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Preliminaries

Learning what works

I Causal inference is about learning which treatments work
I For whom?
I When?
I And why?

I Examples
I Effectiveness of COVID-19 vaccines against hospitalizations?
I Effect of raising interest rates on inflation?
I Impact of a labor training program on earnings?

I A fertile (but busy!) research area
I Theory
I Methodology
I Applications
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The effects caused by treatments Causal evidence

Causal evidence

I Causal inference requires careful thinking

I Adopt a multiplist strategy (Cook 1985) in which several
complementary designs are used to rule out confounding effects

I Integrate the evidence provided by different studies that vary in
fundamental ways

I Design of experimental and observational studies
I Not unlike randomized experiments, observational studies can (and

should) be carefully designed
I Consistent results from varied designs can gradually reduce, albeit not

eliminate, uncertainty about unmeasured confounding
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The effects caused by treatments Causal evidence

Big data and causal inference

I Algorithms and massive data sets have the potential to transform the
way we do science and policy

I The amount of available data is growing exponentially; algorithms
and computations are increasingly more powerful

I However, predictors are not founded on causal relationships, and the
use of big data is not a substitute for thoughtful study design
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The effects caused by treatments Potential outcomes

Running example: impact of a labor training program

I Suppose that we want to estimate the effect of a labor training
program on a given person i

Designs by rawpixel.com / Freepik
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The effects caused by treatments Potential outcomes

Potential outcomes (Neyman 1923, Rubin 1974)

I Let Yi (1) be the potential outcome of person i under treatment and
Yi (0) be his the potential outcome under control

I In our example,
I Yi (1) = income that the i-th person would have if he participates in

the program
I Yi (0) = income that the i-th person would have if he does not

participate

Treatment	 Control	

yi(1)	 yi(0)	

I Yi (1) is observed only for the people that receive the treatment;
otherwise it is unobserved or counterfactual
Designs by rawpixel.com / Freepik
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The effects caused by treatments Potential outcomes

The fundamental problem of causal inference

I The causal effect of treatment compared to control for unit i is
Yi (1)− Yi (0)

(We can also write Yi (1)/Yi (0).)

I These individual effects are not observable

I It is impossible to observe both the value of Yi (1) and Yi (0) for unit i

Treatment	 Control	

yi(1)	 yi(0)	

I This is what Holland (1986) called the “fundamental problem of
causal inference”
Designs by rawpixel.com / Freepik
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The effects caused by treatments Potential outcomes

The science table

Unit Y (0) Y (1) Z Y Y (1)− Y (0)

1 1568 2367 0 1568 799
2 2194 3295 0 2194 1201
3 2500 3503 0 2500 1003
4 5344 6343 0 5344 999
5 12780 12881 0 12780 101
6 1923 3024 1 3024 1101
7 5159 6182 1 6182 1023
8 1000 2000 1 2000 1000
9 2143 3197 1 3197 1044

10 15752 15953 1 15953 201
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The effects caused by treatments Potential outcomes

The statistician’s table

Unit Y (0) Y (1) Z Y Y (1)− Y (0)

1 1568 ? 0 1568 ?
2 2194 ? 0 2194 ?
3 2500 ? 0 2500 ?
4 5344 ? 0 5344 ?
5 12780 ? 0 12780 ?
6 ? 3024 1 3024 ?
7 ? 6182 1 6182 ?
8 ? 2000 1 2000 ?
9 ? 3197 1 3197 ?

10 ? 15953 1 15953 ?
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The effects caused by treatments Potential outcomes

The statistical solution

I The statistical solution to the fundamental problem of causal
inference is to randomly assign the treatment and estimate an
average treatment effect

Treatment	 Control	

Designs by rawpixel.com / Freepik

Zubizarreta (Harvard) Causal Inference 09/03/2023 12 / 76

rawpixel.com


The effects caused by treatments Potential outcomes

Notation and estimand

I Define the treatment assignment indicator

Zi :=

{
1 if person i is assigned to the program

0 if person i is not assigned

I Write the observed outcome as

Yi := ZiYi (1) + (1− Zi )Yi (0)

I Let X i be a vector of observed covariates and Ui an unobserved
covariate

I We wish to estimate the sample average treatment effect on the
treated
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The effects caused by treatments Potential outcomes

SUTVA

I This notation implies the Stable Unit Treatment Value Assumption
(SUTVA) (Rubin 1980)

I This assumption has two components
I There is no interference between units

I In our example, participation of one subject in the program does not
affect the earnings of another subject

I There are no versions of treatment beyond those encoded by Z
I Subjects participate or not in the program and there are no “levels” of

labor training
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The effects caused by treatments Potential outcomes

On the potential outcomes framework

I The potential outcomes model was developed by Neyman (1923) and
Rubin (1974);

for more background and history, see Holland (1986)

I See Robins (1986) and Hernán and Robins (2019) for an extension of
the potential outcomes framework to longitudinal studies

I For a discussion of the strengths of the potential outcomes framework
see, e.g., Imbens and Wooldridge (2009):

“The first advantage of the potential outcome framework is
that it allows us to define causal effects before specifying the
assignment mechanism, and without making functional form or
distributional assumptions...”
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The experimental ideal

Randomized experiment

I In a randomized experiment, the treatment and control groups tend
to be similar in terms of their observed and unobserved covariates

Treatment	 Control	
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The experimental ideal

“Table 1” for covariate balance

Table: Covariate balance after matching

Mean Mean Standardized
Covariate treated controls difference

Age 26.22 25.46 -0.08
Education 10.23 10.23 -0.00
Black 0.85 0.83 -0.05
Hispanic 0.06 0.05 -0.03
Married 0.20 0.20 -0.00
No degree 0.70 0.70 -0.00
Earnings 74 2040.29 2313.52 -0.05
Earnings 75 1484.92 1476.09 -0.00
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The experimental ideal

Randomization in experiments

I Randomized experiments are the “gold standard for causal inference,”
the most reliable approach for learning about the effects of
treatments

I Randomization yields an unbiased estimator — by design
I Both observed and unobserved covariates are balanced in expectation

across the treatment groups

I Randomization is the “reasoned basis for inference” (Fisher 1935)

I The act of randomly assigning units to treatment physically induces a
distribution that can be used for exact testing
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The experimental ideal

The role of randomization for statistical control

I Randomization guarantees that Y (1),Y (0) ⊥⊥ Z

I In words, a fair coin knows nothing about the individual units and is
impartial in its treatment assignments

I Therefore

E[Y (1)− Y (0) | Z = 1] = E[Y (1) | Z = 1]− E[Y (0) | Z = 1]

= E[Y (1) | Z = 1]− E[Y (0) | Z = 0]

= E[Y | Z = 1]− E[Y | Z = 0]

I Furthermore, E[Y (1)− Y (0) | Z = 1] = E[Y (1)− Y (0)]
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The experimental ideal

The role of randomization for exact inference

I Randomization physically induces a distribution that can be used for
exact testing, without distributional assumptions

I Consider the sharp null hypothesis: H0 : Yi (1) = Yi (0) for all i
I General testing procedure (Fisher 1935, Rosenbaum 2002)

1. Assume H0 holds, so Yi is fixed
2. Consider the set of possible treatment assignments Ω from where Z

was selected
3. Calculate the observed value, say T , of the test statistic t(Z , y)
4. Compute the probability of a value of t(Z , y) at least as large as the

one observed under H0

PrH0,D(t(Z , y) ≥ T ) =
∑
z∈Ω

1{t(z ,y)≥T} Pr(Z = z)

I The following example is by Rosenbaum (2010)
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The experimental ideal

Matched pairs design
I We consider a matched pairs design D such that units are randomized

to treatment within matched pairs

I This is one possible treatment assignment in z ∈ Ω

Treatment	 Control	

Designs by rawpixel.com / Freepik
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The experimental ideal

Matched pairs design
I We consider a matched pairs design D such that units are randomized

to treatment within matched pairs

I And another one...
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The experimental ideal

Matched pairs design
I We consider a matched pairs design D such that units are randomized

to treatment within matched pairs

I With 5 pairs, there are 25 = 32 possible assignments

Treatment	 Control	
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The experimental ideal

1. Assume H0 holds

Pair Z Xage Xblack Xhisp Yearn ∆Y

1 1 17 1 0 3024 1456
0 18 1 0 1568

2 1 25 1 0 6128 3988
0 25 1 0 2194

3 1 25 1 0 0 -45
0 25 1 0 45

4 1 28 1 0 3197 -2147
0 22 1 0 5344

5 1 33 1 0 15953 3173
0 28 1 0 12780
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The experimental ideal

2. Consider the set of possible treatment assignments Ω

Assignment Pair 1 Pair 2 Pair 3 Pair 4 Pair 5

1 1 1 1 1 1
2 1 1 1 1 0
3 1 1 1 0 1
4 1 1 1 0 0
5 1 1 0 1 1
6 1 1 0 1 0
7 1 1 0 0 1
...

...
...

...
...

...

31 0 0 0 0 1
32 0 0 0 0 0
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The experimental ideal

3. Calculate the observed value of the test statistic

Assignment Pair difference in outcomes Mean diff.

∆Y1 ∆Y2 ∆Y3 ∆Y4 ∆Y5 ∆Y

1 1456 3988 -45 -2147 3173 1285.0
2 1456 3988 -45 -2147 -3173 15.8
3 1456 3988 -45 2147 3173 2143.8
4 1456 3988 -45 2147 -3173 874.6
5 1456 3988 45 -2147 3173 1303.0
6 1456 3988 45 -2147 -3173 33.8
7 1456 3988 45 2147 3173 2161.8
...

...
...

...
...

...
...

31 -1456 -3988 45 2147 3173 -15.8
32 -1456 -3988 45 2147 -3173 -1285.0
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The experimental ideal

4. Compute PrH0,D(t(Z , y) ≥ T )

y PrH0,D( ∆Y = y) PrH0,D( ∆Y ≥ y)

2161.8 0.03125 0.03125
2143.8 0.03125 0.06250
1579.4 0.03125 0.09375
1561.4 0.03125 0.12500
1303.0 0.03125 0.15625
1285.0 0.03125 0.18750
0892.6 0.03125 0.21875

...
...

...

-2143.8 0.03125 0.96875
-2161.8 0.03125 1.00000
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The experimental ideal

Randomization inference in experiments

I For valid inferences about the effects of a treatment in an experiment,
it is sufficient to require random treatment assignment

I Probability enters the experiment only through the random
assignment — which is controlled by the experimenter
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Observational studies: the problem of confounding
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Observational studies: the problem of confounding

Randomized experiment

I A randomized experiment is the ideal way to investigate the causal
effect of a treatment

I The law of large numbers ensures that the treatment and control
groups are comparable

I Correct randomization inferences can be made due to random
assignment

I However, a randomized experiment is not always possible...
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Observational studies: the problem of confounding

Randomized experiment
I In a randomized experiment, the treatment and control groups tend

to be similar in terms of their observed and unobserved covariates

Treatment	 Control	

Designs by rawpixel.com / Freepik

Zubizarreta (Harvard) Causal Inference 09/03/2023 28 / 76

rawpixel.com


Observational studies: the problem of confounding

Observational study
I In an observational study, by contrast, assignment is not at random

and groups tend to differ systematically in their covariates

Treatment	 Control	

Designs by rawpixel.com / Freepik
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Observational studies: the problem of confounding

Biases in observational studies

I An observational study is biased if the treated and control groups
differ before treatment in ways that matter for the outcome

I An overt bias is one that can be seen in the data at hand
I For example, differences between the treated and control groups on age

and education are overt biases

I A hidden bias is similar to an overt bias but cannot be seen because
not all the relevant covariates were observed

I If “ability” differs between groups even after we control for age,
education and other covariates, then the study has a hidden bias
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Observational studies: the problem of confounding

Two strategies

I Overt biases can be controlled by adjusting for, or balancing, observed
covariates

I Hidden biases require using other approaches, such as an instrumental
variable or a discontinuity in treatment assignment
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Observational studies: the problem of confounding

Cochran’s basic advice

I Cochran (1965):
I “The planner of an observational study should always ask himself the

question, ‘How would the study be conducted if it were possible to do
it by controlled experimentation?’.”
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Under what conditions adjusting for overt biases works?

I Consider an outcome variable Y , treatment indicator Z , and observed
covariates X

I Imagine X includes all the variables that are associated with both the
treatment assignment and the potential outcomes

I Then for individuals sharing a particular value of X , treatment
assignment would be essentially random

I Formally,
Y (0),Y (1) ⊥⊥ Z |X for all X
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Unconfoundedness

I The assumption that Y (0), Y (1) is conditionally independent of Z
given X is called ignorability, unconfoundedness, no unmeasured
confounders, selection on observables, or exogeneity

I We can also say that the potential outcomes are missing at random
(MAR) given the observed covariates
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Overlap

I Another assumption needed for adjusting for overt biases is the
overlap assumption

0 < Pr(Z = 1|X ) < 1 for all X
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Identification
I We wish to estimate

E[Y (1)− Y (0)|Z = 1]

I Clearly,

E[Y (1)− Y (0)|Z = 1] = E[Y (1)|Z = 1]− E[Y (0)|Z = 1]

I The first term can directly be estimated from the data

I The second term can be identified under the above assumptions

E[Y (0)|Z = 1] = E [E[Y (0)|X ,Z = 1]|Z = 1]

= E [E[Y (0)|X ,Z = 0]|Z = 1]

= E [E[Y |X ,Z = 0]|Z = 1]

Zubizarreta (Harvard) Causal Inference 09/03/2023 36 / 76



Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Identification
I We wish to estimate

E[Y (1)− Y (0)|Z = 1]

I Clearly,

E[Y (1)− Y (0)|Z = 1] = E[Y (1)|Z = 1]− E[Y (0)|Z = 1]

I The first term can directly be estimated from the data

I The second term can be identified under the above assumptions

E[Y (0)|Z = 1] = E [E[Y (0)|X ,Z = 1]|Z = 1]

= E [E[Y (0)|X ,Z = 0]|Z = 1]

= E [E[Y |X ,Z = 0]|Z = 1]

Zubizarreta (Harvard) Causal Inference 09/03/2023 36 / 76



Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Identification
I We wish to estimate

E[Y (1)− Y (0)|Z = 1]

I Clearly,

E[Y (1)− Y (0)|Z = 1] = E[Y (1)|Z = 1]− E[Y (0)|Z = 1]

I The first term can directly be estimated from the data

I The second term can be identified under the above assumptions

E[Y (0)|Z = 1] = E [E[Y (0)|X ,Z = 1]|Z = 1]

= E [E[Y (0)|X ,Z = 0]|Z = 1]

= E [E[Y |X ,Z = 0]|Z = 1]

Zubizarreta (Harvard) Causal Inference 09/03/2023 36 / 76



Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Identification
I We wish to estimate

E[Y (1)− Y (0)|Z = 1]

I Clearly,

E[Y (1)− Y (0)|Z = 1] = E[Y (1)|Z = 1]− E[Y (0)|Z = 1]

I The first term can directly be estimated from the data

I The second term can be identified under the above assumptions

E[Y (0)|Z = 1] = E [E[Y (0)|X ,Z = 1]|Z = 1]

= E [E[Y (0)|X ,Z = 0]|Z = 1]

= E [E[Y |X ,Z = 0]|Z = 1]

Zubizarreta (Harvard) Causal Inference 09/03/2023 36 / 76



Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Using regression

I Write
µz(X ) := E[Y (z)|X ]

I Under the above assumptions, µz(X ) = E[Y |X ,Z = z ]

I So we can estimate the second term with

Ȳ imp
i :Zi=1 :=

1

n1

∑
i :Zi=1

µ̂0(X )

for example using linear regression
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Ȳ imp
i :Zi=1 :=

1

n1

∑
i :Zi=1

µ̂0(X )

for example using linear regression

Zubizarreta (Harvard) Causal Inference 09/03/2023 37 / 76



Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Using regression

I Write
µz(X ) := E[Y (z)|X ]

I Under the above assumptions, µz(X ) = E[Y |X ,Z = z ]

I So we can estimate the second term with
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Extrapolation and fabrication
I See Hill (2011) for details
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Concerns with regression approaches

I Potential lack of overlap in the covariate distributions between the
treated and control groups

I In standard practice, covariate adjustments are done while looking at
the results

I How does linear regression emulate key features of a randomized
experiment?

I E.g., covariate balance, study representativeness, self-weighted
sampling, sample boundedness
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Randomized experiment

I In a randomized experiment, the treatment and control groups tend
to be similar in terms of their observed and unobserved covariates

Treatment	 Control	

Designs by rawpixel.com / Freepik
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Observational study

I In an observational study, by contrast, assignment is not at random
and groups tend to differ systematically in their covariates

Treatment	 Control	

Designs by rawpixel.com / Freepik
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Matching to approximate a randomized experiment

I With matching, we attempt to find the randomized experiment that is
“hidden inside” the observational study

Treatment	 Control	

Designs by rawpixel.com / Freepik
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

“Table 1” for covariate balance

Table: Covariate balance after matching

Mean Mean Standardized
Covariate treated controls difference

Age 26.22 25.46 -0.08
Education 10.23 10.23 -0.00
Black 0.85 0.83 -0.05
Hispanic 0.06 0.05 -0.03
Married 0.20 0.20 -0.00
No degree 0.70 0.70 -0.00
Earnings 74 2040.29 2313.52 -0.05
Earnings 75 1484.92 1476.09 -0.00
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Why matching?

I Conceptual simplicity (comparing like with like while keeping the unit
of analysis intact) (Rosenbaum and Silber 2001)

I Its adjustments are an interpolation instead of an extrapolation based
on a parametric model (Imbens 2015)

I It is conducted without using outcomes, thus preventing inappropriate
manipulation of the data (Rubin 2008)

I It can be used with varied strategies such as instrumental variables
and discontinuity designs (Baiocchi et al. 2010, Keele et al. 2015)

I Facilitates sensitivity analyses to biases due to unmeasured
confounders (Rosenbaum 1987)
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Some related methods

I Nearest neighbor matching (Rubin 1973; Abadie and Imbens 2006)

I Optimal matching (Rosenbaum 1989; Hansen 2004)

I Coarsened exact matching (Iacus et al. 2012)

I Genetic matching (Diamond and Sekhon 2013)

I Optimal matching with refined covariate balance (Pimentel et al. 2015)

I Covariate balancing propensity score (Imai and Ratkovic 2015)
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Exact matching
I Ideally, we would match exactly for every covariate
I Impractical: 1 binary covariates renders 2 unit types
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Exact matching
I Ideally, we would match exactly for every covariate
I Impractical: 3 binary covariates render 8 unit types

Covariate	  1	  

Covariate	  2	  

Covariate	  3	  

0	   1	  

0	   0	  1	  

Zubizarreta (Harvard) Causal Inference 09/03/2023 47 / 76



Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Exact matching
I Ideally, we would match exactly for every covariate
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Exact matching
I Ideally, we would match exactly for every covariate
I Impractical: 5 binary covariates render 32 unit types
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Exact matching
I Ideally, we would match exactly for every covariate
I Impractical: 20 binary covariates render over a million unit types

Covariate	  1	  

Covariate	  2	  

Covariate	  3	  

Covariate	  4	  
Covariate	  5	  

0	   1	  

0	   0	  1	  
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Balance on aggregate

I Randomization produces covariate balance, not perfect matches

I A fundamental tool for constructing matched sets is the propensity
score, proposed by Rosenbaum and Rubin (1983)
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The propensity score

I The propensity score is the conditional probability of treatment
assignment given the observed covariates

I e(x) = Pr(Z = 1|x)

I Informally, theorems 1 and 3 in Rosenbaum and Rubin (1983) state
that

I Matching on the propensity score tends to balance the P observed
covariates used to estimate the score

I For balancing the P covariates it suffices to balance the
one-dimensional propensity score
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Distances based on the propensity score

I Two common distances based on the propensity score are
I δt,c = |et − ec |
I δt,c = |logit(et)− logit(ec)|

I A more robust distance is the rank-based Mahalanobis distance with a
caliper for penalty violations on the propensity score

δt,c =

{
|x̃t − x̃c |′A ˆ̃Σ−1A|x̃t − x̃c | if |logit(et)− logit(ec)| ≤ c

∞ if |logit(et)− logit(ec)| > c
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Nearest neighbor matching

I In its most basic form, this algorithm
I First sorts the treated units in terms of the estimated propensity score

(from highest to lowest, lowest to highest, or randomly)

I Then matches the first treated unit to the closest available control,
making it no longer available for matching, and so on
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Matching methods to approximate a randomized experiment Removing biases due to measured covariates

Optimal matching

I Technically, nearest neighbor matching is a “greedy” algorithm in that
it finds the best available control for each treated unit one at a time
without considering global optimum

I Instead, optimal matching finds the assignment of treated and control
units that minimizes the global optimum, usually the total sum of
covariate distances
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Difficulties with propensity score matching...

I Theorems 1 and 3 above are stochastic properties; we don’t have
these guarantees for a given data set

I Finding an optimal match in terms of covariate distances does not
imply that the matched groups will be balanced

I In practice this can involve a considerable amount of iteration or
guesswork just to balance means
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A general matching framework (Z. 2012; Z., et al. 2014; Kilcioglu and Z. 2016; Visconti and

Z. 2018; Wang and Z. 2022)

I We solve
min
m
{D(m)− λI(m) : m ∈M∩ B ∩R}

where:
I D(m) is the total sum of covariate distances between the matched

groups (defined by dist mat)
I I(m) is the information content of the matched sample (typically, the

number of matched pairs)
I λ is a scalar chosen by the investigator (subset weight)
I M, B and R are matching, balancing and representativeness

constraints, respectively (M: n controls , total groups) (B and R:
mom, ks, exact, near exact, fine, near fine, near, far)
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Optimal matching (Rosenbaum 1989; Hansen 2004)

I We solve
min
m
{D(m)−λI(m) : m ∈M∩B ∩R}

where:
I D(m) is the total sum of covariate distances between the matched

groups (defined by dist mat)
I I(m) is the information content of the matched sample (typically, the

number of matched pairs)
I λ is a scalar chosen by the investigator (subset weight = NULL)
I M, B and R are matching, balancing and representativeness

constraints, respectively (M: n controls = 1, total groups =

sum(t ind)) (B and R: mom, ks, exact, near exact, fine, near
fine, near, far)
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Cardinality matching (Z. et al. 2014; Kilcioglu and Z. 2016; Visconti and Z. 2018; Niknam and Z. 2022)

I We solve
min
m
{D(m)− λI(m) : m ∈M∩ B ∩R}

where:
I D(m) is the total sum of covariate distances between the matched

groups (defined by dist mat = NULL)
I I(m) is the information content of the matched sample (typically, the

number of matched pairs)
I λ is a scalar chosen by the investigator (subset weight = 1)
I M, B and R are matching, balancing and representativeness

constraints, respectively (M: n controls = 1, total groups =

NULL) (B and R: mom, ks, exact, near exact, fine, near fine,
near, far, as needed)
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Pseudo algorithm of standard matching methods

Algorithm 1 Matching with standard matching methods

0. Specify the covariate balance requirements (e.g., mean balance).
Repeat:
1. Estimate the propensity score or another summary of the covariates.
2. Trim the extreme observations according to the summary measure.
3. Match on the summary measure (e.g., using nearest neighbor matching).
4. Assess covariate balance.
Until:

The matched sample satisfies the covariate balance requirements.
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Pseudo algorithm of cardinality matching

Algorithm 2 Matching with cardinality matching

0. Specify the covariate balance requirements (e.g., mean balance).
1. Find the largest matched sample that satisfies the covariate balance requirements.
2. Rematch the balanced matched sample to minimize the covariate distances.
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Remarks

I Cochran (1965) gives two basic pieces of advice for designing
observational studies

(i) “when selecting samples for study, make sure that they are large
enough and have complete enough data to allow effects of practical
importance to be estimated, and avoid treatment and control groups
with large initial differences on confounding variables;”

(ii) “use both the statistician and the subject-matter expert in the planning
stages.”
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Overview of forms of covariate balance

I From unit exact matching to aggregate mean balance
I Exact matching
I Near-exact (or almost exact) matching
I Distributional balance

I Joint distributions, marginal distributions
The middle ground (say, all the two-way interactions of covariates)

I Moments balance
I Means, variances, skewnesses...
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Using designmatch in R
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Profile matching for a target population [Cohn and Z., 2022; Epidemiology]

Treatment Group B Treatment Group C
FEMALE GREEN AGE
0.636 0.364 27.7

Target Population

Sample Before Matching

Legend
/ = Older / Younger/ = Green / Blue= Female / Male/

Sample After Matching

0.538 25.0
FEMALE

0.269
GREEN AGE

Treatment Group B Treatment Group CTreatment Group A

0.571 25.1
FEMALE

0.238
GREEN AGE FEMALE GREEN AGE

0.500 0.250 24.5
FEMALE GREEN AGE
0.571 0.286 25.5

Treatment Group A

0.725 27.0
FEMALE

0.125
GREEN AGE FEMALE GREEN AGE

0.667 0.167 22.5

Illustrated by Xavier Alemañy
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Profile matching with finite resolution [Cohn and Z., 2022; Epidemiology]

Treatment Group B Treatment Group C
FEMALE GREEN AGE
0.667 0.167 22.5

FEMALE GREEN AGE
0.636 0.364 27.7

Target Population

Sample Before Matching

Legend
/ = Older / Younger/ = Green / Blue= Female / Male/

Sample After Matching

0.538 25.0
FEMALE

0.269
GREEN AGE

Treatment Group B Treatment Group CTreatment Group A

0.571 25.1
FEMALE

0.238
GREEN AGE FEMALE GREEN AGE

0.500 0.250 24.5
FEMALE GREEN AGE
0.571 0.286 25.5

Treatment Group A

0.725 27.0
FEMALE

0.125
GREEN AGE

Illustrated by Xavier Alemañy
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Profile matching for a target individual [Cohn and Z., 2022; Epidemiology]

Legend
/ = Older / Younger/ = Green / Blue= Female / Male/

Target Individual

Yes 25.0
FEMALE

No
GREEN AGE

Sample Before Matching
Treatment Group A

0.725 27.0
FEMALE

0.125
GREEN AGE

Treatment Group B
FEMALE GREEN AGE
0.636 0.364 27.7

Sample After Matching

Treatment Group A

0.966 24.7
FEMALE

0.034
GREEN AGE

Treatment Group B
FEMALE GREEN AGE
1.00 0.000 25.0

FEMALE GREEN AGE
0.667 0.167 22.5

Treatment Group C

Treatment Group C
FEMALE GREEN AGE
1.000 0.000 24.5

Illustrated by Xavier Alemañy
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Matching and weighting

I Matching can be viewed as a form of weighting that encodes an
assignment between units

I Study design and interpretability in matching, versus statistical
efficiency and computational tractability in weighting

I Matching approaches can be assisted with regression models in the
spirit of doubly robust estimation (Robins et al. 1994; see also Rubin 1979, Abadie and Imbens

2011)
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Balanced weighting

I Solve:

minimize
w

∑
i :Zi=z

f (wi )

subject to

∣∣∣∣∣ ∑
i :Zi=z

wiBk(X i )− B target
k

∣∣∣∣∣ ≤ δk , k = 1, ...,K ,

where f is a convex function of the weights, Bk(X i ), k = 1, ...,K , are
regular functions of the covariates, and δk are scalars

I Stable balancing weights: f (x) = (x − 1/nz)2 and δk ∈ R+
0 ;

implemented in the sbw package in R (Z. 2015; Wang and Z. 2019)

I See also Hainmueller (2012), Imai and Ratkovic (2014), Chan et al.
(2016), Fan et al. (2016), Tan (2017), Zhao and Percival (2017),
Athey et al. (2018), Hirshberg and Wager (2018), Zhao (2019)
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Role of machine learning
I See Hill (2011) for details
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Outline

1 Preliminaries

2 The effects caused by treatments
Causal evidence
Potential outcomes

3 The experimental ideal

4 Observational studies: the problem of confounding

5 Matching methods to approximate a randomized experiment
Removing biases due to measured covariates
Assessing sensitivity to biases due to unmeasured covariates

6 Keyholes into causality: instruments and discontinuities

7 Practical considerations
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Beyond association is not causation

I Can anything more be said about an observational study beyond
association is not causation?
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Sensitivity to hidden bias

I A sensitivity analysis is a statement about the magnitude of hidden
bias that would need to be present to explain away a certain finding

I Weak associations can be explained away by very small biases, but
only a very large bias can explain a strong association in a large study
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A model for sensitivity to hidden bias

I A study is free of hidden bias if the probability πj that unit j gets the
treatment is a function of the observed covariates describing the unit

I There is hidden bias if two units with the same observed covariates X
have different chances of assignment to treatment

I A sensitivity analysis asks: How would inferences about treatment
effects be altered by hidden biases of various magnitudes?

I Suppose the π’s differ at a given X . How large would these
differences have to be to alter the qualitative conclusions of a study?
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Departure from from a study that is free of hidden bias
I Suppose we have units with the same X but possibly different π’s, so

X i = X j but possibly πj 6= πk

I Then units j and k might be matched to form a matched pair to
control overt bias due to X

I The odds that units j and k receive the treatment are
πj

1−πj and πk
1−πk

respectively and the odds ratio is the ratio of these odds

I Imagine that we knew that this odds ratio for units with the same X
was at most some number Γ ≥ 1

1

Γ
≤
πj(1− πk)

πk(1− πj)
≤ Γ for all j , k with X j = X k

I If Γ = 1, then the study is free of hidden bias; for Γ > 1 there is
hidden bias

I Γ is a measure of the degree of departure from a study that is free of
hidden bias
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Back to labor training example

I In our labor training example, we find the largest pair-matched
sample that is balanced relative to the original treated group

I We obtain a point estimate equal to $1886 with an associated p-value
of 0.019

I How large would need to be the influence of an unobserved covariate
to explain away this significant effect estimate?

Γ pmin pmax

1.00 0.019 0.019
1.01 0.017 0.021
1.02 0.015 0.023

...
...

...

1.10 0.006 0.047
1.11 0.006 0.051
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Matching methods to approximate a randomized experiment Assessing sensitivity to biases due to unmeasured covariates

More on sensitivity analyses

I The first sensitivity analysis was proposed by Cornfield (1959)

I Other approaches to sensitivity analyses include Rosenbaum and
Rubin (1983), Lin et al. (1998), Robins et al. (2000), Gilbert et al.
(2003), Imbens (2003), McCandless et al. (2007), VanderWeeele and
Ding (2017)

I For extensions of the randomization-based inference approach to a
weak null hypothesis see Fogarty (2019)

I The sensitivity analyses methods discussed in this tutorial are
implemented in the R packages sensitivitymw and sensitivitymv

by Paul Rosenbaum
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Keyholes into causality: instruments and discontinuities

Two approaches that aim to control unobserved variation

I Under different assumptions, two devices to control for unobserved
variation (balance unobserved covariates) are

I Instruments
I Discontinuities
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Keyholes into causality: instruments and discontinuities

Overview of instrumental variables

I What is an instrument?
I A haphazard push to receive treatment which affects the outcome only

through the treatment

I Main assumptions

(R) The push is essentially random after adjusting for observed covariates
(E) The push affects the outcome only through the treatment (exclusion

restriction)

Z 

U 

D Y 
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Keyholes into causality: instruments and discontinuities

Idea of a discontinuity design
I In our labor training example, imagine subjects with pre-treatment

income below 500 are assigned to the program

I Pre-treatment income is the running variable R, 500 is the cutoff c
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Practical considerations

Some principles

I Focus on study design

I Specify the target population

I State the key assumptions

I Avoid strong parametric specifications

I Characterize robustness of findings

I Be transparent
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Practical considerations

Matching for statistical control

Principle Matching

Design-based No outcomes
Target population Covariate profile
Identification assumptions Varied ones
Parametric specifications Virtually none
Robustness Easily assessed
Transparency High emphasis
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