs

starting point 0(©) = (Ggo), ceey 91(10)), observation x
fori=1,...,N do
forj=1,...,ndo
0 ~ e (- | 1,5, 007, .., 07,005 o)
end for
end for

one tolerance ¢; for each parameter 6;
one statistic s; for each parameter 6;
[Clarté et al,, 2019]
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Compatibility

When using ABC-Gibbs conditionals with different acceptance
events, e.g., different statistics

(o) 7t(se (1) | &) and 7r(w)f(s, (x*) | o, ).
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Compatibility

When using ABC-Gibbs conditionals with different acceptance
events, e.g., different statistics

(o) 7t(se (1) | &) and 7r(w)f(s, (x*) | o, ).

ABC-Gibbs does not necessarily converge (even for
tolerance equal to zero)
potential limiting distribution

< not a genuine posterior (double use of data)
= unknown
+ possibly far from genuine posterior(s)

[Clarté et al., 2016]
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Convergence

In hierarchical case n = 2,

If there exists 0 < k < 1/2 such that

sup [|7te, (- | X%, 52,01) — 7e, (- | X%, 52,01) v = &
01,01

ABC-Gibbs Markov chain geometrically converges in total
variation to stationary distribution v¢, with geometric rate
1 —2k.
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Example 11: Hierarchical MA(2)

ABC Gibbs

-0 0.5 00 05 10

Separation from the prior for identical number of simulations
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Explicit limiting distribution

alternative ABC based on:

generate a new |

Ao | 1) oc (o) q(1) jnm 0T o snan<es AR

< Jf(fc T | 1Ty (e 05

with q arbitrary distribution on p

P
V¥ U | PSL%
WARWICK FADCER.



Explicit limiting distribution

induces full conditionals

Ao | 1) o () Jn(a 00T s <c AR
and

ﬁ(u | &, X*) o8 q(li) Jn(ﬁ | 0‘)1n(sa(u),sa(ﬂ))<so‘ dll

. Jf(ﬁ [ )TEO T ) T(s(x0) s ()< A%

P
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Explicit limiting distribution

that is,
prior simulations of o ~ 7t(a) and of L~ 7t([t | &) until
N(sa(n), salft)) < e
simulation of p from instrumental q(p) and of auxiliary
variables [t and X until both constraints satisfied
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Explicit limiting distribution

Resulting Gibbs sampler stationary for posterior proportional to
Te(o, 1) qsalp)) Fsp(x™) | )
—_————
projection  projection

that is, for likelihood associated with s, (x*) and prior
distribution proportional to 7(x, p)q(s« (1))
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Incoming ABC workshops

, Gainesville, Florida, Jan 7-10 2020
, France, March 18-19 2020
, Kunming, China, June 26-30 2020
, Svalbard, April 11-13 2021
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ABC postdoc positions

2 post-doc positions with the ABSint research grant:

Focus on approximate Bayesian techniques like ABC,
variational Bayes, PAC-Bayes, Bayesian non-parametrics,
scalable MCMC, and related topics. A potential direction
of research would be the derivation of new Bayesian tools
for model checking in such complex environments.

Terms: up to 24 months, no teaching duty attached,
primarily located in Université Paris-Dauphine, with
supported periods in Oxford (J. Rousseau) and visits to
Montpellier (J.-M. Marin). No hard deadline.

If interested, send application to me:
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