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Bayesian Statistics: A Primer for Data Scientists - PART II

antonietta.mira@usi.ch

Thanks to: Alan Agresti and Maria Kateri
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Beta Family of priors

Bayesian priors for π are defined over the interval [0, 1].
A common choice is the beta distribution.
With hyperparameters α1 > 0 and α2 > 0, it has pdf

p(π ∣ α1, α2) =
Γ(α1 + α2)
Γ(α1)Γ(α2)

πα1−1(1 − π)α2−1, 0 ≤ π ≤ 1, (1)

which we denote by Beta(α1, α2).
The initial term with the gamma functions provides the appropriate
constant so that the pdf integrates to 1.

Whenever we see a function of x of the form xa(1 − x)b for x in the
interval [0, 1] and with exponents that exceed −1, it is the kernel
of a beta pdf, in the sense that we obtain a beta pdf by
multiplying it by a certain constant.
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Beta distribution

The family of beta pdf s has a wide variety of shapes, and this
makes it a versatile family of distributions that is able to provide a
functional form for a wide range of prior informations.

When α1 = α2, the beta pdf is symmetric around µ = 0.50.
The uniform distribution over [0, 1] results when α1 = α2 = 1.

The pdf has a bimodal U-shape when α1 = α2 < 1
and a bell shape when α1 = α2 > 1.

See Figure 1.
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Figure: The pdf of a beta distribution with hyperparameters α1 = α2 is
symmetric, with variance decreasing as α1 increases.
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The mean of the Beta(α1, α2) distribution is

µ = E(π) = α1

α1 + α2
. (2)

The pdf is unimodal skewed to the left when α1 > α2 > 1, in which
case µ > 0.50, and it is skewed to the right when α2 > α1 > 1, in
which case µ < 0.50.

The mode in these cases is (α1 − 1)/(α1 + α2 − 2).
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Beta distribution

The variance of the beta distribution is

σ2 = α1α2

(α1 + α2)2(α1 + α2 + 1)
= µ(1 − µ)
α1 + α2 + 1

. (3)

From the second expression, for a fixed value of α1 + α2, the
variance decreases as the mean µ approaches 0 or 1;
for a fixed value of µ, the variance decreases as α1 + α2 increases.

When α1 = α2 = α, µ = 1/2 and σ2 = 1/[4(2α + 1)], decreasing as
α increases.
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Jeffreys prior

The Beta(0.5, 0.5) prior is called the Jeffreys prior for π.

The name refers to University of Cambridge professor Harold
Jeffreys,1 who proposed this prior in 1946.

For a single parameter θ, the Jeffreys prior is the one that is
proportional to

√
I(θ) for the information I(θ) for a single

observation,

I(θ) = E(∂ log f(Y ∣ θ)
∂θ

)
2

,

where the expectation is taken with respect to Y for fixed θ.

1In 1939 Jeffreys published a foundational book on the Bayesian statistical
approach, Theory of Probability, and he also proposed the Bayes factor



DR
AF
T

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Bernoulli random variable with π = P(Y = 1) and
1 − π = P(Y = 0) has probability mass function that is the binomial
formula for n = 1, f(y ∣ π) = πy(1 − π)1−y for y = 0,1.

For it,
E(Y) = π and var(Y) = E(Y − π)2 = π(1 − π),

log f(y ∣ π) = y log(π) + (1 − y) log(1 − π)
and

∂

∂π
[log f(y ∣ π)] = y

π
− 1 − y
1 − π

= y − π
π(1 − π)

,

so that

I(π) = E[∂ log f(Y ∣ π)
∂π

]
2

= E[ Y − π
π(1 − π)

]
2

= E(Y − π)2
[π(1 − π)]2

I(π) = π(1 − π)
[π(1 − π)]2

= 1

π(1 − π)
.

The Jeffreys prior in this case is proportional to√
I(π) =

√
1/[π(1 − π)] = π−1/2(1 − π)−1/2, which is the kernel of a

beta pdf with α1 = α2 = 0.5.
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When used with a one-dimensional parameter θ, the Jeffreys prior
is an example of a noninformative prior called the reference prior,
which is the prior that has the least possible influence on the
posterior in a certain sense.2

A reference prior yields posterior inferential results that depend
almost entirely on the likelihood function and are similar to those
of good frequentist methods.

2It maximizes the expected value of a distance measure, called
Kullback–Leibler divergence, between the prior and the posterior distribution,
KL = ∫ log[g(θ ∣ y)/p(θ)]g(θ ∣ y)dθ.
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Another rationale of Jeffreys in proposing the formula for this prior
is that it is invariant to the parameterization: It provides
equivalent results when applied for different scales of measurement
for the parameter.

For example, the probability for a particular interval (a,b) of values
of π is the same when we find it using the Jeffreys Beta(0.5, 0.5)
prior for π by integrating over (a,b) or when we find it using the
Jeffreys prior for ϕ = log[π/(1 − π)] (which is the logit parameter
used in modeling binary response variables) and integrate over the
interval (log[a/(1 − a)], log[b/(1 − b)]).
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In the context of Bayesian inference about a binomial parameter π,
Bayes’ theorem states that the posterior g(π ∣ y) for π uses the
binomial probability mass function f(y ∣ π;n) for the number of
successes in n trials and the beta prior pdf p(π ∣ α1, α2) through

g(π ∣ y) = f(y ∣ π;n)p(π ∣ α1, α2)
f(y) .

As explained earlier the numerator product determines the posterior
distribution, because the denominator is the marginal probability
function of the data and does not involve the parameter π.

That is,

g(π ∣ y)∝ [πy(1 − π)n−y][πα1−1(1 − π)α2−1]
= πy+α1−1(1 − π)n−y+α2−1, 0 ≤ π ≤ 1.
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This posterior also is a beta distribution, once we multiply by the
appropriate gamma functions so it integrates to 1.

This beta distribution is indexed by hyperparameter values
α∗1 = y + α1 and α∗2 = n − y + α2.

That is, the posterior falls in the same family of probability
distributions as the prior, but its hyperparameters are updated,
based on the data.

The chosen prior is a conjugate prior.

Conjugate prior
A prior such that the posterior comes from the same family
when combined with a certain likelihood function is called a
conjugate prior for that likelihood function.



DR
AF
T

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

For binomial sampling and its corresponding likelihood function,
the beta distribution is the conjugate prior.

When a conjugate prior exists, an advantage is the explicit form
generated for the posterior distribution.

However, conjugate priors are usually not available for more
complex models, in which case we can use simulation methods to
approximate the posterior distribution.
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Bayesian Point Estimation Using Posterior Mean
The most common Bayesian point estimate of a parameter is the
mean of its posterior distribution.

We have seen that this estimate results from minimizing a
squared-error loss function.

For the beta posterior distribution, this estimate of π is

π̃ = E(π ∣ y) = α∗1
α∗1 + α∗2

= y + α1

(y + α1) + (n − y + α2)
= y + α1

n + α1 + α2

= ( n
n + α1 + α2

)y
n + (

α1 + α2

n + α1 + α2
) α1

α1 + α2
. (4)

For a binomial outcome y for a number of successes, y/n is the
sample proportion, π̂, which is also the MLE of π.

The posterior mean π̃ = E(π ∣ y) is a weighted average of the
sample proportion y/n and the mean of the prior, α1/(α1 + α2).
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When α1 = α2, the Bayesian estimate shrinks the sample
proportion toward 0.50.

The amount of information in the posterior mean estimate π̃ is
summarized by n for the data and α1 + α2 for the beta prior.

The effect of the prior is to add α1 + α2 imaginary observations,
of which α1 are successes.

In this weighted average, the weight n/(n + α1 + α2) given to the
sample proportion increases toward 1 as n increases.

By contrast, as we take larger values for α1 + α2 for fixed n, the
influence of the prior on the posterior mean estimate
increases.
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Example: Bayes Estimates with Three priors and the Same
Data

In this example (based on a 1962 letter exchange between Leonard
Jimmy Savage and Jerome Cornfield) we find Bayesian posterior
mean estimates of the probability π of success for each of three
binomial experiments that have the same data, y = 10 successes in
n = 10 trials:

(1) A British woman claims that in tasting a cup of tea with milk,
she can tell whether the milk was poured before or after the tea;

(2) A professor of 18th century musicology claims to be able to
tell for any pair of pages of music, one composed by Mozart and
one by Haydn, who composed each.

(3) A person in a drunken state claims to be able to predict
whether the flip of a balanced coin will result in a head or in a tail.
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In each case, the frequentist MLE of the probability π of a correct
prediction is π̂ = y/n = 10/10 = 1.0.

We shall next find Bayesian posterior mean estimates of π for each
situation.

For the tea taster, if we have no a priori reason to expect any
particular value for π, we could select a uniform prior, which is
the Beta(1, 1) distribution.

From equations (2) and (3), this prior has mean 0.50 and standard
deviation 1/

√
12 = 0.29.
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By contrast, for coin flips we may be highly skeptical of any claim
about predictions and decide to use a beta prior with mean 0.50
but with small standard deviation, say 0.03, so that the beta
distribution is highly concentrated near 0.50.

We might have greater faith in the musicologist’s claim, and use
a beta prior with a mean of 0.90 and standard deviation 0.10.

For a chosen mean µ, from the formula µ = α1/(α1 + α2) for a
beta distribution, any particular value α1 has a corresponding
α2 = α1(1 − µ)/µ.

By trial and error for a particular value of µ we can find a pair of
(α1, α2) values that have a particular standard deviation σ, or we
could solve simultaneously for (α1, α2) based on (µ,σ).
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The following R code shows that for a beta prior with (µ,σ) =
(0.50, 0.03) for the coin-tossing predictions, we can take
hyperparameter values (α1, α2) ≈ (138, 138)

For (µ,σ) = (0.90, 0.10) for the musicologist, we can take
(α1, α2) ≈ (7, 7/9).
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alpha1 = 138; alpha2 = 138
# beta hyperparameters for predictor of coin flips

alpha1/(alpha1+alpha2);
sqrt((alpha1*alpha2)/((alpha1+alpha2)2 ∗ (alpha1 + alpha2 + 1)))

[1] 0.5 # mean of beta prior for coin flips

[1] 0.03004209 # std deviation of beta prior for coin flips
==========================================

alpha1 = 7; alpha2 = 7/9
# beta hyperparameters for musicologist

alpha1/(alpha1+alpha2);
sqrt((alpha1*alpha2)/((alpha1+alpha2)2 ∗ (alpha1 + alpha2 + 1)))

[1] 0.9 # mean of beta prior musicologist

[1] 0.1012579 # std deviation of beta prior musicologist
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With y = 10 successes in n = 10 trials, the posterior beta
distribution has hyperparameter values α∗1 = y + α1 = 10 + α1 and
α∗2 = n − y + α2 = 10 − 10 + α2 = α2.

The posterior mean is
π̃ = α∗1/(α∗1 + α∗2) = (10 + α1)/(10 + α1 + α2).

We now find π̃ for the three chosen priors:
> alpha1post <- 10 + alpha1; alpha2post <- alpha2

# hyperpara's for posterior when y=n=10
> alpha1post/(alpha1post + alpha2post)

# beta posterior mean
[1] 0.9166667

# for British tea taster
> qbeta(0.5, alpha1post, alpha2post)
[1] 0.9389309

# posterior median for British tea taster
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> alpha1 = 138; alpha2 = 138
# beta hyperparameters with mean 0.50, std dev. 0.03
> alpha1post <- 10 + alpha1; alpha2post <- alpha2
# hyperpara's for posterior when y=n=10
> alpha1post/(alpha1post + alpha2post)

# posterior mean for coin flips
[1] 0.5174825
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> alpha1 = 7; alpha2 = 7/9
# hyperparameters with mean 0.90, standard dev. 0.10
> alpha1post <- 10 + alpha1; alpha2post <- alpha2

# hyperpara's for posterior when y=n=10
> alpha1post/(alpha1post + alpha2post)

# posterior mean for musicologist
[1] 0.95625
> qbeta(0.5, alpha1post, alpha2post)
[1] 0.971962

# posterior median for musicologist
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With these priors, the posterior mean estimates of π are:
0.917 for the tea taster and
0.956 for the musicologist but only
0.517 for the predictor of coin flips.

The posterior mean for coin flipping is very close to the prior mean
of 0.50, the data having relatively little influence when the prior is
so sharp.
Figure 2 shows the beta prior and posterior distributions for these
three cases.

The posterior distributions are highly skewed for the tea taster and
the musicologist, and the code shows that the posterior medians
are even closer to 1.0.
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Figure: Beta prior (upper plot) and posterior (lower plot) distributions for
three cases with the same data, y = 10 successes in n = 10 binary
observations.
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Bayesian Updating:
Posterior Becomes Prior for Future Data

Bayesian analyses can easily be updated as a data scientist obtains
additional data.

Suppose an initial study having a prior p(π ∣ α1, α2) for a binomial
parameter π has data y1 and yields the posterior g(π ∣ y1).

That posterior can then serve as a prior to combine with additional
data in the future about the same parameter.
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Let ℓ(π ∣ y1) denote the likelihood function for the initial study.

The posterior is proportional to the product of the likelihood
function and the prior, g(π ∣ y1)∝ p(π ∣ α1, α2)ℓ(π ∣ y1).

Let ℓ(π ∣ y2) denote the likelihood function for a later study with
an independent sample y2.

Using the posterior from the initial study as the prior for the new
study,

g(π ∣ y1,y2)∝ g(π ∣ y1)ℓ(π ∣ y2)∝ p(π ∣ α1, α2)ℓ(π ∣ y1)ℓ(π ∣ y2).
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Now ℓ(π ∣ y1)ℓ(π ∣ y2) is the likelihood function ℓ(π ∣ y1,y2) for
the two studies combined.

Therefore g(π ∣ y1,y2)∝ p(π ∣ α1, α2)ℓ(π ∣ y1,y2) is the same as
the posterior obtained using the initial prior with the data together
from both studies.

That posterior could in turn serve as a prior for future studies.

The example in the previous section used a uniform prior, Beta(1,
1), for the British tea taster who claimed to be able to detect
whether tea or milk was poured first in the cup.

With n1 = 10 taste trials and binary observations
{yi1 = 1, i = 1, . . . , 10} having y1 = ∑10

i=1 yi1 = 10 successful guesses,
we found in the discussion of that example that the posterior is
beta with α∗1 = y1 + α1 = 10 + 1 = 11 and
α∗2 = n1 − y1 + α2 = 10 − 10 + 1 = 1, for which the posterior mean
estimate for π is π̃ = α∗1/(α∗1 + α∗2) = 11/(11 + 1) = 0.917.
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This posterior now serves as the prior for the next set of trials.

If in this set, she tastes n2 = 5 more cups and has outcomes {yi2}
with y2 = ∑5

i=1 yi2 = 4 successful guesses, the new posterior has
hyperparameters α∗∗1 = y2 + α∗1 = 4 + 11 = 15 and
α∗∗2 = n2 − y2 + α∗2 = 5 − 4 + 1 = 2.

This results in a second-stage posterior mean estimate of
α∗∗1 /(α∗∗1 + α∗∗2 ) = 15/17 = 0.882, compared with the original prior
mean of α1/(α1 +α2) = 0.50 and the first posterior mean of 0.917.

The second-stage posterior mean is a bit lower than the first-stage
one because the second tea-testing experiment had a lower success
rate than the first experiment.

The second-stage posterior mean is the same as we would have
obtained if the two experiments had been conducted in a single
stage, with 15 cups tested and a cumulative success total of 14
combined with a Beta(1,1) prior.
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Bayesian Inference for a Proportion

Now that we have learned more about beta priors for a binomial
parameter π and found the corresponding beta distribution for the
posterior distribution, we can conduct statistical inference about π.

For estimation, we can form point estimators and posterior
intervals.

For significance testing, we can find posterior probabilities that
summarize evidence about the hypotheses of interest.
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Bayesian Estimators and the Bias/Variance Tradeoff
For point estimation of the binomial parameter π, we can compare
Bayesian and frequentist estimators.

The MLE π̂ = Y/n of π is unbiased, that is, E(π̂) = π for all
possible values of π.

In fact, it has the minimum variance among all the possible
unbiased estimators of π.

We found the posterior mean estimate of π for a beta prior.

From expression (4), this Bayesian estimator π̃ = E(π ∣ y) has
expectation

E[( n
n + α1 + α2

)Y
n + (

α1 + α2

n + α1 + α2
)( α1

α1 + α2
)] =

= ( n
n + α1 + α2

)π + ( α1 + α2

n + α1 + α2
).( α1

α1 + α2
)
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This expectation is a weighted average of π and the prior mean
α1/(α1 + α2).

The estimator is biased, as Bayes estimators typically are, because
E(π̃) ≠ π.

But good estimators need not be exactly unbiased, but merely
asymptotically unbiased, with the bias decreasing toward 0 as n
increases.

For fixed α1 and α2, the Bayes estimator has expected value
converging toward π as n increases, so it satisfies this property.

For example, when α1 = α2 = α, the bias
[E(π̃) − π] = α(1 − 2π)/(n + 2α).

This is greatest in absolute value as π approaches 0 or 1, but
regardless of the value of π, it is small when n is large.
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Recall that the mean squared error summarizes how close, on
average, a frequentist or Bayesian estimator θ̂ tends to be to the
parameter θ that it estimates.

A formula for the MSE has as a consequence the important result
that some bias in an estimator can be a good thing: The MSE
decomposes into the variance of the estimator and its squared bias,

MSE(θ̂) = E(θ̂ − θ)2 = E{[θ̂ − E(θ̂)] + [E(θ̂) − θ]}2 =

= var(θ̂) + [E(θ̂) − θ]2 = variance + (bias)2.
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By using an estimator that has some bias, if its variance decreases
sufficiently, we may have the benefit of smaller MSE.

This result is called the bias/variance tradeoff .

For example, although the Bayes estimator of π is biased, its
variance

var[( n
n + α1 + α2

)Y
n ] =

= ( n
n + α1 + α2

)
2

var(Y
n ) = (

n
n + α1 + α2

)
2
π(1 − π)

n ,

is smaller than π(1 − π)/n, the variance of the MLE (which is
unbiased), for all possible values of π and n.

If π is somewhat near the prior mean α1/(α1 + α2), so the bias is
relatively small, MSE will be smaller for the Bayes estimator than
for the MLE.

But, if π is far from the prior mean, such as very close to 0 or 1
when the prior mean is 0.50, MSE will be smaller for the MLE.

(Notice that the MLE has variance 0 and hence MSE = 0 at π = 0
and 1.)
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Posterior Intervals for a Proportion:
Percentile and Highest Posterior Density

We can now build a posterior interval, also called a credible
interval for π based on the posterior pdf g(π ∣ y).

As discussed we can do this in two ways, using percentiles of the
posterior or the region of highest posterior density (HPD) values.

For example, the 95% equal-tail percentile posterior interval for π
has as endpoints the 2.5 and 97.5 percentiles of the posterior of π.

The HPD region of π values has posterior probability 0.95 such
that the posterior pdf is higher over all values in the region than
over all the values not in it.

The HPD is the shortest region that contains the relevant
probability.
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For example, the 2018 General Social Survey in the U.S. asked
“Do you believe in hell?” The percentage who responded yes was
74.0% for the 727 subjects with a high school education or less,
70.1% for the 304 subjects with a junior college or bachelor, and
56.8% for the 111 subjects with a graduate degree.

We shall find posterior intervals for the population proportion π of
those with a graduate degree who would respond yes.

For the counts of 63 for the yes response and 48 for the no
response,
the MLE is π̂ = 63/111 = 0.568, and
the 95% Wald interval of π̂ ± 1.96

√
π̂(1 − π̂)/n is (0.475, 0.660).

For the uniform Beta(1, 1) prior with y = 63 and n − y = 48, the
posterior is Beta(α∗1 , α∗2) with α∗1 = y + α1 = 64 and
α∗2 = n − y + α2 = 49.

The posterior mean estimate of π is
α∗1/(α∗1 + α∗2) = 64/(64 + 49) = 0.566, and the 0.025 and 0.975
quantiles of the beta posterior are (0.474, 0.656).

Software reports that the 95% HPD interval is (0.475, 0.657).

Very similar results occur for the Jeffreys prior, which is the
Beta(0.5, 0.5) distribution.
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> qbeta(c(0.025, 0.975), 63 + 1, 48 + 1)

[1] 0.4744648 0.6560523
# quantiles of beta posterior for
# 95% equal-tail percentile int. uniform prior

> qbeta(c(0.025, 0.975), 63.5, 48.5)

[1] 0.4746530 0.6570094
# quantiles of beta posterior for
# 95% equal-tail percentile int. with Jeffreys prior
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> library(binom)

> binom.bayes(63, 111, conf.level=0.95, type="central",
alpha1=1, alpha2=1)

method x n shape1 shape2 mean lower upper
1 bayes 63 111 64 49 0.5663717 0.4744648 0.6560523

# 95% equal-tail percentile int.
# for uniform prior dist.

> binom.bayes(63, 111, conf.level=0.95, alpha1=1, alpha2=1)
method x n shape1 shape2 mean lower upper

1 bayes 63 111 64 49 0.5663717 0.4752644 0.6568256
# 95% HPD interval
# for uniform prior dist.
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> binom.bayes(63, 111, conf.level=0.95, alpha1=0.5, alpha2=0.5)

method x n shape1 shape2 mean lower upper
1 bayes 63 111 63.5 48.5 0.5669643 0.4754671 0.6577965

# 95% HPD interval for Jeffreys prior
> binom.confint(63, 111, conf.level=0.95, method="asymptotic")

# 95% Wald confidence int.
method x n mean lower upper
1 asymptotic 63 111 0.5675676 0.475405 0.6597301
> binom.confint(63, 111, conf.level=0.95, method="wilson")
method x n mean lower upper
1 wilson 63 111 0.5675676 0.4746712 0.6559436

# 95% score confidence int.
# better than Wald if n small or pi near 0 or 1
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The Bayesian and the frequentist intervals are very similar,
although interpretations differ.

Frequentist intervals are justified by the property that in
repeatedly taking random samples of size 111 from the population
in the U.S. having a graduate degree, in the long run 95% of the
confidence intervals would contain the actual value of π.

For Bayesian posterior intervals, we can infer directly that the
probability is 0.95 that π falls in the interval obtained.
We recommend using the HPD interval rather than the equal-tail
percentile interval when the posterior pdf is monotone increasing
or decreasing from the boundary of the parameter space.

For example, in estimating a binomial parameter π, suppose that
all n trials are successes.

When y = n and we use a uniform or a Jeffreys prior for π, the
posterior pdf g(π ∣ y) is monotone increasing from 0 to 1.

It is not then sensible to exclude 1.0 and nearby values from the
posterior interval.

In forming an interval with posterior probability 0.95, rather than
using the 0.025 and 0.975 quantiles of g(p ∣ y), we use the 0.05
and 1.0 quantiles.
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Influence of Sample Size and prior on Posterior Intervals

As the sample size n increases, the influence of the prior weakens
and the posterior has appearance closer to that of the likelihood
function.

In the limit, Bayes estimates of π become more similar to the MLE
and Bayesian posterior intervals become more similar to frequentist
confidence intervals.

Specifically, the beta posterior has hyperparameter values
α∗1 = y + α1 and α∗2 = n − y + α2.

With fixed values of the prior hyperparameters α1 and α2, as n
increases, from equation (4) the posterior mean
E(π ∣ y) = α∗1/(α∗1 + α∗2) = (y + α1)/(n + α1 + α2) is approximately
π̂ = y/n, which is the sample proportion and MLE of π.
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Also, α∗1 + α∗2 = n + α1 + α2 is close to n, so the posterior variance
(3) is

α∗1α
∗
2

(α∗1 + α∗2)2(α∗1 + α∗2 + 1)
= [

α∗1
α∗1 + α∗2

][
α∗2

α∗1 + α∗2
][ 1

α∗1 + α∗2 + 1
]

≈ [y
n][

n − y
n ][1n] =

π̂(1 − π̂)
n ,

which is the MLE of the variance of π̂.

As n increases for fixed values of α1 and α2, like the sampling
distribution of π̂, the beta distribution is more nearly normal.

Thus, for large n, posterior intervals for the posterior beta
distribution are quite close to the frequentist confidence interval,
π̂ ± z

α/2

√
π̂(1 − π̂)/n.
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We illustrate this with a sequence of cases in which π̂ = 0.70,
computing for increasing values of n the frequentist Wald
confidence interval and the Bayesian HPD interval obtained with
uniform prior (α1 = α2 = 1):
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> library(binom)
> binom.confint(7,10,conf.level=0.95, method="asymptotic")

# n = 10
method lower upper 1 asymptotic 0.41597 0.98403

# frequentist Wald CI
> binom.bayes(7, 10, conf.level=0.95, alpha1=1, alpha2=1)
method lower upper

# Bayesian HPD interval for 1 bayes 0.41205 0.90663

# uniform prior
> binom.confint(70, 100, conf.level=0.95,

method="asymptotic")
# n = 100

method lower upper 1 asymptotic 0.61018 0.78982
# frequentist Wald CI
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method lower upper

1 bayes 0.60657 0.78345
# Bayesian HPD interval

> binom.confint(7000, 10000, conf.level=0.95,
method="asymptotic")

# n=10000
method lower upper
1 asymptotic 0.69102 0.70898

# frequentist Wald CI
> binom.bayes(7000, 10000, conf.level=0.95,

alpha1=1, alpha2=1)
method lower upper
1 bayes 0.69097 0.70893

# Bayesian HPD interval
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For a particular sample size n (set to 100 in the R code below), a
Bayesian interval is more similar to the frequentist confidence
interval as the prior is more diffuse, that is, as α1 = α2 = α
decreases toward 0:
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> library(binom)
> binom.bayes(70, 100, conf.level=0.95,

alpha1=100, alpha2=100)
# beta hyperpara's=100

method lower upper
1 bayes 0.5106053 0.6224795

# narrow interval when prior has small variance
> binom.bayes(70, 100, conf.level=0.95,

alpha1=10, alpha2=10)
# beta hyperpara's=10

method lower upper
1 bayes 0.5821577 0.7496266

> binom.bayes(70, 100, conf.level=0.95,
alpha1=1, alpha2=1)
# beta hyperpara's=1

method lower upper
1 bayes 0.6065663 0.7834458
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> binom.bayes(70, 100, conf.level=0.95,
alpha1=0.1, alpha2=0.1)
# beta hyperpara's=0.1

method lower upper
1 bayes 0.6095769 0.787402

> binom.bayes(70, 100, conf.level=0.95,
alpha1=0.01, alpha2=0.01)

# beta hyperpara's=0.01
method lower upper
1 bayes 0.6098849 0.7878043

> binom.confint(70, 100, conf.level=0.95,
method="asymptotic")

# frequentist Wald CI
method lower upper
1 asymptotic 0.6101832 0.7898168
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When α1 = α2 is close to 0 (e.g., 0.1 or 0.01 each), the Bayesian
HPD interval is similar to the frequentist confidence interval.
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Posterior Probability Analogs of P-values

As explained earlier with a null hypothesis such as H0: π = 0.50, it
is often relevant to summarize the evidence that π < 0.50 versus
π > 0.50.

We can do this by reporting the posterior tail probabilities,
P(π < 0.50 ∣ y) and P(π > 0.50 ∣ y).

For instance, for the summary of opinions about the existence of
hell in of the subjects having a graduate degree, 63 said yes and 48
said no.

With the uniform prior, the posterior is beta with hyperparameters
α∗1 = y + 1 = 64 and α∗2 = n − y + 1 = 49.

We next use this posterior to find P(π < 0.50 ∣ y) and
P(π > 0.50 ∣ y):
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> pbeta(0.50, 64, 49)
# cumulative probability at 0.50 for beta posterior

[1] 0.07803
> 1 - pbeta(0.50, 64, 49)

# posterior P(pi > 0.50 | y)
[1] 0.92197

The posterior P(π > 0.50 ∣ y) = 0.922 and P(π < 0.50 ∣ y) = 0.078
provide substantial but not overly strong evidence that the majority
believe in hell.
A corresponding frequentist statistical inference reports the P-value
for testing H0: π = 0.50 (implicitly π ≤ 0.50) against H1: π > 0.50.

Since y = 63, the P-value is the binomial probability of observing
Y ≥ 63 in n = 111 trials when actually H0 is true, that is,
1 − P(Y ≤ 62 ∣ π = 0.50) = 0.092.

It is plausible that this particular H0 is true (i.e., π = 0.50),
because the P-value is small but not overly so.
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> 1 - pbinom(62, 111, 0.50) # one-sided (right-tail)
P-value for Binom(111, 0.50) dist.
[1] 0.09182859 # when y = 63 and n = 111
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Bayes Factors

We now describe another Bayesian method for summarizing
evidence about hypotheses.

For a parameter θ and for subsets Θ0 and Θ1 of the parameter
space, consider the hypotheses

H0 ∶ θ ∈ Θ0, H1 ∶ θ ∈ Θ1.

In practice, the hypotheses often correspond to two possible
models for the data that do not need to be nested, that is, one a
special case of the other.

Suppose H0 specifies that the observations Y have joint pdf
f0(y ∣ θ) and H1 specifies that Y have joint pdf f1(y ∣ θ).
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We summarize the data’s evidence about the two hypotheses by
comparing the values of the marginal distributions of Y at the
observed value y, under each hypothesis.

With prior pdf p(θ), the joint distribution of (Y, θ) has probability
function h(y, θ) = f(y ∣ θ)p(θ), and we obtain the marginal
distribution m(y) by integrating out θ.

The marginal distributions under the two hypotheses are

m0(y) = ∫
Θ0

f0(y ∣ θ)p0(θ)dθ and m1(y) = ∫
Θ1

f1(y ∣ θ)p1(θ)dθ.
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After observing y, the Bayes factor in support of H0 relative to
H1 is

BF = m0(y)
m1(y)

. (5)

The value BF = 1 indicates that the data provide equal support for
each hypothesis, whereas BF > 1 indicates greater support for H0

than H1.

The greater the value of BF above 1, the stronger the evidence
provided by the data in support of H0.
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The overall marginal distribution of the data, averaged over prior
probab. P(θ ∈ Θ0) for H0 and P(θ ∈ Θ1) for H1 that sum to 1 is

m(y) = m0(y)P(θ ∈ Θ0) +m1(y)P(θ ∈ Θ1).

By Bayes’ theorem, the marginal probability function for the data,
given each hypothesis, can be expressed in terms of the probability
of each hypothesis, given the data, as

m0(y) = P(θ ∈ Θ0 ∣ y)m(y)/P(θ ∈ Θ0), m1(y) =

= P(θ ∈ Θ1 ∣ y)m(y)/P(θ ∈ Θ1).
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Therefore, we can express the Bayes factor as

BF = m0(y)
m1(y)

= P(θ ∈ Θ0 ∣ y)m(y)/P(θ ∈ Θ0)
P(θ ∈ Θ1 ∣ y)m(y)/P(θ ∈ Θ1)

= (6)

= P(θ ∈ Θ0 ∣ y)/P(θ ∈ Θ1 ∣ y)
P(θ ∈ Θ0)/P(θ ∈ Θ1)

. (7)
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Now, the prior odds of H0 relative to H1 are

P(θ ∈ Θ0)
P(θ ∈ Θ1)

= ∫Θ0
p(θ)dθ

∫Θ1
p(θ)dθ .

After observing the data y, the corresponding posterior odds equal

P(θ ∈ Θ0 ∣ y)
P(θ ∈ Θ1 ∣ y)

= ∫Θ0
g(θ ∣ y)dθ

∫Θ1
g(θ ∣ y)dθ .

Thus, from (7), BF = (posterior odds)/(prior odds), or
equivalently,

Posterior odds = BF(Prior odds).

When the prior probabilities are identical, in which case the prior
odds equal 1, BF simplifies to the ratio of the posterior
probabilities under H0 and under H1.
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With frequentist significance testing, P-values ≤ 0.05 make one
skeptical of H0, P-values ≤ 0.02 provide strong evidence against
H0, and P-values ≤ 0.01 provide very strong evidence.

When P(θ ∈ Θ0) = P(θ ∈ Θ1) = 0.50, P-values of 0.05, 0.02, and
0.01 correspond to BF values of 0.95/0.05 = 19, 0.98/0.02 = 49,
and 0.99/0.01 = 99.

Thus, roughly speaking, BF values exceeding about 20 provide
fairly strong evidence against H0, BF values exceeding 50 provide
strong evidence, and BF values exceeding 100 provide very strong
evidence.

Table 1 summarizes the BF strength of evidence against H0.
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Table: Strength of evidence against H0 provided by various Bayes factor
values

BF Evidence against H0

1 – 3 negligible
3 – 20 positive
20 – 50 fairly strong
50 – 100 strong
> 100 very strong
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We illustrate the Bayes factor by finding BF for H0: π > 0.50 and
H1: π < 0.50 about a binomial parameter π when we use a beta
prior for π with α1 = α2.

This prior is symmetric around 0.50, so the prior
P(π < 0.50) = P(π > 0.50).

For the example in the previous subsection with the uniform prior
for the probability π of belief in hell for those with a graduate
degree, given the binomial outcome y, P(π > 0.50 ∣ y) = 0.922 and
P(π < 0.50 ∣ y) = 0.078.

Thus, the Bayes factor is 0.922/0.078 = 11.8.

Conditional on the binomial observation, we judge that the
probability that π > 0.50 is 11.8 times the probability that π < 0.50.

For belief in hell by those with a graduate degree, there is positive
evidence that π > 0.50 but the evidence is not strong.
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A criticism of the Bayes factor is that its value can be highly
sensitive to some assumption or aspect of the model on which the
hypotheses are based that is not easily checked.

For example, its value is quite highly dependent on the choice for
the prior.

Also, it is not available with improper priors.

Another criticism is that the Bayes factor is not useful when an
application has a large or a continuous set of potential models
rather than a small, discrete set.



DR
AF
T

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bayesian Prediction of Future Observations

To predict future observations, we can use a Bayesian posterior
predictive distribution, that is, the probability distribution of a
future observation Yf .

As explained given the data, we obtain the posterior predictive pdf
by integrating the probability function for y, given θ, with respect
to the information we have about θ in its posterior g(θ ∣ y),

h(yf ∣ y) = ∫
Θ

f(yf ∣ θ)g(θ ∣ y)dθ.

A natural prediction for a future observation is the mean of the
posterior predictive distribution.
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For predicting a future binary observation that can take value 0 or
1, P(Yf = 1 ∣ π) = π.

So, for yf = 1, f(yf ∣ π) = π, so the predictive pdf takes value at 1,

h(1 ∣ y) = ∫
1

0
f(1 ∣ π)g(π ∣ y)dπ = ∫

1

0
πg(π ∣ y)dπ.

This is the mean of the beta posterior pdf g(π ∣ y).

With the uniform prior, we have

P(Yf = 1 ∣ y) = h(1 ∣ y) = E(π ∣ y) = (y + 1)/(n + 2).
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Since yf can only take values 0 and 1, this is also the mean of the
posterior predictive distribution.

For the example, the predictive probability that another randomly
selected person with a graduate degree believes in hell is the
posterior mean for π of 0.567.
Some applications naturally focus on the posterior predictive
distribution for the number of successes Yf in some future number
nf of observations.

Averaging the binomial conditional distribution of Yf for a given
value of π with respect to the beta posterior of π yields a
beta-binomial distribution. That distribution is specified by its
sample size index and by parameters that are the hyperparameters
of the beta distribution.

With posterior beta hyperparameters α∗1 and α∗2 and mean
µ∗ = α∗1/(α∗1 + α∗2), the mean and variance of Yf for nf future
observations are
E(Yf) = nfµ

∗, var(Yf) = nfµ
∗(1 − µ∗)[1 + (nf − 1)/(α

∗
1 + α∗2 + 1)]
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The beta-binomial distribution has the same mean but larger
variance than the binomial distribution with index nf and success
probability µ∗.

Having greater variance is natural, because of the additional
sampling variability from taking a new sample.

However, as (α∗1 + α∗2) increases, its variance decreases toward the
binomial variance nfµ

∗(1 − µ∗).

In fact, as (α∗1 + α∗2) increases, the beta-binomial distribution
converges to the binomial distribution.

We found that the posterior beta hyperparameters relate to the
hyperparameters of the beta prior and to the number of successes
and sample size for the original sample by α∗1 = y + α1 and
α∗2 = n − y + α2, so that α∗1 + α∗2 = n + α1 + α2.

Therefore, the beta-binomial distribution converges toward the
binomial distribution as the sample size n increases.
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We can obtain probabilities for a beta-binomial distribution using
software.

We illustrate by returning to the example of the British tea taster.

After observing 10 successful guesses in 10 cups, combined with a
uniform prior we obtained a posterior beta distribution for the
probability of a successful prediction, with α∗1 = 11 and α∗2 = 1, for
which the posterior mean is µ∗ = 11/12 = 0.9167.

For the next nf = 5 cups, here is the beta-binomial distribution for
the number of correct guesses Yf :
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> library(extraDistr)

> dbbinom(y, 5, alpha = 11, beta = 1)

# displays P(Yf = 0),P(Yf = 1), ...,P(Yf = 5)

[1] 0.0002289377 0.0025183150 0.0151098901 0.0654761905
0.2291666667 0.6875000000

The expected number of successful guesses is
nfµ
∗ = 5(11/12) = 4.58, and the probability is 0.6875 of getting all

five correct.
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