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INTRODUCTION



Samples from a point process. Can you recognize the model?

3 / 88

Sure, Cox-Voronoi and Cox-Boolean.
Recall: Cox = doubly stochastic Poisson process.



And here?
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Well... ? Left: Matern cluster process driven by some turbulent field (driven by 2d
Navier-Stokes equations). Right: Matern II hard core model applied to a Cox
driven by the same turbulent field.



Some more patterns
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from astronomy, physics, ...
These patterns:

� Exhibit multi-scale properties (e.g. small repulsion, large cluster)
� We want model them with point process with a (very) large number of points

(partcles), say ∼ 10.000, in the window.
� Typically, we have only one original pattern (or, say, very few ones).
� ⇒ Ergodic learning of point processes?



Ergodic learning of point processes
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� Recall: Almost surely, any infinite realization of an ergodic point process alows
one to fully characterize its distribution and thus (in principle) to sample from
this distribution new realizations. ⇒ Spatial averaging!

� But in practice, we have only a finite learning window. Can we get
approximations of the unknown distribution?

Original image Synthesis 1 Synthesis 2
samples from “ergodic learning model”



So how it works?
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1. Choose statistics (descriptors, moments) that will “summarize” the
distribution and not fully “memorize” given patterns.

2. Specify a model deriving from these statistics. Typically a type of “maximum
entropy model”.

3. Find a way of generating samples from this model. Not always evident!

This is (ergodic) learning of a generative model.



Validation of these models?
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� These models involve non-parametric estimation of the entire distribution of
the point process and lack mathematical limiting results, making it difficult to
perform a confidence analysis.

� The validation of these generative models often relies on visual perception,
comparisons of (second) order statistics, or methods from topological data
analysis.

� To achieve stronger, more ”provable” results, it is necessary to:

– focus on learning specific features of the given realization,
– impose mixing conditions, which are stronger than ergodicity.

� For example, consider learning the following feature of the realization...



Hyperuniformity, a striking feature of nature!
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(Jiao et al. 2014)

Avian photoreceptors
(Huang et al. 2021)

Swimming algae

...

Termite mounds

Patterns more “regular” than complete independence (Poisson model)



Course Plan

10 / 88

� Lesson 1: Crash Course on Point Processes

– Poisson point process,
– Stationarity and Palm probabilities,
– Ergodicity for point processes

Based on Chapters 7, 10, and 11 of Lecture Notes on Random Geometric
Models by BB; see hal:cel-01654766.

� Lesson 2: Ergodic Learning of Point Processes, based on Brochard, A., BB,
Mallat, S., and Zhang, S. (2022). Particle Gradient Descent Model for Point
Process Generation. Statistics and Computing ; arXiv:2010.14928.

� Lesson 3: Estimating Hyperuniformity, based on Mastrilli, G., BB, Lavancier,
F. (2024). Estimating the Hyperuniformity Exponent of Point Processes.
arXiv:2407.16797.

https://inria.hal.science/cel-01654766
https://arxiv.org/abs/2010.14928
https://arxiv.org/pdf/2407.16797
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POISSON POINT PROCESS



Point process — informally

12 / 88

more regular pattern of
repelling points

Poisson point process;
independent points

more clustering pattern of
attracting points

Point process represents locations of a countable family of particles in some space.



Framework
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� Space of points E:

– A topological space LCSCH (locally compact, second countable, Hausdorff).
– In particular, E is Polish space, i.e., separable (there exits a countable,

dense subset) and it admits a complete metric. Metric is not unique, in
general, we will not use it.

– E is σ-compact (i.e., it can be covered by countably many compact sets).
– We consider Borel σ-algebra B on E (generated by the open sets of the

topology).
– A set B ∈ B is called (topologically) bounded if it is relatively compact

(its closure is compact).
– Denote by Bc all bounded Borel subsets of E.

� Standard example of E: d-dimensional Euclidean space R
d, with 1 ≤ d < ∞.
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� Space of configurations of points M:

– A point x ∈ E is identified with Dirac measure δx; δx(B) = 1 if x ∈ B
and 0 otherwise.

– At most countable subset (configuration) of points {x1, . . . , xJ} ⊂ E is
identified with the counting measure on (E,B)

µ =

J
∑

i=1

δxi
J ∈ {1, . . . ,∞} , (1)

– We consider locally finite configuration of points; µ(B) < ∞ for all
B ∈ Bc (bounded Borel sets).

– M set of all locally finite counting measures on (E,B); expressed as in (1),
where the (xi)i=1,...,J is a sequence of points of E without accumulation
points.

– Sometimes, less formally, we write x ∈ µ to say µ({x}) ≥ 1.
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– A counting measure µ as in (1) is called simple if its atoms (points) xi are
distinct.

– A non-simple measure µ (corresponding to a configuration with multiple
points) can be represented as

µ =
J ′

∑

i=1

kiδx′
i

(*)

with ki ∈ {1, 2, . . .}, where atoms x′
i are distinct.
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� Measurable configurations in M:

– We define σ-field M on M generated by the mappings
µ 7→ µ (B) , B ∈ B (equivalently for all B ∈ Bc), i.e.; the smallest
σ-algebra making these mappings measurable.

– Moreover, we can choose the measurable enumeration of the atoms x′
k

in (*) such a way that the mappings µ 7→ x′
i and µ 7→ ki are measurable.

– Canonical measurable enumeration of points on R

. . . < x−2 < x−1 < x0 ≤ 0 < x1 < x2 < . . . .
– For µ as in (1) and a real function f the mapping

µ 7→
∫

fdµ :=
∫

E
f(x)µ(dx) =

∑J
i=1 f(xi)

is measurable (provided the integrals are defined).



Point process
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� A point process Φ is a measurable mapping form some probability space
(Ω,A,P) to the space of configurations of points (M,M).

� The distribution of Φ, is the probability measure PΦ on (M,M) being the
image of P by Φ, i.e.; PΦ(Γ) = P{Φ ∈ Γ }, for Γ ∈ M.

� The distribution of a point process is entirely characterized by the family of
finite dimensional distributions

(Φ(B1), . . . ,Φ(Bk)),

where k ≥ 1 and B1, . . . , Bk run over Bc. (This follows from Kolmogorov’s
extension theorem as Φ can be seen as a stochastic process
Φ = {Φ(B)}B∈Bc with the state space {0, 1, . . .} ∋ Φ(B) and where the
index B runs over bounded Borel subsets Bc of E.)

� Point process Φ is simple if P{ ∀x ∈ E,Φ({x}) ≤ 1 } = 1 (measurability! -
Exercise).

� We say Φ has a fixed atom at x0 if P{Φ({x0}) > 0 } > 0.



A few characteristics of point process
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� Mean measure M = MΦ is a measure defined on (E,B) as
M(B) := E [Φ(B)]. Note M(B) is well defined for all B ∈ B but can be
infinite even for B ∈ Bc.

� Void probability ν = νΦ is a set function defined on (E,B) as
ν(B) := P{Φ(B) = 0 }.

� Fact 1: [Rényi’s theorem] The probability distribution of a simple point
process Φ is characterized by the family of its void probabilities νΦ(B) for all
B ∈ Bc.

� Remark 2: Comparison of void probabilities and (higher order) moment
measures allows one to compare clustering properties of point processes.
Smaller void probabilities and smaller moment measures indicate more regular
point processes, cf figures on page 12.
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� Proof: (of Rényi’s theorem; Th. 1)

– Express probabilities of the form
πk(B1, . . . , Bk;B) := P{Φ(B1) > 0, . . . ,Φ(Bk) > 0,Φ(B) = 0 }
for all k ≥ 1 and Bi ∈ Bc.

– Finite dimensional distributions P{Φ(A1) = n1, . . . ,Φ(Al) = nl } are
limits of some expressions involving πk(·; ·) with k → ∞ and the sets
Bi’s dissecting As’s more and more precisely in a nested way.

– Since a realization of the point process is a locally finite measure at some
level of precision in each set Bi there is at most one point of the point
process.
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� Laplace functional (transform) L = LΦ is a functional on the space of

non-negative, measurable functions f : E 7→ R
+ as L(f) := E

[

e−
∫
fdΦ

]

.

Its domain can be extended to functions f for which the expectation is well
defined.

� Fact 3: The Laplace functional completely characterizes the distribution of
the point process.

� Proof: (Sketch)

– For f(x) =
∑k

i=1 ti1(x ∈ Bi), LΦ(f) = E
[

e−
∑

i tiΦ(Bi)
]

, seen as a
function of the vector (t1, . . . , tk), is the joint Laplace transform of the
random vector (Φ(B1), . . . ,Φ(Bk)), whose distribution is characterized
by this transform.

– When B1, . . . , Bk run over all bounded subsets of the space, one obtains
a characterization of all finite-dimensional distributions of the point process.



Campbell’s averaging formula
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� Basic formula allowing one to evaluate expected values of (random) integrals
of deterministic functions with respect to point process.

� Theorem 4. [Campbell’s averaging formula] Let Φ be a point process on
E with intensity measure M . Then for any measurable function f : E → R

which is either non-negative or integrable with respect to M , the integral
∫

E
fdΦ is almost surely well defined and

E

[
∫

E

f(x) Φ(dx)

]

=

∫

E

f(x)M(dx) . (2)

� Later, Palm theory will offer us an extension of (2) allowing one to consider
expectations of the integrals of stochastic processes, i.e.; expressions
E
[∫

f(x,Φ)Φ(dx)
]

.
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� Proof: (of Campbell’s averaging formula; Th. 4)

– Consider first a simple function f =
∑k

j=1 aj1Bj
, where aj ≥ 0 and

Bj ∈ B.
– Then

E

[
∫

fdΦ

]

= E





k
∑

j=1

ajΦ(Bj)





=
k
∑

j=1

ajM(Bj) =

∫

fdM

– For a general non-negative function f consider an increasing sequence of
simple functions converging to f and use the monotone convergence
theorem. For f integrable with respect to M consider f+ := f1(f ≥ 0)
and f− := −f1(f < 0).



Poisson point process
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� Definition: Let Λ be a deterministic, locally finite, measure on (E,B). A
point process Φ on E is a Poisson point process of intensity (measure) Λ if the
following two conditions are satisfied:

1. For any B ∈ Bc, Φ(B) is a Poisson random variable of intensity Λ(B),
i.e.; P{Φ(B) = n } = e−Λ(B)(Λ(B))n/n!.

2. For every k = 1, 2, . . . and all sets Bi ∈ Bc, i = 1, . . . , k, pairwise
disjoint, random variables (Φ(B1), . . . ,Φ(Bk)) are independent.

� Clearly the above two conditions characterize finite dimensional distributions of
a point process, provided it exists(!). We shall construct Φ later.



Simple characteristics of Poisson point process
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� Mean measure is equal to its intensity measure M(B) = E [Φ(B)] = Λ(B).

� Void probability ν(B) = P{Φ(B) = 0 } = e−Λ(B).

� Fact 5: Laplace functional

L(f) = E
[

e−
∫
E
fdΦ

]

= e−
∫
E
(1−e−f(x)) Λ(dx) . (3)

� Proof:

– Consider first a simple function f =
∑k

j=1 aj1Bj
, where aj ≥ 0 and

Bj ∈ Bc, which, without loss of generality, can be assumed pairwise
disjoint.

– Then ...
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– L(f) = E
[

e−
∫
E
fdΦ

]

= E





k
∏

j=1

e−ajΦ(Bj)





by the independence of Φ(Bj), j = 1, . . . , k =
k
∏

j=1

E
[

e−ajΦ(Bj)
]

by Poisson distribution of Φ(Bj) =

k
∏

j=1

e−Λ(Bj)(1−e
−aj )

= e−
∑k

j=1 Λ(Bj)(1−e
−aj )

e−
∫
(1−e−f )dΛ .

– For a general function f consider an increasing sequence of simple
functions converging to f and use the monotone convergence theorem.



Conditional distribution of Poisson points given the number
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� Fact 6: Consider B1, . . . , Bk ∈ Bc pariwise disjoint and denote
W :=

∑n
i=1 Bk. For all n, n1, . . . , nk ∈ {0, 1, . . .} with

∑

i ni = n,

P{Φ(B1) = n1, . . . ,Φ(Bk) = nk | Φ(W ) = n } (4)

=
n!

n1! . . . nk!

1

Λ(W )n

k
∏

i=1

Λ(Bi)
ni .

� Proof: (Exercise)
� Remark 7:

– We recognize in the above conditional distribution is a multinomial
distribution.

– We can conclude form Fact 6 that given there are n points of the Poisson
process in the window W , these points are i.i.d. in W according to the law
Λ(·)
Λ(W )

.



Construction of Poisson point process
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� Given a Radon measure Λ on E and bounded W ∈ Bc. Consider the following
independent random objects {N,X1, X2, . . .}, where

– N is a Poisson random variable with parameter Λ(W ),
– X1, X2, . . . are identically distributed random vectors (points) taking

values in W with

P{X1 ∈ · } = Λ(·)/Λ(W ). (5)

� Consider point process Φ =
∑N

k=1 δXi
.

� Using Laplace functional one can show that Φ is Poisson process of intensity
Λ|W (·) = Λ(· ∩ W ), i.e.; Λ truncated to W .

� The same idea can be used to construct Poisson process on the whole space E

provided Λ(E) < ∞.
� The extension to the case of infinite total intensity can be done by considering

a countable partition of E into bounded windows and an independent
generation of the Poisson processes in each window (Exercise using
superposition property of Poisson process; see later).



Simple Poisson point process

28 / 88

� For a general point processes, simple property (not have multiple points) and
not having fixed atoms are two different properties, except in case of a Poisson
process.

� Fact 8: Let Φ be a Poisson process on E with intensity measure Λ.

1. Φ has a fixed atom at x0 ∈ E iff Λ has an atom at x0 (i.e.,
Λ({x0}) > 0).

2. Φ is simple iff Λ is non-atomic, i.e.; Λ({x}) = 0 for all x ∈ E.

� Proof:

– The first statement is straightforward from the definition.
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– For the second statement, use conditional distribution of Poisson points in
a bounded subset B ⊂ Bc (see Remark 7)

P{Φ has multiple points in B }

=
∞
∑

n=2

P{Φ(B) = n }P{n points of Φ in B are not all distinct | Φ(B) = n }

=
∞
∑

n=2

P{Φ(B) = n }
1

(Λ(B))n

∫

Bn

1(∃i6=jxi = xj) Λ(dx1) . . .Λ(dxn) .
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– Now
∫

Bn

1(∃i6=jxi = xj) Λ(dx1) . . .Λ(dxn)

≤
n
∑

i<j=1

∫

Bn

1(xi = xj) Λ(dx1) . . .Λ(dxn)

=
n(n − 1)

2
(Λ(B))n−2

∫

B

Λ({x})Λ(dx)

Λ({x}) = 0 since Λ is non-atomic = 0

We conclude the proof that P{Φ is not simple } = 0 by considering an
increasing sequence of bounded sets B ր E.



Homogeneous Poisson process on R
d
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� Definition: Poisson process of intensity Λ(dx) = λdx on R
d, where λ

(0 < λ < ∞) is a constant, is called homogeneous Poisson process of
intensity λ.

� Homogeneous Poisson process is simple (by Fact 8).



Markov property of Poisson process
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� Let Φ is a Poisson point process and consider a real measurable function f on
(M,M). For any B ∈ Bc

E [f(Φ)] = E
[

f
(

Φ|B + Φ′|E\B

)]

, (6)

where Φ′ is an independent copy of Φ and µ|B denote the truncation of the
measure µ|B(·) = µ(· ∩ B).

� (6) follows directly from the definition of Poisson process.

� The strong Markov property of Poisson process says that the above statement
hold when B is not necessarily constant but a random stopping set with
respect to Φ.



Random stopping set
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� Consider a general point process Φ on E.

� We call S ∈ Bc a random compact set (with respect to Φ) when S = S(Φ)
is a compact set that is a function of the realization of Φ.

� We give an example in Example on the next slide.

� In simple words, S(Φ) is a stopping set if one can say whether the event
{S(Φ) ⊂ K } holds or not knowing only the points of Φ in K.

� Formally, a random compact set S(Φ) is called a stopping set (with respect to
Φ) if the event {S(Φ) ⊂ K } is Φ|K-measurable, i.e.; belongs to the σ-field
generated by Φ|K(B) for all B ∈ Bc.
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� Example: [k th smallest random ball]

– For a point process Φ on R
d, consider the random (closed) ball B0(R

∗
k)

centered at the origin, with the random radius equal to the k th smallest
norm of xi ∈ Φ; i.e.,

R∗
k = R∗

k(Φ) = min{r ≥ 0 : Φ(B0(r)) = k}.

– Think of start ‘growing’ a ball B0(r) centered at the origin, increasing its
radius r from 0 until the moment when either (1) it accumulates k or more
points or (2) it hits the complement Kc of K.

– If (1) happens, then B0(R
∗
k) ⊂ K. If (2) happens, then B0(R

∗
k) 6⊂ K.

– In either case, we have not used any information about points of Φ in Kc;
so B0(R

∗
k) = B0(R

∗
k(Φ)) is a stopping set with respect to Φ.



Strong Markov property of Poisson point process
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� The following result extends (6) to the case when B is a stopping set.

� Fact 9: [Strong Markov property of Poisson point process] Let Φ be a
Poisson point process and S = S(Φ) a random stopping set relative to Φ
(one can know if {S(Φ) ⊂ K } is true or not knowing only the points of Φ
in K). Then the following holds

E [f(Φ)] = E
[

f
(

Φ|S(Φ) + Φ′|E\S(Φ)

)]

. (7)

� Proof: The Poisson process is a Markov field indexed by B ∈ Bc. The result
follows by a general result for Markov fields (see e.g. Rozanov 1982).



Exponential construction of Poisson process on R
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� Consider homogeneous Poisson point process Φ of intensity λ on the real line
R (0 < λ < ∞) and enumerate its points Φ =

∑

k δXk
in the canonical way

(see page 16).
� In particular, X1 = sup{x > 0 : Φ((0, x)) = 0} is the first atom of Φ in

the open positive half-line (0,∞).
� {Xk} can be constructed as a renewal process with exponential holding times,

i.e., Xk =
∑k

i=1 Fi for k ≥ 1 and Xk = −
∑0

i=k Fi for k ≤ 0, where
{Fk : k = . . . ,−1, 0, 1 . . .} is a sequence of independent, identically
distributed exponential random variables.

� Indeed,

P{F1 > t } = P{X1 > t } = P{Φ((0, t]) = 0 } = e−λt

so X1 = F1 is exponential random variable with parameter λ.



37 / 88

� By the strong Markov property for k ≥ 2,

P{Fk > t | F1, . . . , Fk−1 } = P{Xk − Xk−1 > t | X1, . . . ,Xk−1 }

By (7) with S(Φ) = [0, Xk−1] = P{Φ((Xk−1, Xk−1 + t]) = 0 | Xk−1 }

= e−λt

and similarly for k ≤ 0, with {Fk}k≤0 and {Fk}k≥1 being independent.
� The above exponential construction is specific for the dimension 1 and cannot

be directly extended to a higher dimension. However, the Markov structure
related to the complete independence property, which appeared in this
example, can be observed in a general case.



Ordering of Poisson points according to their distance
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� Let Φ be a Poisson point process of intensity Λ on E. Consider some metric
on E and let {R∗

k = R∗
k(Φ)}k≥1 be the sequence of the distances of the

points of Φ from a fixed selected x0 ∈ E arranged in increasing order (i.e. R∗
k

is the distance of the k-th nearest point of Φ to x0). We tacitly assume that
these points are defined uniquely 1. One can conclude from the strong Markov
property of the Poisson point process that this sequence is a Markov chain
with transition probability

P
{

R∗
k > t | R∗

k−1 = s
}

=

{

e−Λ(B0(t))−Λ(B0(s)) if t > s

1 if t ≤ s .
(8)

1This is the case e.g. when the intensity measure Λ of Φ is null on every sphere {x ∈ E :
d(x0 − x) = r} r > 0, where d is the metric on E.



Equivalent characterizations of Poisson process
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� Under mild assumptions Poisson distribution or independence
alone characterizes the Poisson process.

� Proposition 10. [Characterization by the form of the distribution]
Suppose that Φ is a simple. Then Φ is a Poisson point process iff there exists
a locally finite, non-atomic measure Λ such that for any subset B ∈ Bc,
P{Φ(B) = 0 } = e−Λ(B).

� Proof: This is a consequence of the Rényi’s theorem (cf Fact 1).

� Corollary 11. Φ is a Poisson process provided it is simple and all marginal
distributions Φ(B) for B ∈ Bc are Poisson.

� The assumption that Φ is simple cannot be relaxed since one can construct
two Poisson random variables N1 and N2, of parameters µ1, µ2, respectively,
and such that N1 + N2 is Poisson of parameter µ1 + µ2, with N1 and N2

not being independent.



Complete independence
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� One says that the point process Φ has the property of complete independence
if for any finite family of subsets B1, . . . , Bk ∈ Bc that are mutually disjoint,
the random variables Φ(B1), . . . ,Φ(Bk) are independent.

� Proposition 12. [Characterization by complete independence] Suppose
that Φ is a point process without fixed atoms. Then Φ is a Poisson point
process iff Φ is simple and has the property of complete independence.

� Proof:

– The necessity follows from Fact 8 (Poisson without fixed atoms is simple).
– For sufficiency, one shows that the measure

Λ(A) = − log(P{Φ(A) = 0 }) satisfies the assumptions of
Proposition 10 (Characterization by the form of the distribution).

� The assumption that Φ has no fixed atoms cannot be relaxed to a simple
Poisson process; it destroys Poisson distribution of Φ({x0}).



Operations preserving the Poisson law
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� Superposition: sum of point processes Φ =
∑

k Φk .

� If infinite sum, one has to ensure that Φ is a locally finite measure. A crude,
sufficient condition

∑

k E [Φk(B)] < ∞ for bouned B ∈ Bc. A refined
sufficient condition may be found by the Borel–Cantelli lemma.

� Fact 13: The superposition of independent Poisson point processes with
intensities Λk is a Poisson point process with intensity measure

∑

k Λk iff the
latter is a locally finite measure.
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� Thinning: independent removing of some points of Φ.

� Formally, consider a measurable function p : E 7→ [0, 1] and a point process
Φ on E. The thinning of Φ =

∑

k δXk
with the retention function p is a

point process given by

Φp =
∑

k

IkδXk
, (9)

where the random variables {Ik}k are independent given Φ, and
P{ Ik = 1 | Φ } = 1 − P{ Ik = 0 | Φ } = p(Xk).

� Fact 14: The thinning of the Poisson point process of intensity measure Λ
with the retention probability p yields a Poisson point process of intensity
measure pΛ with (pΛ)(B) =

∫

B
p(x) Λ(dx).

� Proof: Exercise; use Laplace functional characterization.



43 / 88

� Random Transformation of points: independent displacing each point
according to some probability kernel p.

� Formally, consider a probability kernel p(x,B) from (E,B) to some LCSCH
space (E′,B′), The transformation Φp of a point process Φ =

∑

k δXk
by a

probability kernel p(·, ·) is a point process on E
′ given by

Φp =
∑

k

δYk
, (10)

where the E
′-valued random vectors {Yk}k are independent given Φ, with

P{Yk ∈ B′ | Φ } = p(Xk, B
′). W tacitly assume that Φp is locally finite

measure.

� Fact 15: [Displacement Theorem] The transformation of the Poisson point
process of intensity measure Λ by a probability kernel p is the Poisson point
process with intensity measure Λ′(B′) =

∫

E
p(x,B)Λ(dx), B′ ⊂ E

′,
provided Λ′ is a locally finite measure.

� Proof: Exercise; use Laplace functional characterization.
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STATIONARITY



An example of conservation law
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E◦[Number of cells covering a typical user]
= Intensity of cell-centers
× E▽[Area of the typical cell]

Realization of a random network with cells ”centered” at points ”▽” and locations
at users ”◦”. If the random model is stationary, independent of stationary users,
then the mean number of cells covering a typical user is equal to the mean area of

the typical cell multiplied by the intensity of cell centers.



Stationary of point and random processes
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� Consider point processes on d-dimensional Euclidean space E = R
d, with

Borel σ-algebra B and the corresponding space of counting measures (M,M)
on (Rd,B).

� Point process Φ : (Ω,A,P) −→ (M,M) is called stationary if its
distribution PΦ on (M,M) invariant with respect to the translation by any
vector t ∈ R

d

PΦ = PStΦ for all t ∈ R
d, (11)

where t-shit StΦ is the translation of all atoms of Φ by −t.

� Stochastic process X = {X(x)}x∈R on (Ω,A,P) with values X(x) in
some measurable space (K,K) is called stationary if its distribution
P{X(x)}

x∈Rd
is invariant with respect to the translation of its argument x by

any vector t ∈ R
d

P{X(x)}
x∈Rd

= P{X(x+t)}
x∈Rd

for all t ∈ R
d. (12)



Need a framework for joint stationarity
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� A family of point processes Φi and stochastic processes Xi, i = 1, 2, . . .
defined on the same probability space is called jointly stationary if the
joint distribution of all these random objects is invariant with respect to the

respective translation by any vector t ∈ R
d.

� In order to facilitate the analysis of such jointly stationary objects (e.g. their
conservation laws) we shall introduce some stationary framework assuming a
flow (ω-shift) directly on the probability space (Ω,A,P).



Shift operator on measures and functions
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� For any t ∈ R
d, let St be the shift operator on the space of measures: for any

measure µ on (Rd,B) Stµ is a measure on (Rd,B) such that

Stµ(B) = µ(B + t),

where B + t = {x + t ∈ R
d : x ∈ B}.

� Equivalently, for atomic measure µ =
∑

i δxi
we have

Stµ =
∑

i

δxi−t . (13)



Shift operator on functions
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� We extend the shift operator to functions X(·) defined on R
d with values is

some arbitrary space, by putting

StX(x) = X(x + t) .

� The following immediate relation will be often used, for B ∈ B, t ∈ R
d

∫

B

X(x)Stµ(dx) =

∫

B+t

X(x−t)µ(dx) =

∫

B+t

S−tX(x)µ(dx) .

(14)



Flow on the probability space
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� Consider a measurable space (Ω,A) that will serve as the probability space.
We assume there exists a family of measurable mappings θt : Ω → Ω, t ∈ R

d

satisfying the following conditions:

1. For each t ∈ R
d, the mapping θt is a bijection from Ω to Ω.

2. For all t, s ∈ R
d, θt◦θs = θs+t, with◦denoting the composition of

mappings on Ω.

3. The mapping (Rd,Ω) ∋ (t, ω) 7−→ θt(ω) is B ⊗ A measurable.

� Observe that for any given t ∈ R
d, the inverse of θt is equal to

θ−1
t = θ−t.

� The family {θt}t of mappings satisfying conditions 1, 2, 3 above will be called
(measurable) flow on (Ω,A). We shall denote the space equipped with such
flow by (Ω,A, {θt}).

� More abstractly: θ is a measurable action of the group (Rd,+) on Ω.



Point processes compatible with the flow
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� We shall say that a point process Φ : (Ω,A, {θt}) → (M,M) is compatible
with the flow if for all t ∈ R

d

Φ◦θt = StΦ ,

where StΦ is the shift of the counting measure Φ (here, S is a measurable
action of the group (Rd,+) on M.

� In other words:

Φ(θt(ω))(B) = StΦ(ω)(B) = Φ(ω)(B + t)

for all ω ∈ Ω, B ∈ B.

� Example: [Canonical probability space with the flow] The space
(Ω,A, {θt}) = (M,M, {St}) is the canonical space supporting point
process Φ(µ) = µ, µ ∈ M, compatible with the flow.



Stochastic processes compatible with the flow
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� Similarly, stochastic process X = {X(x)}x∈Rd defined on (Ω,A, {θt}),
with values some measurable space, will be said compatible with the flow if for
all t ∈ R

d

X◦θt = StX ;

that is

{X(θt(ω))(x)}x∈Rd = {StX(ω)(x)}x∈Rd = {X(ω)(x + t)}x∈Rd .

Here S is a measurable action of the group (Rd,+) on the space of functions
X : Rd 7→ K.



Stochastic processes related to point processes
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� Most of our stochastic processes compatible with the flow will be fonctionals of
some point processes compatible with the flow, as in the following example.

� Example: Let Φ be a point process compatible with the flow in
(Ω,A, {θt}). Consider stochastic process

X(x) := min
y∈Φ

|y − x|

describing the distance from the argument x to the nearest point of Φ. X is
generated by random variable R∗ := X(0) = miny∈Φ |y|. Indeed,R∗◦θx = min

y∈Φ◦θx

|y|

compatibility of Φ = min
y∈SxΦ

|y|

by (13) = min
y′∈Φ

|y − x| = X(x) .



Stationary probability
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� Let (Ω,A, {θt}) be a measurable space with the flow. Let P be a probability
measure on (Ω,A) invariant with respect to all elements of the flow

Pθ−t
t = P for all t ∈ R

d; (15)

that is P{ω : θt(ω) ∈ A } = P{A } for all A ∈ A.

� We call (Ω,A, {θt},P) a stationary framework.

� The following result follows immediate from the above definition...
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� Fact 16: Let Φi and Xi, i = 1, 2, . . . be a family of point processes and
stochastic processes,respectively, defined on a stationary framework
(Ω,A, {θt},P) compatible with the flow. Then Φi and Xi are jointly
stationary

P(StΦ1,StΦ2,...,StX1,StX2,...) = P(Φ1,Φ2,...,X1,X2,...) for all t ∈ R
d .

(Exercise)

� We will call P the stationary probability on (Ω,A, {θt}) to distinguish it form
the Palm probabilities of different point processes to be defined on the same
space...

� Example: The distribution of a homogeneous Poisson process (having
intensity Λ(dx) = λdx) is invariant with respect to any shift St, t ∈ R

d.
The canonical probability space can serve as a stationary framework for it.



Intensity of stationary point process
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� From now on Φ will be a point process defined on the stationary framework
(Ω,A, {θt},P) and compatible with the flow.

� Fact 17: The mean measure M(dx) = MΦ(dx) of Φ is equal to the
Lebesgue measure multiplied by a constant

M(dx) = λdx,

with 0 ≤ λ ≤ ∞. We call the constant λ = λΦ the intensity of the point
process Φ.
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� Proof:

– M is invariant with respect to any shift St, t ∈ R
d.

Indeed, for B ∈ B

StM(B) = M(B + t)

= E [Φ(B + t)]

= E [StΦ(B)]

compatibility of Φ = E [Φ◦θt(B)]

invariance of P = E [Φ(B)]

= M(B) .

– The only measure on (Rd,B) that is invariant with respect to all shifts is a
constant-multiple of the Lebesque measure.



Palm probability w.r.t. a point process
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� Let Φ be a point process compatible with the flow on the probability space
(Ω,A, {θt}), with finite, non-null intensity 0 < λ < ∞. The Palm
probability of Φ (or related to Φ) is the unique probability measure P0 on
(Ω,A) given by

P0(A) =
1

λ|B|
E

[
∫

Rd

1(x ∈ B)1(θx ∈ A)Φ(dx)

]

A ∈ A ; (16)

with any set B ∈ B of finite, non-null Lebesgue measure |B|.

� One can verify that P0 is indeed a probability measure and its value does not
depend on the choice of the set B.

� In what follows we shall denote by E0 the expectation with respect to P0.



Campbell-Little-Mecke-Matthes
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� The following result is the variant of the Campbell-Little-Mecke result (for
general point processes).

� Theorem 18. [CLMM] Let Φ be a point process defined on the stationary
framework (Ω,A, {θt},P), compatible with the flow, and having finite,
non-null intensity 0 < λ < ∞. Denote by P0 the Palm probability of Φ. For
any non-negative measurable functions f on R

d × Ω (but not necessarily
compatible with the flow), we have

E

[
∫

Rd

f(x, θx)Φ(dx)

]

= λ

∫

Rd

E0 [f(x, ω)] dx. (17)

The result extends to all functions f for which either of the two sides of the
equality (17) is finite when f is replaced by |f |.

� Proof: Directly from the definition of P0 one easily shows the desired equality
for f(x, ω) = 1(x ∈ B,ω ∈ A) where B ∈ B, A ∈ A. The result follows
by usual measure theoretic approximation arguments.



First properties of Palm P
0: typical point X0 = 0
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� Corollary 19. Under the assumptions of Theorem 18, P0-almost surely
0 ∈ Φ;

P0{ 0 ∈ Φ } = 1.

(Exercise)

� The point 0 of Φ under P0 is called the typical point of Φ. (We shall see
arguments for this.) By the convention, we assign to the typical point the
index 0; thus X0 = 0 under P0.



Palm Probability P
0 and Palm distributions Px
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� Corollary 20. Under the assumptions of Theorem 18, let P0
Φ be the

distribution of Φ under its Palm probability P0 and Px Palm distributions of
Φ. Then

P0
Φ = PxS

−1
x for Lebesgue almost all x ∈ R

d .

(Exercise)



Slivnyak-Mecke’s characterization for homogeneous Poisson
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� Corollary 21. A stationary point process with finite intensity is a Poisson
point process iff its distribution under the Palm probability (considered in some
stationary framework e.g. the canonical one) is equal to the distribution of
Φ + δ0 under the original stationary distribution

P0
Φ = PΦ+δ0.



(Cross-) Mass transport formula (between two processes)
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� The true benefit form stationary framework is the possibility to study the
relations between dependent point processes (living on the same probability)...

� Theorem 22. [MTP for two point processes] Consider two point processes Φ
and Φ′ defined on a common stationary framework (Ω,A, {θt},P) and
compatible with the flow, having non-null and finite intensities λ, λ′,
respectively. We denote by P0 and P0′

the respective Palm probabilities with
respect to Φ and Φ′. For any (say non-negative) measurable functions g on
R
d × Ω (not necessarily compatible with the flow) we have

λE0

[
∫

Rd

g(y, ω)Φ′(dy)

]

= λ′E0′

[
∫

Rd

g(−x, θx) Φ(dx)

]

. (18)

� Note, we do not assume any particular dependence between Φ and Φ′. In
particular they might be dependent! (e.g. Φ′ ⊂ Φ or other way around, etc).
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� Proof: Let B ∈ B of unit Lebesgue measure, |B| = 1. We have

λE0

[
∫

Rd

g(y, ω)Φ′(dy)

]

= λ

∫

Rd

1(x ∈ B)E0

[
∫

Rd

g(y, ω)Φ′(dy)

]

dx

CLMM for Φ, f(x, ω) = 1(x ∈ B)
∫
Rd g(y, ω)Φ′(dy)

= E

[
∫

Rd

1(x ∈ B)

∫

Rd

g(y, θx)Φ
′◦θx(dy) Φ(dx)

]

by compatibility of Φ′ and (13) = E

[
∫

Rd

1(x ∈ B)

∫

Rd

g(y − x, θx)Φ
′(dy) Φ(dx)

]

Fubini’s theorem = E

[
∫

Rd

∫

Rd

1(x ∈ B)g(y − x, θx)Φ(dx)Φ′(dy)

]

= . . .
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. . . = E

[
∫

Rd

∫

Rd

1(x ∈ B)g(y − x, θx)Φ(dx) Φ′(dy)

]

θ−y◦θy = θ0 — indentity function

= E

[
∫

Rd

∫

Rd

1(x ∈ B)g(y − x, θx−y◦θy)

Φ◦θ−y◦θy(dx)Φ
′(dy)

]

CLMM for Φ′, f(x, ω) =
∫
Rd 1(x ∈ B)g(y − x, θx−y)Φ◦θ−y(dx)

= λ′

∫

Rd

E0′

[
∫

Rd

1(x ∈ B)g(y − x, θx−y)Φ◦θ−y(dx)

]

dy

= . . .
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. . . = λ′

∫

Rd

E0′

[
∫

Rd

1(x ∈ B)g(y − x, θx−y)Φ◦θ−y(dx)

]

dy

by compatibility of Φ and (13)

= λ′

∫

Rd

E0′

[
∫

Rd

1(x + y ∈ B)g(−x, θx)Φ(dx)

]

dy

Foubini’s theorem

= λ′E0′

[
∫

Rd

g(−x, θx)

∫

Rd

1(x + y ∈ B) dy Φ(dx)

]

∫
Rd 1(x + y ∈ B) dy = 1 since |B − y| = |B| = 1

= λ′E0′

[
∫

Rd

g(−x, θx)Φ(dx)

]

.



Equivalent form of the mass transport formula
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� Remark 23:

– Let m(x, y, ω) be a measurable function on R
d × R

d × Ω interpreted as
the amount of mass sent from x to y on the event ω.

– We assume that m is compatible with the flow in the following sense

m(x, y, ω) = m(x − t, y − t, θt); for all x, y, t ∈ R
d.

– Then

λE0

[
∫

Rd

m(0, y, ω)Φ′(dy)

]

= λ′E0′

[
∫

Rd

m(x, 0, ω)Φ(dx)

]

. (19)

– Interpretation: the proportion between the expected total masses,
SENT from the typical point of Φ to all points of Φ′ and
RECEIVED by the typical point of Φ′ from all points of Φ.
The proportion involves the respective intensities of processes.

– Proof using (18) with g(y, ω) := m(0, y, ω) and by the compatibility of
m(0,−x, θx) = m(x, 0, ω).



Unimodulartiy of Palm probability
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� Remark 24: Assume now Φ′ = Φ. Then equation (18) by λ = λ′ one
obtains

E0

[
∫

Rd

g(y, ω)Φ(dy)

]

= E0

[
∫

Rd

g(−x, θx)Φ(dx)

]

(20)

for any measurable functions g on R
d × Ω, not necessarily compatible with

the flow. Equivalently, (19) becomes

E0

[
∫

Rd

m(0, y, ω)Φ(dy)

]

= E0

[
∫

Rd

m(x, 0, ω)Φ(dx)

]

, (21)

for any measurable function on R
d × R

d × Ω compatible with the flow.

� Observe complete analogy to the mass transport formula for unimodular
graphs (cf Lesson 5 on Unimodular Graphs).



Mass transport formula between point process and Lebesgue
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� Proposition 25.

λE0

[
∫

Rd

m(0, y, ω) dy

]

= E

[
∫

Rd

m(x, 0, ω)Φ(dx)

]

, (22)

with m translation invariant.

� Proof (Exercise) using Campbell-Little-Mecke-Matthes’ formula.

� Apply to Littles’ law.
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ERGODICITY



Ergodicity bridges probability theory and real-life application
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� Law of Large Numbers (LLN), say on for random variables on R):

Applications Probability

observations
X1, . . . , Xn ∈ R

random variable X = X(ω) on
some abstract probability space

(Ω,A,P)
Ergodicity

mean: 1
n

∑n
i=1 f(Xi) −→

n→∞
E[f(X)] =

∫

Ω f(X(ω)) P(dω);
expectation

� Ergodic theory provides precise conditions for the above converge result, thus
bridging the gap between the probability theory and real-life applications. It is
particularly important in statistics.



Case of spatial data (point processes)
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�

Applications Probability

“homogeneous” pattern
Φ = {xi}i of points in some
observation window B ⊂ R

d

stationary point process Φ(ω) on
(Ω,A, {θt},P), of intensity λ

and Palm probability P0, modeling
the observations;

� Two type of empirical averaging: continuously and discrete (w.r.t. data
points), give two types of LLN’s...



Continuous LLN in a nutshell
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Averaging observations
X(x) = X(x,Φ) = f(SxΦ) of
Φ from all locations x ∈ B in the
window

Stationary expectation of the obser-
vation X(0) = X(0,Φ(ω)) =
f(Φ(ω)) of Φ from the origin

1

|B|

∫

B

X(x) dx =
1

|B|

∫

B

f(SxΦ)dx −→
BրRd

E [X(0)] = E [f(Φ)]

Observe by the invariance of P that on average

1

|B|
E

[
∫

B

f(SxΦ)dx

]

=
1

|B|

∫

B

E [f(SxΦ)] dx = E [f(Φ)] .



Discrete LNN in a nutshell
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Averaging observations
X(xi) = X(xi,Φ) = f(Sxi

Φ) of
Φ from all (discrete) points ofΦ xi ∈
Φ ∩ B in the window

Palm expectation of the observation
X(0) = X(0,Φ(ω)) = f(Φ(ω))
of Φ from the typical point at the ori-
gin

1

Φ(B)

∑

xi∈Φ∩B

X(xi) =
1

Φ(B)

∑

xi∈Φ∩B

f(Sxi
Φ) −→

BրRd
E0 [X(0)] = E0 [f(Φ)]

Observe by the CLMM theorem that on average

E





∑

Xi∈Φ∩B

f(SXi
Φ)



 = λ|B|E0 [f(Φ)] and E [Φ(B)] = λ|B|.



Continuum ergodicity
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� We will using general ergodic theory approach. They perfectly fit to our
stationary framework for point processes

(

Ω,A, {θt}t∈Rd ,P
)

.

� An event A ∈ A is called ({θt},P)-invariant (invariant for short) if

P(A △ ∩θtA) = 0 for all t ∈ R
d,

where △ denotes the symmetric difference: A △ B = (A ∪ B) \ (A ∩ B).

� We define invariant σ-algebra:

I := {A ∈ A : A is invariant} ;

(prove it is indeed a σ-algebra).

� We say
(

Ω,A, {θt}t∈Rd,P
)

is metrically transitive if I is P-trivial, i.e., if
∀A ∈ I,P(A) ∈ {0, 1}.



Invariant events for point process
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� Remark 26:

– Consider point process Φ on
(

Ω,A, {θt}t∈Rd,P
)

, compatible with the
flow {θt}t∈Rd .

– Consider event A = {ω : Φ(ω) ∈ Γ} for some Γ ∈ M.

– A is P-invariant iff 1(StΦ ∈ Γ) = 1(Φ ∈ Γ) P-a.s. (observing Φ ∈ Γ
is P-a.s. invariant with all translations of Φ).

– Often, we consider events “ϕ(Φ) = a” for some translation invariant ϕ
and its value a; for example

⊲ ϕ(Φ) =
#infinite components in some translation-invariant graph on Φ.

– Consequently, if I (say generated by Φ) is P-trivial then ϕ(Φ) is P-a.s.
constant.



Averaging observation windows
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� A sequence of sets (Bn)n≥1 in R
d is said to be a convex averaging sequence

if each Bn is bounded Borel and convex set such that

Bn ⊂ Bn+1, ∀n

and

sup {r ≥ 0 : Bn contains a ball of radius r} → ∞, n → ∞.



Birkhoff’s ergodic theorem
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� Theorem 27. [Birkhoff’s (Individual or Pointwise) Ergodic Theorem]
Let

(

Ω,A, {θt}t∈Rd,P
)

be a stationary framework, I the invariant
σ-algebra, (Bn)n≥1 a convex averaging sequence in R

d. For a measurable
function on (Ω,A), such that E [|f |] < ∞

lim
n→∞

1

|Bn|

∫

Bn

f ◦θx dx = E [f | I] , P-a.s. (23)

where E [f | I] is the conditional expectation with respect to I .

� Corollary 28. Under the assumptions of Theorem 27, if the stationary
framework is metrically transitive then (23) holds with E [f | I] = E [f ].

� Proof: (classical Birkhoff’s ergodic theorem) see e.g. Theorem 10 in
Kallenberg(2)

2Foundations of modern probability. Springer, 2002.



Mixing and ergodicity
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� Verifying metrical transitivity is not simple. In what follows we provide an
equivalent and a sufficient condition.

� We say stationary framework is ergodic if

lim
a→∞

1

(2a)d

∫

[−a,a]d
P(A1∩θxA2)dx = P(A1)P(A2), ∀A1, A2 ∈ A

(24)

� We say it is mixing if

lim
|x|→∞

P(A1 ∩ θxA2) = P(A1)P(A2), ∀A1, A2 ∈ A (25)



80 / 88

� Proposition 29. For a stationary framework
(

Ω,A, {θt}t∈Rd ,P
)

the
following relations hold true:

mixing ⇒ ergodicity ⇔ metrical transitivity. (26)
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� Proof:

– Mixing implies ergodicity — Exercise.

– Ergodicity implies metrical transitivity:

⊲ Assume that the framework is ergodic. Consider some A ∈ I .

⊲ For any t ∈ R
d, P (A △ θtA) = 0; and since

A ∩ θtA = A \ (A \ θtA) and A \ θtA ⊂ A △ θtA, then
P (A ∩ θtA) = P (A) − P (A \ θtA) = P (A).

⊲ On the other hand, we deduce from ergodicity that

lim
a→∞

1

(2a)d

∫

[−a,a]d
P(A ∩ θxA)dx = P(A)2

⊲ Then P (A) = P(A)2, thus P (A) ∈ {0, 1}. Therefore the invariant
σ-algebra I is P-tirival, and the framework is consequently metrically
transitive.
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– Metrical transitivity imples ergodicity:

⊲ Assume that the framework is metrically transitive. Let A1, A2 ∈ A.

⊲ By Birkhoff’s theorem 27 and Corollary 28, we have

lim
n→∞

1

(2n)d

∫

[−n,n]d
1 {θx(ω) ∈ A2} dx = E[1{ω ∈ A2}] = P(A2)



83 / 88

⊲ Then

P(A1)P(A2) = E[1{ω ∈ A1}]

(

lim
n→∞

1

(2n)d

∫

[−n,n]d
1 {θxω ∈ A2}dx

)

since (lim . . . ) is P-a.s. constant

= E

[

1{ω ∈ A1} lim
n→∞

1

(2n)d

∫

[−n,n]d
1 {θxω ∈ A2}dx

]

Dominated Convergence Theorem

= lim
n→∞

E

[

1{ω ∈ A1}
1

(2n)d

∫

[−n,n]d
1 {θxω ∈ A2} dx

]

Fubini’s Theorem = lim
n→∞

1

(2n)d

∫

[−n,n]d
E [1{ω ∈ A1}1 {θxω ∈ A2}] dx

= lim
n→∞

1

(2n)d

∫

[−n,n]d
P (A1 ∩ θxA2) dx ,

which completes the proof.



Ergodicity and/or mixing for point processes

84 / 88

� Sometimes one says that a stationary point process Φ, meaning its distribution
is ergodic or mixing.

� By this we mean that the canonical space (M,M, {Sx},PΦ) with the
distribution of Φ as the probability measure is ergodic or mixing, respectively.
The following result simplifies verification of these condition.
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� Proposition 30. Let Φ be a stationary point process with Laplace
transform L = LΦ. Then

(i) Φ is ergodic if and only if

lim
a→∞

1

(2a)d

∫

[−a,a]d
LΦ(f1 + Sxf2)dx = LΦ(f1)LΦ(f2)

for any measurable f1, f2 : Rd → R+ bounded with bounded support.
(ii) Φ is mixing if and only if

lim
|x|→∞

LΦ(f1 + Sxf2) = LΦ(f1)LΦ(f2)

for any measurable f1, f2 : Rd → R+ bounded with bounded support.

� Proof: Cf. Proposition 12.3.VI in Daley and Vere-Jones, 2007 (3)
3An introduction to the theory of point processes: volume II: general theory and structure.

Springer, 2007



Poisson process is mixing hence ergodic
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� Corollary 31. Homogeneous Poisson point process Φ on R
d is mixing and

hence ergodic.

� Proof: Use Proposition 30 (ii).



Discrete ergodicity
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� Theorem 32. Let
(

Ω,A, {θt}t∈Rd,P
)

be a stationary and ergodic
framework, Φ a point process on R

d compatible with the flow {θt}t∈Rd with
finite and non-null intensity λ and Palm probability P0. Let (Bn)n≥1 be a
convex averaging sequence in R

d. For a measurable function f on (Ω,A),
such that E0 [|f |] < ∞

lim
n→∞

1

|Bn|

∫

Bn

f ◦θx Φ (dx) = λE0 [f ] , P-a.s. (27)

� Corollary 33. Under assumptions of Theorem 32 we have

lim
n→∞

1

Φ (Bn)

∫

Bn

f ◦θx Φ (dx) = E0 [f ] P-a.s.

� Indeed, use (27) with f = 1 to observe that P-a.s.
limn→∞ |Bn|/Φ(Bn) = 1/λ.



Can’t use discrete Birkhoff’s result, except in 1D
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� Remark 34: For the proof of Theorem 32, one might want use a discrete
version of Birkhoff’s individual ergodic result.

� This is possible only in one dimension, i.e.; for stationary, ergodic framework
with one dimensional flow {θt}t∈R.

� The reason is that Palm probability P0 is invariant with respect to natural
discrete point shifts only in dimension d = 1. (To be explained.)

� Proof: [of Theorem 32] The idea: approximating the discrete sum by the
integral of some stochastic process:

h(ω) =

∫

Rd

gǫ(x)f ◦θxΦ(dx)

with some non-negative, continuous function gǫ(x) with bounded support
around the origin and

∫

Rd gǫ(x) du = 1. Then use Theorem 27. (continuum
Birkhoff’s result). See details in Lecture Notes.
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