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Notation
● Upper-case letters for RVs: Y,X
● Lower-case letters for their observed values: y, x
● Y for a RV that represents a response variable.
● x for the observed value of an explanatory variable.
● We use Greek letters for parameters: θ, π, µ
● We use boldface letters for vectors: Y,y, θ

Abbreviations
● RV = Random variable
● pdf = probability density function (continuous RV): f(y∣θ)
● pmf = probability mass function (discrete RV): f(y∣θ)
● LHD = likelihood function: l(y∣θ) = l(θ)
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Classical (Frequentist) versus Bayesian Statistics

Classical approach
● Parameter are unknown but regarded as taking fixed values.

● They are not RVs, so they do not have probabilities for their
possible values.

● Probabilities apply to the RVs that yield the data, summarized
by their probability distributions.
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Example - Confidence intervals

Randomly samples 200 people who recently graduated from a
particular state university.
Y = annual income in first job after graduation.
Goals include estimating the mean annual income µ and comparing
the means of various groups (gender / race / subject major).
● Sample mean, in thousands of dollars, of y = 63.2,
● 95% confidence interval for µ is (61.8, 64.6).

How is this confidence interval interpreted?

With the classical approach, it is not correct to say that the
probability is 0.95 that µ falls between 61.8 and 64.6 thousand
dollars.

The RV in the study, to which probabilities apply, is not µ but
rather the sample mean Y before we observe the data.
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Example - Confidence intervals
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particular state university.
Y = annual income in first job after graduation.
Goals include estimating the mean annual income µ and comparing
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● Sample mean, in thousands of dollars, of y = 63.2,
● 95% confidence interval for µ is (61.8, 64.6).

How is this confidence interval interpreted?
With the classical approach, it is not correct to say that the
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The RV in the study, to which probabilities apply, is not µ but
rather the sample mean Y before we observe the data.
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Once we observe the data and construct a particular confidence
interval, that interval either does or does not contain µ.

We do not know which is the case for the specific sample at hand.

A probability such as 0.95 applies to the random interval,
Y± (margin of error), before observing the data.
Different realizations of random samples have different observed y
values and yield different bounds for confidence intervals.

The interpretation of the confidence interval (61.8, 64.6) is that if
one could repeatedly conduct this study, each time selecting a
random sample of size 200 from the population of all recent
graduates of the university and each time constructing a 95%
confidence interval, then in the long run 95% of such confidence
intervals would contain the unknown population mean µ.
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Example: Hypothesis testing
In comparing the population mean incomes µ1 of humanities
graduates and µ2 of science graduates, suppose the P-value in a
t-test of H0: µ1 = µ2 against H1: µ1 ≠ µ2 is 0.04.

How is the P-value defined?

Then 0.04 is the probability that the t test statistic based on the
difference between the sample means Y1 −Y2 for the two groups
divided by its standard error, takes a value like the one observed or
even more extreme (i.e., even farther from 0 in either direction), in
repeated samples of the same size, presuming that H0 is true.

That is, the P-value applies to potential samples, when H0 is true.

It is incorrect to interpret 0.04 as the probability that the null
hypothesis H0 is true, because H0 deals with parameters

H0 is either true or false. If we make a decision about H0 using
0.05 significance level, then 0.05 represents the long-run proportion
of times that we would mistakenly reject H0, if it were actually
true.
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Summary
● With the classical, so-called frequentist approach to statistical

inference, probability statements do not apply to parameters.
● Probabilities cannot be stated for hypotheses, because the

hypotheses refer to parameter values, and likewise probabilities
do not apply to constructed confidence intervals.
● Classical statistics calculates probabilities about RVs and

statistics such as test statistics that vary randomly from
sample to sample, not about parameters.
● Statistics have sampling distributions, parameters do not.

Those sampling distributions have frequentist interpretations
in terms of what would happen in hypothetical repeated
sampling of the same type, but that sampling does not
actually occur.
● Because of this, interpretations of classical inferential tools

such as P-values can be difficult for scientists and laypeople to
understand, and they are often misinterpreted.
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Bayesian Statistics: Probability Distributions for
Observations and Parameters

● The Bayesian approach treats parameters as RVs.
● Because of this, statistical inferences can make probability

statements directly about the parameters.
● Bayesians can make statement of this type with reference to a

population mean µ: “The probability is 0.95 that µ falls
between 61.8 and 64.6 thousand dollars.”
● A Bayesian inference for comparing population mean incomes
µ1 and µ2 of humanities majors and science majors might be
“The probability is 0.02 that µ1 > µ2 and 0.98 that µ1 < µ2.”
● Interpretations of Bayesian intervals and probabilities are

simpler and more natural than the interpretations of
frequentist confidence intervals and P-values.
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● Overall practical conclusions derived by the classical
frequentist and the Bayesian approaches to statistical
inference are usually substantively the same as sample size
increases.

● However the interpretations is quite different bwn the two
approaches.
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Concepts of Probability: Frequentist and Subjective

The difference in interpretation bwn frequentist and Bayesian
methods stems from a difference in the meaning that the two
approaches give to probability.

For studies that use randomization for gathering data, such as a
randomized experiment or a random sample survey, frequentist
statistical methods employ a definition relating to the relative
frequency of that outcome in unobserved but like situations.

Frequentist definition of probability
For an observation of a random phenomenon, the probability
of a particular outcome is the proportion of times that outcome
would occur in an indefinitely long sequence of like observa-
tions under the same conditions.

This definition of probability is not always applicable.
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An alternative definition of probability is subjective:

Subjective definition of probability
The probability of a particular outcome is a measure of the
degree of belief of that outcome, based on all of the available
information.

Bayesian statistics adopts the subjective definition of probability as
its foundation
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We now review some basic definitions and rules used with both
frequentist and subjective definitions of probability.

Bayes’ Theorem expresses the conditional probability of the event
of interest, given a second event, in terms of a known conditional
probability of the second event, given the event of interest.

Bayes’ Theorem provides a basis for the methods of Bayesian
statistics, which find conditional probabilities about parameter
values, given the data, using conditional probabilities for the data,
given parameter values.
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Probabilities and Conditional Probabilities of Events

● Sample space = S = set of all the possible outcomes
● Event = any subset of a sample space.
● For two events A and B, let A ∪B = union = outcomes that

are in A or in B or in both
● AB = intersection = outcomes that are in A and in B.
● P(A) = probability of an event A.

Probabilities of events satisfy rules based on three axioms:
● P(A) ≥ 0
● P(S) = 1
● For A and B disjoint

P(A ∪B) = P(A) + P(B).
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The conditional probability of an event A, given that an event B
occurred, is the fraction of the event B that is also in event A:

P(A ∣ B) = P(AB)
P(B) =

P(A and B)
P(B) ,

provided that P(B) > 0.

The multiplicative law of probability re-expresses the conditional
probability as

P(AB) = P(A ∣ B)P(B) = P(B ∣ A)P(A).
It follows that

P(A ∣ B) = P(B ∣ A)P(A)
P(B)

We will see that:

Posterior = LHD × Prior
Evidence

A ⇒ parameter
B ⇒ data
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General form of Bayes Theorem

The diagnostic test example applied this result with
B as the event D of having the disease and
A as the event + of a positive diagnosis.

Bayes’ Theorem generalizes to a partition of the sample space S
into c ≥ 2 disjoint events {B1,B2, . . . ,Bc}, that is, events such that
S = B1 ∪B2 ∪⋯ ∪Bc with Bi and Bj disjoint for each pair.

For each k = 1, . . . , c,

P(Bk ∣ A) =
P(ABk)
P(A) =

P(A ∣ Bk)P(Bk)
P(A ∣ B1)P(B1) + P(A ∣ B2)P(B2)⋯P(A ∣ Bc)P(Bc)

.
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Bayes’ Theorem generalizes from events to RV.

For discrete RVs, the outcomes are the distinct, separate values
that the RV can assume, usually integers.

Continuous RVs have an infinite continuum of possible values.
Their probability distributions assign probabilities to intervals of
real numbers rather than individual values.
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When X and Y are both continuous RVs, a version of Bayes’
Theorem finds a probability density function (pdf ) g(x ∣ y) from
the pdf f(y ∣ x).

With joint pdf f(x, y) and marginal pdfs f1(x) for X and f2(y) for
Y:

g(x ∣ y) = f(x, y)
f2(y)

= f(y ∣ x)f1(x)
∫X f(y ∣ x̃)f1(x̃)dx̃ .

For discrete RVs X and Y, each function in the theorem is a
probability mass function (pmf ), and the denominator has a sum
instead of an integral.

Another version of Bayes’ Theorem permits one of (X,Y) to be
discrete and one to be continuous.
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The Bayesian Approach to Statistical Inference

Bayesian statistical inferences apply Bayes’ Theorem to find
probabilities about the parameter values, conditional on the data,
using probabilities for the data, conditional on the parameter
values.
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Bayesian Prior and Posterior Distributions

● The Bayesian approach to statistical inference assumes a prior
distribution for the parameters that reflects information
available about the parameters before we observe the data.
● That information might be based on other studies or on

beliefs of “experts”.
● The prior distribution may be relatively uninformative, so that

inferential results are less subjective, based almost entirely on
the observed data.
● The prior distribution combines with the information that the

data provide to generate a posterior distribution for the
parameters.
● Bayesian statistical inferences are based on the posterior

distribution.
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Posterior distribution: computation
Ingredients:
● A parameter θ with parameter space Θ for its possible values
● For an observation y: f(y ∣ θ) denote the probability function,

for a given value of the parameter. This is a probability
density function (pdf ) or a probability mass function (pmf ),
according to whether Y is a continuous or a discrete RV.
● For n observations y = (y1, . . . , yn), let f(y ∣ θ) denote their

joint probability function, given the parameter value.
● For independent observations, such as obtained with a simple

random sample or an experiment employing randomization,

f(y ∣ θ) = f(y1 ∣ θ)f(y2 ∣ θ)⋯f(yn ∣ θ).

● Let p(θ) denote the pdf for the prior distribution of θ.
● Given the n observations y = (y1, . . . , yn), we let g(θ ∣ y)

denote the probability function for the posterior distribution of
θ, given the data.
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Bayes’ Theorem to obtain the posterior
● By Bayes’ Theorem, combining the joint probability function

f(y ∣ θ) with the prior pdf p(θ) we obtain the posterior of θ

g(θ ∣ y) = f(y ∣ θ)p(θ)
f(y) = f(y ∣ θ)p(θ)

∫Θ f(y ∣ θ̃)p(θ̃)dθ̃
. (1)

● The denominator f(y) is the marginal probability function of
the data, obtained by integrating out the parameter.
● In terms of θ, g(θ ∣ y) is proportional to f(y ∣ θ)p(θ):

g(θ ∣ y)∝ f(y ∣ θ)p(θ) =ℓ(θ)p(θ)
● That product of LHD (likelihood function), ℓ(θ)p(θ) and prior

determines the posterior distribution of θ, because the
denominator f(y) does not involve θ.
● Except in a few simple cases we cannot identify the posterior

distribution from the product f(y ∣ θ)p(θ) and will thus use
simulation methods.
When the prior is relatively flat, the posterior has similar
shape as the LHD.
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Beta-Binomial example

Bernoulli distribution: the pmf for each Yi is
f(yi ∣ π) = πyi(1 − π)1−yi , which yields the probabilities π when
yi = 1 and 1 − π when yi = 0.

The joint pmf for the n independent and identically distributed
(iid) Bernoulli observations is

f(y ∣ π) =
n
∏
i=1

πyi(1 − π)1−yi = π∑i yi(1 − π)n−∑i yi .
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Binomial Likelihood with Uniform Prior Induces Beta
Posterior Distribution

● Goal: estimate the population proportion π when the data
consist of n independent observations of a binary response
variable with “success” and “failure” outcomes.
● The number of successes y in n observations = binomial RV
● View the LHD in terms of the part of ℓ(θ) = f(y ∣ θ) that

involves θ.
● The binomial LHD ℓ(π) = (ny)π

y(1 − π)n−y is proportional to
πy(1 − π)n−y, so it simplifies to ℓ(π) = πy(1 − π)n−y, ignoring
(ny).
● Since π is a probability, a Bayesian prior distribution for π is

defined over the interval [0, 1] of its possible values.
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● Lacking any prior information about π, a data scientist could
use a standard uniform distribution, which has pdf that is
uniformly spread but positive only over that interval,

p(π) = 1, 0 ≤ π ≤ 1.

● Combining the uniform prior distribution with the binomial
likelihood function, from Bayes Theorem the posterior pdf of
π is

g(π ∣ y)∝ ℓ(π)p(π) = [πy(1 − π)n−y] ⋅ 1, 0 ≤ π ≤ 1.

● This prior distribution is relatively uninformative, in the sense
that the posterior distribution has exactly the same shape as
the binomial likelihood function, for 0 ≤ π ≤ 1.
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● This posterior distribution is a special case of the beta
distribution.
● Its pdf g(π ∣ α1, α2) is proportional to

g(π ∣ α1, α2)∝ πα1−1(1 − π)α2−1, 0 ≤ π ≤ 1, (2)

for α1 > 0 and α2 > 0 and a proportionality constant (ignored
here) involving α1 and α2 so that g(π ∣ α1, α2) integrates to 1
over the interval [0, 1].
● Since α1 and α2 are not the parameters of main interest for

the analysis but merely determine the shape of the beta
distribution, they are referred to as hyperparameters.
● The uniform distribution is the special case of a beta

distribution with α1 = α2 = 1.
● The mean of the beta distribution is α1/(α1 + α2), which

equals 1/2 when α1 = α2.
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● With the uniform prior distribution for π, the posterior pdf
g(π ∣ y)∝ πy(1 − π)n−y for 0 ≤ π ≤ 1 has the form of a beta
distribution.
● Equating y = α1 − 1 and n − y = α2 − 1 in (2), we find that the

beta hyperparameters are α1 = y + 1 and α2 = n − y + 1.
● The mean of the posterior distribution is
α1/(α1 + α2) = (y + 1)/(n + 2).
● With a relatively large sample size n, this beta distribution is

approximately bell-shaped with mean close to y/n, which is
the sample proportion for the observed data.
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Example: Proportion Supporting a Woman’s Choice about
Abortion

● One item in the 2021 GSS asked whether a woman should be
able to get an abortion if she wants it for any reason.
● Of 1328 respondents, 749 said yes and 579 said no.
● The binomial outcome is y = 749 in n = 1328 observations.
● The sample proportion is y/n = 749/1328 = 0.564.
● With the uniform prior distribution, the Bayesian posterior pdf

g(π ∣ y) of π is beta with hyperparameters α1 = y + 1 = 750
and α2 = n − y + 1 = 580.
● Figure ?? shows this beta pdf.
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Beta posterior pdf with hyperparameters α1 = 750 and α2 = 580
for population proportion who believe a woman should be able to
get an abortion for any reason. The MLE is located at the red
diamond
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According to this posterior distribution, the range of plausible
values for π is narrow, quite close to the sample proportion 0.564.
The posterior P(π < 0.50) = 0.0000015.

This value can be computed with R.
We can cumulate the probability at 0.50 for beta distribution with
hyperparameters 750, 580 and obtain 0.0000015

> pbeta(0.50, 750, 580)
[1] 1.510934e-06
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A Criticism: Bayesian Inferences Are Subjective
● A criticism to the Bayesian approach was that it is subjective

rather than objective, because of the need to choose a prior
● However, classical frequentist methods also make assumptions,

such as the choice of probability distribution p(y ∣ θ)
● The nature of the data usually suggests natural choices and

we can use the data to check such assumptions
● See for example the assumptions in a regression analysis
● With large samples, the choice of prior distribution is usually

not crucial, because the posterior relies mainly on the LHD
● When the sample size is not large, one can usually select

relatively objective prior distribution, which is typically highly
disperse
● Supporters of the Bayesian approach argue that the resulting

statistical inferences are more natural than frequentist
inferences in being able to make probability statements
directly about parameter values.
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Bayesian Point Estimates

● Bayesian point estimators of a parameter θ use summary
measures of central tendency of the posterior distribution
● A possible Bayesian estimator is the point at which the

posterior distribution is maximized, which is its mode.
However, it is more common to use the posterior mean,

E(θ ∣ y) = ∫
Θ
θg(θ ∣ y)dθ.

● The posterior median is another possible Bayesian estimator.
The posterior probability falling above that value and the
posterior probability falling below it both equal 1/2.
● With large n, posterior distributions are typically

approximately normal.
Then, such posterior summaries are all close to each other,
and they usually take similar values as the MLE.



DRAFT
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example: General Social Survey

From the GSS data we found the posterior distribution of the
population proportion π in the U.S. who believe a woman should
have the right to an abortion for any reason.

With a uniform prior and the survey results in which y = 749 said
yes and n− y = 579 said no, the posterior distribution of π is a beta
with hyperparameters α1 = y + 1 = 750 and α2 = n − y + 1 = 580.

The posterior mean estimate of π is
E(π ∣ y) = α1/(α1 + α2) = (y + 1)/(n + 2) = 0.5639, the same to
three decimal places as the MLE, π̂ = y/n = 749/1328 = 0.5640.

The posterior mode is (α1 − 1)/(α1 + α2 − 2) = y/n, the same as
the MLE.
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With R software, using the quantile function for beta distributions,
we find that the posterior median is also the same as the MLE to
three decimal places:
The 0.50 quantile (median) for beta dist. with hyperparameters
750, 580 is obtained with the R command

> qbeta(0.50, 750, 580)
[1] 0.5639418
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Shrinkage with a Bayesian Posterior Mean Estimate

For Bayesian estimation of a binomial parameter π using a uniform
prior distribution we found that the posterior mean estimate of π is
E(π ∣ y) = (y + 1)/(n + 2).

We can express this estimate as

E(π ∣ y) = y + 1
n + 2 = (

n
n + 2)

y
n + (

2

n + 2)
1

2
.

This is a weighted average of the MLE (the sample proportion),
π̂ = y/n, and the mean of the uniform prior distribution, 1/2.

The estimate shrinks the sample proportion toward 0.50.
The weight n/(n + 2) given to the sample proportion increases
toward 1 as n increases.



DRAFT
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

For the example on opinions about a woman’s choice regarding
abortion, the Bayes estimate with the uniform prior gives weight
n/(n + 2) = 1328/1330 = 0.9985 to the sample proportion.

The Bayes estimate corresponds to a sample mean of n + 2
observations of Bernoulli RVs, combining the n sample
observations with 2 imaginary prior observations, of which 1 is a
success and 1 is a failure.

This behavior is typical of Bayesian posterior mean estimates.
For independent samples from the most commonly used probability
distributions with their standard prior distributions,1 this estimate
is a weighted average of the MLE and the mean of the prior
distribution, with relatively more weight given to the MLE as the
sample size increases.

1Technically, the natural exponential family of distributions
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Decision-Theoretic Evaluation of Estimators

The posterior mean and posterior median estimators of a
parameter can be justified as minimizing the expected value of a
measure of the distance that the estimator falls from the
parameter that it estimates.

This is a main result of statistical decision theory, which is
concerned with how to make optimal decisions in the face of
uncertainty.

A basic tool of statistical decision theory is the loss function: a
function of the parameter θ and the estimator θ̂.
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A common one is the squared error loss function,

L(θ, θ̂) = (θ̂ − θ)2.

For example, to evaluate the sample mean Y as an estimator of a
population mean µ, L(µ,Y) = (Y − µ)2.

The loss function refers to a single sample and is itself a RV.
We can evaluate an estimator θ̂ by the expected value of this loss
function with respect to the probability function f(y ∣ θ) of the
observations y, given the value of the parameter θ,

Rθ̂(θ) = EY[L(θ, θ̂)] = ∫
Y

L(θ, θ̂(y))f(y ∣ θ)dy,

called the risk function.
The expectation here is taken over the space Y of possible values
of y with θ held fixed, so the risk function Rθ̂(θ) is a function of θ.
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For the squared-error loss function,

Rθ̂(θ) = E(θ̂ − θ)2 =MSE,

the mean squared error for the estimator.
For example, with n independent observations, using Y as an
estimator of µ in a population having variance σ2, the risk function
is RY(µ) = E(Y − µ)2 = σ2/n. This is the variance of the estimator
and is the same for all µ.

Example For a RV Y having a Binom(n, π) distribution, we now
compare the risk functions with a squared-error loss function for
the MLE π̂ = Y/n and the Bayes estimator π̃ = (Y + 1)/(n + 2)
based on a uniform prior distribution.
The risk function for π̂ is

Rπ̂(π) = E(π̂ − π)2 = var(π̂) = π(1 − π)
n .
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You can derive2 that the risk function for π̃ is

Rπ̃(π) = E(π̃ − π)2 = ( n
n + 2)

2
π(1 − π)

n + ( 2

n + 2)
2

(π − 1

2
)
2

. (3)

At π = 0.5, Rπ̃(π) = [n/(n + 2)]2(1/4n) < 1/4n = Rπ̂(π).
At π = 0 or π = 1, Rπ̃(π) = 1/(n + 2)2 > 0 = Rπ̂(π).

These suggest that the Bayes estimator is better in the middle of
the range of possible π values whereas the MLE is better when π is
close to 0 or 1.
Figure ?? illustrates, showing the two risk functions when n = 10
and when n = 50.

2From the decomposition of MSE into variance plus squared bias, to be
reviewed in Section ??.
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Figure: Risk functions for MLE π̂ (red) and Bayes estimator π̃ (blue), for
estimating binomial parameter π when n = 10 (left) and when n = 50
(right).
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In a Bayesian framework, with a parameter θ treated as a RV
rather than fixed, the overall evaluation of an estimator θ̂ averages
the risk function with respect to the prior distribution p(θ) for θ.
This yields the Bayesian risk,

rp(θ̂) = Eθ[Rθ̂(θ)] = Eθ{EY[L(θ, θ̂)]} = ∫
Θ
∫
Y

L(θ, θ̂(y))f(y ∣ θ)p(θ)dydθ.

Any estimator that minimizes the Bayes risk for some loss function
is called a Bayes estimator.
Recall that the posterior pdf g(θ ∣ y)∝ f(y ∣ θ)p(θ), and in fact it
can be proved that a Bayesian estimator minimizes the posterior
expected loss

Eθ[L(θ, θ̂) ∣ y] = ∫
Θ

L(θ, θ̂(y))g(θ ∣ y)dθ.
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For the squared-error loss function, the posterior expected loss is

∫
Θ

L(θ, θ̂(y))g(θ ∣ y)dθ = ∫
Θ
(θ − θ̂)2g(θ ∣ y)dθ =

= θ̂2 − 2θ̂∫
Θ
θg(θ ∣ y)dθ +∫

Θ
θ2g(θ ∣ y)dθ.

To minimize this, we differentiate with respect to θ̂ and equate to
0, obtaining

2θ̂ − 2∫
Θ
θg(θ ∣ y)dθ = 0.

Since the second derivative is positive, we obtain the minimum of
the posterior expected loss at θ̂ = ∫Θ θg(θ ∣ y)dθ. That is, for the
squared-error loss function, the Bayes estimator of θ is the
posterior mean E(θ ∣ y).
For the absolute-error loss function

L(θ, θ̂) = ∣θ − θ̂∣,

one can show that the Bayes estimator of θ is the posterior median.
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Bayesian Posterior Intervals

Using the posterior distribution, we can form a Bayesian interval
estimate of the parameter of interest θ that is analogous to a
frequentist confidence interval.

For example, analogous to the frequentist 95% confidence interval
is an interval that contains 95% of the mass of the posterior pdf
g(θ ∣ y).

Such an interval is called a posterior interval or credible
interval.
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Percentile Intervals and Highest Posterior Density (HPD)
Intervals

A simple way to form a posterior interval uses percentiles of
g(θ ∣ y) with equal tail probabilities.
For example, the 95% posterior equal-tail percentile interval for θ
is the region between the 2.5 and 97.5 percentiles (0.025 and
0.975 quantiles) of the posterior distribution.

An alternative Bayesian posterior interval contains the desired
probability such that the posterior pdf is higher over all values in
the interval than over all the values not in it.
This posterior interval is called a highest posterior density
(HPD) interval.
The HPD interval for a parameter is the shortest possible interval
having the desired probability. It is identical to the percentile-based
interval when the posterior distribution is unimodal and symmetric.
It is usually preferred to the percentile-based interval when the
posterior distribution is highly skewed.
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Proportion Supporting a Woman’s Choice Revisited
For the survey on abortion the posterior distribution of the
population proportion π who support a woman being able to get
an abortion whenever she wants it is the beta distribution with
hyperparameters α1 = 750 and α2 = 580.
The 95% posterior equal-tail percentile interval has as its
endpoints the 0.025 and 0.975 quantiles of that posterior.
The following R output shows that this interval is (0.537, 0.590).
Here we utilize the binom package in R, which can provide a wide
variety of intervals for the binomial parameter.
The output also displays the frequentist large-sample 95%
confidence interval π̂ ± 1.96

√
π̂(1 − π̂)/n that uses the maximum

likelihood estimate π̂ = y/n and its estimated standard error.
The output also shows that the HPD interval, which is the
default provided with the binom.bayes function in the binom
package, is (0.537, 0.591).
Since the sample size n = 1328 is quite large, the Bayesian intervals
are similar to each other and to the frequentist confidence interval.
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Quantiles of beta to get the 95% posterior percentile interval

> qbeta(c(0.025, 0.975), 750, 580)
[1] 0.5371820 0.5904555
> install.packages("binom")
> library(binom)
Frequentist 95% confidence interval:
> binom.confint(749, 1328, conf=0.95, method="asymptotic")

0.5373355 0.5906765
HPD interval with uniform prior dist. (which is beta with
alpha1 = alpha2 = 1)
> binom.bayes(749,1328,conf=0.95, alpha1=1.0, alpha2=1.0)

method x n shape1 shape2 mean lower upper

bayes 749 1328 750 580 0.5639098 0.5372464 0.5905193
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If the posterior distribution had not been a standard one available
in software, we could have found an excellent approximation of the
percentile interval by simulating a huge number of observations
from the posterior distribution and then finding the relevant
sample percentiles (quantiles).
Simulate 50 million observations from posterior beta distribution
approximate Bayesian 95% percentile interval with quantitles of
the sampled observations
histogram of posterior dist. (not shown here)

> postvalues <- rbeta(50000000,750,580)

> quantile(postvalues, c(0.025, 0.975))
2.5% 97.5%
0.5371813 0.5904545
> hist(postvalues)
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In some cases, the posterior pdf takes highest value at the
boundary of the parameter space, such as at the value 0 or the
value 1 for a population proportion π, and the posterior pdf is
monotone decreasing as one moves away from the boundary.

In such cases, the HPD interval is more appropriate than the
percentile interval, because the percentile interval would not
contain the parameter values that have the highest posterior
density values.
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Interpretation: Bayesian Posterior Intervals versus
Frequentist Confidence Intervals

In the example of estimating the population proportion π in the
U.S. supporting the right of a woman to have an abortion, the
Bayesian point estimate and 95% posterior intervals induced by a
uniform prior are nearly identical to the MLE and frequentist 95%
confidence interval.

This reflects that n is large and that the prior distribution is highly
disperse and thus carries little a priori information.

As a consequence, nearly all the information contained in the
posterior distribution comes from the data and is summarized by
the likelihood function.
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Although the frequentist and Bayesian results are nearly identical,
the interpretations are quite different.
In the frequentist approach, the parameter π is fixed, not a RV.
It either is or is not in the 95% confidence interval (0.537, 0.591)
We do not know which is the case.
Our 95% confidence refers to a probability when the data (not the
parameter) are viewed as the RV, that is, before they are observed.
It has the frequentist interpretation that if we used this method
repeatedly with independent hypothetical samples, in the long run
95% of the confidence intervals would contain the true π value.

The probability applies to possible data in future samples that we
will not observe, rather than to the parameter.
By contrast, with the Bayesian approach, π is itself a RV and has
a probability distribution.
After observing the data and constructing the posterior interval
(0.537, 0.590), we can conclude that the probability is 0.95 that π
takes value between 0.537 and 0.590.
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Although their interpretations differ, Bayesian and frequentist
approaches usually lead to the same practical conclusions,
because the LHD is the foundation of each.

The set of parameter values regarded as plausible in a frequentist
inference are usually similar to those regarded as plausible with a
Bayesian inference.

The resemblance increases as n increases or as the variance
of the prior distribution increases, because the posterior
distribution then has maximum and shape increasingly similar to
the maximum and shape of the likelihood function.
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Bayesian Significance Testing and Prediction

Besides point and interval estimation, the other principal
frequentist statistical inferential method is significance testing of a
null hypothesis about the parameter value.

Prediction of future observations is also important in many
applications.

We next present a Bayesian analog of significance testing and a
Bayesian method for predicting future observations.
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Significance Testing based on Posterior Probabilities for
Parameter Regions

With a continuous prior distribution, the posterior distribution is
also continuous.

Then, the posterior probability of any single value for a parameter
such as a population proportion π is zero.

This accords with intuition in most applications that null
hypothesis conditions such as π = 0.50 exactly are implausible.

It is usually more relevant to summarize the evidence that π < 0.50
versus π > 0.50.
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We can do this by reporting relevant posterior tail probabilities.
When neither posterior P(π > 0.50 ∣ y) nor P(π < 0.50 ∣ y) is close
to 0, we regard 0.50 as one of the plausible values for π.

Ways exist of setting prior distributions that are a mixture of
continuous and discrete so that conditions such as a point null
hypothesis H0: π = 0.50 have positive posterior probability.

But that posterior probability can then depend strongly on the
choice of prior distribution.

An alternative approach to be introduced summarizes information
about two hypotheses by forming a “Bayes factor” based on the
ratio of the posterior probabilities of the two hypotheses.
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Example: Proportion Supporting a Woman’s Choice
Revisited

For the abortion data with a uniform prior, the posterior of the
population proportion π supporting a woman’s right to have an
abortion is beta with hyperparameters α1 = 750 and α2 = 580.

We now use this posterior to find the posterior P(π > 0.50 ∣ y) and
P(π < 0.50 ∣ y), to analyze whether we can conclude that a
majority or a minority of the population support this right.

We can determine these by using R to find the cumulative
probability of the posterior distribution at the value 0.50.
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Cumulative probability at 0.50 for beta posterior distribution

> pbeta(0.50, 750, 580)
[1] 1.510934e-06

The posterior P(π < 0.50 ∣ y) = 0.0000015.

Thus, P(π > 0.50 ∣ y) = 0.9999985, indicating extremely strong
evidence that a majority of the population believe that a
woman should be able to get an abortion for any reason.
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A corresponding result with the frequentist approach uses the
P-value for testing
H0: π = 0.50 (implicitly H0: π ≤ 0.50) against
H1: π > 0.50.

Since y = 749, the P-value is the probability of observing Y ≥ 749
out of n = 1328 observations when actually H0 is true, which is
1 − P(Y ≤ 748 ∣ π = 0.50) = 0.0000017.

The one-sided (right-tail) P-value for binomial distribution equals 1
- cumulative probability and can be obtained in R as:

> 1 - pbinom(748, 1328, 0.50)

[1] 1.712424e-06
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If we conducted a formal frequentist significance test with a
probability of Type I error such as 0.05, the result would be in line
with the Bayesian one in terms of concluding that π > 0.50.

However, the interpretations of the probabilities are quite different.

The value 0.0000015 is the Bayesian posterior probability that
π < 0.50, whereas the frequentist P-value of 0.0000017 merely
relates to hypothetical samples if H0 were true, that is, the
probability of a sample like observed or even more extreme if
actually π = 0.50.
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Predicting Future Observations
Sometimes the main goal of a statistical analysis is to predict
future observations.

A Bayesian posterior predictive distribution is the probability
distribution for a future observation Yf.

Given the data, the posterior predictive pdf is

h(yf ∣ y) = ∫
Θ

f(yf ∣ θ, y)g(θ ∣ y)dθ

= ∫
Θ

f(yf ∣ θ)g(θ ∣ y)dθ,

where f(yf ∣ θ, y) = f(yf ∣ θ) because Yf is independent of the
sample data y, given θ. So, we obtain h(yf ∣ y) by averaging the
probability function f(yf ∣ θ) for known θ with respect to the
posterior distribution g(θ ∣ y) of θ. For binary data with
π = P(Yf = 1 ∣ π), we can prove that the posterior predictive
P(Yf = 1 ∣ y) is the mean of the posterior distribution of π.



DRAFT
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

With the frequentist approach to statistical inference, it is not
possible to use such integration to obtain h(yf ∣ y), because θ is
not a RV with its own distribution.

Except in a few cases, making probabilistic predictions about
future observations is not straightforward.

With large n, a simple approximation uses f(yf ∣ θ̂) as a predictive
distribution, acting as if θ equals its MLE θ̂.

We will show that Bayesian posterior predictive distributions are
also useful for checking assumptions of the model on which the
analyses are based.

One such check compares simulated observations from the
posterior predictive distribution with the observed data.

The simulated data should look like the observed data in terms of
central tendency and variability.
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Noninformative Prior Distributions
We now introduce two types of priors used when we want to have
little influence on the posterior and thus on statistical inferences.

To eliminate the subjective aspect of the choice of the prior
distribution, Bayesians can use a noninformative prior distribution,
containing only vague information about the parameter.

An example is a uniform distribution for the parameter, for which
the posterior distribution is merely the LHD re-scaled to integrate
out to 1. We used this approach for the binomial parameter.

If the parameter can take any real-number value, such as the mean
µ of a normal distribution, we could take the prior distribution to
be uniform over the entire real line, that is, f(µ) = c for
−∞ < µ <∞.

However, this is not a legitimate pdf, because its integral over the
entire real line is infinite rather than 1.
A function such as this is called an improper prior distribution.
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An improper prior distribution can also be non-uniform. For
instance, when the parameter can take any positive value, such as
the standard deviation σ of a normal distribution, some Bayesian
methods use f(σ) = 1/σ for σ > 0, which also has infinite integral
over the possible values.

Bayesian statistical methods can use an improper prior distribution
as long as the posterior distribution that it induces is proper.

When we use a uniform prior distribution over the parameter
space, the posterior distribution is the LHD re-scaled.

Bayesian inferences are then very similar to frequentist statistical
inferences. For example, posterior intervals may be identical or
nearly identical to frequentist confidence intervals, although the
interpretation is simpler for Bayesian intervals.
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Another commonly-used noninformative prior distribution is the
Jeffreys prior distribution.

It is specified so that posterior results are equivalent regardless of
the scale of measurement for the parameter.
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