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Set-up

> i.i.d. random variables Xi, X, ... on some probability space 2 taking
values in some measurable space (X, A) with common law P

P(X;eB)=P(B), VBedA

» Family ¥ c L{(P) of P-integrable functions f : X - R
» Empirical and population measures: for f € F,
1 n

P,f = EZ £(X)

Pf — fx f(x) dP(x) = E[f(X))]

» Empirical process:
q;[] — \/;3 (H),q - FJ)
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Bounded stochastic processes

Assume that the following map is bounded almost surely:
F—->R:f Pyf-Pf

Then we can view P, — P and G, as (possibly non-measurable) maps

Q- 2(F)

> Assume that sups# [f(X)| < oo for P-almost every x € X and
SUPfeF |Pf| < 00

> Often, we will assume that ¥ has a P-integrable envelope
F:X—[0,00),i.e.,

Vx e X, VfeF, If(x) < F(x)
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Uniform law of large numbers: Glivenko—Cantelli

Strong law of large numbers. For all f € ¥,
P.f > Pf as., n-— oo
Trivially, for every fq,...,fx € F,

maxk [P, f—Pfl—>0 as., n—o o
=14

Can we make this statement uniform in F?
Definition: Glivenko—-Cantelli. ¥ is a P-Glivenko—Cantelli class if

sup|Paf— PA S0, n— oo
feF
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Uniform central limit theorem: Donsker

Multivariate central limit theorem
Finite-dimensional distributions of G, converge to those of a centered
Gaussian process f — Gf on ¥ with covariance function

E[Gf1 Gfg] == Pf1 f2 - Pf1 Pf2 == COV(f1 (X), fg(X))

for f1, b € ¥, where X ~ P.

Can we make this statement uniformin f € #?

Definition: Donsker class.
¥ is a P-Donsker class if G, ~ G as n — oo in £°(F).

To show: asymptotic tightness
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A counterexample
Let X = [0, 1] with the Borel o-field and P the uniform distribution. Consider
¥ = {all continuous functions f : X — [0, 1]}
For any xq,...,x, € X and any € > 0, we can find f € ¥ such that
> f(x1) =...=f(xn) =1

> Pf=['f(x)dx <e.

As a consequence,
sup|Pnf — Pfl =1
fef

The class ¥ is therefore not P-Glivenko—Cantelli nor P-Donsker.

By the Stone—Weierstrass theorem, the example extends to the subfamily
Fo = {all polynomials f : X — [0, 1] with rational coefficients}
See lecture 1.
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Complexity of a class of functions
In general, how to put conditions on 7 limiting its complexity?

The previous counterexample shows that it is not sufficient to impose that
» functions f in F are bounded
» functions f in ¥ are smooth

> the cardinality of F is not too large
> ..

Two techniques: controlling the
» bracketing numbers
» covering numbers
These will provide sufficient but not necessary conditions

Main sources for this lecture: van der Vaart and Wellner (1996), van der Vaart (1998)
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Glivenko—Cantelli and Donsker Theorems

Bracketing entropy
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Definition: Bracketing numbers.
» Bracket induced by functions l,u : X — R:

[Lu ={f: X>R|V¥xeX:I(x)<f(x)<u(x)}

An g-bracket [/, u]: if |u — /|| < &, with || - || some norm
Norm is usually L;(P) or Ly(P)

» Bracketing number:

Ny(e, 7.1l - Il) = the minimum number, N, of e-brackets
needed to cover 7, i.e.,

F c UN, [l uj] and flu; — il < e for all i

li and uj need not belong to F, but ||u;|| and ||/i|| need to be finite.
» Entropy with bracketing:

log Ny (e, 7. 11-11)
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Glivenko—Cantelli with bracketing

> i.i.d. random elements X1, X, ... in (X, A) with common law P
» Family ¥ c L{(P) of P-integrable functions f : X - R
> Law of large numbers:

VfeF, P,f - Pfas., n-— o

> Uniformly in f € 77

Glivenko—-Cantelli theorem: bracketing. If
Ye > 0, Np(e, 7. L1(P)) < o0

then F is P-Glivenko—Cantellj, i.e.,

sup|Paf— PA 0, n— oo
feF
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Proof.
Fix € > 0.

» Consider a covering ¥ C U{L [i, uj] € L1(P) with e-brackets:
Vi=1,...,N, 0<P(u-1l)<e

> Forevery f e ¥, findie {1,...,N} such that f € [I;, uj] and then

Pi < Pf < Pu < Pli+e
> Bound the supremum over f € ¥ by a maximum overi=1,...,N:

sup |Ppf — Pf| < max |Pnli — Pli| V |Ppuj — Puj| + &
fer =D

> Apply the law of large numbers to Iy, ..., Iy and uy, ..., UN.
Lete | O. |
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Donsker theorem with bracketing
Recall G, = vVn(P, — P) seen as map Q — ¢*(F), for ¥ c Lo(P)

Donsker theorem: bracketing.
If for some (and then for all) 6 > 0 we have a finite bracketing integral

5
J[](5,7'-, I_Q(P)) = j; \/|OgN[](8,7:, L2(P)) de < oo
then ¥ is P-Donsker, i.e.,
Grw G, nooo, inl>(F)
> L,(P)-brackets [I;, u;] satisfy P[(u; — I})?] < &% and thus P(u; — I}) < &

= L,(P) brackets are smaller than L;(P) brackets
= higher bracketing number Nj(e, 7, L2(P))

» Finite bracketing integral
= Nj(e, 7, L2(P)) cannot go to oo too quickly as e | 0
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Proof.
Show asymptotic tightness of G, via finite-partition criterion (part 2, p. 20).

Construct partition ¥ = N , #; from §-brackets [I;, u].

Use maximal inequality: there exists finite a(6) > 0 such that

E*| max sup |Gpf — Gpgl
i=1,..., Nf,gE(f_,‘

< Jy(6. 7, Lo(P)) + a(s) ' P[F2 1{F > a(s) Vn}]|
with F € L>(P) an envelope of ¥, constructed via 1-brackets.

Let first n — oo, then 6 — 0, and apply Markov’s inequality. O

Proof of the maximal inequality is difficult. Techniques: Bernstein’s inequality, Orlicz
norms, chaining. See Lemmas 19.32—-34 in van der Vaart (1998).
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Example: weighted distribution function
Suppose X = [0, 1] and P the uniform distribution.
Weighted empirical distribution function: for w : [0, 1] — [0, oo}, let

fi(x) = w(t)Lpg(x),  x.te[0,1]
Gnfy = Vn{Fq(t) - t} w(t)

Identify ¥ = {f; | t € [0, 1]} with [0, 1].
For a Brownian bridge B, do we have weak convergence in ¢*([0, 1])
?
(VA{EA(t) — i w(1)) o oy = BOWD) oy 1> o0

If yes, then construct tail-sensitive Kolmogorov—Smirnov test statistics

sup | Vi {Fa(t) -t} w(t)|

te[0,1]

via w such that w(t) » coast—0ort — 1
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Assume w : [0,1] — [0, 0] is decreasing, w(0) = oo, w(1) = 0, and
1,2
fo we(t) dt < oco.

Fix £ > 0. Find a sufficiently fine grid
O=tfo<th<...<tphp=1

such that the brackets [/;, uj] defined by

li(x) = W(ti)]lloli-1](x)
ui(x) = w(ti-1)Ljoq_,(X) + wW(X) L, (X)

have Lo(P)-size [fo1] u; — 11)?]'/2 < &. The number m of points t; needed is
Ny(s, 7, L2(P)) = O(1/£°)

As foé ylog(1/e) de < oo, the bracketing integral J; (6, 7, L2(P)) is finite. O

20/54



A
J,wz(t) At < o
(v}

: 1

21/54



Example: Parametric class

On general X, consider ¥ = {f, | 6 € ©} for bounded © c RY.

Suppose there exists m € Ly(P) such that

VX € X, V01,00€0,  |fy(X) = fan(X)| < m(x) 1161 — Ol

Claim: There exists K > 0 depending only on ©, d, and m such that

V0 <e<diam®,  Ny(sF,La(P)) < K(

€

diam@)d

Proof: Find grid {9,-}{!1 C © such that e-balls with centers 6; cover ©.
For € > 0, cover F by brackets [I;, uj] = [, — em, f5, + em].

Grid size N can be bounded by O((diam @/s)d) ase | 0.
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Mean absolute deviation

Let X1, Xz, ... be iid P over X = R; assume E[X?] < co.

Mean absolute deviation:

1<% =
My =~ > Xi=Xa
i=1

i=

Asymptotic distribution of vn(M, — E[|X — u[])? Define
Vo, x € R, fo(x) = |x — 6|

Writing u = E[X], we have

Vi (My = E[X = ul]) = Vn(Pafy — Pf,)

= Gofy + Vn(Pfz - Pf,)

How to handle the two terms?
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1. Put¥® = {fy | 6 € ©} with © = (u— 1, + 1). Then

> X, 5 1 € © with large probability
> ¥ is P-Donsker by preceding example with m(x) = 1
> the map © — Ly(P) : 8 — fy is continuous

G, is asymptotically uniformly L,(P)-equicontinuous in probability
(lecture 2, slide 20):

q3’7f5{n - 03,1ﬂ1 + ()F)(1 )

— \/ﬁ{%;m—m—E[lX—uI] +op(1), n— oo

2. If the cdf F of X is continuous at i, the map 6 — Pfy = E[|X — 6] is
differentiable at 6 = u with derivative 2F (1) — 1.

Delta method:

Vi (Pfy, = Ph,) = VI (2F (1) = 1) (Xn = ) + 0p(1)
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Summing up the two terms:

Vi1 (My — EX — ) = V| 1> () ~ EI(X)] | + 0n(1)

i=1
9, N (0,var(h(X)))

where
h(x) = Ix =l + (2F (i) = 1) x

If F(u) = 1/2, i.e., E[X] = u is also the median, the second term vanishes
and it is as if we used u rather than X, in the definition of M.
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Glivenko—Cantelli and Donsker Theorems

Uniform entropy
VC-classes
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Covering numbers

» family ¥ of measurable functions f : X - R
» norm || - || on such functions
usually L,(Q) for some r > 1 and some probability measure Q on X

Definition: Covering number.
» Covering number of ¥ with respect to || - ||:

N(e, 7,1l -1I) = minimum number of &-balls needed to cover 7,
i.e., suchthat ¥ = UN {geF :llg-fll < &}

Centers f; need not belong to ¥ but should have ||fj]| < oo.
> Entropy (without bracketing):

|Og N(S, 7:’ ” . ”)

Covering vs bracketing: if norm is such that |f| < |g] = [If|l < ||gl|, then
N(S, 7:’ || ‘ ||) < N[](zg’ 7:9 ” : ||)
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Glivenko—Cantelli with covering

Glivenko—-Cantelli theorem with random covering numbers
Suppose ¥ c L{(P) satisfies:

> ¥ is P-measurable (see below)

> ¥ has a P-integrable envelope F : X —» R
|fi < Fforall f e £ and PF < o

> random entropy condition:
1 P
- log N(e PoF, ¥, L1(Pp)) — O, n— oo
then ¥ is P-Glivenko—Cantelli, i.e.,

supl[Pnf—Pfleifo, n— oo
feF

Sufficient that 7 is pointwise measurable, i.e., there exists countable G ¢ ¥ such that for
every f € ¥ there exists gy, € G such that limp_. gm(x) = f(x) for all x € X (van der Vaart
and Wellner, 1996, p. 110).
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Uniform covering numbers

» Recall covering number N(&, 7, || -1|)
» Let F: X — [0, ) be a cover of ¥

Definition: Uniform covering.
For r > 1 and ¢ > 0, the uniform covering number is

Sgp N(SHF“Q,re 7:, Lr(Q))

> \IFlla.r = IFliL@) = (QF)Y" = ([ F"dQ)"/

> Supremum over all finitely discrete probability measures Q on X
with ||Fllqr > 0

The discrete measure P, is among the Q in the supremum
=— Random covering numbers are bounded by the uniform ones
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Donsker with entropy

Donsker theorem with uniform entropy
Suppose ¥ c Lp(P) satisfies

> ¥ is “suitably measurable”
» ¥ has a cover F € Ly(P)

> § satisfies the uniform entropy condition:
for some (and then for all) 6 > 0,

5
J(6,F, Lp) = f \/Iog sup N(el|Fllqz, F, L2(Q))de < o0
0 Q

then F is P-Donsker, i.e., G, ~» G as n — oo in £%(F).

For “suitably measurable”: see Theorem 2.5.2 in van der Vaart and Wellner (1996).
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Vapnik—Cervonenkis index

Let C be a collection of subsets C c X.

> Number of subsets A of {x1,...,xn} C X picked out by C:
An(C. X1, ... Xn) = #{A C{x1,....x}|IC € C: A= CN{x1,.... X0}
> C shatters {x1,...,xn} if every A C {xq,..., Xp} is picked out by C:
Ap(Cox1,...,xp) =2
Definition: VC-index. The VC-index of C is the smallest n such that
no set of size n is shattered by C:
V(C) = inf{n eN |\/x1,...,x,, s Ap(Co X1, ... Xn) < 2”}

with inf @ = oo
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Example: rectangles in Euclidean space
In X = RY, let C be the class of all rectangles

d
[ |(a: 610 R)

j=1
with —co < @j < bj < c0. Then

V(C) <2d+1

(Could take open/closed rectangles too.)

Proof.
For any xi,...,x, € R with n = 2d + 1, there exists i € {1, ..., n} such that x; is
“boxed in” by the other n — 1 points {xx : k # i}.

The set A = {x; : k # i} is not picked out by C, i.e., there exists no rectangle C € C
such that

Xk :k#2i}=CnNn{xq,...,Xn}
Hence, {x1, ..., Xn} is not shattered by C. O
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VC-classes of sets and functions

> Let C be a collection of subsets C c X
» Let F be a collection of functions f : X - R

Definition: VC-class.
> Cisa VC-classif V(C) < o

There exists n € N such that no set of size n is shattered by C

> ¥ is a VC-class if the collection of subgraphs
{lx.t) e XxR [t <f(x)}|feF]

isa VC-class in X xR
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VC-classes and uniform covering numbers

Theorem: uniform covering numbers of VC-classes
There exists a universal constant K > 0 such that for any VC-class ¥
of functions with envelope F,anyr>1,any0 < e < 1,

NG
sup N(&llFlla.. . L/(Q)) < K V(F) (16e)V") (_)
Q

&

the supremum being over all finitely discrete probability measures.

Proof via Sauer’s lemma: if C is a VC-class of sets, then

V(C)-1

n _
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Empirical processes indexed by VC-classes

VC-classes ¥ are “small”:
» the random entropy condition (slide 30) is trivially satisfied
» the uniform entropy integral (slide 32) converges:

jj \/log(1/€) de < o0

= A VC-class ¥ is Glivenko—Cantelli and Donsker provided it is suitably
measurable and possesses an appropriate envelope F

Extensions to:

VC-hull classes ¥ : There exists a VC-class G such that every f € ¥ is the pointwise limit
of a sequence fp, = 3 @migmi With 3774 lamil < 1 and gmi € G

VC-major classes ¥ : The collection C = {Cy; | f € F,t € R} with C;; = {x € X | f(x) > t}
isVCinX

(van der Vaart and Wellner, 1996, Sections 2.6.3 and 2.6.4)
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Example: finite-dimensional vector spaces
Suppose there exists fq,..., fx : X = R such that

F c{lifi + -4+ Al | A4,..., Ak € R}

Then V(F) < k + 2.

Proof.

Let n = k + 2. Take any (x1,t1),...,(Xn, th) € X X R. The vectors
Vf:(f(X1)—t1,...,f(Xn)—tn), feF

lie in a (k + 1)-dimensional subspace V in Rk*2. There exists
0 # a € RK+2 with at least one positive coordinate such thata L V, i.e.,

vieF, > a(fta)-t)= > (-a)(f(x) - 1)
i-a;i>0 i:aj<0
The set A = {(x;, t;) | those i = 1,..., n such that a; > 0} is not picked out
by a subgraph {(x, t) : t < f(x)}. O
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Example: sets defined by polynomial equations

» |f £ is a VC-class of functions, then
C:{{xeA’lf(x)>O} |fe?‘}

is a VC-class of sets.

Proof: Suppose C is not VC. For any n, there exists {xi,..., Xn} € X shattered by C.
Then {(x4,0),..., (xn,0)} € X x R is shattered by the subgraphs {(x,t) : t < f(x)} for
f € . Hence ¥ is not a VC-class of functions, a contradiction. O

> The set ¥ of polynomials on RY up to a fixed degree m is a VC-class
of functions by slide 42.

> Hence, the collection of half-spaces
C= {{XE R | @1xy + -+ 4 @gXg < b} |a1,...,ad,b € [R}

is a VC-class of sets. So are the ellipsoids, ...
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Generating more examples through stability properties

If C and D are VC-classes of sets, then so are
» {CND|CeC,DeD}
» {CuD|CeC,DeD}

Proof.

By Sauer’s lemma, the number of subsets of any {xi,..., X,} picked out by
intersections C N D is only O(nV(©)+V(2)-2) < 2n, O

If ¥ and G are VC-classes of functions, then so are
» {(fAglfeF,gegG}
» {fvglfeF,gegG}

Proof.
The subgraph of f A g is the intersection of the subgraphs of f and g. O
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Counterexample: convex sets

In X = [-1,1]2, the following class is not VC:

C= {all convex polygons in [-1, 1]2}

Proof.
Any set of n distinct points on the unit circle is shattered by C. O

The class F = {1¢ | C € C} is not P-Glivenko—Cantelli or Donsker for the
uniform distribution P on the unit circle: for all n,

sup |Pnf — Pf| = sup|Ps(C) — P(C)| = 1
fefF CeC
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Glivenko—Cantelli and Donsker Theorems

Extension: Changing function classes
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Local empirical processes
Let X1, Xz, ... be iid uniform on [0, 1].

Tail empirical process: for bandwidths h = h, — 0 such that nh — oo,
1 n
< Vnh|— » 1{X;< ht} -t
0t oh ; {Xi }

Example of a local empirical process:
> Density estimation
» Extreme-value theory (usual notation: nh = k)

Lindeberg—Feller central limit theorem: since h — 0, the finite-dimensional
distributions converge to those of a Wiener process (W(t)):o0
Centered Gaussian process such that E[lW(s)W(t)] = s A tfors,t >0

Weak convergence in £([0, M]) for fixed M > 0?
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Sums of independent stochastic processes

Alternative representation of the usual empirical process:

n

Gaf = ), %\/%Pf = > (Zni) - E[Zai(F)]),  feF

i=1 i=1
Representation also encompasses tail empirical process on slide 48:
1
Zni(t) = ﬁl{xi <ht, telo,M=F

Convergence in £*(F)?
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Asymptotic tightness

Theorem. For each n, let Z,1,...,Z,, be independent stochastic
processes with finite second moments indexed by a set #. Suppose
1. limpse X104 E* [1Z0,illz L{l|Znjlls > A}] =0 forall A >0
Notation: [|Zy,llF = supreg 1Zni(f)]
2. There exists ¢ > 0 and, for all sufficiently small £ > 0, a covering
F = U,’-VL Fe,j such that, for every set ¥ ; and every n,

n

Z E*| sup |Zn,,'(f) - Z5i(9)

i—1 f.gFz

2
| <C(92

3. For some ¢ > 0, we have foé Vlog N, ds < oo

Then Y7 {Zn; — E(Z,,)} is asymptotically tight in £°(F).
It converges weakly provided finite-dimensional distributions do so.

Corollary to Theorem 2.11.9 in van der Vaart and Wellner (1996)
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Example: bracketing
Empirical process G,f = vn(P,f — Pf) indexed by f € ¥ c Ly(P) and
J[]((S, 77, LQ(P)) < o0

Then ¥ is P-Donsker by slide 16.
Alternatively, check conditions on slide 50 for Zy(f) = n~'/2f(X;):
1. Cover F by Ny brackets [I;, yj] with P[(u; — 1;)?] < 1, then

feF =1
1Zn,ill- < n™V2F(X))

sup [f(x)l < mal>v<(1) max (| (x)I, luj(x)I) =: F(x)

Since F € Lx(P), the condition follows from Markov’s inequality
2. Cover F by N, brackets [lj, uj] = F; with P[(u; — })?] < €2. Then

]
sup |Zni(f) = Zai(@) < = |ui(X) - (X)[°
t.gellj.uj] n

3. Since J[](é, F,La(P)) < co.
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Example: tail empirical process

Check three conditions on slide 50 for

Zyi(t) = (nh) 21X, < ht),  te[O,M]=F

1. Trivial, since 0 < [|ZyllF < (nh)™"/2 > 0
2. Constructagrid0 =1ty < t; <... < ty, = M with mesh £ > 0 and put

Fej=MGi1.4],  J=1,....Ne

3. N, =0(1/e)as € | 0, hence f: Vlog N, de < oo
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Summary

Empirical process indexed by family # c L1(P) or Lo(P) of functions
f:X->R

> P-Glivenko—Cantelli: uniform large of law numbers

sup |Pnf — Pl 35 0
feF

» P-Donsker: uniform central limit theorem
Gph= Vn(Pr—=P)~ G  int>(F)

Seek asymptotic tightness = techniques to control the complexity of F:

> bracketing numbers
» random and uniform covering numbers
> VC-classes of sets and functions
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