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A striking feature of nature?
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(Jiao et al. 2014)

Avian photoreceptors
(Huang et al. 2021)

Swimming algae

...

Termite mounds

Patterns more “regular” than complete independence (Poisson model)



Examples in physics
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� Cristals (Torquato and Stillinger 2003),
� Plasmas Plasmas (Jancovici 1981),
� Gas (Torquato, Scardicchio, and Zachary 2008),
� Fuilds (Lei and Ni 2019),
� Ices (Martelli, Torquato, Giovambattista, and Car 2017),
� Engineering/materials (Gorsky et al. 2019)
� ...



4 / 30

Problem formulation



Hyperuniform point processes

5 / 30

� Point process Φ — random, locally finite configuration of points in R
d.

Considered as an atomic measure. Assume stationary (translation invariant
distribution) and ergodicity.

�

Φ is said hyperuniform if

Var[Φ(B0(R))] =
r→∞

o(Rd),

where B0(R) is a ball of radius R in R
d.

� Remember, for Poisson point process Φ (complete independent configuration
of points) Var[Φ(B0(R))] ∼ Rd.

� Hyperuniformity ≡ sub-Poissonian growth in number variance.



Can you recognize hyperuniformity?
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Hyperuniformity Cases
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� Asymptotic behavior for different hyperuniformity exponents:

Var[Φ(B0(R))] =





O(Rd−α) for 0 < α < 1, (weak hyperuniformity)

O(Rd−1 log(R))

O(Rd−1) (strong hyperuniformity),

where α is called the degree (or strenght) of the hyperuniformity.
� Are there any point processes exhibiting degree α > 1?
� No, when counting the points! We need finer tools to capture large-scale

fluctuations.
� The reason lies in the indicator function 1(x ∈ B0(R)) used in

Var[Φ(B0(R))] = Var
[∑

x∈Φ

1(x ∈ B0(R))
]
= Var

[∑

x∈Φ

1

(
x

R
∈ B0(1)

)]

which introduces an unavoidable boundary effect of the order of the “surface
volume”, of all orders Rd−1.



Hyperuniformity Cases
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� By using sufficiently smooth functions f(x) instead of 1(x ∈ B0(R)), we
obtain the variance rate

Var
[∑

x∈Φ

f

(
x

R

)]
= O(Rd−α)

for hyperuniform point processes of degree α ≥ 0.



Examples: perturbed lattices
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Φα = {y + U + Uy + Vy|y ∈ Z
2}

where U , (Uy)y∈Z2 are i.i.d. uniform on [−1/2, 1/2]2, and (Vy)y∈Z2 are i.i.d.
with characteristic function ϕ s.t. 1 − |ϕ(k)|2 ∼0 t|k|α.
(for Vy ≡ 1 — cloaked lattice (Klatt, Kim, and Torquato 2020)).



Hyperuniformity in frequency domain
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� Bartlett spectrum (structure factor) S of point process Φ is a complex-valued
function on R

d

S(k) := 1 + λF [g − 1](k),

where

– λ := E[Φ([0, 1]d)] intensity of Φ,
– F denotes the Fourier transform on R

d,
– g is pair-correlation function of Φ (assumed g − 1 ∈ L1(Rd)), defined via

second correlation function
ρ(2)(dx, dy) = E[Φ(dx)Φ(dy)] = λ2g(x− y)dxdy, x 6= y.

– Equivalently, g represents (if it exists) the density of the mean measure
under Palm probability

E
0[Φ(B)] =

∫

B

g(x) dx.



Hyperuniformity in frequency domain
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� Fourier-Campbell formula: For all f1, f2 ∈ L2(Rd):

Cov
[ ∑

x∈Φ

f1(x),
∑

x∈Φ

f2(x)
]
= λ

∫

Rd

F [f1](k)F [f2](k)S(k)dk.

� In particular, for all f ∈ L2(Rd):

Var
[ ∑

x∈Φ

f(x)
]
= λ

∫

Rd

|F [f ](k)|2S(k)dk.

� Consequently,

Var
[∑

x∈Φ

f

(
x

R

)]
= Rd × λ

∫

Rd

|F [f ](k)|2S(k/R)dk.



Hyperuniformity in frequency domain

12 / 30

Var
[∑

x∈Φ

f

(
x

R

)]
= Rd × λ

∫

Rd

|F [f ](k)|2S(k/R)dk.

� If S(0) > 0 then the RHS is ∼ Rd, hence Φ is not hyperuniform.
� If S(0) = 0 then RHS is ≪ Rd, hence Φ is hyperuniform (low frequencies of

point process disappear).

� Assume:
S(k) ∼

|k|→0
c|k|α,

where c > 0 and α ≥ 0 are constants.
� If moreover f is sufficiently smooth then the RHS is ∼ Rd−α.



Structure function for theoretical point process models
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Estimation of α
(on one realization)



Estimation of the degree α of hyperuniformity?
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� State-of-the-art:

1. Estimation of S with ŜR. Example:

ŜR(k) =
1

#{Φ ∩ [−R,R]d}

∣∣∣∣∣∣

∑

x∈Φ∩[−R,R]d

e−ik.x

∣∣∣∣∣∣

2

.

For large window R : ŜR(k) ≃ S(k).

2. Estimation of the behavior ofŜR at 0.

For small frequencies kR : ŜR(kR) ≃ c|kR|α.

� Idea: combine the two asymptotic regimes...



The key asymptotic result
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� PROPOSITION: Assume: S(k) ∼
|k|→0

c|k|α (α ≥ 0, c > 0). Let f be a

Schwartz function and j ∈ (0, 1) then

Var


 ∑

x∈Φ∩[−R,R]d

f(x/Rj)


 ∼

R→∞
Rj(d−α)λ

∫

Rd

|F [f ](k)|2c|k|αdk.

�

If
∫
f = 0, one can expect:


 ∑

x∈Φ∩[−R,R]d

f(x/Rj)




2

≃ Rj(d−α) cst.



Multi-scale linear regression to estimate α
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� If
∫
f = 0, one can expect:

log






 ∑

x∈Φ∩[−R,R]d

f(x/Rj)




2
 ≃ log(R)(d− α)j + cst.

� One considers not only several “scales” j to reduce the variance of the
estimator but also several “tapers”...



Multi-scale, multi-tapers estimator
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� For several scales j ∈ J , 0 < j < 1
and several smooth (Schwartz) function (tapers) fi, i ∈ I with

∫
fi = 0,

Least-square estimator of α:

α̂ = d−
∑

j∈J

ŵj

log(R)
log


∑

i∈I


 ∑

x∈Φ∩[−R,R]d

fi(x/R
j)




2
 ,

with weights:

∀j ∈ J, ŵj =
|J |j −∑

j′∈J j
′

|J |
(∑

j′∈J j
′2
)
−
(∑

j′∈J j
′
)2 .

Two properties:
∑

j∈J ŵj = 0 and
∑

j∈J jŵj = 1.



Consistency
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� Observe:

α̂(I, J,R)− α =
∑

j∈J

ŵj

log(R)
log


∑

i∈I


R

α−d

2
j

∑

x∈Φ∩[−R,R]d

fi(x/R
j)




2
 .

� PROPOSITION: Assume:

– S(k) ∼ c|k|α as |k| → 0, where α ≥ 0 and c > 0.
– for each j ∈ J , there exists ij ∈ I such that:

R
α−d

2
j

∑

x∈Φ∩[−R,R]d

fij(x/R
j)

Law−−−−→
R→∞

Xj,

– P[Xj = 0] = 0.

Then α̂(I, J,R) → α in probability as R → ∞.



A key tool for asymptotic properties
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� THEOREM:(Multivariate central limit theorem) Assume that

– S(k) ∼ c|k|α, as |k| → 0 where c > 0 and 0 < α < d,
– Φ is Brillinger mixing.1

Then:

R

α−d

2
j

∑

x∈Φ∩[−R,R]d

fi(x/R
j)




i∈I,j∈J

Law−−−−→
R→∞

(
√
cN(i, j, α))i∈I,j∈J ,

where (N(i, j, α))i∈I,j∈J is a Gaussian vector with zero mean and
covariance matrix:

Σ(α) :=

(
1j1=j2

∫

Rd

F [fi1](k)F [fi2 ](k)|k|αdk
)

(j1,j2)∈J2,(i1,i2)∈I2

.

1 Remember mixing PΦ∩(B1∪(x+B2))
x→∞−−−→ PΦ∩B1

× PΦ∩B2
.

Brillinger mixing concerns the rate of convergence in the mixing process.



Asymptotic confidence intervals
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� Under the assumptions of the CLT, let:

– a ∈ (0, 1),
– for all β ≥ 0 and q ∈ (0, 1), let F−1(q;β) be the quantile of order q of

∑

j∈J

wj log

(
∑

i∈I

N(i, j, β)2

)
.

Then
[
α̂− F−1(1 − a/2; (α̂)+)

log(R)
, α̂− F−1(a/2; (α̂)+)

log(R)

]

is an asymptotic confidence interval of order 1 − a.



Bias and variance
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� Assume:

– S(k) ∼ c|k|α| + c1|k|β, with β > α ≥ 0 and c, c1 > 0 constants.
– Φ is Brillinger mixing,

– fi = ψi(x) = e−
1

2
|x|2 ∏d

l=1Hil(xl) where Hn(y) are the Hermite
polynomials and I = {i ∈ N

d| |i|∞ ≤ NI ,
∫
ψi = 0}.

Then, there exists R0 > 0 and 0 < C(ǫ, J) < ∞ such that for all
R ≥ R0:

P (log(R) |α̂(I, J,R) − α| ≥ ǫ) ≤ C(ǫ, J)

(( |I|
R2j

)β−α

+
1

|I|

)
.

� Variance scales as |I|−1, Bias can be high if |I| is large for fixed R.
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Examples / implementation issues



Implementation issues: case non-hyperuniform
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α̂ = d− slope of C, with

C : j 7→ 1

log(R)
log


∑

i∈I


 ∑

x∈Φ∩[−R,R]d

fi

(
x/Rj

)



2
 .

Matérn-III model; 5000 points, I = {75 Hermite tapers}, R = 35.



Implementation issues: case of strong hyperuniform
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Ginibre model, 1600 points, I = {75 Hermite tapers}, R = 20.



Benchmark on perturbed lattices

26 / 30

Assume

Φα = {y + U + Uy + Vy|y ∈ Z
2}

where U , (Uy)y∈Z2 are i.i.d. uniform on [−1/2, 1/2]2, and (Vy)y∈Z2 are i.i.d.
with characteristic function ϕ s.t. 1 − |ϕ(k)|2 ∼0 t|k|α.
(for Vy ≡ 1 — cloaked lattice (Klatt, Kim, and Torquato 2020).

Perturbed lattices, I = {75 Hermite tapers}.



Real data — System of marine algae (Huang et al. 2021)
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Marine algae — our estimation of α
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Estimating α for an algae system (approximately 900 points).



Conclusions

29 / 30

� Hyperuniformity — the variance of random systems grows slower than the
volume of the window ≡ low frequencies disappear.

� Assume point process on R
d having Bartlett spectrum S(k) ∼0 c|k|α with

c > 0 and α ≥ 0. Case α > 0 indicates hyperuniformity.
� Multi-scale, multi-taper estimators of α applicable on one realization

α̂(I, J,R) := d−
∑

j∈J

wj

log(R)
log


∑

i∈I


 ∑

x∈Φ∩[−R,R]d

fi(x/R
j)




2
 .

� Brillinger-mixing + α < d: CLT + confidence intervals.
� α ≥ d: consistency criterion.
� Choice of the number of tapers: bias/variance trade-off.



For more details, see:
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� Mastrilli, G., BB, Lavancier, F. (2024).
Estimating the hyperuniformity exponent of point processes. arXiv:2407.16797

� Klatt, M. A., Last, G. and Henze, N. A genuine test for hyperuniformity. (2022)
arXiv:2210.12790

� Hawat, D., Gautier, G., Bardenet, R. and Lachièze-Rey, R. On estimating the structure
factor of a point process, with applications to hyperuniformity. (2023) Statistics and
Computing

� Torquato, S. Hyperuniform states of matter. (2018)Physics Reports
� Torquato, S. and Stillinger, F. H. Local density fluctuations, hyperuniformity, and order

metrics. (2003) Physical Review E.
� ...

Thanks for your attention

https://arxiv.org/pdf/2407.16797
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