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Université Paris-Dauphine, University of Warwick, & CREST

École d’Hiver, Les Diablerets, CH, Feb 5-7 2023



Markov Chain Monte Carlo Methods (introduction)

Textbook: Monte Carlo Statistical Methods
by Christian. P. Robert and George Casella

Slides: older slides on
http://www.ceremade.dauphine.fr/˜xian/coursBC.pdf

Suggested reading
Introducing Monte Carlo
Methods with R by
Christian. P. Robert and
George Casella [trad.
française 2010; japonaise
2011]

http://www.ceremade.dauphine.fr/~xian/coursBC.pdf


Markov Chain Monte Carlo Methods (introduction)

Outline

1 The Metropolis-Hastings Algorithm

2 The Gibbs Sampler

3 Hamiltonian Monte Carlo and other
PDMPs

4 Bayesian importance sampling



Markov Chain Monte Carlo Methods (introduction)
The Metropolis-Hastings Algorithm

The Metropolis-Hastings Algorithm

1 The Metropolis-Hastings Algorithm
Monte Carlo Methods based on Markov Chains
The Metropolis–Hastings algorithm
A collection of Metropolis-Hastings algorithms
Extensions
Post-processing improvements

2 The Gibbs Sampler

3 Hamiltonian Monte Carlo and other PDMPs

4 Bayesian importance sampling



Markov Chain Monte Carlo Methods (introduction)
The Metropolis-Hastings Algorithm

Monte Carlo Methods based on Markov Chains

Running Monte Carlo via Markov Chains

It is not necessary to use a sample from the distribution f to
approximate the integral

I =

∫
h(x)f(x)dx ,

We can obtain X1, . . . , Xn ∼ f without directly simulating from f,
using an ergodic Markov chain with stationary distribution f

[thanks to the Ergodic Theorem!]
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Monte Carlo Methods based on Markov Chains

Refresher

Theorem (Ergodic Theorem)
If a Markov chain (Xn) is Harris positive recurrent, with stationary
measure π, then for any function h with E|h| <∞,

lim
n→∞ 1

n

∑
i

h(Xi) =

∫
h(x)dπ(x),
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Monte Carlo Methods based on Markov Chains

Running Monte Carlo via Markov Chains (2)

Idea
For an arbitrary starting value x(0), an ergodic Markov chain (X(t))
is generated using a transition kernel with stationary distribution f

I Insures convergence in distribution of (X(t)) to a random
variable from f.

I For “large enough” T0, X(T0) can be considered as distributed
from f

I Produce a dependent sample X(T0), X(T0+1), . . ., marginally
generated from f, sufficient for most approximation purposes.

Problem: How can one build a Markov chain with a given
stationary distribution?



Markov Chain Monte Carlo Methods (introduction)
The Metropolis-Hastings Algorithm

The Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm

Basics
The algorithm uses the objective (target) density

f up to a constant

and a conditional density
q(y|x)

called the instrumental (or proposal) distribution
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The Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm

Algorithm (Metropolis–Hastings)
Given x(t),

1. Generate Yt ∼ q(y|x
(t)).

2. Take

X(t+1) =

{
Yt with prob. ρ(x(t), Yt),

x(t) with prob. 1− ρ(x(t), Yt),

where
ρ(x, y) = min

{
f(y)

f(x)

q(x|y)

q(y|x)
, 1

}
.
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The Metropolis–Hastings algorithm

Features

I Independent of normalizing constants for both f and q(·|x)
(i.e., constants that do not depend on x)

I Never move to values with f(y) = 0
I The chain (x(t))t may take the same value several times in a

row, even when f is a density wrt Lebesgue measure
I The sequence (yt)t is usually not a Markov chain
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The Metropolis–Hastings algorithm

Convergence properties

1. The M-H Markov chain is reversible, with
invariant/stationary density f since it satisfies the detailed
balance condition

f(y)K(y, x) = f(x)K(x, y)

2. As f is a probability measure, the chain is positive recurrent
3. If

Pr
[
f(Yt) q(X

(t)|Yt)

f(X(t)) q(Yt|X(t))
≥ 1

]
< 1. (1)

that is, the event {X(t+1) = X(t)} is possible, then the chain is
aperiodic
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The Metropolis–Hastings algorithm

Convergence properties (2)
4. If

q(y|x) > 0 for every (x, y), (2)

the chain is irreducible
5. For M-H, f-irreducibility implies Harris recurrence
6. Thus, for M-H satisfying (1) and (2)

(i) For h, with Ef|h(X)| <∞,

lim
T→∞ 1

T

T∑
t=1

h(X(t)) =

∫
h(x)df(x) a.e. f.

(ii) and
lim
n→∞

∥∥∥∥∫ Kn(x, ·)µ(dx) − f ∥∥∥∥
TV

= 0

for every initial distribution µ, where Kn(x, ·) denotes the
kernel for n transitions.
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The Metropolis–Hastings algorithm

Metropolis algorithm version α

• Simulation method proposed by Metropolis et al. (1953)
• Starting from θ0, ζ is generated from

ζ ∼ Uniform in a neighborhood of θ0.

• The new value of θ is generated as

θ1 =

{
ζ with probability ρ = exp(∆h/T)∧ 1
θ0 with probability 1− ρ,

◦ ∆h = h(ζ) − h(θ0)
◦ If h(ζ) ≥ h(θ0), ζ is accepted
◦ If h(ζ) < h(θ0), ζ may still be accepted
◦ which allows escape from local maxima
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The Metropolis–Hastings algorithm

Temperature decrease (simulated annealing)
Modify temperature T at each iteration, as in
1. Simulate ζ from an instrumental distribution

with density g(|ζ− θi|);

2. Accept θi+1 = ζ with probability

ρi = exp{∆hi/Ti} ∧ 1;

take θi+1 = θi otherwise.

3. Update Ti to Ti+1 ≤ Ti.

• All positive moves accepted
• As T ↓ 0
◦ Harder to accept downward moves ◦ No big

downward moves
Not a time-homogeneous Markov Chain – more complex to analyze
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The Metropolis–Hastings algorithm

Illustration

I Trajectory: Ti = 1
(1+i)2

I Log trajectory also works
I Can Guarantee Finding

Global Max
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The Metropolis–Hastings algorithm

Normal mixture

I Normal mixture with
both means unknown

I Most sequences find
max

I They visit both
modes
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A collection of Metropolis-Hastings algorithms

# 1. The Independent Case

The instrumental distribution q is independent of X(t), and is
denoted g by analogy with Accept-Reject.

Algorithm (Independent Metropolis-Hastings)
Given x(t),

a Generate Yt ∼ g(y)
b Take

X(t+1) =

Yt with prob. min
{
f(Yt) g(x

(t))

f(x(t)) g(Yt)
, 1

}
,

x(t) otherwise.
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A collection of Metropolis-Hastings algorithms

Properties

The resulting sample is not iid but there exist strong convergence
properties:

Theorem (Ergodicity)
The algorithm produces a uniformly ergodic chain if there exists a
constant M such that

f(x) ≤Mg(x) , x ∈ supp f.

In this case,
‖Kn(x, ·) − f‖TV ≤

(
1−

1

M

)n
.

[Mengersen & Tweedie, 1996]
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A collection of Metropolis-Hastings algorithms

Example (Noisy AR(1))
Hidden Markov chain from a regular AR(1) model,

xt+1 = ϕxt + εt+1 εt ∼ N (0, τ2)

and observables
yt|xt ∼ N (x2t , σ

2)

The distribution of xt given xt−1, xt+1 and yt is

exp −1

2τ2

{
(xt −ϕxt−1)

2 + (xt+1 −ϕxt)
2 +

τ2

σ2
(yt − x

2
t)
2

}
.
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A collection of Metropolis-Hastings algorithms

Example (Noisy AR(1) too)
Use for proposal the N (µt,ω

2
t) distribution, with

µt = ϕ
xt−1 + xt+1
1+ϕ2

and ω2t =
τ2

1+ϕ2
.

Ratio
π(x)/qind(x) = exp−(yt − x

2
t)
2/2σ2

is bounded
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A collection of Metropolis-Hastings algorithms

(top) Last 500 realisations of the chain {Xk}k out of 10, 000
iterations; (bottom) histogram of the chain, compared with
the target distribution.
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A collection of Metropolis-Hastings algorithms

Example (Cauchy by normal)
go random W Given a Cauchy C (0, 1) distribution, consider a normal

N (0, 1) proposal
The Metropolis–Hastings acceptance ratio is

π(ξ′)/ν(ξ′)

π(ξ)/ν(ξ))
= exp

[{
ξ2 − (ξ′)2

}
/2
] 1+ (ξ′)2

(1+ ξ2)
.

Poor perfomances: the proposal distribution has lighter tails than
the target Cauchy and convergence to the stationary distribution is
not even geometric!

[Mengersen & Tweedie, 1996]
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A collection of Metropolis-Hastings algorithms
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A collection of Metropolis-Hastings algorithms

# 2. Random walk Metropolis–Hastings

Use of a local perturbation as proposal

Yt = X
(t) + εt,

where εt ∼ g, independent of X(t).
The instrumental density is now of the form g(y− x) and the
Markov chain is a random walk if we take g to be symmetric
g(x) = g(−x)
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A collection of Metropolis-Hastings algorithms

Algorithm (Random walk Metropolis)
Given x(t)

1. Generate Yt ∼ g(y− x(t))

2. Take

X(t+1) =

Yt with prob. min
{
1,
f(Yt)

f(x(t))

}
,

x(t) otherwise.
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A collection of Metropolis-Hastings algorithms

Example (Random walk and normal target)
forget History! Generate N (0, 1) based on the uniform proposal [−δ, δ]

[Hastings (1970)]
The probability of acceptance is then

ρ(x(t), yt) = exp{(x(t)2 − y2t)/2} ∧ 1.
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A collection of Metropolis-Hastings algorithms

Example (Random walk & normal (2))
Sample statistics

δ 0.1 0.5 1.0
mean 0.399 -0.111 0.10

variance 0.698 1.11 1.06

© As δ ↑, we get better histograms and a faster exploration of the
support of f.
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A collection of Metropolis-Hastings algorithms
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A collection of Metropolis-Hastings algorithms

Convergence properties

Uniform ergodicity prohibited by random walk structure
At best, geometric ergodicity:

Theorem (Sufficient ergodicity)
For a symmetric density f, log-concave in the tails, and a positive
and symmetric density g, the chain (X(t)) is geometrically ergodic.

[Mengersen & Tweedie, 1996]

no tail effect
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A collection of Metropolis-Hastings algorithms

Example (Comparison of tail
effects)
Random-walk
Metropolis–Hastings algorithms
based on a N (0, 1) instrumental
for the generation of (a) a
N (0, 1) distribution and (b) a
distribution with density
ψ(x) ∝ (1+ |x|)−3
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Extensions

Extensions

There are many other families of HM algorithms
◦ Adaptive Rejection Metropolis Sampling
◦ Reversible Jump (later!)
◦ Langevin algorithms

to name just a few...
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Extensions

Langevin Algorithms

Proposal based on the Langevin diffusion Lt is defined by the
stochastic differential equation

dLt = dBt +
1

2
∇ log f(Lt)dt,

where Bt is the standard Brownian motion

Theorem
The Langevin diffusion is the only non-explosive diffusion which is
reversible with respect to f.
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Extensions

Discretization

Instead, consider the sequence

x(t+1) = x(t) +
σ2

2
∇ log f(x(t)) + σεt, εt ∼ Np(0, Ip)

where σ2 corresponds to the discretization step
Unfortunately, the discretized chain may be transient, for instance
when

lim
x→±∞

∣∣∣σ2∇ log f(x)|x|−1
∣∣∣ > 1

[Cf unscented Langevin]
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Extensions

MH correction

Accept the new value Yt with probability

f(Yt)

f(x(t))
·

exp
{
−
∥∥∥Yt − x(t) − σ2

2 ∇ log f(x(t))
∥∥∥2/2σ2}

exp
{
−
∥∥∥x(t) − Yt − σ2

2 ∇ log f(Yt)
∥∥∥2/2σ2} ∧ 1 .

Choice of the scaling factor σ
Should lead to an ideal acceptance rate of 0.574 to achieve optimal
convergence rates (when the components of x are uncorrelated)

[Roberts & Rosenthal, 1998]
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Extensions

Optimizing the Acceptance Rate

Problem of choice of the transition kernel from a practical point of
view
Most common alternatives:
(a) a fully automated algorithm like ARMS;
(b) an instrumental density g which approximates f, such that

f/g is bounded for uniform ergodicity to apply;
(c) a random walk

In both cases (b) and (c), the choice of g is critical,
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Extensions

Case of the independent MH algorithm

Choice of g that maximizes the average acceptance rate

ρ = E
[
min
{
f(Y) g(X)

f(X) g(Y)
, 1

}]
= 2P

(
f(Y)

g(Y)
≥ f(X)

g(X)

)
, X ∼ f, Y ∼ g,

Related to the speed of convergence of

1

T

T∑
t=1

h(X(t))

to Ef[h(X)] and to the ability of the algorithm to explore any
complexity of f
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Extensions

Case of the independent MH algorithm (2)

Practical implementation
Choose a parameterized instrumental distribution g(·|θ) and
adjusting the corresponding parameters θ based on the evaluated
acceptance rate

ρ̂(θ) =
2

m

m∑
i=1

I{f(yi)g(xi)>f(xi)g(yi)} ,

where x1, . . . , xm sample from f and y1, . . . , ym iid sample from g.
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Extensions

Example (Inverse Gaussian distribution)
no inverse

Simulation from

f(z|θ1, θ2) ∝ z−3/2 exp
{
−θ1z−

θ2
z

+ 2
√
θ1θ2 + log

√
2θ2

}
IR+(z)

based on the Gamma distribution Ga(α,β) with α = β
√
θ2/θ1

Since
f(x)

g(x)
∝ x−α−1/2 exp

{
(β− θ1)x−

θ2
x

}
,

the maximum is attained at

x∗β =
(α+ 1/2) −

√
(α+ 1/2)2 + 4θ2(θ1 − β)

2(β− θ1)
.
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Extensions

Example (Inverse Gaussian distribution (2))
The analytical optimization (in β) of

M(β) = (x∗β)
−α−1/2 exp

{
(β− θ1)x

∗
β −

θ2
x∗β

}

is impossible
β 0.2 0.5 0.8 0.9 1 1.1 1.2 1.5
ρ̂(β) 0.22 0.41 0.54 0.56 0.60 0.63 0.64 0.71
E[Z] 1.137 1.158 1.164 1.154 1.133 1.148 1.181 1.148

E[1/Z] 1.116 1.108 1.116 1.115 1.120 1.126 1.095 1.115

(θ1 = 1.5, θ2 = 2, and m = 5000).
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Extensions

Case of the random walk

Different approach to acceptance rates
A high acceptance rate does not indicate that the algorithm is
moving correctly since it indicates that the random walk is moving
too slowly on the surface of f.
If x(t) and yt are close, i.e. f(x(t)) ' f(yt) y is accepted with
probability

min
(
f(yt)

f(x(t))
, 1

)
' 1 .

For multimodal densities with well separated modes, the negative
effect of limited moves on the surface of f clearly shows.
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Extensions

Case of the random walk (2)

If the average acceptance rate is low, the successive values of f(yt)
tend to be small compared with f(x(t)), which means that the
random walk moves quickly on the surface of f since it often
reaches the “borders” of the support of f
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Extensions

Rule of thumb

In small dimensions, aim at an average acceptance rate of 50%. In
large dimensions, at an average acceptance rate of 25%.

[Gelman,Gilks and Roberts, 1995]
Not highly constrictive since relies on formalised setting of limiting
diffusion
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Extensions

Impact of scale

Example (Noisy AR(1) continued)
For a Gaussian random walk with scale ω small enough, the
random walk never jumps to the other mode. But if the scale ω is
sufficiently large, the Markov chain explores both modes and give a
satisfactory approximation of the target distribution.
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Extensions

Markov chain based on a random walk with scale ω = .1.
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Extensions

Markov chain based on a random walk with scale ω = .5.
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Post-processing improvements

# 1. Rao-Blackwellisation

Given a density f(·) to simulate take
g(·) density such that

f(x) ≤Mg(x)

for M ≥ 1
To simulate X ∼ f, it is sufficient to
generate

Y ∼ g U|Y = y ∼ U(0,Mg(y))

until
0 < u < f(y)
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Post-processing improvements

Much ado about...
Raw outcome: id sequences Y1, Y2, . . . , Yt ∼ g and
U1, U2, . . . , Ut ∼ U(0, 1)
Random number of accepted Yi’s

P(N = n) =

(
n− 1

t− 1

)
(1/M)t (1− 1/M)n−t ,

Joint density of (N,Y ,U)

P(N = n, Y1 ≤ y1, . . . , Yn ≤ yn, U1 ≤ u1, . . . , Un ≤ un)

=

∫yn
−∞ g(tn)(un ∧wn)dtn

∫y1
−∞ . . .

∫yn−1
−∞ g(t1) . . . g(tn−1)

×
∑

(i1,··· ,it−1)

t−1∏
j=1

(wij ∧ uij)
n−1∏
j=t

(uij −wij)
+dt1 · · ·dtn−1,

where wi = f(yi)/Mg(yi) and sum over all subsets of
{1, . . . , n− 1} of size t− 1
Marginal joint density of (Yi, Ui)|N = n, i < n
P(N = n, Y1 ≤ y,U1 ≤ u1)

=

(
n − 1

t − 1

)(
1

M

)t−1 (
1 −

1

M

)n−t−1
×
[
t − 1

n − 1
(w1 ∧ u1)

(
1 −

1

M

)
+
n − t

n − 1
(u1 −w1)

+
(
1

M

)] ∫y
−∞ g(t1)dt1

and marginal distribution of Yi

m(y) = t−1/n−1f(y) + n−t/n−1
g(y) − ρf(y)

1− ρ

P(U1 ≤ w(y)|Y1 = y,N = n) =
g(y)w(y)Mt−1/n−1

m(y)
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Post-processing improvements

Much ado about noise
Accept-reject sample (X1, . . . , Xm) associated with (U1, . . . , UN)
and (Y1, . . . , YN)
N is stopping time for acceptance of m variables among Yj’s
Rewrite estimator of E[h] as

1

m

m∑
i=1

h(Xi) =
1

m

N∑
j=1

h(Yj) IUj≤wj ,

with wj = f(Yj)/Mg(Yj)

Rao-Blackwellisation: smaller term-wise variance when
integrating out the Ui’s,

1

m

N∑
j=1

E[IUj≤wj |N, Y1, . . . , YN] h(Yj) =
1

m

N∑
i=1

ρih(Yi),

where (i < n)

ρi = P(Ui ≤ wi|N = n, Y1, . . . , Yn)

= wi

∑
(i1,...,im−2)

∏m−2
j=1 wij

∏n−2
j=m−1(1 −wij)∑

(i1,...,im−1)

∏m−1
j=1 wij

∏n−1
j=m(1 −wij)

,

and ρn = 1.
Numerator sum over all subsets of {1, . . . , i− 1, i+ 1, . . . , n− 1} of
size m− 2, and denominator sum over all subsets of size m− 1

[Robert & Casella, 1996]
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Post-processing improvements

extension to Metropolis–Hastings case
Sample produced by Metropolis–Hastings algorithm

x(1), . . . , x(T)

based on two samples,
y1, . . . , yT and u1, . . . , uT

Ergodic mean rewritten as

δMH =
1

T

T∑
t=1

h(x(t)) =
1

T

T∑
t=1

h(yt)
T∑
i=t

Ix(i)=yt

Conditional expectation

δRB =
1

T

T∑
t=1

h(yt) E

 T∑
i=t

IX(i) = yt

∣∣∣∣y1, . . . , yT


=
1

T

T∑
t=1

h(yt)

 T∑
i=t

P(X(i) = yt|y1, . . . , yT )


with smaller variance

[Robert & Casella, 1996]
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Post-processing improvements

weight derivation
Take

ρij =
f(yj)/q(yj|yi)

f(yi)/q(yi|yj)
∧ 1 (j > i),

ρij = ρijq(yj+1|yj), ρ
ij
= (1− ρij)q(yj+1|yi) (i < j < T),

ζjj = 1, ζjt =
t∏

l=j+1

ρ
jl

(i < j < T),

τ0 = 1, τj =

j−1∑
t=0

τtζt(j−1) ρtj, τT =
T−1∑
t=0

τtζt(T−1)ρtT (i < T),

ωiT = 1, ω
j
i = ρjiω

i
i+1 + ρjiω

j
i+1 (0 ≤ j < i < T).

Theorem
The estimator δRB satisfies

δRB =

∑T
i=0 ϕi h(yi)∑T−1
i=0 τi ζi(T−1)

,

with (i < T)

ϕi = τi

T−1∑
j=i

ζijω
i
j+1 + ζi(T−1)(1− ρiT )


and ϕT = τT .

[Robert & Casella, 1996]



Markov Chain Monte Carlo Methods (introduction)
The Metropolis-Hastings Algorithm

Post-processing improvements

# 2. Another Rao–Blackwellisation

Alternative representation of Metropolis–Hastings estimator δ as

δ =
1

n

n∑
t=1

h(x(t)) =
1

n

Mn∑
i=1

nih(zi) ,

where rv’s defined as
I zi’s are the accepted yj’s,
I Mn is the number of accepted yj’s till time n,
I ni is the number of times zi appears in the sequence (x(t))t.
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The “accepted candidates”
Define

q̃(·|zi) =
α(zi, ·)q(·|zi)

p(zi)
≤ q(·|zi)

p(zi)

where p(zi) =
∫
α(zi, y)q(y|zi)dy

To simulate from q̃(·|zi)
1. Propose a candidate y ∼ q(·|zi)
2. Accept with probability

q̃(y|zi)

/(
q(y|zi)

p(zi)

)
= α(zi, y)

Otherwise, reject it and starts again.
I this is the transition of the HM algorithm The transition kernel
q̃ admits π̃ as a stationary distribution:

π̃(x)q̃(y|x) =
π(x)p(x)∫
π(u)p(u)du︸ ︷︷ ︸

π̃(x)

α(x, y)q(y|x)

p(x)︸ ︷︷ ︸
q̃(y|x)

π(x)α(x, y)q(y|x)∫
π(u)p(u)du

π(y)α(y, x)q(x|y)∫
π(u)p(u)du π̃(y)q̃(x|y) ,
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The “accepted chain”

Lemma (Douc & X., AoS, 2011)
The sequence (zi, ni) satisfies

1. (zi, ni)i is a Markov chain;
2. zi+1 and ni are independent given zi;
3. ni is distributed as a geometric random variable with

probability parameter

p(zi) :=

∫
α(zi, y)q(y|zi)dy ; (1)

4. (zi)i is a Markov chain with transition kernel
Q̃(z, dy) = q̃(y|z)dy and stationary distribution π̃ such that

q̃(·|z) ∝ α(z, ·)q(·|z) and π̃(·) ∝ π(·)p(·) .
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Importance sampling perspective

1. A natural idea:

δ∗ =
1

n

Mn∑
i=1

h(zi)

p(zi)
,

2. A natural idea:

δ∗ '

∑Mn
i=1

h(zi)

p(zi)∑Mn
i=1

1

p(zi)

=

∑Mn
i=1

π(zi)

π̃(zi)
h(zi)∑Mn

i=1

π(zi)

π̃(zi)

.

3. But p not available in closed form.
4. The geometric ni is the replacement, an obvious solution that

is used in the original Metropolis–Hastings estimate since
E[ni] = 1/p(zi).
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The Bernoulli factory
The crude estimate of 1/p(zi),

ni = 1+
∞∑
j=1

∏
`≤j

I {u` ≥ α(zi, y`)} ,

can be improved:

Lemma (Douc & X., AoS, 2011)
If (yj)j is an iid sequence with distribution q(y|zi), the quantity

ξ̂i = 1+
∞∑
j=1

∏
`≤j

{1− α(zi, y`)}

is an unbiased estimator of 1/p(zi) which variance, conditional on
zi, is lower than the conditional variance of ni, {1− p(zi)}/p2(zi).
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Rao-Blackwellised, for sure?

ξ̂i = 1+
∞∑
j=1

∏
`≤j

{1− α(zi, y`)}

1. Infinite sum but finite with at least positive probability:

α(x(t), yt) = min
{
1,
π(yt)

π(x(t))

q(x(t)|yt)

q(yt|x(t))

}
For example: take a symmetric random walk as a proposal.

2. What if we wish to be sure that the sum is finite?
Finite horizon k version:

ξ̂ki = 1+
∞∑
j=1

∏
1≤`≤k∧j

{1− α(zi, yj)}
∏

k+1≤`≤j
I {u` ≥ α(zi, y`)}
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Variance improvement

Theorem (Douc & X., AoS, 2011)
If (yj)j is an iid sequence with distribution q(y|zi) and (uj)j is an
iid uniform sequence, for any k ≥ 0, the quantity

ξ̂ki = 1+
∞∑
j=1

∏
1≤`≤k∧j

{1− α(zi, yj)}
∏

k+1≤`≤j
I {u` ≥ α(zi, y`)}

is an unbiased estimator of 1/p(zi) with an almost sure finite
number of terms. Moreover, for k ≥ 1,

Vξ̂ki zi =
1 − p(zi)

p2(zi)
−
1 − (1 − 2p(zi) + r(zi))

k

2p(zi) − r(zi)

(
2 − p(zi)

p2(zi)

)
(p(zi) − r(zi)) ,

where p(zi) :=
∫
α(zi, y)q(y|zi) dy. and r(zi) :=

∫
α2(zi, y)q(y|zi) dy. Therefore, we

have
Vξ̂izi ≤ Vξ̂ki zi ≤ Vξ̂0i zi = Vnizi .
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# 3. Delayed acceptance
Motivation: Non-informative inference for mixture models
Standard mixture of distributions model

k∑
i=1

wi f(x|θi) , with
k∑
i=1

wi = 1 . (1)

[Titterington et al., 1985; Fruhwirth, 2006]

Jeffreys’ prior for mixture not available due to computational
reasons : it has not been tested so far

[Jeffreys, 1939]

Warning: Jeffreys’ prior improper in some settings
[Grazian & Robert, 2015]

Grazian & Robert (2015) consider genuine Jeffreys’ prior for
complete set of parameters in (1), deduced from Fisher’s
information matrix
Computation of prior density costly, relying on many integrals like∫

X

∂2 log
[∑k

i=1wi f(x|θi)
]

∂θh∂θj

[
k∑
i=1

wi f(x|θi)

]
dx

Integrals with no analytical expression, hence involving numerical
or Monte Carlo (costly) integration
When building Metropolis-Hastings proposal over (wi, θi)’s, prior
ratio more expensive than likelihood and proposal ratios
Suggestion: split the acceptance rule

α(x, y) := 1∧ r(x, y), r(x, y) :=
π(y|D)q(y, x)
π(x|D)q(x, y)

into
α̃(x, y) :=

(
1∧

f(D|y)q(y, x)
f(D|x)q(x, y)

)
×
(
1∧

π(y)

π(x)

)
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The “Big Data” plague

Simulation from posterior distribution with large sample size n
I Computing time at least of order O(n)

I solutions using likelihood decomposition
n∏
i=1

`(θ|xi)

and handling subsets on different processors (CPU), graphical
units (GPU), or computers

[Scott et al., 2013, Korattikara et al., 2013]
I no consensus on method of choice, with instabilities from

removing most prior input and uncalibrated approximations
[Neiswanger et al., 2013]
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Proposed solution
“There is no problem an absence of decision cannot solve.”

Anonymous

Given α(x, y) := 1∧ r(x, y), factorise

r(x, y) =
d∏
k=1

ρk(x, y)

under constraint ρk(x, y) = ρk(y, x)−1
Delayed Acceptance Markov kernel given by

P̃(x,A) :=

∫
A

q(x, y)α̃(x, y)dy+

(
1−

∫
X
q(x, y)α̃(x, y)dy

)
1A(x)

where

α̃(x, y) :=
d∏
k=1

{1∧ ρk(x, y)}.

Algorithm 1 Delayed Acceptance
To sample from P̃(x, ·):

1. Sample y ∼ Q(x, ·).
2. For k = 1, . . . , d:

with probability 1∧ ρk(x, y) continue
otherwise stop and output x

3. Output y

Arrange terms in product so that most computationally intensive
ones calculated ‘at the end’ hence least often
Generalization of Fox & Nicholls (1997) and Christen & Fox
(2005), where testing for acceptance with approximation before
computing exact likelihood first suggested
More recent occurences in literature

[Shestopaloff & Neal (2013), Golightly (2014)]
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Potential drawbacks
I Delayed Acceptance efficiently reduces computing cost only

when approximation π̃ is “good enough” or “flat enough”
I Probability of acceptance always smaller than in the original

Metropolis–Hastings scheme
I Decomposition of original data in likelihood bits may however

lead to deterioration of algorithmic properties without
impacting computational efficiency...

I ...e.g., case of a term explosive in x = 0 and computed by
itself: leaving x = 0 near impossible

Figure: (left) Fit of delayed Metropolis–Hastings algorithm on a
Beta-binomial posterior p|x ∼ Be(x+ a, n+ b− x) when N = 100,
x = 32, a = 7.5 and b = .5. Binomial B(N,p) likelihood replaced with
product of 100 Bernoulli terms. Histogram based on 105 iterations, with
overall acceptance rate of 9%; (centre) raw sequence of p’s in Markov
chain; (right) autocorrelogram of the above sequence.
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The “Big Data” plague

Delayed Acceptance intended for likelihoods or priors, but
not a clear solution for “Big Data” problems

1. all product terms must be computed
2. all terms previously computed either stored for future

comparison or recomputed
3. sequential approach limits parallel gains...
4. ...unless prefetching scheme added to delays

[Strid (2010)]
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Validation of the method

Lemma (1)
For any Markov chain with transition kernel Π of the form

Π(x,A) =

∫
A

q(x, y)a(x, y)dy+
(
1−

∫
X
q(x, y)a(x, y)dy

)
1A(x),

and satisfying detailed balance, the function a(·) satisfies (for
π-a.e. x, y)

a(x, y)

a(y, x)
= r(x, y).

Lemma
(X̃n)n≥1, the Markov chain associated with P̃, is a π-reversible
Markov chain.

Proof.
From Lemma 18 we just need to check that

α̃(x, y)

α̃(y, x)
=

d∏
k=1

1∧ ρk(x, y)

1∧ ρk(y, x)

=
d∏
k=1

ρk(x, y) = r(x, y),

since ρk(y, x) = ρk(x, y)−1 and (1∧ a)/(1∧ a−1) = a
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# 4. Folding MCMC
Motivating example: Consider the target

π(x) =
1

(1+ x2)π

standard Cauchy distribution
Basic Metropolis-Hastings algorithm with uniform proposal
zt ∼ U(xt − ε, xt + ε) cannot be geometrically ergodic

[Mengersen and Tweedie (1996)]
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Dynamics of a standard random-walk
Metropolis–Hastings algorithm when
targeting a Cauchy distribution, based on
104 iterations and a uniform scale of ε = .1.
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new proposal

Metropolis-Hastings alternative:
1. the current value xt of the Markov chain is first inverted into
yt = 1/xt if found outside (−1, 1),

2. then moved by a random walk on (−1, 1) to
zt ∼ U(yt − ε, yt + ε), which value is accepted or not
according to the standard Metropolis-Hastings ratio,

3. and outcome inverted into xt+1 = 1/yt+1 with probability 1/2

simple version of the folding algorithm, with folding set the unit
interval (−1, 1)
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validation

simple version of the folding algorithm, with folding set the unit
interval (−1, 1)
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validation

simple version of the folding algorithm, with folding set the unit
interval (−1, 1)
I Cauchy target still stationary for this distribution
I probability 1/2 resulting from Jacobian rather than from

P(|X| < 1) = 1/2

I not-so-simple [but still-manageable] probabilty if chosing
folding interval (−2, 2) and inversion yt = 4/xt

I fundamental reason is that Cauchy is invariant by inversion
I resulting Markov chain is uniformly ergodic
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simulation outcome
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Figure: Folded Markov chain for Cauchy target with same scale of the
random walk
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Figure: Empirical distribution of the Markov chain and fit to the Cauchy
target
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folding the Markov chain

Consider target π on state space X
Let A0, A1, . . . , AM be a finite partition of the state space and
create differentiable bijections g1, . . . , gM from A0 to A1, . . . , AM,
respectively. Set X? = A0 as the folded space
Define the distribution

π?(x?) = π(x?) + π(g1x
?) |dxg1 (x

?)|+ . . .+ π(gMx
?) |dxgM (x?)|

on X?

© π?(·) is a proper density on X?
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unfolding the folded Markov chain

Simulating from π? is equivalent to simulating from π:

Lemma
If x? ∼ π?, then

x =


x? with probability π(x?)/π?(x?)
g1x

? with probability π(g1x?) |dxg1 (x?)| /π?(x?)
· · ·

gMx
? with probability π(gMx?) |dxgM (x?)| /π?(x?)

is distributed from the target π.

© build MCMC sampler aiming at π?
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Cauchy example validated
For the Cauchy example:
I A0 = (−1, 1), A1 = (−1, 1)c, g1x? = 1/x?
I and

π?(x) = π(x?) + π(g1x
?)|dxg1 (x

?)|

=
1

(1+ x2)π
+

1

(1+ 1/x2)π

1

x2

=
2

(1+ x2)π

I unfolding by x =
{
x? w.p. 1/2
1/x? w.p. 1/2

For the alternative
I A0 = (−2, 2), A1 = (−2, 2)c, g1x? = 4/x?
I and
π?(x) = π(x?) + π(g1x

?)|dxg1 (x
?)|

=
1

(1+ x2)π
+

1

(1+ 4/x2)π

4

x2
=

1

(1+ x2)π
+

4

(4+ x2)π

I unfolding by x =
{
x? w.p. π(x?)/π?(x?)
1/x? w.p. 4π(4/x?)/(x?)2π?(x?)
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folding set
Unless target distribution simple enough for informed choice,
natural choice for A0 is HPD region

Hα = {x ∈ X; π(x) ≥ α}

as
I π? [and hence π] lower bounded on Hα
I resulting Hα compact
I some transition kernels produce uniform ergodic chains
I partition of X into A0, Ac0 with natural stereoscopic projection

[provided A0 star-convex]

g1(x
?) =

ρ2

|x?|2
x?
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practical implementation

While Hα usually unavailable, approximations can be found from
preliminary MCMC runs when π(x) or unnormalised version of it
can be computed
I preliminary run produces simulations with [relative] values of
π, π(x1), . . . , π(xN)

I derivation of higher density values [and potential clustering]
I choice of an HPD approximation as ball and g1 as natural

projection
I reevaluation of the folding set after further simulations

Note: black box compatibility with MCMC code
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# 5. Pseudo-marginal version

Many settings where numerically computing target density π(·) is
impossible, even up a normalising constant
Example of doubly intractable likelihoods, when likelihood function
contains intractable non-constant term

`(θ|x) ∝ g(x|θ)

and intractable normalising constant

Z(θ) =

∫
X
g(x|θ) dx

See for instance Ising model
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pseudo-marginal extension
Approach based on unbiased estimator of π(·|x) and retaining
Metropolis–Hastings validity
If π̂(θ|z) is unbiased estimator of π(θ) when z ∼ q(·|θ)∫

Z

same θ︷ ︸︸ ︷
π̂(θ|z)q(·|θ) dz = π(θ)

then acceptance ratio
π̂(θ∗|z∗)q(z∗|θ∗)

π̂(θ|z)q(z|θ)

q(θ∗, θ)q(z|θ)

q(θ, θ∗)q(z∗|θ∗)

© preserves stationarity wrt extended target
Reason: auxiliary variable z makes simulation of joint (θ, z) a
regular Metropolis-Hastings move

[Beaumont & al, 2003; Andrieu & Roberts, 2009]

Performances depend on quality of estimators π̂ but always poorer
than when using the exact target π

[Andrieu & Vihola, 2012]
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Alternative explanation
Take importance weight

w = π̂(θ|z)
/
π(θ)

as auxiliary variable with constant conditional expectation c and
distribution p(w|θ)
Corresponding joint proposal q(θ, θ∗)p(w∗|θ∗) and associated
acceptance proposal

w∗π(θ∗)p(w∗|θ∗)× q(θ∗, θ)p(w|θ)
wπ(θ)p(w|θ)× q(θ, θ∗)p(w∗|θ∗)

leads to joint target (proportional to)
π(θ)wp(w|x)

with marginal π(θ)
[Andrieu & Roberts, 2009; Wilkinson, 2010]
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Illustration: particle MCMC
Hidden Markov model, where latent Markov chain x0:T with density

p0(x0|θ)p1(x1|x0, θ) · · ·pT (xT |xT−1, θ) ,
associated with observed sequence y1+T such that

y1+T |x1:T , θ ∼

T∏
i=1

qi(yi|xi, θ) ,

pMCMC
At iteration t
I propose value θ′ ∼ h(θ|θ(t))

I propose value of latent series x′0:T via particle filter
approximation of p(x0:T |θ′, y1:T )

I derive unbiased estimator of marginal posterior of y1:T ,
q̂(y1:T |θ

′)

I use estimator in Metropolis–Hastings ratio

q̂(y1:T |θ
′)π(θ′)h(θ(t)|θ′)

q̂(y1:T |θ)π(θ(t))h(θ′|θ(t))
∧ 1 .

[Andrieu, Doucet & Holenstein, 2010]

Extension of pMCMC called SMC2 that approximates sequential
filtering distribution proposed in Chopin et al (2013)
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The Gibbs sanoker

1 The Metropolis-Hastings Algorithm

2 The Gibbs Sampler
General Principle
Completion and slice sampling
Convergence
The Hammersley-Clifford theorem
Hierarchical models
Improper Priors

3 Hamiltonian Monte Carlo and other
PDMPs

4 Bayesian importance sampling
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General Principle

A very specific Markov chain Monte Carlo simulation algorithm
based on the target distribution f:

1. Uses the conditional densities f1, . . . , fp from f

2. Start with the random variable X = (X1, . . . , Xp)

3. Simulate from the conditional densities,

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp

∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp)

for i = 1, 2, . . . , p.
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Algorithm (Gibbs sampler)
Given x(t) = (x

(t)
1 , . . . , x

(t)
p ), generate

1. X(t+1)
1 ∼ f1(x1|x

(t)
2 , . . . , x

(t)
p );

2. X(t+1)
2 ∼ f2(x2|x

(t+1)
1 , x

(t)
3 , . . . , x

(t)
p ),

. . .

p. X(t+1)
p ∼ fp(xp|x

(t+1)
1 , . . . , x

(t+1)
p−1 )

X(t+1) → X ∼ f
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Properties

The full conditionals densities f1, . . . , fp are the only densities used
for simulation. Thus, even in a high dimensional problem, all of
the simulations may be univariate
The Gibbs sampler is not reversible with respect to f. However,
each of its p components is. Besides, it can be turned into a
reversible sampler, either using the Random Scan Gibbs sampler or
running instead the (double) sequence

f1 · · · fp−1fpfp−1 · · · f1
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Example (Bivariate Gibbs sampler)

(X, Y) ∼ f(x, y)

Generate a sequence of observations by
Set X0 = x0
For t = 1, 2, . . . , generate

Yt ∼ fY|X(·|xt−1)
Xt ∼ fX|Y(·|yt)

where fY|X and fX|Y are the conditional distributions
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A Very Simple Example: Independent N (µ, σ2)

Observations

When Y1, . . . , Yn
iid
∼ N (y|µ, σ2) with both µ and σ unknown, the

posterior in (µ, σ2) is conjugate outside a standard familly

But...
µ|Y0:n, σ

2 ∼ N
(
µ
∣∣∣ 1n∑n

i=1 Yi,
σ2

n )

σ2|Y1:n, µ ∼ IG
(
σ2
∣∣∣n2 − 1, 12∑n

i=1(Yi − µ)
2
)

assuming constant (improper) priors on both µ and σ2

I Hence we may use the Gibbs sampler for simulating from the
posterior of (µ, σ2)
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General Principle

R Gibbs Sampler for Gaussian posterior

n = length(Y);
S = sum(Y);
mu = S/n;
for (i in 1:500)

S2 = sum((Y-mu)ˆ2);
sigma2 = 1/rgamma(1,n/2-1,S2/2);
mu = S/n + sqrt(sigma2/n)*rnorm(1);
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General Principle

Example of results with n = 10 observations from
the N (0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5, 10, 25, 50, 100, 500
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Limitations of the Gibbs sampler

Formally, a special case of a sequence of 1-D M-H kernels, all with
acceptance rate uniformly equal to 1.
The Gibbs sampler

1. limits the choice of instrumental distributions
2. requires some knowledge of f
3. is, by construction, multidimensional
4. does not apply to problems where the number of parameters

varies as the resulting chain is not irreducible.
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Completion and slice sampling

Latent variables are back

The Gibbs sampler can be generalized in much wider generality
A density g is a completion of f if∫

Z
g(x, z) dz = f(x)

Note
The variable z may well be meaningless for the problem
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Completion and slice sampling

Purpose

Demarginalisation g should have full conditionals that are easy to
simulate for a Gibbs sampler to be implemented with g rather than
f

For p > 1, write y = (x, z) and denote the conditional densities of
g(y) = g(y1, . . . , yp) by

Y1|y2, . . . , yp ∼ g1(y1|y2, . . . , yp),

Y2|y1, y3, . . . , yp ∼ g2(y2|y1, y3, . . . , yp),

...
Yp|y1, . . . , yp−1 ∼ gp(yp|y1, . . . , yp−1).
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The move from Y(t) to Y(t+1) is defined as follows:
Algorithm (Completion Gibbs sampler)
Given (y

(t)
1 , . . . , y

(t)
p ), simulate

1. Y(t+1)1 ∼ g1(y1|y
(t)
2 , . . . , y

(t)
p ),

2. Y(t+1)2 ∼ g2(y2|y
(t+1)
1 , y

(t)
3 , . . . , y

(t)
p ),

. . .

p. Y(t+1)p ∼ gp(yp|y
(t+1)
1 , . . . , y

(t+1)
p−1 ).
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Example (Cauchy-normal)
Consider the density

f(θ|θ0) ∝
e−θ

2/2

[1+ (θ− θ0)2]ν

posterior from the model

X|θ ∼ N (θ, 1) and θ ∼ C(θ0, 1).

Then
f(θ|θ0) ∝

∫∞
0

e−θ
2/2 e−[1+(θ−θ0)

2] η/2 ην−1 dη,

and therefore

g(θ, η) ∝ e−θ2/2 e−[1+(θ−θ0)
2] η/2 ην−1,

with conditional densities

g1(η|θ) = Ga

(
ν,
1+ (θ− θ0)

2

2

)
,

g2(θ|η) = N
(
θ0η

1+ η
,
1

1+ η

)
.

The parameter η is completely meaningless for the problem at
hand but serves to facilitate computations.
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Example (Mixtures all over again)
Hierarchical missing data structure:
If

X1, . . . , Xn ∼

k∑
i=1

pif(x|θi),

then

X|Z ∼ f(x|θZ), Z ∼ p1I(z = 1) + . . .+ pkI(z = k),

Z is the component indicator associated with observation x
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Example (Mixtures (2))
Conditionally on (Z1, . . . , Zn) = (z1, . . . , zn) :

π(p1, . . . , pk, θ1, . . . , θk|x1, . . . , xn, z1, . . . , zn)

∝ pα1+n1−11 . . . pαk+nk−1k

×π(θ1|y1 + n1x̄1, λ1 + n1) . . . π(θk|yk + nkx̄k, λk + nk),

with
ni =

∑
j

I(zj = i) and x̄i =
∑
j; zj=i

xj/ni.
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Algorithm (Mixture Gibbs sampler)

1. Simulate

θi ∼ π(θi|yi + nix̄i, λi + ni) (i = 1, . . . , k)

(p1, . . . , pk) ∼ D(α1 + n1, . . . , αk + nk)

2. Simulate (j = 1, . . . , n)

Zj|xj, p1, . . . , pk, θ1, . . . , θk ∼

k∑
i=1

pijI(zj = i)

with (i = 1, . . . , k)

pij ∝ pif(xj|θi)

and update ni and x̄i (i = 1, . . . , k).
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A wee problem
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Random Scan Gibbs sampler

back to basics don’t do random

Modification of the above Gibbs sampler where, with probability
1/p, the i-th component is drawn from fi(xi|X−i), ie when the
components are chosen at random

Motivation
The Random Scan Gibbs sampler is reversible.
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Slice sampler as generic Gibbs

If f(θ) can be written as a product

k∏
i=1

fi(θ),

it can be completed as

k∏
i=1

I0≤ωi≤fi(θ),

leading to the following Gibbs algorithm:



Markov Chain Monte Carlo Methods (introduction)
The Gibbs Sampler

Completion and slice sampling

Algorithm (Slice sampler)
Simulate

1. ω(t+1)
1 ∼ U[0,f1(θ(t))]

;
. . .

k. ω(t+1)
k ∼ U[0,fk(θ(t))]

;
k+1. θ(t+1) ∼ UA(t+1) , with

A(t+1) = {y; fi(y) ≥ ω
(t+1)
i , i = 1, . . . , k}.
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Example of results with a truncated N (−3, 1)

distribution

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

x

y

Number of Iterations 2, 3, 4, 5, 10, 50, 100



Markov Chain Monte Carlo Methods (introduction)
The Gibbs Sampler

Completion and slice sampling

Good slices

The slice sampler usually enjoys good theoretical properties (like
geometric ergodicity and even uniform ergodicity under bounded f
and bounded X ).
As k increases, the determination of the set A(t+1) may get
increasingly complex.
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Properties of the Gibbs sampler

Theorem (Convergence)
For

(Y1, Y2, · · · , Yp) ∼ g(y1, . . . , yp),

if either
[Positivity condition]

(i) g(i)(yi) > 0 for every i = 1, · · · , p, implies that
g(y1, . . . , yp) > 0, where g(i) denotes the marginal
distribution of Yi, or

(ii) the transition kernel is absolutely continuous with respect to
g,

then the chain is irreducible and positive Harris recurrent.
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Properties of the Gibbs sampler (2)

Consequences

(i) If
∫
h(y)g(y)dy <∞, then

lim
nT→∞ 1

T

T∑
t=1

h1(Y
(t)) =

∫
h(y)g(y)dy a.e. g.

(ii) If, in addition, (Y(t)) is aperiodic, then

lim
n→∞

∥∥∥∥∫ Kn(y, ·)µ(dx) − f ∥∥∥∥
TV

= 0

for every initial distribution µ.
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Slice sampler

fast on that slice

For convergence, the properties of Xt and of f(Xt) are identical

Theorem (Uniform ergodicity)
If f is bounded and suppf is bounded, the simple slice sampler is
uniformly ergodic.

[Mira & Tierney, 1997]
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A small set for a slice sampler

no slice detail

For ε? > ε?,
C = {x ∈ X ; ε? < f(x) < ε?}

is a small set:
Pr(x, ·) ≥ ε?

ε?
µ(·)

where
µ(A) =

1

ε?

∫ε?
0

λ(A ∩ L(ε))
λ(L(ε))

dε

if L(ε) = {x ∈ X ; f(x) > ε}‘
[Roberts & Rosenthal, 1998]
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Slice sampler: drift

Under differentiability and monotonicity conditions, the slice
sampler also verifies a drift condition with V(x) = f(x)−β, is
geometrically ergodic, and there even exist explicit bounds on the
total variation distance

[Roberts & Rosenthal, 1998]

Example (Exponential Exp(1))
For n > 23,

||Kn(x, ·) − f(·)||TV ≤ .054865 (0.985015)n (n− 15.7043)
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Slice sampler: convergence

no more slice detail

Theorem
For any density such that

ε
∂

∂ε
λ ({x ∈ X ; f(x) > ε}) is non-increasing

then
||K523(x, ·) − f(·)||TV ≤ .0095

[Roberts & Rosenthal, 1998]
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A poor slice sampler
Example
Consider

f(x) = exp {−||x||} x ∈ Rd

Slice sampler equivalent to
one-dimensional slice sampler on

π(z) = zd−1 e−z z > 0

or on

π(u) = e−u
1/d

u > 0

Poor performances when d large
(heavy tails)
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Hammersley-Clifford theorem

An illustration that conditionals determine the joint distribution

Theorem
If the joint density g(y1, y2) have conditional distributions
g1(y1|y2) and g2(y2|y1), then

g(y1, y2) =
g2(y2|y1)∫

g2(v|y1)/g1(y1|v) dv
.

[Hammersley & Clifford, circa 1970]
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General HC decomposition

Under the positivity condition, the joint distribution g satisfies

g(y1, . . . , yp) ∝
p∏
j=1

g`j(y`j |y`1 , . . . , y`j−1 , y
′
`j+1
, . . . , y′`p)

g`j(y
′
`j
|y`1 , . . . , y`j−1 , y

′
`j+1
, . . . , y′`p)

for every permutation ` on {1, 2, . . . , p} and every y ′ ∈ Y .
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Hierarchical models

no hierarchy

The Gibbs sampler is particularly well suited to hierarchical models

Example (Animal epidemiology)
Counts of the number of cases of clinical mastitis in 127 dairy
cattle herds over a one year period
Number of cases in herd i

Xi ∼ P(λi) i = 1, · · · ,m

where λi is the underlying rate of infection in herd i
Lack of independence might manifest itself as overdispersion.
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Example (Animal epidemiology (2))
Modified model

Xi ∼ P(λi)

λi ∼ Ga(α,βi)

βi ∼ I G (a, b),

The Gibbs sampler corresponds to conditionals

λi ∼ π(λi|x, α, βi) = Ga(xi + α, [1+ 1/βi]
−1)

βi ∼ π(βi|x, α, a, b, λi) = I G (α+ a, [λi + 1/b]
−1)
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if you hate rats

Example (Rats)
Experiment where rats are intoxicated by a substance, then treated
by either a placebo or a drug:

xij ∼ N (θi, σ
2
c), 1 ≤ j ≤ Jci , control

yij ∼ N (θi + δi, σ
2
a), 1 ≤ j ≤ Jai , intoxication

zij ∼ N (θi + δi + ξi, σ
2
t), 1 ≤ j ≤ Jti , treatment

Additional variable wi, equal to 1 if the rat is treated with the
drug, and 0 otherwise.
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Hierarchical models

Example (Rats (2))
Prior distributions (1 ≤ i ≤ I),

θi ∼ N (µθ, σ
2
θ), δi ∼ N (µδ, σ

2
δ),

and
ξi ∼ N (µP, σ

2
P) or ξi ∼ N (µD, σ

2
D),

if ith rat treated with a placebo (P) or a drug (D)
Hyperparameters of the model,

µθ, µδ, µP, µD, σc, σa, σt, σθ, σδ, σP, σD ,

associated with Jeffreys’ noninformative priors.
Alternative prior with two possible levels of intoxication

δi ∼ pN (µδ1, σ
2
δ1) + (1− p)N (µδ2, σ

2
δ2),
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Conditional decompositions

Easy decomposition of the posterior distribution
For instance, if

θ|θ1 ∼ π1(θ|θ1), θ1 ∼ π2(θ1),

then
π(θ|x) =

∫
Θ1

π(θ|θ1, x)π(θ1|x)dθ1,
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Conditional decompositions (2)

where

π(θ|θ1, x) =
f(x|θ)π1(θ|θ1)

m1(x|θ1)
,

m1(x|θ1) =

∫
Θ

f(x|θ)π1(θ|θ1)dθ,

π(θ1|x) =
m1(x|θ1)π2(θ1)

m(x)
,

m(x) =

∫
Θ1

m1(x|θ1)π2(θ1)dθ1.
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Conditional decompositions (3)

Moreover, this decomposition works for the posterior moments,
that is, for every function h,

Eπ[h(θ)|x] = Eπ(θ1|x) [Eπ1 [h(θ)|θ1, x]] ,

where
Eπ1 [h(θ)|θ1, x] =

∫
Θ

h(θ)π(θ|θ1, x)dθ.
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Example (Rats inc., continued if you still hate rats )
Posterior complete distribution given by

π((θi, δi, ξi)i, µθ, . . . , σc, . . . |D) ∝
I∏
i=1

{
exp−{(θi − µθ)

2/2σ2θ + (δi − µδ)
2/2σ2δ}

Jci∏
j=1

exp−{(xij − θi)
2/2σ2c}

Jai∏
j=1

exp−{(yij − θi − δi)
2/2σ2a}

Jti∏
j=1

exp−{(zij − θi − δi − ξi)
2/2σ2t }

}
∏
`i=0

exp−{(ξi − µP)
2/2σ2P}

∏
`i=1

exp−{(ξi − µD)
2/2σ2D}

σ
−

∑
i J

c
i−1

c σ
−

∑
i J

a
i −1

a σ
−

∑
i J

t
i−1

t (σθσδ)
−I−1σ−ID−1

D σ−IP−1
P ,
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Local conditioning property

For the hierarchical model

π(θ) =

∫
Θ1×...×Θn

π1(θ|θ1)π2(θ1|θ2) · · ·πn+1(θn)dθ1 · · ·dθn+1.

we have
π(θi|x, θ, θ1, . . . , θn) = π(θi|θi−1, θi+1)

with the convention θ0 = θ and θn+1 = 0.
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Example (Rats inc., terminated still this zemmiphobia?! )
The full conditional distributions correspond to standard
distributions and Gibbs sampling applies.
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Posterior Gibbs inference

µδ µD µP µD − µP
Probability 1.00 0.9998 0.94 0.985
Confidence [-3.48,-2.17] [0.94,2.50] [-0.17,1.24] [0.14,2.20]

Posterior probabilities of significant effects
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Improper Priors

 Unsuspected danger resulting from careless use of MCMC
algorithms:
It may happen that
◦ all conditional distributions are well defined,
◦ all conditional distributions may be simulated from, but...
◦ the system of conditional distributions may not correspond to

any joint distribution
Warning The problem is due to careless use of the Gibbs sampler
in a situation for which the underlying assumptions are violated
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Example (Conditional exponential distributions)
For the model

X1|x2 ∼ Exp(x2) , X2|x1 ∼ Exp(x1)

the only candidate f(x1, x2) for the joint density is

f(x1, x2) ∝ exp(−x1x2),

but ∫
f(x1, x2)dx1dx2 =∞

© These conditionals do not correspond to a joint
probability distribution
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Example (Improper random effects)
Consider

Yij = µ+ αi + εij, i = 1, . . . , I, j = 1, . . . , J,

where
αi ∼ N (0, σ2) and εij ∼ N (0, τ2),

the Jeffreys (improper) prior for the parameters µ, σ and τ is

π(µ, σ2, τ2) =
1

σ2τ2
.
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Example (Improper random effects 2)
The conditional distributions

αi|y, µ, σ
2, τ2 ∼ N

(
J(ȳi − µ)

J+ τ2σ−2
, (Jτ−2 + σ−2)−1

)
,

µ|α, y, σ2, τ2 ∼ N (ȳ− ᾱ, τ2/JI) ,

σ2|α, µ, y, τ2 ∼ IG

I/2, (1/2)∑
i

α2i

 ,

τ2|α, µ, y, σ2 ∼ IG

IJ/2, (1/2)∑
i,j

(yij − αi − µ)
2

 ,

are well-defined and a Gibbs sampler can be easily implemented in
this setting.
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The figure shows the sequence of
µ(t)’s and its histogram over
1, 000 iterations. They both fail
to indicate that the
corresponding “joint distribution”
does not exist
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Final notes on impropriety

The improper posterior Markov chain
cannot be positive recurrent

The major task in such settings is to find indicators that flag that
something is wrong. However, the output of an “improper” Gibbs
sampler may not differ from a positive recurrent Markov chain.

Example
The random effects model was initially treated in Gelfand et al.

(1990) as a legitimate model
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Hamiltonian Monte Carlo and other PDMPs

1 The Metropolis-Hastings Algorithm

2 The Gibbs Sampler

3 Hamiltonian Monte Carlo and other
PDMPs

Hamiltonian Monte Carlo
Piecewise Deterministic Versions

4 Bayesian importance sampling
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Hamiltonian Monte Carlo

Continuous time Markov process
Hamiltonian (or hybrid) Monte Carlo (HMC) auxiliary variable
technique that takes advantage of a continuous time Markov
process to sample from target π(θ)
Auxiliary variable ϑ ∈ Rd introduced along with a density $(ϑ|θ)
so that the joint distribution of (θ, ϑ) enjoys π(θ) as its marginal

π(θ) =

∫
π(θ)$(ϑ|θ)dϑ

Based on representation of joint distribution
ω(θ, ϑ) = π(θ)$(ϑ|θ) ∝ exp{−H(θ, ϑ)} ,

where H(·) called Hamiltonian
Hamiltonian Monte Carlo (HMC) associated with the continuous
time process (θt, ϑt) generated by the so-called Hamiltonian
equations

dθt
dt =

∂H

∂ϑ
(θt, ϑt)

dϑt
dt = −

∂H

∂θ
(θt, ϑt) ,

Keep Hamiltonian target stable over time, as
dH(θt, ϑt)

dt =
∂H

∂ϑ
(θt, ϑt)

dϑt
dt +

∂H

∂θ
(θt, ϑt)

dθt
dt = 0 .
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Hamiltonian Monte Carlo

Background
Approach from physics (Duane et al., 1987) popularised in
statistics by Neal (1996, 2002)

[Lan et al., 2016]

I Above continuous time Markov process is deterministic
I Only explores single given level set

{(θ, ϑ) : H(θ, ϑ) = H(θ0, ϑ0)} ,

instead of the whole augmented state space R2×d
I Meaning lack of irreducibility
I Solution out is to refresh momentum,

ϑt ∼ $(ϑ|θt−)

at random times τn with {τn − τn−1} exponential variates
I Specific piecewise deterministic Markov process using

Hamiltonian dynamics
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Hamiltonian Monte Carlo

Practical implementation

Free conditional density $(ϑ|θ), usually chosen as Gaussian with
either a constant covariance matrix M corresponding to target
covariance or as local curvature depending on θ in Riemannian and
Lagrangian HMC (Girolami and Calderhead, 2011; Lan et al.,
2016)
For fixed covariance matrix M, Hamiltonian equations

dθt
dt =M−1ϑt

dϑt
dt = ∇L(θt) ,

equal to the score function
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Leapfrog integrator
Discretisation simulation technique: symplectic integrator
One version in the independent case with constant covariance M
made of leapfrog steps

ϑt+ε/2 = ϑt + ε∇L(θt)/2,
θt+ε = θt + εM

−1ϑt+ε/2,

ϑt+ε = ϑt+ε/2 + ε∇L(θt+ε)/2,
where ε is time-discretisation step

Using proposal on ϑ0 drawn from Gaussian auxiliary target and
deciding on acceptance of the value of (θTε, ϑTε) by a
Metropolis–Hastings step
Note that first two leapfrog steps induce a Langevin move on θt:

θt+ε = θt + ε
2M−1∇L(θt)/2+ εM−1ϑt ,

Discretising Hamiltonian dynamics introduces two free parameters,
step size ε and trajectory length Tε, both to be calibrated.
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Hamiltonian Monte Carlo

no U turns

I empirically successful and popular version of HMC:
“no-U-turn sam-
pler” (NUTS) adapts value of ε based on primal-dual averaging

[workhorse of Stan]
I and eliminates need to choose trajectory length T via a

recursive algorithm that builds a set of candidate proposals for
a number of forward and backward leapfrog steps, stopping
automatically when simulated path traces back

[Hoffman and Gelman, 2014]
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Piecewise Deterministic Versions

Goal: sample from a target known up to a constant, defined over
Rd,

π(x) ∝ γ(x)

with energy U(x) = − logπ(x), U ∈ C1.
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Marketing arguments

Current default workhorse: reversible MCMC methods
Non-reversible MCMC algorithms based on piecewise deterministic
Markov processes perform well empirically
Quantitative convergence rates and variance now available
I Physics (Peters & De With, 2012; Krauth et al., 2009, 2015,

2016) roots
I Mesquita and Hespanha (2010) show geometric ergodicity for

exponentially decaying tail targets
I Monmarché (2016) gives sharp results for compact

state-spaces
I Bierkens et al. (2016a,b) show ergodicity targets on the real

line
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Motivation: piecewise deterministic Markov process

PDMP sampler is a (new?) continuous-time, non-reversible
MCMC method based on auxiliary variables

1. particle physics simulation
[Peters et al., 2012]

2. empirically state-of-the-art performances
[Bouchard et al., 2017]

3. exact subsampled in big data
[Bierkens et al., 2017]

4. geometric ergodicity for a large class of distribution
[Deligiannidis et al., 2017, Bierkens et al., 2017]

5. Ability to deal with intractable potential
U(x) =

∫
Uω(x)µ(dω)

[Pakman et al., 2016]
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Setup

I All MCMC schemes presented here target an extended
distribution on Z = Rd × Rd

ρ(z) = π(x)×ψ(v) = exp(−H(z))

where z = (x, v) extended state and Ψ(v) [by default]
multivariate standard Normal

I Physics takes v as velocity or momentum variables allowing
for a deterministic dynamics on Rd

I Obviously sampling from ρ provides samples from π
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Piecewise deterministic Markov process

Piecewise deterministic Markov process {zt ∈ Z}t∈[0,∞), with three
ingredients,

1. Deterministic dynamics: between events, deterministic
evolution based on ODE

dzt/dt = Φ(zt)

2. Event occurrence rate: λ(t) = λ(zt)
3. Transition dynamics: At event time, τ, state prior to τ

denoted by zτ−, and new state generated by zτ ∼ Q(·|zτ−).
[Davis, 1984, 1993]
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Implementation

Algorithm 1 Simulation of PDMP
Input: Starting point z0, τ0 ← 0.
for k = 1, 2, 3, · · ·

Sample inter-event time ηk from distribution

P(ηk > t) = exp
{
−

∫ t
0

λ(zτk−1+s)ds
}
.

τk ← τk−1 + ηk, zτk−1+s ← Ψs(zτk−1), for s ∈ (0, ηk), where
Ψ ODE flow of Φ.
zτk− ← Ψηk(zτk−1), zτk ∼ Q(·|zτk−).
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Simulation of PDMP: constraints

Requires being able to
I compute exactly flow zt = Φt(z0)

existing algorithms use Φ(z) = (v; 0d) so thatt
Φ(z0) = (x0 + v0t; v0)
except for Hamiltonian BPS that uses the
Hamiltonian dynamics for a proxy Gaussian
Hamiltonian (Vanetti et al., 2017).

I simulate event times (Inversion, thinning, superposition,
Devroye, 1986)

I simulate from Q



Markov Chain Monte Carlo Methods (introduction)
Hamiltonian Monte Carlo and other PDMPs

Piecewise Deterministic Versions

Basic bouncy particle sampler
Simulation of continuous-time piecewise linear trajectory (xt)t with
each segment in trajectory specified by
I initial position x
I length τ
I velocity v

[Bouchard et al., 2017]
length specified by inhomogeneous Poisson point process with

intensity function
λ(x, v) = max{0,< ∇U(x), v >}

[Bouchard et al., 2017]
new velocity after bouncing given by Newtonian elastic collision

R(x)v = v− 2
< ∇U(x), v >
||∇U(x)||2

∇U(x)

[Bouchard et al., 2017]

[Bouchard et al., 2017]
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Implementation hardships

Generally speaking, the main difficulties of implementing PDMP
come from

1. Computing the ODE flow Ψ: linear dynamic, quadratic
dynamic

2. Simulating the inter-event time ηk: many techniques of
superposition and thinning for Poisson processes

[Devroye, 1986]



Markov Chain Monte Carlo Methods (introduction)
Hamiltonian Monte Carlo and other PDMPs

Piecewise Deterministic Versions

Poisson process on R+

Definition (Poisson process)
Poisson process with rate λ on R+ is sequence

τ1, τ2, · · ·

of rv’s when intervals

τ1, τ2 − τ1, τ3 − τ2, · · ·

are iid with

P(τi − τi−1 > T) = exp
{
−

∫τi−1+T
τi−1

λ(t)dt

}
, τ0 = 0

a rarely available cdf
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Simulation by thinning

Theorem (Lewis et al., 1979)
Let

λ,Λ : R+ → R+

be continuous functions such that λ(·) ≤ Λ(·). Let

τ1, τ2, · · · ,

be the increasing sequence of a Poisson process with rate Λ(·). For
all i, if τi is removed from the sequence with probability

1− λ(t)/Λ(t)

then the remaining τ̃1, τ̃2, · · · form a non-homogeneous Poisson
process with rateλ(·)

Simulation from upper bound



Markov Chain Monte Carlo Methods (introduction)
Hamiltonian Monte Carlo and other PDMPs

Piecewise Deterministic Versions

Simulation by superposition theorem

Theorem (Kingman,1992)
Let Π1, Π2, · · · , be countable collection of independent Poisson
processes on R+ with resp. rates λn(·). If

∑∞
n=1λn(t) <∞ for all

t’s, then superposition process

Π =
∞⋃
n=1

Πn

is Poisson process with rate lambda(t)

λ(t) =
∞∑
n=1

λn(t)

Decomposition of U =
∑
jUj plus thinning
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Simulation by superposition plus thinning

Almost all implementations of discrete-time schemes consist of
sampling a Bernoulli of parameter α(z)
For

Φ(z) = (x+ vε, v) and α(z) = 1∧ π(x+ vε)/π(x)

sampling inter-event time for strictly convex U(·) can be obtained
by solving t? = arg minU(x+ vt) and additional randomization
I thinning: if there exists ᾱ such that α(Φk(z)) ≥ ᾱ(x, k),

accept-reject
I superposition and thinning: when α(z) = 1∧ ρ(Φ(z))/ρ(z)

and ρ(·) =
∏
i ρi(·) then ᾱ(z, k) =

∏
i ᾱi(z, k)
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Extended generator

Definition
For D(L) set of measurable functions f : Z → R such that there
exists a measurable function h : Z → R with t→ h(zt) Pz-a.s. for
each z ∈ Z and the process

Cft = f(zt) − f(z0) −

∫ t
0

h(zs)ds

a local martingale. Then we write h = Lf and call (L,D(L)) the
extended generator of the process {zt}t≥0.
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Extended Generator of PDMP

Theorem (Davis, 1993)
The generator, L, of above PDMP is, for f ∈ D(L)

Lf(z) = ∇f(z) ·Φ(z) + λ(z)

∫
z ′

[
f(z ′) − f(z)

]
Q(dz ′|z)

Furthermore, µ(dz) is an invariant distribution of above PDMP, if∫
Lf(z)µ(dz) = 0, for all f ∈ D(L)
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PDMP-based sampler

PDMP-based sampler is an auxiliary variable technique
Given target π(x),

1. introduce auxiliary variable V ∈ V along with a density π(v|x),
2. choose appropriate Φ, λ and Q

for π(x)π(v|x) to be unique invariant distribution of Markov
process
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Bouncy Particle Sampler (Bouchard et al., 2017)

V = Rd, and π(v|x) = ϕ(v) for N (0, Id)

1. Deterministic dynamics:

dxt/dt = vt, dvt/dt = 0

2. Event occurrence rate: λ(x, v) = 〈v,∇U(x)〉+ + λref

3. Transition dynamics:
Q((dx ′, dv ′)|(x, v))

=
〈v,∇U(x)〉+
λ(x, v)

δx(dx
′)δR∇U(x)v(dv

′) +
λref

λ(x, v)
δx(dx

′)ϕ(dv ′)

where R∇U(x)v = v− 2 〈∇U(x),v〉
〈∇U(x),∇U(x)〉∇U(x)
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Zig-Zag Sampler (Bierkens et al., 2016)

V = {+1,−1}d, and π(v|x) ∼ Uniform({+1,−1}d)

1. Deterministic dynamics:
dxt/dt = vt, dvt/dt = 0

2. Event occurrence rate:
λ(x, v) =

∑d
i=1 λi(x, v) =

∑d
i=1

[
{vi∇iU(x)}+ + λref

i

]
3. Transition dynamics:

Q((dx ′, dv ′)|(x, v)) =
d∑
i=1

λi(x, v)

λ(x, v)
δx(dx

′)δFiv(dv
′)

where Fi operator that flips i-th component of v and keep others
unchanged
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Continuous-time Hamiltonian Monte Carlo (Neal,
1999)

V = Rd, and π(v|x) = ϕ(v) ∼ N (0, Id)

1. Deterministic dynamics:

dxt/dt = vt, dvt/dt = −∇U(xt)

2. Event occurrence rate: λ(x, v) = λ0(x)
3. Transition dynamics:

Q((dx ′, dv ′)|(x, v)) = δx(dx
′)ϕ(dv ′)
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Continuous-time Riemannian Manifold HMC
(Girolami & Calderhead, 2011)
V = Rd, and π(v|x) = N (0,G(x)), the Hamiltonian is

H(x, v) = U(x) + 1/2vTG(x)−1v+ 1/2 log(|G(x)|)

1. Deterministic dynamics:

dxt/dt = ∂H/∂v(xt, vt), dvt/dt = −∂H/∂x(xt, vt)

2. Event occurrence rate: λ(x, v) = λ0(x)
3. Transition dynamics:

Q((dx ′, dv ′)|(x, v)) = δx(dx
′)ϕ(dv ′|x ′)
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Randomized BPS

Define
a =

〈v,∇U(x)〉
〈∇U(x),∇U(x)〉

∇U(x), b = v− a

Regular BPS, move v ′ = −a+ b

Alternatives
1. (Fearnhead et al., 2016):

v ′ ∼ Qx(dv
′|v) = max {0, 〈−v ′,∇U(x)〉}dv ′

2. (Wu & X, 2017): v ′ = −a+ b ′, where b ′ Gaussian variate
over the space orthogonal to ∇U(x) in Rd.
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HMC-BPS (Vanetti et al., 2017)
ρ(x) ∝ exp{−V(x)} is a Gaussian approximation of the target π(x).

Ĥ(x, v) = V(x) + 1/2vTv, Ũ(x) = U(x) − V(x)

1. Deterministic dynamics:

dxt/dt = vt, dvt/dt = −∇V(xt)

2. Event occurrence rate: λ(x, v) = 〈v,∇Ũ(x)〉+ + λref

3. Transition dynamics:

Q((dx ′, dv ′)|(x, v))

=
〈v,∇Ũ(x)〉+
λ(x, v)

δx(dx
′)δR∇Ũ(x)v

(dv ′) +
λref

λ(x, v)
δx(dx

′)ϕ(dv ′)
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Discretisation
1. Sherlock & Thiery (2017) considers delayed rejection

approach with only point-wise evaluations of target, by
making speed flip move once proposal involving flip in speed
and drift in variable of interest rejected. Also add random
perturbation for eergodicity, plus another perturbation based
on a Brownian argument. Requires calibration

2. Vanetti et al. (2017) unifies many threads and relates PDMP,
HMC, and discrete versions, with convergence results. Main
idea improves upon existing deterministic methods by
accounting for target. Borrows from earlier slice sampler idea
of Murray et al. (AISTATS, 2010), exploiting exact
Hamiltonian dynamics for approximation to true target.
Except that bouncing avoids the slice step. Eight discrete BPS
both correct against target and do not simulating event times.

Benefit: bypassing the generation of inter-event time of
inhomogeneous Poisson processes.
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Bayesian importance sampling

1 The Metropolis-Hastings Algorithm

2 The Gibbs Sampler

3 Hamiltonian Monte Carlo and other
PDMPs

4 Bayesian importance sampling



Markov Chain Monte Carlo Methods (introduction)
Bayesian importance sampling

Bayesian model choice

directly Markovian

Probabilise the entire model/parameter space
I allocate probabilities pi to all models Mi

I define priors πi(θi) for each parameter space Θi
I compute

π(Mi|x) =

pi

∫
Θi

fi(x|θi)πi(θi)dθi∑
j

pj

∫
Θj

fj(x|θj)πj(θj)dθj

I take largest π(Mi|x) to determine “best” model,
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Bayes factor

Definition (Bayes factors)
For testing hypotheses H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0, under prior

π(Θ0)π0(θ) + π(Θ
c
0)π1(θ) ,

central quantity

B01 =
π(Θ0|x)

π(Θc0|x)

/
π(Θ0)

π(Θc0)
=

∫
Θ0

f(x|θ)π0(θ)dθ∫
Θc
0

f(x|θ)π1(θ)dθ

[Jeffreys, 1939]
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Evidence

Problems using a similar quantity, the evidence

Ek =

∫
Θk

πk(θk)Lk(θk) dθk,

aka the marginal likelihood.
[Jeffreys, 1939]
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Bayes factor approximation

When approximating the Bayes factor

B01 =

∫
Θ0

f0(x|θ0)π0(θ0)dθ0∫
Θ1

f1(x|θ1)π1(θ1)dθ1

use of importance functions $0 and $1 and

B̂01 =
n−1
0

∑n0
i=1 f0(x|θ

i
0)π0(θ

i
0)/$0(θ

i
0)

n−1
1

∑n1
i=1 f1(x|θ

i
1)π1(θ

i
1)/$1(θ

i
1)
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Diabetes in Pima Indian women

Example (R benchmark)
“A population of women who were at least 21 years old, of Pima
Indian heritage and living near Phoenix (AZ), was tested for
diabetes according to WHO criteria. The data were collected by
the US National Institute of Diabetes and Digestive and Kidney
Diseases.”
200 Pima Indian women with observed variables
I plasma glucose concentration in oral glucose tolerance test
I diastolic blood pressure
I diabetes pedigree function
I presence/absence of diabetes
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Probit modelling on Pima Indian women

Probability of diabetes function of above variables

P(y = 1|x) = Φ(x1β1 + x2β2 + x3β3) ,

Test of H0 : β3 = 0 for 200 observations of Pima.tr based on a
g-prior modelling:

β ∼ N3(0, n
(
XTX)−1

)
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MCMC 101 for probit models

Use of either a random walk proposal

β′ = β+ ε

in a Metropolis-Hastings algorithm (since the likelihood is
available)
or of a Gibbs sampler that takes advantage of the missing/latent
variable

z|y, x, β ∼ N (xTβ, 1)
{
Iyz≥0 × I1−yz≤0

}
(since β|y, X, z is distributed as a standard normal)

[Gibbs three times faster]
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Importance sampling for the Pima Indian dataset

Use of the importance function inspired from the MLE estimate
distribution

β ∼ N (β̂, Σ̂)

R Importance sampling code

model1=summary(glm(y˜-1+X1,family=binomial(link="probit")))
is1=rmvnorm(Niter,mean=model1$coeff[,1],sigma=2*model1$cov.unscaled)
is2=rmvnorm(Niter,mean=model2$coeff[,1],sigma=2*model2$cov.unscaled)
bfis=mean(exp(probitlpost(is1,y,X1)-dmvlnorm(is1,mean=model1$coeff[,1],

sigma=2*model1$cov.unscaled))) / mean(exp(probitlpost(is2,y,X2)-
dmvlnorm(is2,mean=model2$coeff[,1],sigma=2*model2$cov.unscaled)))
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Diabetes in Pima Indian women
Comparison of the variation of the Bayes factor approximations
based on 100 replicas for 20, 000 simulations from the prior and
the above MLE importance sampler

Basic Monte Carlo Importance sampling

2
3

4
5
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Bridge sampling

Special case:
If

π1(θ1|x) ∝ π̃1(θ1|x)
π2(θ2|x) ∝ π̃2(θ2|x)

live on the same space (Θ1 = Θ2), then

B12 ≈
1

n

n∑
i=1

π̃1(θi|x)

π̃2(θi|x)
θi ∼ π2(θ|x)

[Gelman & Meng, 1998; Chen, Shao & Ibrahim, 2000]
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Bridge sampling variance

The bridge sampling estimator does poorly if

var(B̂12)
B212

≈ 1

n
E
[(
π1(θ) − π2(θ)

π2(θ)

)2]

is large, i.e. if π1 and π2 have little overlap...
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(Further) bridge sampling

General identity:

B12 =

∫
π̃2(θ|x)α(θ)π1(θ|x)dθ∫
π̃1(θ|x)α(θ)π2(θ|x)dθ

∀ α(·)

≈

1

n1

n1∑
i=1

π̃2(θ1i|x)α(θ1i)

1

n2

n2∑
i=1

π̃1(θ2i|x)α(θ2i)

θji ∼ πj(θ|x)
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Optimal bridge sampling

The optimal choice of auxiliary function is

α? =
n1 + n2

n1π1(θ|x) + n2π2(θ|x)

leading to

B̂12 ≈

1

n1

n1∑
i=1

π̃2(θ1i|x)

n1π1(θ1i|x) + n2π2(θ1i|x)

1

n2

n2∑
i=1

π̃1(θ2i|x)

n1π1(θ2i|x) + n2π2(θ2i|x)

Back later!
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Optimal bridge sampling (2)

Reason:

Var(B̂12)
B212

≈ 1

n1n2

{∫
π1(θ)π2(θ)[n1π1(θ) + n2π2(θ)]α(θ)

2 dθ(∫
π1(θ)π2(θ)α(θ) dθ

)2 − 1

}

(by the δ method)
Drawback: Dependence on the unknown normalising constants
solved iteratively
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Extension to varying dimensions

When dim(Θ1) 6= dim(Θ2), e.g. θ2 = (θ1, ψ), introduction of a
pseudo-posterior density, ω(ψ|θ1, x), augmenting π1(θ1|x) into
joint distribution

π1(θ1|x)×ω(ψ|θ1, x)

on Θ2 so that

B12 =

∫
π̃1(θ1|x)α(θ1, ψ)π2(θ1, ψ|x)dθ1ω(ψ|θ1, x) dψ∫
π̃2(θ1, ψ|x)α(θ1, ψ)π1(θ1|x)dθ1ω(ψ|θ1, x) dψ

= Eπ2

[
π̃1(θ1)ω(ψ|θ1)

π̃2(θ1, ψ)

]
=

Eϕ [π̃1(θ1)ω(ψ|θ1)/ϕ(θ1, ψ)]

Eϕ [π̃2(θ1, ψ)/ϕ(θ1, ψ)]

for any conditional density ω(ψ|θ1) and any joint density ϕ.
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Illustration for the Pima Indian dataset

Use of the MLE induced conditional of β3 given (β1, β2) as a
pseudo-posterior and mixture of both MLE approximations on β3
in bridge sampling estimate

R bridge sampling code

cova=model2$cov.unscaled
expecta=model2$coeff[,1]
covw=cova[3,3]-t(cova[1:2,3])%*%ginv(cova[1:2,1:2])%*%cova[1:2,3]

probit1=hmprobit(Niter,y,X1)
probit2=hmprobit(Niter,y,X2)
pseudo=rnorm(Niter,meanw(probit1),sqrt(covw))
probit1p=cbind(probit1,pseudo)

bfbs=mean(exp(probitlpost(probit2[,1:2],y,X1)+dnorm(probit2[,3],meanw(probit2[,1:2]),
sqrt(covw),log=T))/ (dmvnorm(probit2,expecta,cova)+dnorm(probit2[,3],expecta[3],
cova[3,3])))/ mean(exp(probitlpost(probit1p,y,X2))/(dmvnorm(probit1p,expecta,cova)+
dnorm(pseudo,expecta[3],cova[3,3])))
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Diabetes in Pima Indian women (cont’d)
Comparison of the variation of the Bayes factor approximations
based on 100× 20, 000 simulations from the prior (MC), the above
bridge sampler and the above importance sampler
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The original harmonic mean estimator

When θki ∼ πk(θ|x),
1

T

T∑
t=1

1

L(θkt|x)

is an unbiased estimator of 1/mk(x)
[Newton & Raftery, 1994]

Highly dangerous: Most often leads to an infinite variance!!!
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“The Worst Monte Carlo Method Ever”

“The good news is that the Law of Large Numbers guarantees that
this estimator is consistent ie, it will very likely be very close to the
correct answer if you use a sufficiently large number of points from
the posterior distribution.
The bad news is that the number of points required for this
estimator to get close to the right answer will often be greater
than the number of atoms in the observable universe. The even
worse news is that it’s easy for people to not realize this, and to
näıvely accept estimates that are nowhere close to the correct
value of the marginal likelihood.”

[Radford Neal’s blog, Aug. 23, 2008]
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Approximating Zk from a posterior sample

Use of the [harmonic mean] identity

Eπk
[

ϕ(θk)

πk(θk)Lk(θk)

∣∣∣∣ x] = ∫ ϕ(θk)

πk(θk)Lk(θk)

πk(θk)Lk(θk)

Zk
dθk =

1

Zk

no matter what the proposal ϕ(·) is.
[Gelfand & Dey, 1994; Bartolucci et al., 2006]

Direct exploitation of the MCMC output
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Comparison with regular importance sampling

Harmonic mean: Constraint opposed to usual importance sampling
constraints: ϕ(θ) must have lighter (rather than fatter) tails than
πk(θk)Lk(θk) for the approximation

Ẑ1k = 1

/
1

T

T∑
t=1

ϕ(θ
(t)
k )

πk(θ
(t)
k )Lk(θ

(t)
k )

to have a finite variance.
E.g., use finite support kernels (like Epanechnikov’s kernel) for ϕ
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Comparison with regular importance sampling
(cont’d)

Compare Ẑ1k with a standard importance sampling approximation

Ẑ2k =
1

T

T∑
t=1

πk(θ
(t)
k )Lk(θ

(t)
k )

ϕ(θ
(t)
k )

where the θ(t)k ’s are generated from the density ϕ(·) (with fatter
tails like t’s)
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HPD indicator as ϕ
Use the convex hull of MCMC simulations corresponding to the
10% HPD region (easily derived!) and ϕ as indicator:

ϕ(θ) =
10

T

∑
t∈HPD

Id(θ,θ(t))≤ε
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Diabetes in Pima Indian women (cont’d)
Comparison of the variation of the Bayes factor approximations
based on 100 replicas for 20, 000 simulations for a simulation from
the above harmonic mean sampler and importance samplers

Harmonic mean Importance sampling
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Approximating Zk using a mixture representation

Bridge sampling redux

Design a specific mixture for simulation [importance sampling]
purposes, with density

ϕ̃k(θk) ∝ ω1πk(θk)Lk(θk) +ϕ(θk) ,

where ϕ(·) is arbitrary (but normalised)
Note: ω1 is not a probability weight
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Approximating Z using a mixture representation
(cont’d)

Corresponding MCMC (=Gibbs) sampler
At iteration t

1. Take δ(t) = 1 with probability

ω1πk(θ
(t−1)
k )Lk(θ

(t−1)
k )

/(
ω1πk(θ

(t−1)
k )Lk(θ

(t−1)
k ) +ϕ(θ

(t−1)
k )

)
and δ(t) = 2 otherwise;

2. If δ(t) = 1, generate θ(t)k ∼ MCMC(θ(t−1)k , θk) where
MCMC(θk, θ′k) denotes an arbitrary MCMC kernel associated
with the posterior πk(θk|x) ∝ πk(θk)Lk(θk);

3. If δ(t) = 2, generate θ(t)k ∼ ϕ(θk) independently



Markov Chain Monte Carlo Methods (introduction)
Bayesian importance sampling

Evidence approximation by mixtures

Rao-Blackwellised estimate

ξ̂ =
1

T

T∑
t=1

ω1πk(θ
(t)
k )Lk(θ

(t)
k )

/
ω1πk(θ

(t)
k )Lk(θ

(t)
k ) +ϕ(θ

(t)
k ) ,

converges to ω1Zk/{ω1Zk + 1}
Deduce Ẑ3k from ω1Ê3k/{ω1Ê3k + 1} = ξ̂ ie

Ê3k =

∑T
t=1ω1πk(θ

(t)
k )Lk(θ

(t)
k )

/
ω1π(θ

(t)
k )Lk(θ

(t)
k ) +ϕ(θ

(t)
k )

∑T
t=1ϕ(θ

(t)
k )

/
ω1πk(θ

(t)
k )Lk(θ

(t)
k ) +ϕ(θ

(t)
k )

[Bridge sampler]
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Chib’s representation

Direct application of Bayes’ theorem: given x ∼ fk(x|θk) and
θk ∼ πk(θk),

Ek = mk(x) =
fk(x|θk)πk(θk)

πk(θk|x)

Use of an approximation to the posterior

Êk = m̂k(x) =
fk(x|θ

∗
k)πk(θ

∗
k)

π̂k(θ
∗
k|x)

.
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Case of latent variables

For missing variable z as in mixture models, natural Rao-Blackwell
estimate

π̂k(θ
∗
k|x) =

1

T

T∑
t=1

πk(θ
∗
k|x, z

(t)
k ) ,

where the z
(t)
k ’s are Gibbs sampled latent variables
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Label switching

A mixture model [special case of missing variable model] is
invariant under permutations of the indices of the components.
E.g., mixtures

0.3N (0, 1) + 0.7N (2.3, 1)

and
0.7N (2.3, 1) + 0.3N (0, 1)

are exactly the same!
© The component parameters θi are not identifiable
marginally since they are exchangeable
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Connected difficulties

1. Number of modes of the likelihood of order O(k!):
© Maximization and even [MCMC] exploration of the
posterior surface harder

2. Under exchangeable priors on (θ,p) [prior invariant under
permutation of the indices], all posterior marginals are
identical:
© Posterior expectation of θ1 equal to posterior expectation
of θ2
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License

Since Gibbs output does not produce exchangeability, the Gibbs
sampler has not explored the whole parameter space: it lacks
energy to switch simultaneously enough component allocations at
once
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Label switching paradox

We should observe the exchangeability of the components [label
switching] to conclude about convergence of the Gibbs sampler.
If we observe it, then we do not know how to estimate the
parameters.
If we do not, then we are uncertain about the convergence!!!
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Compensation for label switching

For mixture models, z(t)k usually fails to visit all configurations in a
balanced way, despite the symmetry predicted by the theory

πk(θk|x) = πk(σ(θk)|x) =
1

k!

∑
σ∈S

πk(σ(θk)|x)

for all σ’s in Sk, set of all permutations of {1, . . . , k}.
Consequences on numerical approximation, biased by an order k!
Recover the theoretical symmetry by using

π̃k(θ
∗
k|x) =

1

T k!

∑
σ∈Sk

T∑
t=1

πk(σ(θ
∗
k)|x, z

(t)
k ) .

[Berkhof, Mechelen, & Gelman, 2003]
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Galaxy dataset
n = 82 galaxies as a mixture of k normal distributions with both
mean and variance unknown.

[Roeder, 1992]
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Galaxy dataset (k)
Using only the original estimate, with θ∗k as the MAP estimator,

log(m̂k(x)) = −105.1396

for k = 3 (based on 103 simulations), while introducing the
permutations leads to

log(m̂k(x)) = −103.3479

Note that
−105.1396+ log(3!) = −103.3479

k 2 3 4 5 6 7 8
mk(x) -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44

Estimations of the marginal likelihoods by the symmetrised Chib’s
approximation (based on 105 Gibbs iterations and, for k > 5, 100
permutations selected at random in Sk).

[Lee, Marin, Mengersen & Robert, 2008]
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Case of the probit model

For the completion by z,

π̂(θ|x) =
1

T

∑
t

π(θ|x, z(t))

is a simple average of normal densities

R Bridge sampling code

gibbs1=gibbsprobit(Niter,y,X1)
gibbs2=gibbsprobit(Niter,y,X2)
bfchi=mean(exp(dmvlnorm(t(t(gibbs2$mu)-model2$coeff[,1]),mean=rep(0,3),

sigma=gibbs2$Sigma2)-probitlpost(model2$coeff[,1],y,X2)))/
mean(exp(dmvlnorm(t(t(gibbs1$mu)-model1$coeff[,1]),mean=rep(0,2),

sigma=gibbs1$Sigma2)-probitlpost(model1$coeff[,1],y,X1)))
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Diabetes in Pima Indian women (cont’d)
Comparison of the variation of the Bayes factor approximations
based on 100 replicas for 20, 000 simulations for a simulation from
the above Chib’s and importance samplers
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The Savage–Dickey ratio

Special representation of the Bayes factor used for simulation
Given a test H0 : θ = θ0 in a model f(x|θ,ψ) with a nuisance
parameter ψ, under priors π0(ψ) and π1(θ,ψ) such that

π1(ψ|θ0) = π0(ψ)

then
B01 =

π1(θ0|x)

π1(θ0)
,

with the obvious notations

π1(θ) =

∫
π1(θ,ψ)dψ , π1(θ|x) =

∫
π1(θ,ψ|x)dψ ,

[Dickey, 1971; Verdinelli & Wasserman, 1995]
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Measure-theoretic difficulty

The representation depends on the choice of versions of conditional
densities:

B01 =

∫
π0(ψ)f(x|θ0, ψ) dψ∫

π1(θ,ψ)f(x|θ,ψ) dψdθ [by definition]

=

∫
π1(ψ|θ0)f(x|θ0, ψ) dψπ1(θ0)∫
π1(θ,ψ)f(x|θ,ψ) dψdθπ1(θ0)

[specific version of π1(ψ|θ0)]

=

∫
π1(θ0, ψ)f(x|θ0, ψ) dψ

m1(x)π1(θ0)
[specific version of π1(θ0, ψ)]

=
π1(θ0|x)

π1(θ0)

© Dickey’s (1971) condition is not a condition
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Similar measure-theoretic difficulty

Verdinelli-Wasserman extension:

B01 =
π1(θ0|x)

π1(θ0)
Eπ1(ψ|x,θ0,x)

[
π0(ψ)

π1(ψ|θ0)

]
depends on similar choices of versions
Monte Carlo implementation relies on continuous versions of all
densities without making mention of it

[Chen, Shao & Ibrahim, 2000]
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Computational implementation
Starting from the (new) prior

π̃1(θ,ψ) = π1(θ)π0(ψ)

define the associated posterior

π̃1(θ,ψ|x) = π0(ψ)π1(θ)f(x|θ,ψ)
/
m̃1(x)

and impose
π̃1(θ0|x)

π0(θ0)
=

∫
π0(ψ)f(x|θ0, ψ) dψ

m̃1(x)

to hold.
Then

B01 =
π̃1(θ0|x)

π1(θ0)

m̃1(x)

m1(x)
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First ratio

If (θ(1), ψ(1)), . . . , (θ(T), ψ(T)) ∼ π̃(θ,ψ|x), then

1

T

∑
t

π̃1(θ0|x,ψ
(t))

converges to π̃1(θ0|x) (if the right version is used in θ0).
When π̃1(θ0|x,ψ unavailable, replace with

1

T

T∑
t=1

π̃1(θ0|x, z
(t), ψ(t))
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Bridge revival (1)

Since m̃1(x)/m1(x) is unknown, apparent failure!
Use of the identity

Eπ̃1(θ,ψ|x)
[
π1(θ,ψ)f(x|θ,ψ)

π0(ψ)π1(θ)f(x|θ,ψ)

]
= Eπ̃1(θ,ψ|x)

[
π1(ψ|θ)

π0(ψ)

]
=
m1(x)

m̃1(x)

to (biasedly) estimate m̃1(x)/m1(x) by

T
/ T∑
t=1

π1(ψ
(t)|θ(t))

π0(ψ(t))

based on the same sample from π̃1.
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Bridge revival (2)
Alternative identity

Eπ1(θ,ψ|x)
[
π0(ψ)π1(θ)f(x|θ,ψ)

π1(θ,ψ)f(x|θ,ψ)

]
= Eπ1(θ,ψ|x)

[
π0(ψ)

π1(ψ|θ)

]
=
m̃1(x)

m1(x)

suggests using a second sample (θ̄(1), ψ̄(1), z(1)), . . . ,
(θ̄(T), ψ̄(T), z(T)) ∼ π1(θ,ψ|x) and

1

T

T∑
t=1

π0(ψ̄
(t))

π1(ψ̄(t)|θ̄(t))

Resulting estimate:

B̂01 =
1

T

∑
t π̃1(θ0|x, z

(t), ψ(t))

π1(θ0)

1

T

T∑
t=1

π0(ψ̄
(t))

π1(ψ̄(t)|θ̄(t))
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Diabetes in Pima Indian women (cont’d)
Comparison of the variation of the Bayes factor approximations
based on 100 replicas for 20, 000 simulations for a simulation from
the above importance, Chib’s, Savage–Dickey’s and bridge
samplers
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Nested sampling: Goal

Skilling’s (2007) technique using the one-dimensional
representation:

E = Eπ[L(θ)] =
∫ 1
0

ϕ(x) dx

with
ϕ−1(l) = Pπ(L(θ) > l).

Note; ϕ(·) is intractable in most cases.
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Nested sampling: First approximation

Approximate E by a Riemann sum:

Ê =

j∑
i=1

(xi−1 − xi)ϕ(xi)

where the xi’s are either:
I deterministic: xi = e

−i/N

I or random:

x0 = 1, xi+1 = tixi, ti ∼ Be(N, 1)

so that E[log xi] = −i/N.
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Extraneous white noise

Take

E =

∫
e−θ dθ =

∫
1

δ
e−(1−δ)θ e−δθ = Eδ

[
1

δ
e−(1−δ)θ

]

Ê =
1

N

N∑
i=1

δ−1 e−(1−δ)θi(xi−1 − xi) , θi ∼ E(δ) I(θi ≤ θi−1)

N deterministic random
50 4.64 10.5

4.65 10.5
100 2.47 4.9

2.48 5.02
500 .549 1.01

.550 1.14

Comparison of variances and MSEs
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Nested sampling: Second approximation

Replace (intractable) ϕ(xi) by ϕi, obtained by

Nested sampling
Start with N values θ1, . . . , θN sampled from π

At iteration i,
1. Take ϕi = L(θk), where θk is the point with smallest

likelihood in the pool of θi’s
2. Replace θk with a sample from the prior constrained to
L(θ) > ϕi: the current N points are sampled from prior
constrained to L(θ) > ϕi.
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Nested sampling: Third approximation

Iterate the above steps until a given stopping iteration j is reached:
e.g.,
I observe very small changes in the approximation Ẑ;
I reach the maximal value of L(θ) when the likelihood is

bounded and its maximum is known;
I truncate the integral E at level ε, i.e. replace∫ 1

0

ϕ(x) dx with
∫ 1
ε

ϕ(x) dx
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Approximation error

Error = Ê − E

=

j∑
i=1

(xi−1 − xi)ϕi −

∫ 1
0

ϕ(x) dx = −

∫ε
0

ϕ(x) dx (Truncation Error)

+

 j∑
i=1

(xi−1 − xi)ϕ(xi) −

∫ 1
ε

ϕ(x) dx

 (Quadrature Error)

+

 j∑
i=1

(xi−1 − xi) {ϕi −ϕ(xi)}

 (Stochastic Error)

[Dominated by Monte Carlo!]
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A CLT for the Stochastic Error

The (dominating) stochastic error is OP(N−1/2):

N1/2 {Stochastic Error} D→ N (0, V)

with
V = −

∫
s,t∈[ε,1]

sϕ ′(s)tϕ ′(t) log(s∨ t) dsdt.

[Proof based on Donsker’s theorem]

The number of simulated points equals the number of iterations j,
and is a multiple of N: if one stops at first iteration j such that
e−j/N < ε, then: j = Nd− log εe.
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Curse of dimension

For a simple Gaussian-Gaussian model of dimension dim(θ) = d,
the following 3 quantities are O(d):

1. asymptotic variance of the NS estimator;
2. number of iterations (necessary to reach a given truncation

error);
3. cost of one simulated sample.

Therefore, CPU time necessary for achieving error level e is

O(d3/e2)
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Sampling from constr’d priors

Exact simulation from the constrained prior is intractable in most
cases!

Skilling (2007) proposes to use MCMC, but:
I this introduces a bias (stopping rule).
I if MCMC stationary distribution is unconst’d prior, more and

more difficult to sample points such that L(θ) > l as l
increases.

If implementable, then slice sampler can be devised at the same
cost!
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A IS variant of nested sampling

Consider instrumental prior π̃ and likelihood L̃, weight function

w(θ) =
π(θ)L(θ)

π̃(θ)L̃(θ)

and weighted NS estimator

Ê =

j∑
i=1

(xi−1 − xi)ϕiw(θi).

Then choose (π̃, L̃) so that sampling from π̃ constrained to
L̃(θ) > l is easy; e.g. N (c, Id) constrained to ‖c− θ‖ < r.
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Benchmark: Target distribution

Posterior distribution on (µ, σ) associated with the mixture

pN (0, 1) + (1− p)N (µ, σ) ,

when p is known
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Experiment

I n observations with
µ = 2 and σ = 3/2,

I Use of a uniform prior
both on (−2, 6) for µ
and on (.001, 16) for
logσ2.

I occurrences of posterior
bursts for µ = xi

I computation of the
various estimates of E
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Experiment (cont’d)

MCMC sample for n = 16
observations from the mixture.

Nested sampling sequence
with M = 1000 starting points.
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Experiment (cont’d)

MCMC sample for n = 50
observations from the mixture.

Nested sampling sequence
with M = 1000 starting points.
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Comparison

Monte Carlo and MCMC (=Gibbs) outputs based on T = 104

simulations and numerical integration based on a 850× 950 grid in
the (µ, σ) parameter space.
Nested sampling approximation based on a starting sample of
M = 1000 points followed by at least 103 further simulations from
the constr’d prior and a stopping rule at 95% of the observed
maximum likelihood.
Constr’d prior simulation based on 50 values simulated by random
walk accepting only steps leading to a lik’hood higher than the
bound
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Comparison (cont’d)

Graph based on a sample of 10 observations for µ = 2 and
σ = 3/2 (150 replicas).

Graph based on a sample of 50 observations for µ = 2 and
σ = 3/2 (150 replicas).

Graph based on a sample of 100 observations for µ = 2 and
σ = 3/2 (150 replicas).
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Comparison (cont’d)

Nested sampling gets less reliable as sample size increases
Most reliable approach is mixture Ê3 although harmonic solution
Ê1 close to Chib’s solution [taken as golden standard]
Monte Carlo method Ê2 also producing poor approximations to E
(Kernel φ used in Ê2 is a t non-parametric kernel estimate with
standard bandwidth estimation.)
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