
1 / 54

Ergodic learning and particle gradient descent generative model for
point processes

Antoine Brochard
Inria/ENS

Bartek
B laszczyszyn

Inria/ENS Paris

Sixin Zhang
University of

Toulouse/IRIT

Stephane Mallat
College de

France/ENS, Paris
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Problem:
Learning a generative model



Samples from a point process. Can you recognize the model?
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Sure, Cox-Voronoi and Cox-Boolean.
Recall: Cox = doubly stochastic Poisson process.



And here?
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Well... ? Left: Matern cluster process driven by some turbulent field (driven by 2d
Navier-Stokes equations). Right: Matern II hard core model applied to a Cox
driven by the same turbulent field.



Some more patterns
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from astronomy, physics, ...
These patterns:

� Exhibit multi-scale properties (e.g. small repulsion, large cluster)
� We want model them with point process with a (very) large number of points

(partcles), say ∼ 10.000, in the window.
� Typically, we have only one original pattern (or, say, very few ones).
� ⇒ Ergodic learning of point processes?



Ergodic learning of point processes
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� Recall: Almost surely, any infinite realization of an ergodic point process alows
one to fully characterize its distribution and thus (in principle) to sample from
this distribution new realizations. ⇒ Spatial averaging!

� But in practice, we have only a finite learning window. Can we get
approximations of the unknown distribution?

Original image Synthesis 1 Synthesis 2
samples from “ergodic learning model”



So how it works?
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1. Choose statistics (descriptors, moments) that will “summarize” the
distribution and not fully “memorize” given patterns.

2. Specify a model deriving from these statistics. Typically a type of “maximum
entropy model”.

3. Find a way of generating samples from this model. Not always evident!



Outline of the remaining talk
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� Models (and their simulation methods)

– Maximum entropy models (rather theoretical)
– Particle gradient descent model ⇐
– Random search (benchmark; Torquato 2002, Tscheschel and Stoyan 2006)

� Spatial statistics

– Classical spatial statistics (Illian, Penttinen, Stoyan, Stoyan 2008)
– Wavelet-based representations (Mallat 2001)⇐

� Testing results

– Visual,
– Spectrum,
– Topology analysis (persistent homology) ⇐
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� MODELS

– Maximum entropy models



Maximum entropy models
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� Based on a set of statistics to be imposed:

– on average ⇒ macro–canonical model.
– path-wise ⇒ micro-canonical model,

� Intuitively: model is “as random as possible” under constraints based on the
given statistics.



“Randomness” defined with respect to Poisson point process
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� Let L1,L2 be two probability distributions on M (of point processes), such
that L1 ≪ L2. The Kullback-Leibler divergence (or KL divergence) of L1

w.r.t. L2 is well defined by

KL(L1||L2) :=

∫

M

log(
dL1

dL2
)dL1.

� If L0 is the Poisson distribution on M and L ≪ L0 then

H(L) := −KL(L||L0)

is called the entropy of L (with respect to Poisson ditribution L0).



Macro-canonical model
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� Denote (basically unknown) point process Ξ ∼ L.
� Given (a vector of) statistics K of Ξ.
� Averaged constraints

E(K(Ξ)) = a, or some vector values a. (AC)

� Model:

argmax
L̂

H(L̂)

given constraints (AC)

� Under some technical assumptions the solution of the macro-canonical model
is given by the Gibbs point process.

� Computationally expensive: calculating solution for large dimension of K and
sampling from it.



Micro-canonical model
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� A given realization (of a point process) Ξ.
� Given (a vector of) statistics K of Ξ.
� Define the “energy” of a realization (of point measure) µ

EK(Ξ)(µ) :=
1

2
|K(µ) −K(Ξ)|2.

� Path-wise constraints

Ωǫ := {µ ∈ M : EK(Ξ)(µ) ≤ ǫ} for some ǫ > 0.

� Model:

argmax
L̂

H(L̂)

given L̂(Ωǫ) = 1

� The solution of the micro-canonical model is given by truncation of Poisson L0

to Ωǫ.
� Sampling computationally expensive (acceptance-rejection method!?).
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� MODELS

– Maximum entropy models
– Particle gradient descent model



Particle gradient descent on point measures
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� As for the micro-cannonical model: a given realization (of a point process) Ξ,
given (a vector of) statistics K of Ξ, the “energy” of (an arbitrary) realization
µ: EK(Ξ)(µ) := 1

2
|K(µ) −K(Ξ)|2.

� Gradient descentin in the space of point measures 1

– Initialization: Generate initial homogeneous Poisson configuration of points
Φ0 (eventually conditioned on N points).

– Gradient descent: Transport points of Φ0 by iteratively minimizing the
energy EK(Ξ)(Φk), k ≥ 0:
For Φk :=

∑

i δxk
i

we take Φk+1 :=
∑

i δxk+1

i

with

xk+1
i := xk

i − γ
∂E(Φk)

∂xk
i

,

where γ > 0 is some fixed gradient step.

– Stop at some (fixed) step k = n.

1Molchanov and Zuyev (2002)



Before the remarks on the gradient descent model
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Disclaimer:
Attendees of this conference with some mathematical sensitivity may feel

offended by the remaining part of this talk.
The presenter is sorry for that.



A digression...
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Was Babylonian mathematics as sophisticated as Greek mathematics?

History of Science and Mathematics on hsm.stackexchange.com :

“Greeks pay much more attention to the demonstrative side of mathematics.

Computational mathematics was far more developed by Babylonians than by

Greeks.”

—Conifold

ChatGPT:

“Babylonian mathematics was highly advanced in practical arithmetic and algebra,

while Greek mathematics was more sophisticated in developing abstract theory and

formal proofs.”

—

https://hsm.stackexchange.com/questions/6932/was-babylonian-mathematics-as-sophisticated-as-greek-mathematics


Back from Greece to Babylon?
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More in the talk “The Bridge from Mathematical to Digital, and Back” by David Donoho, Princeton

University, on Mallat’s 60th birthday conference, HIÉS, 2023.

https://www.youtube.com/watch?v=gyYwRSS9UtM&list=PLx5f8IelFRgHVpqgpKKYx4f6YuKX1XdgY&index=24
https://mallat60.github.io


I won’t monkeying to that extent
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More in “Monkeying with Bayes’ theorem”, John D. Cook, 2012.

... and of the digression.

https://www.johndcook.com/blog/2012/03/09/monkeying-with-bayes-theorem/


Remarks on the gradient descent model
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� The (pathwise) gradient descent Φ0  Φn defines a transport of the Poisson
distribtuions L0 := LΦ0

 LΦn =: Ln to some point process disctribution
Ln.

� It looks like a substitute for Langevin dynamics... (?)

� The max-entropy postulate is supposed to be achieved by the Poisson
initialization L0. However, no theoretical guarantee.

� For the approximation Ln ≃ L(Ξ) we have rigid motions invarianace:

Theorem. If K and L0 are invariant w.r.t. some set of rigid motions
(translations, rotations, symmetries) on the torus, then Ln has the same
property.
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� MODELS

– Maximum entropy models
– Particle gradient descent model
– Random search



Random search (Tscheschel and Stoyan 2006)
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� As for the micro-cannonical model: a given realization (of a point process) Ξ,
given (a vector of) statistics K of Ξ, the “energy” of (an arbitrary) realization
µ: EK(Ξ)(µ) := 1

2
|K(µ) −K(Ξ)|2.

� Random serach on point measures

– Initialization: Take arbitrary configuration of points Φ0.
– Radnom acceptence-rejection procedure to transport points of Φ0 to

minimizing the energy EK(Ξ)(Φk), k ≥ 0: For Φk :=
∑

i δxk
i

choose a
point uniformly at random xj,k ∈ Φk, choose a now location at uniformly
at random y ∈ W in the window and move xj,k to y provided the energy
is decrease:

Φk+1 :=

{

Φk − δxj,k
+ δy if EK(Ξ)(Φk+1) < EK(Ξ)(Φk)

Φk otherwise.

� It looks like a substitute for Glauber dynamics ... (?)
� Move the point one at a time, possibly causing many rejected moves.
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� SPATIAL STATISTICS

– Good choice of statistics



Good choice of statistics
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One usually aims at finding the (vector of) statistics K satisfying the following
properties:

� Concentration property: K(Ξ) ≃ E[K(Ξ)] with high probability ⇒ not to
“memorize” a realization of Ξ.

� Sufficiency property: E(K(Ξ)) rich enough, strong (distributional)
discriminate power ⇒ “summarize” the unknown distribution.

Assuming ergodicity of Ξ, a natural choice consists in spatial averaging:

Ki(µ) =
1

|W |

∫

W
fi(µ− x) dx µ ∈ M,

for a sufficiently rich class of functions f , with support not to large w.r.t. the
observation window W so, by ergodicity, Ki(µ) ≃ E[K(Ξ)].
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� SPATIAL STATISTICS (DESCRIPTORS)

– Good choice of statistics
– Classical summary characteristic



Classical spatial statistics
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� mean (intensity) E[Ξ(B)]/|B|,

� correlation functions ρ(x, y),

� Ripley’s K-function K(r),

� k-nearest neighbour distance d.f. Dk(r); (Tscheschel and Stoyan 2006),

� ...,

� void probabilities P(Ξ(B) = 0); full distribution characterization,

� Laplace transform E[exp(−
∫

fdΞ)]; full distribution characterization.
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� SPATIAL STATISTICS

– Good choice of statistics
– Classical summary characteristic
– Wavelet-based representations



Wavelet

28 / 54

Following Bruna, Mallat, Bacry, Muzy (2015),
let ψ be a continuous, bounded, appox. localized in space and frequency, complex

valued function on R
d of zero average

∫

Rd ψ(x) dx = 0.
Usually ψ is normalized so that

∫

Rd |ψ(x)| dx = 1.

We call ψ (d-dimensional) mother wavelet.

In applications d = 1 or 2. In this talk d = 2.



Example: 2D Morlet wavelet
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Morlet wavelet on the plane

ψ(x) = exp(i ω ·x) exp(−|x|2/2),

where i is the imaginary unit and ω ·x is the scalar product of some nonzero
vector parameter ω ∈ R

2, called spatial frequency, with x ∈ R
2.
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Real and Imaginary part of the Morlet wavelet with ω = (5.5, 0).



Scaling and rotating the mother wavelet
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Consider a discrete family of re-scaled and rotated wavelets

ψ(j,θ) = ψ(j,θ)(x) := 2−jdψ(2−jr−θx),

with the scale parameter j ∈ Z = { . . . ,−1, 0, 1, . . . } and the rotation
parameter θ ∈ [0, 2π); (rθx denotes the rotation of x ∈ R

2 by the angle θ with
respect to the origin).

ψ 7−→ ψ(j,θ)



Wavelet transform of the signal
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Wavelet transform of a (random) realization of µ at scale 2j and angle θ, is a
(random) filed on R

d defined as a convolution of µ with the wavelet ψ(j,θ):

(µ ⋆ ψ(j,θ))(x) :=

∫

Rd

ψ(j,θ)(x− y)µ(dy) .

Observe: The zero average property of the mother wavelet
∫

Rd ψ(x) dx = 0
implies that the wavelet transform µ ⋆ ψ(j,θ)(x) at the scale j has larger absolute
values for x where the µ is has more variability at this given scale. It (almost)
vanishes where µ is (almost) uniform at this scale.



Wavelet transforms of a point pattern
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signal

signal wavelet transforms at different scales



Scattering moments: introducing non-linearity and averaging
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� Define the scattering fields as the modulus of the (complex valued) wavelet
transforms for j ∈ Z, θ ∈ [0, 2π)

Sj,θµ(x) := |µ ⋆ ψ(j,θ)(x)|, x ∈ R
d.

� Define (empirical) scattering moments as the averages of the scattering fileds
over x in a given observation window W

Ŝµ(j, θ) :=
1

|W |

∫

W
Sj,θµ(x) dx.

� In practice, the scale parameter is restricted to a finite window
j ∈ [jmin, jmax] such that the support of ψ(jmin,θ) “separates points” and
this of ψ(jmax,θ) covers the whole window. Some discrete set of angles
θ1, . . . , θmax ∈ [0, 2π) is considered.



Phase acceleration — refinement of non-linearity
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for all z ∈ C, k ∈ Z

[z]k := |z|eikϕ(z), where ϕ(z) is the complex argument of z.

phase acceleration allowing for non-null correlation the scattering transforms

j, θ, j′, θ′ :



Covariance of wavelet phase harmonics
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Covariance between wavelet transforms at different scales and orientations:
For λ := (j, θ), µλ,k :=

∫

W [µ ⋆ ψλ]
k(x) dx.

Similarly µλ′,k′ λ′ := (j′, θ′). Wavelet phase harmonics

Cλ,λ′(µ) :=

∫

W

(

[µ ⋆ ψλ]
k(x) − µλ,k

) (

[µ ⋆ ψλ′]k
′

(x) − µλ′,k′

)∗

dx.
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� TESTING RESULTS

– Visual evaluation
– Power spectrum evaluation
– Comparison to random search (RS) with nearest neigbour distance (NND)

by (Tscheschel and Stoyan 2006).
– Topological data analysis (Euler-Poincare characteristic, persistence

diagrams)



Main parameters
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� Number of points in the given image: from 1900 up to 13000 points.

� Multi-scale statistics K (descriptors) — wavelet phase harmonics based on
bump steerable wavelets (Mallat et al. 2020) dimension of K):

– Scales 0 ≤ j < J = J(N); where
N = size of observation window/size of pixel;
We take N = 128 and N = 256.
J = log2(N) − 2 — “memorizing image”,
J = log2(N) − 3 — good “learning distribution”.

– Total number of statistics; |K|:
O(number of angles2 × number of scales2) ≃ 3 000− 5 000. (We take
number of angles 8).

� Number of iterations (L-BFGS optimization 2) from 400 to 500.

2Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm; Liu and Nocedal (1989).



“Memorizing” samples modulo random translation
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Voronoi Small circles Big circles
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Statistics K based on wavelets of all scales, up to the size of the window.



... removing descriptors in K with too large scales
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Voronoi Small circles Big circles
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3Discrete Fourier transform (estimator of Bartlett’s spectrum) — circularly averaged modulus
for the frequencies of radius k.



Originals and samples from model for turbulence processes
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Hard-core Poisson Cluster
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Turbulence models — spectrum comparison
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Hard-core Poisson Cluster
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Random search (RS) vs Gradient descent (GD) model
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Time computing comparison

Energy error Random search Gradient descent

e = 9, 00.10−4 19870 [10 per point] (1h04m) 52 (0m35s)

e = 4, 76.10−4 29805 [15 per point] (1h36m) 69 (0m45s)

Speed comparison between random search and gradient descent, in number of
iterations (computation time in parenthesis) for the synthesis of Poisson Voronoi
patterns. The time per iteration in the gradient descent method is larger, due to
the possible several energy (and gradient) evaluations for the line search. However,
the total amount of time is much lower.



Visual comparison to (Tscheschel & Stoyan 2006)
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Original RS+NND (T&S) GD+WPH (us)
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Contact distribution and Euler-Poincaré; T&S vs our model
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SCDF 4 Euler-Poincaré 5
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4Comparison using Spherical contact distribution function
5Number of connected components minus the number of holes in Vietoris-Rips of radius r



Persistent homology (in topology data analysis, TDA)
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� Visual evaluation can be more discriminateting, but is subjective. We need a
tool to capture the geometric structures ⇒ persistence diagrams (Boissonnat,
Chazal, Yvinec M 2018).

– For all radius r > 0 on construct the Gilbert graph connecting points of µ
closer to each other than r.

– “Fill-in” the triangles (triplets of points joined by edges) ⇒ 2-skeleton of
the Vietoris-Rips (VR) complex on µ.

– Observe holes formed when radius r grows from r = 0: each hole has a
birth radius r > 0) and a (larger) death radius (when completely filled-in
by the triangles).

� “Our” persistence diagram of µ is the collection of pairs of radii: (birth,death)
of holes ⇒ “diagram points” in positive orthant on R

2.
� For two patterns µ1, µ2 we calculate their Wasserstein distances between their

corresponding persistent diagrams;TDAstats and/or TDA soft.
� For many patterns µi, represent every persistent diagram as a “dot” on the

plane (using standard Multi Dimensional Scaling).



Generative model vs original distribution via TDA
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Cox Voronoi Cox Big circles Turbulence hardcore

For each model there are 10 “dots” representing (via TDA analysis) i.i.d.
realizations of the original distribution and 10 “dots” representing i.i.d. realizations
from the generative model estimated on one of the original realizations (marked by
the black dot).



Generative model vs original distribution via TDA
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Cox — three distributions Turbulence — three distributions



TDA; T&S vs our model
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Cox Voronoi Turbulence Poisson

dorig/RS+NND = 1.52 dorig/RS+NND = 0.62
dorig/GD+WPH = 0.75 dorig/GD+WPH = 0.61

Averaged distance between the Original models and Generated models
(Wasserstein distance in the persistence diagrams).



Conclusions
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� Training a generative model for ergodic point processes.

– Unique realization, large enough in terms of points, provides an
approximation of the unknown distribution.

– Captured by the values of the ergodic estimators evaluated at several scales.
– Sampling new realizations by pushing Poisson configuration towards a

target configuration of points via a gradient descent involving the values of
the estimators. (Mimicking Langevin dynamics?)

� Model similar to convolutional neural networks (CNN) with only a few layers
and convolutions involving well-understood wavelet methods.

� Gain in the simplicity and interpretation of the CNNs.

� Special feature of our generative model: learning in continuous space (vector
graphics) vs classical discrete spaces (raster graphics).



For more details, see:
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� Brochard, A., BB, Mallat, S. and Zhang, S. (2022).
Particle gradient descent model for point process generation. Statistics and
Computing; https://arxiv.org/abs/2010.14928

� Brochard, A., S. Zhang and S. Mallat. (2022) Generalized Rectifier Wavelet
Covariance Models For Texture Synthesis. ICLR;
https://arxiv.org/abs/2203.07902

� Brochard, A. Wavelet-based representations of point processes for modelling and
statistical learning PhD thesis, (2022)
https://tel.archives-ouvertes.fr/tel-03666508

� llian, J., Penttinen, A., Stoyan, H., Stoyan, D. (2008) Statistical analysis and
modelling of spatial point patterns John Wiley & Sons

� Mallat, S. (2001) A Wavelet Tour of Signal Processing: The Sparse Way, Academic
Press

� Mallat, S., Zhang, S., Rochette, G. (2020) Phase harmonic correlations and
convolutional neural networks. Information and Inference: A Journal of the IMA

� Molchanov, I., Zuyev, S. (2002) Steepest descent algorithms in a space of measures.
Statistics and Computing

� Tscheschel, A., Stoyan, D. (2006) Statistical reconstruction of random point patterns.
Computational statistics & data analysis

Thank you!

https://arxiv.org/abs/2010.14928
https://arxiv.org/abs/2203.07902
 https://tel.archives-ouvertes.fr/tel-03666508
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Additional result (raster graphics)
From: Brochard, A., S. Zhang and S. Mallat. (2022) Generalized Rectifier Wavelet

Covariance Models For Texture Synthesis. ICLR



Generating textures (raster graphics)
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