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Overview

I Causal inference
I Which treatments work?
I Form whom?
I When?
I And why?

I Interventions
I Point exposures
I Time-varying

I Designs
I Experimental
I Observational

I Strategies
I Randomization
I Observation, assumptions

I E.g., instruments

I Core methods
I Matching
I Regression
I Weighting

I Sensitivity analyses

I Evidence integration
I Issues throughout

I Missingness
I Mismeasurement
I Fairness...

I Perspectives
I Statistics, biostatistics
I Economics, political science
I Computer science
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Instrumental variables

Immaculate results?

I Can you guarantee that the results of your observational study are not
affected by an unobserved covariate?

I No matter how pristine is the design of an observational study, the
assumption of “no unmeasured confounders” is typically key to
making causal inferences from non-experimental data

I This, regardless of the method used (either sub-classification,
matching, g-computation...)

I Now, imagine for a moment there was an alternative that allowed us
to make causal inference even if we do not adjust for all relevant
covariates

I This would be a dream, right?

I Well, this is the promise of an instrumental variable!

I See Hernán and Robins (2006) for a discussion
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Instrumental variables

Overview of instrumental variables

I What is an instrument?
I A haphazard push to receive treatment which affects the outcome only

through the treatment

I Main assumptions

(R) The push is essentially random after adjusting for observed covariates
(E) The push affects the outcome only through the treatment (exclusion

restriction)

Z 

U 

D Y 
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Instrumental variables

Examples of instrumental variables in healthcare studies

I Sources of instrumental variables in health studies include (Baiocchi et al.

2014)

I Randomized encouragement trials
I Distance to specialty care provider
I Preferences in medical practice
I Calendar time
I Genes
I Timing of admission
I Insurance plan
I Congestion
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Instrumental variables

The randomized encouragement design

I Perhaps the most basic example of an instrumental variable appears
in Holland’s (1988) randomized encouragement design

I Here, subjects are randomized to one of two groups

I Members of one group are encouraged, say, to quit smoking
I The outcome (e.g. an evaluation of lung tissue) might respond to a

reduction in cigarettes consumed but not to the encouragement per se

I The Wald estimator attributes the entire difference in outcomes
between the randomized encouraged and unencouraged groups to the
greater change in behavior in the encouraged group

τ̂Wald =
E[Y |Z = 1]− E[Y |Z = 0]

E[D|Z = 1]− E[D|Z = 0]
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Instrumental variables

Compliance types
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Instrumental variables

Estimation

I Conventionally, the Complier Average Causal Effect (CACE) is
estimated by two-stage least squares (2SLS) regression

I Problem: weak instruments
I Confidence intervals derived from 2SLS do not have adequate coverage

I Fixable with appropriate inferential methods (Imbens and Rosenbaum
2005)

I Estimates are sensitive to very small biases
I This problem does not go away in large samples (Small and Rosenbaum

2008)
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Instrumental variables

Questions?

I How to strengthen an instrument?

I How to target other estimands?

I How to characterize heterogeneity?

I How to handle instruments in longitudinal studies?
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Discontinuity designs

Discontinuity designs
I Drawing causal inferences from non-experimental or observational

data is a complex task

I If treatment assignment is governed only by observed covariates, then
it suffices to adjust for differences in such covariates

I However, if there are unobserved covariates, then we need to look for
other approaches

I One such approach is an instrumental variable

I A related approach is a discontinuous treatment assignment rule,
whereby units with a value of an assignment, forcing, or running
variable above a certain cutoff value are assignment to treatment, and
otherwise are assigned to control

I The idea is that in a neighborhood of the discontinuity, units
treatment assignment is essentially random

I Therefore by restricting the analyses to that neighborhood we can get
an unbiased average treatment effect estimate
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Discontinuity designs

Idea of a discontinuity design
I In our labor training example, imagine subjects with pre-treatment

income below 500 are assigned to the program

I Pre-treatment income is the running variable R, 500 is the cutoff c
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Discontinuity designs

The continuity-based framework

I RD designs are treated as an observational study with a
non-probabilistic assignment mechanism

I If the mean potential outcome functions are smooth functions of the
running variable and other covariates (observed and unobserved
ones), then the discontinuity in the conditional expectation function
of the observed outcome given the running variable at the cutoff can
be interpreted as the average treatment effect for units at the cutoff

I See Thistlethwaite and Campbell (1960), Imbens and Lemieux
(2008), Lee and Lemieux (2010), Imbens and Kalyanaraman (2012),
Calonico et al. (2014), and Calonico et al. (2016)
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Discontinuity designs

The local randomization framework

I It assumes that the assignment mechanism is probabilistic, at least for
units within a neighborhood around the cutoff value

I If the running variable is independent from the potential outcomes for
the individuals within this neighborhood, then the RD design can
essentially be treated as a randomized experiment for the units within
the neighborhood

I See Cattaneo et al. (2015), Li, Mattei, and Mealli (2015), and Mattei
and Mealli (2016)

I In some cases, it is implausible that the mean potential outcome
functions are constant functions of the running variables, even in a
neighborhood of cutoffs
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Discontinuity designs

Questions?

I How to relax these assumptions?

I How to target other estimands?

I How to characterize heterogeneity?

I How to handle more complex treatment rules?
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Discontinuity designs

Impact of grade retention on juvenile crime

Click here for picture copyrights
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Discontinuity designs

Grade retention in Chile

I School grades vary between 1 and 7 by increments of 0.1:
I 7 is “Outstanding,”
I 4 is “Sufficient,”
I 1 stands for “Very Deficient”

I Grade retention is determined by two rules:
I Rule 1: a grade below 4 in one subject and an average grade across all

subjects below 4.5
I Rule 2: a grade below 4 in two subjects and an average grade across all

subjects below 5

I This defines a “complex” discontinuity design, with multiple rules,
several running variables, and many cutoffs that lead to the same
treatment

I How to analyze these designs?
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Discontinuity designs

Visualizing the rules and selected neighborhoods
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Discontinuity designs

Assumptions for identification

Assumption 1 (A1). Local unconfoundedness of treatment
assignment via the running variables

Ri ⊥⊥ {Yi (1),Yi (0)} |X i ,Qi ∈ N

Assumption 2 (A2). Local positivity of treatment assignment

0 < Pr(Zi = 1 | X i ,Qi ∈ N ) < 1

I For simple rules, similar assumptions have been considered by
Battistin and Rettore (2008), Keele et al. (2015), Angrist and
Rokkanen (2015), Mattei (2017), Branson and Mealli (2018)
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Discontinuity designs

Sensitivity analysis using a near-equivalence test

I In the absence of hidden bias, grade retention does not cause
committing a juvenile crime

Table: NATE estimate

Outcome variable
Matched sample mean

τ̂NATE
H0 : τNATE = 0

Treated Control One-sided p-value

Committing a crime 0.059 0.053 0.006 0.229

I How much bias from a hidden covariate would need to be present to
mask an actual treatment effect?

I Two students matched for their covariates could differ in their odds of
repeating by almost 33% before masking an effect of 4.3%
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Discontinuity designs

Displaying the outcomes

Zubizarreta (Harvard) Causal Inference 09/04/2023 21 / 64



Discontinuity designs

Seeing more from discontinuities

I If discontinuities are a keyhole into causality, can we see more?

I Heterogeneity?
I Generalization?
I Mediation?
I Personalization?
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Synthetic controls

Outline

1 Instrumental variables

2 Discontinuity designs

3 Synthetic controls
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Synthetic controls

Toward unit-level causal inferences

I How to evaluate the effects of a policy change on a city, region,
country, or other aggregate unit?
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Synthetic controls

Synthetic controls

I Proposed by Abadie and Gardeazabal (2003)
I Economic cost of terrorist conflict in the Basque Country?

I A very creative, helpful, and transparent tool, often used to evaluate
the effects of infrequent events, such as large-scale policy
interventions, at an aggregate level of units

I For example, countries, regions, cities

I As Abadie (2021) argues, even in experimental settings unit-level
interventions may be infeasible (due to fairness constraints) or
impractical (due to spillover effects)

I In what follows, we will closely follow the work by Abadie and coauthors
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Synthetic controls

Varied areas of application

I Immigration policy

I Tax programs

I Organized crime

I Tobacco control

I Localized lockdowns
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Synthetic controls

Setting

I Single (typically, aggregate) treated unit and several untreated groups
I Data often has a strong time component, before and after the

treatment
I Pre-treatment data t = 1, ...,T0

I T0 : beginning of the treatment

I Post-treatment data t = T1, ...,T

I j indexes the units (e.g., country, state, city)
I j = 1, treated
I j = 2, ..., J + 1 untreated, so there are J potential controls or “donors”
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Synthetic controls

Estimand

I Y I
jt : potential outcome of unit j, exposed at t = T0 + 1, ...,T

I Y N
jt : potential outcome of unit j, not exposed

I We wish to estimate
τ1t = Y I

1t − Y N
1t

where Y I
1t = Y1t
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Synthetic controls

Finding a good comparison

I Ideal: compare the exposed unit’s outcome after the exposure to its
outcome without the exposure

I Problem: counterfactuals; we never observe the exposed unit’s
outcome without the exposure

I Example: comparative case studies; compare, e.g., one country after
the exposure to another country that is “comparable”

I Approach: finding a good comparison unit; there may be several other
countries, but none alone serves as a valid contrast
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Synthetic controls

Idea

I Can we combine potential comparison units to build a good
comparison?

I The synthetic control method formalizes this idea by weighting
potential comparison units so that, together and after weighting, they
provide a good comparison
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Synthetic controls

Weighted comparisons

I How might we determine whether a comparison unit is a good
candidate?

I Often, we’d want it to look like the exposed unit before the exposure

I Seek weights such that the weighted comparison units “look like” the
exposed unit before the exposure
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Synthetic controls

How to choose the synthetic control weights?

I Roughly, the method finds weights that minimize a measure of
pre-exposure covariate imbalance between the exposed and unexposed
units

I For example, so that the weighted controls pre-exposure outcome
trajectory is as close as possible to the exposed unit’s pre-exposure
outcome trajectory

I We can incorporate covariates into the weighting scheme as well (i.e.,
balance pre-exposure covariates), giving them different importance
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Synthetic controls

Technical details

I To build the synthetic control, we find the weights
W = (w2, ...,wJ+1)′ that solve

min ||X 1 − X 0W ||

subject to
wj ≥ 0 for j = 2, ..., J + 1

and
w2 + ...+ wJ+1 = 1

I where
I X 1 is the k × 1 vector of pre-treatment covariates of the treated unit
I X 0 is the k × J matrix of pre-treatment covariates of the control units
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Synthetic controls

Typical covariate distance

I Following Abadie (2021), typically

||X 1 − X 0W || =

{
k∑

h=1

vh(Xh1 − w2Xh2 − ...− whJ+1Xh2)2

}1/2

where v1, ..., vk capture the strength of the association between each
of the k covariates and Y N

1t
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Synthetic controls

Synthetic control estimator

I We use the weights in the linear estimator

τ̂1t = Y1t −
J+1∑
j=2

w∗j Yjt
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Synthetic controls

A bias bound

I Abadie et al. (2010) provide a bias bound under the factor model

Y N
1t = θtX i + λtU i + εit

where X i are observed covariates, U i are unobserved covariates, and
εit is a random error term
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Synthetic controls

Impact of California’s tobacco control program

I Does tobacco control reduce smoking?
I Proposition 99

I Implemented in California in 1989
I Increased cigarette excise tax by a large amount
I Required funds to be used for anti-smoking education and clean indoor

air ordinances
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Synthetic controls

Data

I Annual measurements for California and 36 untreated states from
1970 to 2000

I Outcome: annual cigarette packs sold per capita

I Covariates include per capita beer consumption and log income, retail
price of a cigarette pack, and percentage of population aged 15-24
years
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Synthetic controls

Unadjusted trends in per-capita cigarette sales (Abadie et
al., 2010)
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Synthetic controls

Diagnostics

I Diagnostics are important to evaluate the implementation of the
synthetic control method

I Assess covariate balance:
I How well the outcome trajectory of the exposed unit is approximated

by the weighted unexposed units?
I How well are other pre-exposure covariates balanced?

I Look at the weights:
I How sparse are the weights, so that only a few units actually contribute

to the synthetic control?
I Do the units that comprise the synthetic control make sense (e.g., are

they geographically nearby)?
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Synthetic controls

Cigarette sales predictor means (Abadie et al., 2010)
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Synthetic controls

Adjusted trends in per-capita cigarette sales (Abadie et al.,
2010)
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Synthetic controls

State weights in the synthetic California (Abadie et al.,
2010)
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Synthetic controls

Comparing weights

I How do the synthetic control weights compare to the following?
I Matching weights
I Minimal weights
I Regression weights

I Linear “machine learning”

I Relevant dimensions:
I Sparsity
I Dispersion
I Extrapolation
I Interpretation
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Synthetic controls

Geometric interpretation of the synthetic weights

I The synthetic control: a linear combination of the potential controls

I If X 1 does not belong to the convex hull of X 0, the synthetic control
is unique and sparse

I If X 1 belongs to the convex hull of X 0, the synthetic control may not
be unique nor sparse
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Synthetic controls

A penalized synthetic control approach (1)

I Abadie and L’Hour (2020)

min ||X 1 −
J+1∑
j=2

wjX j ||+ λ

J+1∑
j=2

wj ||X 1 − X j ||2

subject to
wj ≥ 0 for j = 2, ..., J + 1

and
w2 + ...+ wJ+1 = 1

I Extreme cases:
I λ = 0: pure synthetic control
I λ =∞: nearest neighbor matching

I λ > 0 reduces the extent of interpolation bias
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Synthetic controls

Inference and stability

I Permutation inference: permute which unit is labeled as the exposed
unit and get the distribution of a test statistic

I Placebo test: backdate the intervention and test whether we still get
an effect

I Robustness check: leave-one-out of the control pool and see if
estimates change much
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Synthetic controls

Sales gap between California and synthetic California
(Abadie et al., 2010)
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Synthetic controls

Synthetic California and synthetic placebo gaps in other
control states (Abadie et al., 2010)

Zubizarreta (Harvard) Causal Inference 09/04/2023 48 / 64



Synthetic controls

Data requirements

I Sufficient covariates for a given outcome and intervention
I Necessary for no unmeasured confounding cross-sectionally (build a

credible synthetic comparison)

I Sufficient pre-intervention information
I Necessary for no unmeasured confounding longitudinally (steadily track

the trajectory of the outcome before the intervention)

I Sufficient post-intervention information
I Necessary to understand the timing of the effects (assess

gradual/abrupt, sustained/dissipative effects)
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Synthetic controls

Another case study: impact of localized lockdowns in the
COVID-19 pandemic

I Essential to control viral transmission early in the pandemic
I Examples: face masks, physical distance

I Localized lockdowns in small geographic areas
I Lower social and economic costs than interventions in larger areas

I At the time, limited evidence on their effectiveness
I Impact of duration and spillover effects
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Synthetic controls

Causal effects of localized lockdowns

I Direct effects of lockdowns in a municipality

I Spillover effects of lockdowns in neighboring municipalities
I Total effects: sum of direct and spillover effects

I Effects further modulated by the duration of the lockdown

I We estimated these effects in Chile
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Synthetic controls

Chile, Greater Santiago, three municipalities
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Synthetic controls

Integrated data from three sources

I Epidemiologic records: Ministry of Health
I COVID-19 cases defined as PCR-confirmed SARS-CoV-2 infections

I Household data: National Socioeconomic Characterization Survey

I Population measurements: National Census
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Synthetic controls

Study question
I Impact of localized lockdowns?

I Causal effect of the duration and the proportion of the neighboring
population under lockdown on the incidence and reproduction number
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Synthetic controls

Building synthetic or “clone” municipalities
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Synthetic controls

Variables

I Covariates:
I Xi : pre-intervention baseline covariates in municipality i
I Li [th−h,th−1], P(i)[th−h,th−1], and Ri [th−h,th−1]: “histories” of...

I Interventions:
I Lit : proportion of population under lockdown in municipality i
I P(i)t : proportion of population under lockdown in the neighbors of

municipality i

I Outcomes:
I Iit : incidence in municipality i at time t
I Rit : instantaneous reproduction number of municipality i
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Synthetic controls

Covariate balance: Santiago

Baseline covariates Santiago Control Set Synthetic Santiago
Rural 0.00 0.03 0.00
Female 0.50 0.52 0.50
Over 65 0.07 0.11 0.07
Poverty 0.04 0.07 0.04
Overcrowding 0.19 0.12 0.19
Poor sanitation 0.02 0.04 0.02
Income 593633.86 375521.94 593633.86
Area (small) 1.00 0.36 1.00
Area (medium) 0.00 0.35 0.00
Area (large) 0.00 0.30 0.00
Lagged variables Santiago Control Set Synthetic Santiago
Rt−7 1.14 1.13 1.14
Rt−6 1.14 1.12 1.14
Rt−5 1.14 1.10 1.14
Rt−4 1.17 1.09 1.17
Rt−3 1.19 1.08 1.19
Rt−2 1.24 1.07 1.24
Rt−1 1.31 1.07 1.31

Lt−7 1.00 0.95 1.01
Lt−6 1.00 0.95 1.01
Lt−5 1.00 0.96 1.00
Lt−4 1.00 0.96 1.00
Lt−3 1.00 0.96 1.00
Lt−2 1.00 0.96 0.99
Lt−1 1.00 0.96 0.99

Pt−7 0.36 0.74 0.35
Pt−6 0.36 0.75 0.33
Pt−5 0.36 0.76 0.34
Pt−4 0.36 0.76 0.36
Pt−3 0.36 0.77 0.38
Pt−2 0.36 0.78 0.36
Pt−1 0.36 0.79 0.39
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Synthetic controls

Distribution of imbalances
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Synthetic controls

Direct and total effects: Santiago
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Synthetic controls

Results

I These effects represent 33-62% reductions in reported cases in that
time frame

I The reductions would have been even larger if it was possible to
control lockdowns in neighbouring municipalities
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Synthetic controls

Duration and spillovers, ∆D = 0, ..., 14, Pt ∈ [0, 1]
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Synthetic controls

Takeaways

I The effects of localized lockdowns are strongly modulated by their
duration and are affected by indirect effects from neighboring
geographic areas that are not under lockdown

I Extending localized lockdowns slow down the epidemic; however, by
themselves, localized lockdowns are insufficient to control epidemic
growth due to indirect effects from neighboring areas
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Synthetic controls

Big picture: strengths of the synthetic control method

I Transparency of fit: we can clearly evaluate how well the synthetic
control mimics the exposed unit’s pre-exposure outcome evolution

I No extrapolation: most implementations require that the weights are
positive, which restricts the estimate to be an interpolation

I Separation of design and analysis stages: the weights are obtained
using pre-treatment measurements, so there is less risk of fishing

I Flexibility: we can use the same weights to evaluate effects on
different timescales (short-, long-run)

I Simplicity in estimation: we can compute a simple weighted average
of the outcomes
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Synthetic controls

Questions

I Other ways to make inferences?

I Sensitivity analyses?

I How to study mediation?

I Manage interpolation and extrapolation bias?
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Synthetic controls
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José R. Zubizarreta
Harvard University

09/04/2023
CUSO Doctoral School in Statistics and Applied Probability

Saignelégier, Switzerland

Zubizarreta (Harvard) Causal Inference 09/04/2023 64 / 64


	Instrumental variables
	Discontinuity designs
	Synthetic controls

