Estimating the hyperuniformity exponent of point processes

Gabriel Mastrilli ENSAI Rennes

Bartek Błaszczyszyn Inria/ENS Paris

Frederic Lavancier ENSAI Rennes

Anzère, École d'été CUSO, September 1-4, 2024

^A striking feature of nature?

Examples in physics

- \Box Cristals (Torquato and Stillinger 2003),
- \Box Plasmas Plasmas (Jancovici 1981),
- \Box Gas (Torquato, Scardicchio, and Zachary 2008),
- \Box Fuilds (Lei and Ni 2019),
- \Box Ices (Martelli, Torquato, Giovambattista, and Car 2017),
- \Box Engineering/materials (Gorsky et al. 2019)

 \Box ...

Problem formulation

Hyperuniform point processes

 \Box \Box Point process Φ — random, locally finite configuration of points in \mathbb{R}^d . Considered as an atomic measure. Assume stationary (translation invariant distribution) and ergodicity.

```
\boldsymbol{\Phi} is said hyperuniform if
```
 \Box

```
\text{Var}[\Phi (\left[B_0(R))\right] \mathop{=}_{r\to\infty} o(\boldsymbol{R^{d}}^{\boldsymbol{d}}),
```

```
where B_0(R) is a ball of radius R in \mathbb{R}^d
.
```
- \Box **E** Remember, for Poisson point process Φ (complete independent configuration of points) $\mathbf{Var}[\Phi(B_0(R))]\sim R^d$.
- \Box Hyperuniformity ≡ sub-Poissonian growth in number variance.

Can you recognize hyperuniformity?

(a) Perturbed Ginibre: hyperuniform.

(b) Thinned URL: not hyperuniform.

(c) Matérn-III (RSA): not hyperuniform.

Hyperuniformity Cases

Asymptotic behavior for different hyperuniformity exponents:

 $\text{Var}[\Phi(B_0(R))] =$ $\begin{cases} O(R^{d-\alpha}) & \text{for } 0 < \alpha < 1, \text{ (weak hyperuniformity)} \ O(R^{d-1} \log(R)) & \ \ O(R^{d-1}) & \text{ (strong hyperuniformity)}, \end{cases}$

where α is called the degree (or strenght) of the hyperuniformity.
Are there any point processes exhibiting degree $\alpha > 1$?

- \Box Are there any point processes exhibiting degree $\alpha > 1$?
- \Box No, when counting the points! We need finer tools to capture large-scale fluctuations.
- \Box \Box The reason lies in the indicator function $\mathbb{1}(x\in B_0(R))$ used in

$$
\text{Var}[\Phi(B_0(R))]=\text{Var}\Bigl[\sum_{x\in\Phi}\mathbb{1}(x\in B_0(R))\Bigr]=\text{Var}\Bigl[\sum_{x\in\Phi}\mathbb{1}\left(\frac{x}{R}\in B_0(1)\right)\Bigr]
$$

which introduces an unavoidable boundary effect of the order of the "surface volume", of all orders R^{d-1} .

Hyperuniformity Cases

 \Box \Box By using sufficiently smooth functions $f(x)$ instead of $1(x\in B_0(R))$, we obtain the variance rate

$$
\text{Var}\Bigl[\sum_{x\in\Phi}f\left(\frac{x}{R}\right)\Bigr]=O(R^{d-\alpha})
$$

for hyperuniform point processes of degree $\alpha \geq 0$.

$$
\Phi_{\alpha}=\{y+U+U_y+V_y|y\in\mathbb{Z}^2\}
$$

where U , $(U_{y})_{y\in\mathbb{Z}^2}$ are i.i.d. uniform on $[-1/2,1/2]^2$, and $(V_{y})_{y\in\mathbb{Z}^2}$ are i.i.d. with characteristic function φ s.t. $1-|\varphi(k)|^2 \sim_0$ (for $V_y\equiv1$ — cloaked lattice (Klatt, Kim, and T ϵ $^2\sim_0t|k|^\alpha$. — cloaked lattice (Klatt, Kim, and Torquato 2020)).

Figure: Different degrees α of hyperuniformity (Torquato 2018).

 \Box Bartlett spectrum (structure factor) S of point process Φ is a complex-valued function on \mathbb{R}^d

 $S(k) := 1 + \lambda \mathcal{F}[g]$ − $[-1](k),$

where

- $\lambda := \mathbb{E}[\Phi([0,1]^d)]$ intensity of Φ ,
- $\mathcal F$ denotes the Fourier transform on $\mathbb R^d$,
- g is pair-correlation function of Φ (assumed $g-1 \in L^1$ $\mathbb{1}(\mathbb{R}^d$ $\bm{^{a}})$), defined via second correlation function

 $\rho^{(2)}(dx,dy) = \mathbb{E}[\Phi(dx)\Phi(dy)] = \lambda^2$ $^{2}g(x-y)dxdy, x\neq y.$

 \blacksquare Faujyalantly a represents (if it evists) the density of the mea $-$ Equivalently, \boldsymbol{g} represents (if it exists) the density of the mean measure under Palm probability

$$
\mathbb{E}^0[\Phi(B)]=\int_B g(x)\,dx.
$$

 \Box \Box Fourier-Campbell formula: For all $f_1,f_2\in L^2$ $^{\mathbf{2}}(\mathbb{R}^{d}%)\mathcal{M}_{\mathbf{\infty }}^{\mathbf{\rightarrow }}\mathcal{M}_{\mathbf{\infty }}^{\mathbf{\in }}% \mathcal{M}_{\mathbf{\infty }}^{\mathbf{\in }}(\mathbb{R}^{d})$ \boldsymbol{d}

$$
\text{Cov}\,\Big[\sum_{x\in\Phi}f_1(x),\sum_{x\in\Phi}f_2(x)\Big]=\lambda\int_{\mathbb{R}^d}\mathcal{F}[f_1](k)\overline{\mathcal{F}[f_2]}(k)S(k)dk.
$$

 \Box \Box In particular, for all $f\in L^2$ $^{\mathbf{2}}(\mathbb{R}^{d}%)\mathcal{M}_{\mathbf{\infty }}^{\mathbf{\rightarrow }}\mathcal{M}_{\mathbf{\infty }}^{\mathbf{\in }}% \mathcal{M}_{\mathbf{\infty }}^{\mathbf{\in }}(\mathbb{R}^{d})$ \boldsymbol{d}

$$
\text{Var}\,\Big[\sum_{x\in\Phi}f(x)\Big]=\lambda\int_{\mathbb{R}^d}|\mathcal{F}[f](k)|^2S(k)dk.
$$

 \Box Consequently,

$$
\text{Var}\Bigl[\sum_{x\in\Phi}f\left(\frac{x}{R}\right)\Bigr]=R^d\times\lambda\int_{\mathbb{R}^d}|\mathcal{F}[f](k)|^2S(k/R)dk.
$$

$$
\text{Var}\Bigl[\sum_{x\in\Phi}f\left(\frac{x}{R}\right)\Bigr]=R^d\times\lambda\int_{\mathbb{R}^d}|\mathcal{F}[f](k)|^2S(k/R)dk.
$$

- \Box \Box If $S(0) > 0$ then the RHS is $\sim R^d$, hence Φ is not hyperuniform.
- \Box If $S(0) = 0$ then RHS is $\ll R^d$, hence Φ is hyperuniform (low frequencies of \Box point process disappear).
- \Box Assume:

$$
S(k)\mathop{\sim}\limits_{|k|\to0}c|k|^\alpha,
$$

where $c>0$ and $\alpha\geq 0$ are constants.

□ If moreover f is sufficiently smooth then the RHS is $\sim R^d$ \Box $-\alpha$ _.

Structure function for theoretical point process models

Estimation of α

(on one realization)

- \Box State-of-the-art:
	- 1. Estimation of \bm{S} with $\widehat{\bm{S}}_{\bm{R}}$. Example:

$$
\widehat{S}_R(k)=\frac{1}{\#\{\Phi\cap[-R,R]^d\}}\left|\sum_{x\in\Phi\cap[-R,R]^d}e^{-ik.x}\right|^2.
$$

For large window $\bm{R}: \ \widehat{\bm{S}}_{\bm{R}}(\bm{k}) \simeq \bm{S}(\bm{k}).$

2. Estimation of the behavior of $\widehat{\bm{S}}$ \overline{R} at $\overline{0}$.

For small frequencies $k_R: \ \widehat{S}_R(k_R) \simeq c|k_R|^{\alpha}.$

 \Box Idea: combine the two asymptotic regimes...

The key asymptotic result

 \Box \Box PROPOSITION: Assume: S $\big($ \boldsymbol{k}) ∼ $|\boldsymbol{k}|\!\!\rightarrow\!\!0$ Schwartz function and $j \in (0, 1)$ then $\bm{c}|\bm{k}|$ α $\begin{array}{c} \alpha \end{array}$ α $\geq 0, c > 0$). Let f be a

$$
\text{Var}\left[\sum_{x\in \Phi\cap[-R,R]^d}f(x/R^j)\right]\underset{R\to\infty}{\sim} R^{j(d-\alpha)}\lambda\int_{\mathbb{R}^d}|\mathcal{F}[f](k)|^2c|k|^{\alpha}dk.
$$

If $\int\bm{f}=\bm{0}$, one can expect:

 \Box

$$
\left(\sum_{x\in \Phi\cap[-R,R]^d} f(x/R^j)\right)^2 \simeq R^{j(d-\alpha)} \text{ cst.}
$$

 \Box If $\int \bm{f} = \bm{0}$, one can expect:

$$
\log \left\{ \left(\sum_{x \in \Phi \cap [-R,R]^d} f(x/R^j) \right)^2 \right\} \simeq \log(R) (d-\alpha) j + \text{cst.}
$$

 \Box \Box One considers not only several "scales" j to reduce the variance of the estimator but also several "tapers"...

Multi-scale, multi-tapers estimator

 \Box \Box For several scales $j\in J$, $0< j < 1$ and several smooth (Schwartz) function (tapers) $f_i, \ i \in I$ with $\int f_i = 0,$ Least-square estimator of $\boldsymbol{\alpha}$: $\widehat{\boldsymbol{\alpha}}$ = \boldsymbol{d} $\sum_{j\in J}$ $\hat{\bm{w}}$ $\frac{w_j}{\log(1)}$ $\frac{d}{dR} \log \frac{1}{2}$ $\sqrt{\frac{1}{2}}$ \setminus $\sum_{i\in I}$ $\sqrt{2}$ \setminus \sum $x{\in}$ Φ∩ $[-R,R]^d$ $f_i(x/R^j)$ \int 2 \backslash \int ,

with weights:

$$
\forall j \in J, \ \hat{w}_j = \frac{|J|j - \sum_{j' \in J} j'}{|J| \left(\sum_{j' \in J} j'^2\right) - \left(\sum_{j' \in J} j'\right)^2}.
$$

Two properties: $\sum_{j\in J}\hat{w}_j=0$ and $\sum_{j\in J}j\hat{w}_j=1.$

Consistency

 \Box Observe:

$$
\widehat{\alpha}(I,J,R) - \alpha = \sum_{j \in J} \frac{\hat{w}_j}{\log(R)} \log \left(\sum_{i \in I} \left(R^{\frac{\alpha-d}{2}j} \sum_{x \in \Phi \cap [-R,R]^d} f_i(x/R^j) \right)^2 \right).
$$

- \Box PROPOSITION: Assume:
	- $S(k) \sim c|k|^{\alpha}$ as $|k| \to 0$, where $\alpha \ge 0$ and $c > 0$.
− for each $i \in J$ there exists $i \in J$ such that
	- $\hbox{\large{$\lhd$}}$ for each $j\in J$, there exists $i_j\in I$ such that:

$$
R^{\frac{\alpha-d}{2}j}\sum_{x\in \Phi\cap[-R,R]^d} f_{i_j}(x/R^j)\xrightarrow[R\to\infty]{Law} X_j,
$$

 $\mathbb{P}[X_j = 0] = 0.$

Then $\widehat{\alpha}(I, J, R) \rightarrow \alpha$ in probability as $R \rightarrow \infty$.

^A key tool for asymptotic properties

 \Box THEOREM:(Multivariate central limit theorem) Assume that

- $S(k) \sim c|k|^{\alpha}$ $S(k) \sim c|k|^{\alpha}$ $S(k) \sim c|k|^{\alpha}$, as $|k| \to 0$ where $c > 0$ and $0 < \alpha < d$,

This Prillipson mixing 1
- **Contract Contract Contract Contract** Φ is Brillinger mixing.¹

Then:

$$
\left(R^{\frac{\alpha-d}{2}j}\sum_{x\in \Phi\cap[-R,R]^d}f_i(x/R^j)\right)_{i\in I,j\in J}\xrightarrow[R\to\infty]{Law}(\sqrt{c}N(i,j,\alpha))_{i\in I,j\in J},
$$

where $(\bm{N}(i,j,\alpha))_{i\in I,j\in J}$ is a Gaussian vector with zero mean and covariance matrix:

$$
\Sigma(\alpha) := \left(1_{j_1=j_2} \int_{\mathbb{R}^d} \mathcal{F}[f_{i_1}](k) \overline{\mathcal{F}[f_{i_2}]}(k) |k|^{\alpha} dk \right)_{(j_1,j_2) \in J^2, (i_1,i_2) \in I^2}.
$$
¹ Remember mixing $\mathbb{P}_{\Phi \cap (B_1 \cup (x+B_2))} \xrightarrow{x \to \infty} \mathbb{P}_{\Phi \cap B_1} \times \mathbb{P}_{\Phi \cap B_2}.$
Brillinger mixing concerns the rate of convergence in the mixing process.

Asymptotic confidence intervals

 \Box Under the assumptions of the CLT, let:

- $\quad a\in (0,1),$
- – $-$ for all $\beta \geq 0$ and $q \in (0,1)$, let F^{-1} $\mathbf{H}(\boldsymbol{q};\boldsymbol{\beta})$ be the quantile of order \boldsymbol{q} of

$$
\sum_{j\in J} w_j\log\left(\sum_{i\in I} N(i,j,\beta)^2\right).
$$

Assume:

 \Box

- $S(k) \sim c|k|^\alpha| + c_1|k|^\beta$, with $\beta > \alpha \ge 0$ and $c, c_1 > 0$ constants.
- Φ is Brillinger mixing,
- $-f_i =$ $\psi_{\bm{v}}(x) = e^{-\frac{1}{2} |x|^2} \prod_{l=1}^d H_{i_l}(x_l)$ where $H_n(y)$ are the Hermite polynomials and $I = \{i \in \mathbb{N}^d | |i|_{\infty} \leq N_I, \ \int \psi_i = 0 \}.$

Then, there exists $R_0 > 0$ and $0 < C(\epsilon, J) < \infty$ such that for all $R > R_0$ $R \geq R_0$:

$$
\mathbb{P}\left(\log(R)\left|\widehat{\alpha}(I,J,R)-\alpha\right|\geq \epsilon\right)\leq C(\epsilon,J)\left(\left(\frac{|I|}{R^{2j}}\right)^{\beta-\alpha}+\frac{1}{|I|}\right).
$$

Variance scales as $|I|^{-1}$. Bias can be high if $|I|$ is large for fixed R .

Examples / implementation issues

Implementation issues: case non-hyperuniform

 $\widehat{\alpha}=d -$ slope of C , with $\mathcal{C}:j\mapsto$ 1 log($\overline{R)}^{\operatorname{log}}$ $\sqrt{ }$ \setminus $\sum_{i\in I}$ $\sqrt{2}$ \setminus \sum $x{\in}$ Φ∩ $[-R,R]^d$ $f_i\left(x/R^j\right)$ \int 2 $\Bigg) \, .$

Matérn-III model; 5000 points, $I=\{75$ Hermite tapers}, R $=$ 35.

²⁴ / ³⁰

Implementation issues: case of strong hyperuniform

Ginibre model, 1600 points, $\boldsymbol{I}=\{75\text{ Hermite tapers}\}$, $\mathsf{R}=20.$

Benchmark on perturbed lattices

Assume

$$
\Phi_\alpha=\{y+U+U_y+V_y|y\in\mathbb{Z}^2\}
$$

where U , $(U_{y})_{y\in\mathbb{Z}^2}$ are i.i.d. uniform on $[-1/2,1/2]^2$, and $(V_{y})_{y\in\mathbb{Z}^2}$ are i.i.d. with characteristic function φ s.t. $1 - |\varphi(k)|^2 \sim_0 t |k|$ $^2\sim_0t|k|^\alpha$.

(for $V_y\equiv1$ — cloaked lattice (Klatt, Kim, and T ϵ — cloaked lattice (Klatt, Kim, and Torquato 2020).

Real data — System of marine algae (Huang et al. 2021)

Estimating α for an algae system (approximately 900 points).

Conclusions

- \Box Hyperuniformity — the variance of random systems grows slower than the volume of the window \equiv volume of the window \equiv low frequencies disappear.
Assume point process on \mathbb{R}^d having Bartlett spectr
- \Box Assume point process on \mathbb{R}^d having Bartlett spectrum $S(k)\sim_0 c|k|^\alpha$ with $c > 0$ and $\alpha \geq 0$. Case $\alpha > 0$ indicates hyperuniformity.
Multi scale, multi tanes estimators of a annlisable on ane.
- \Box \Box Multi-scale, multi-taper estimators of α applicable on one realization

$$
\widehat{\alpha}(I,J,R):=d-\sum_{j\in J}\frac{w_j}{\log(R)}\log\left(\sum_{i\in I}\left(\sum_{x\in\Phi\cap[-R,R]^d}f_i(x/R^j)\right)^2\right).
$$

- \Box Brillinger-mixing $+$ α $<$ d CLT $+$ confidence intervals.
- \Box \Box $\alpha \geq d$: consistency criterion.
- \Box Choice of the number of tapers: bias/variance trade-off.

For more details, see:

...

- \Box Mastrilli, G., BB, Lavancier, F. (2024). Estimating the hyperuniformity exponent of point processes. [arXiv:2407.16797](https://arxiv.org/pdf/2407.16797)
- \Box Klatt, M. A., Last, G. and Henze, N. ^A genuine test for hyperuniformity. (2022) arXiv:2210.12790
- \Box Hawat, D., Gautier, G., Bardenet, R. and Lachièze-Rey, R. On estimating the structure \Box factor of ^a point process, with applications to hyperuniformity. (2023) Statistics and**Computing**
- □ Torquato, S. Hyperuniform states of matter. (2018)Physics Reports
- \Box Torquato, S. and Stillinger, F. H. Local density fluctuations, hyperuniformity, and order metrics. (2003) Physical Review E.

Thanks for your attention