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Set-up

I i.i.d. random variables X1,X2, . . . on some probability space Ω taking
values in some measurable space (X,A) with common law P

P(Xi ∈ B) = P(B), ∀B ∈ A

I Family F ⊂ L1(P) of P-integrable functions f : X → R

I Empirical and population measures: for f ∈ F ,

Pnf =
1
n

n∑
i=1

f(Xi)

Pf =

∫
X

f(x) dP(x) = E[f(Xi)]

I Empirical process:
Gn =

√
n (Pn − P)
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Bounded stochastic processes

Assume that the following map is bounded almost surely:

F → R : f 7→ Pnf − Pf

Then we can view Pn − P and Gn as (possibly non-measurable) maps

Ω→ `∞(F )

I Assume that supf∈F |f(x)| < ∞ for P-almost every x ∈ X and
supf∈F |Pf | < ∞

I Often, we will assume that F has a P-integrable envelope
F : X → [0,∞), i.e.,

∀x ∈ X, ∀f ∈ F , |f(x)| 6 F(x)
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Uniform law of large numbers: Glivenko–Cantelli

Strong law of large numbers. For all f ∈ F ,

Pnf → Pf a.s., n → ∞

Trivially, for every f1, . . . , fk ∈ F ,

max
j=1,...,k

|Pnf − Pf | → 0 a.s., n → ∞

Can we make this statement uniform in F ?

Definition: Glivenko–Cantelli. F is a P-Glivenko–Cantelli class if

sup
f∈F
|Pnf − Pf |

as∗
→ 0, n → ∞
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Uniform central limit theorem: Donsker

Multivariate central limit theorem
Finite-dimensional distributions of Gn converge to those of a centered
Gaussian process f 7→ Gf on F with covariance function

E[Gf1Gf2] = Pf1f2 − Pf1 Pf2 = cov(f1(X), f2(X))

for f1, f2 ∈ F , where X ∼ P.

Can we make this statement uniform in f ∈ F ?

Definition: Donsker class.
F is a P-Donsker class if Gn  G as n → ∞ in `∞(F ).

To show: asymptotic tightness
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A counterexample

Let X = [0, 1] with the Borel σ-field and P the uniform distribution. Consider

F =
{
all continuous functions f : X → [0, 1]

}
For any x1, . . . , xn ∈ X and any ε > 0, we can find f ∈ F such that
I f(x1) = . . . = f(xn) = 1

I Pf =
∫ 1

0 f(x) dx 6 ε.

As a consequence,
sup
f∈F
|Pnf − Pf | = 1

The class F is therefore not P-Glivenko–Cantelli nor P-Donsker.

By the Stone–Weierstrass theorem, the example extends to the subfamily

F0 = {all polynomials f : X → [0, 1] with rational coefficients}

See lecture 1.
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Complexity of a class of functions

In general, how to put conditions on F limiting its complexity?

The previous counterexample shows that it is not sufficient to impose that
I functions f in F are bounded
I functions f in F are smooth
I the cardinality of F is not too large
I . . .

Two techniques: controlling the
I bracketing numbers
I covering numbers

These will provide sufficient but not necessary conditions

Main sources for this lecture: van der Vaart and Wellner (1996), van der Vaart (1998)
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Glivenko–Cantelli and Donsker Theorems

Bracketing entropy

Uniform entropy
VC-classes

Extension: Changing function classes
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Definition: Bracketing numbers.
I Bracket induced by functions l, u : X → R:

[l, u] = {f : X → R | ∀x ∈ X : l(x) 6 f(x) 6 u(x)}

An ε-bracket [l, u]: if ‖u − l‖ 6 ε, with ‖ · ‖ some norm
Norm is usually L1(P) or L2(P)

I Bracketing number:

N[](ε,F , ‖ · ‖) = the minimum number, N, of ε-brackets

needed to cover F , i.e.,

F ⊂
⋃N

i=1[li , ui] and ‖ui − li‖ 6 ε for all i

li and ui need not belong to F , but ‖ui‖ and ‖li‖ need to be finite.
I Entropy with bracketing:

log N[](ε,F , ‖ · ‖)
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Glivenko–Cantelli with bracketing

I i.i.d. random elements X1,X2, . . . in (X,A) with common law P
I Family F ⊂ L1(P) of P-integrable functions f : X → R

I Law of large numbers:

∀f ∈ F , Pnf → Pf a.s., n → ∞

I Uniformly in f ∈ F ?

Glivenko–Cantelli theorem: bracketing. If

∀ε > 0, N[](ε,F , L1(P)) < ∞

then F is P-Glivenko–Cantelli, i.e.,

sup
f∈F
|Pnf − Pf |

as∗
→ 0, n → ∞.
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Proof.
Fix ε > 0.
I Consider a covering F ⊂

⋃N
i=1[li , ui] ⊂ L1(P) with ε-brackets:

∀i = 1, . . . ,N, 0 6 P(ui − li) 6 ε

I For every f ∈ F , find i ∈ {1, . . . ,N} such that f ∈ [li , ui] and then

Pn li 6 Pnf 6 Pnui

Pli 6 Pf 6 Pui 6 Pli + ε

I Bound the supremum over f ∈ F by a maximum over i = 1, . . . ,N:

sup
f∈F
|Pnf − Pf | 6 max

i=1,...,N
|Pn li − Pli | ∨ |Pnui − Pui |+ ε

I Apply the law of large numbers to l1, . . . , lN and u1, . . . , uN.

Let ε ↓ 0. �
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Donsker theorem with bracketing
Recall Gn =

√
n (Pn − P) seen as map Ω→ `∞(F ), for F ⊂ L2(P)

Donsker theorem: bracketing.
If for some (and then for all) δ > 0 we have a finite bracketing integral

J[](δ,F , L2(P)) :=

∫ δ

0

√
log N[](ε,F , L2(P)) dε < ∞

then F is P-Donsker, i.e.,

Gn  G, n → ∞, in `∞(F )

I L2(P)-brackets [li , ui] satisfy P[(ui − li)2] 6 ε2 and thus P(ui − li) 6 ε
=⇒ L2(P) brackets are smaller than L1(P) brackets
=⇒ higher bracketing number N[](ε,F , L2(P))

I Finite bracketing integral
=⇒ N[](ε,F , L2(P)) cannot go to ∞ too quickly as ε ↓ 0
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Proof.
Show asymptotic tightness of Gn via finite-partition criterion (part 2, p. 20).

Construct partition F =
⋃N

i=1 Fi from δ-brackets [li , ui].

Use maximal inequality: there exists finite a(δ) > 0 such that

E∗
 max
i=1,...,N

sup
f ,g∈Fi

|Gnf −Gng|


. J[](δ,F , L2(P)) + a(δ)−1P
[
F2
1

{
F > a(δ)

√
n
}]

with F ∈ L2(P) an envelope of F , constructed via 1-brackets.

Let first n → ∞, then δ→ 0, and apply Markov’s inequality. �

Proof of the maximal inequality is difficult. Techniques: Bernstein’s inequality, Orlicz
norms, chaining. See Lemmas 19.32–34 in van der Vaart (1998).

17 / 54



Example: weighted distribution function
Suppose X = [0, 1] and P the uniform distribution.

Weighted empirical distribution function: for w : [0, 1]→ [0,∞], let

ft (x) = w(t)1[0,t](x), x, t ∈ [0, 1]

Gnft =
√

n
{
Fn(t) − t

}
w(t)

Identify F = {ft | t ∈ [0, 1]} with [0, 1].

For a Brownian bridge B, do we have weak convergence in `∞([0, 1])(√
n
{
Fn(t) − t

}
w(t)

)
t∈[0,1]

?
 (B(t)w(t))t∈[0,1] , n → ∞

If yes, then construct tail-sensitive Kolmogorov–Smirnov test statistics

sup
t∈[0,1]

∣∣∣√n
{
Fn(t) − t

}
w(t)

∣∣∣
via w such that w(t)→ ∞ as t → 0 or t → 1
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Assume w : [0, 1]→ [0,∞] is decreasing, w(0) = ∞, w(1) = 0, and∫ 1
0 w2(t) dt < ∞.

Fix ε > 0. Find a sufficiently fine grid

0 = t0 < t1 < . . . < tm = 1

such that the brackets [li , ui] defined by

li(x) = w(ti)1[0,ti−1](x)

ui(x) = w(ti−1)1[0,ti−1](x) + w(x)1(ti−1,ti ](x)

have L2(P)-size [
∫
[0,1](ui − li)2]1/2 6 ε. The number m of points ti needed is

N[](ε,F , L2(P)) = O(1/ε2)

As
∫ δ

0

√
log(1/ε) dε < ∞, the bracketing integral J[](δ,F , L2(P)) is finite. �
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Example: Parametric class

On general X, consider F = {fθ | θ ∈ Θ} for bounded Θ ⊂ Rd .

Suppose there exists m ∈ L2(P) such that

∀x ∈ X,∀θ1, θ2 ∈ Θ,
∣∣∣fθ1(x) − fθ2(x)

∣∣∣ 6 m(x) ‖θ1 − θ2‖

Claim: There exists K > 0 depending only on Θ, d, and m such that

∀0 < ε < diam Θ, N[] (ε,F , L2(P)) 6 K
(

diam Θ

ε

)d

Proof: Find grid {θi}
N
i=1 ⊂ Θ such that ε-balls with centers θi cover Θ.

For ε > 0, cover F by brackets [li , ui] = [fθi − εm, fθi + εm].

Grid size N can be bounded by O
(
(diam Θ/ε)d

)
as ε ↓ 0. �
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Mean absolute deviation

Let X1,X2, . . . be iid P over X = R; assume E[X2] < ∞.
Mean absolute deviation:

Mn =
1
n

n∑
i=1

∣∣∣∣Xi − Xn

∣∣∣∣
Asymptotic distribution of

√
n(Mn − E[|X − µ|])? Define

∀θ, x ∈ R, fθ(x) = |x − θ|

Writing µ = E[X ], we have
√

n (Mn − E[|X − µ|]) =
√

n
(
PnfXn

− Pfµ
)

= GnfXn
+
√

n
(
PfXn

− Pfµ
)

How to handle the two terms?
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1. Put F = {fθ | θ ∈ Θ} with Θ = (µ − 1, µ + 1). Then

I Xn
P
→ µ ∈ Θ with large probability

I F is P-Donsker by preceding example with m(x) ≡ 1
I the map Θ→ L2(P) : θ 7→ fθ is continuous

Gn is asymptotically uniformly L2(P)-equicontinuous in probability
(lecture 2, slide 20):

GnfXn
= Gnfµ + oP(1)

=
√

n

1
n

n∑
i=1

|Xi − µ| − E[|X − µ|]

 + oP(1), n → ∞

2. If the cdf F of X is continuous at µ, the map θ 7→ Pfθ = E[|X − θ|] is
differentiable at θ = µ with derivative 2F(µ) − 1.

Delta method:
√

n
(
PfXn

− Pfµ
)

=
√

n (2F(µ) − 1)
(
Xn − µ

)
+ oP(1)
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Summing up the two terms:

√
n (Mn − E[|X − µ|]) =

√
n

1
n

n∑
i=1

h(Xi) − E[h(X)]

 + oP(1)

d
−→ N (0, var(h(X)))

where
h(x) = |x − µ|+ (2F(µ) − 1) x

�

If F(µ) = 1/2, i.e., E[X ] = µ is also the median, the second term vanishes
and it is as if we used µ rather than Xn in the definition of Mn.
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Glivenko–Cantelli and Donsker Theorems

Bracketing entropy

Uniform entropy
VC-classes

Extension: Changing function classes
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Covering numbers
I family F of measurable functions f : X → R

I norm ‖ · ‖ on such functions
usually Lr(Q) for some r > 1 and some probability measure Q on X

Definition: Covering number.
I Covering number of F with respect to ‖ · ‖:

N(ε,F , ‖ · ‖) = minimum number of ε-balls needed to cover F ,

i.e., such that F =
⋃N

i=1{g ∈ F : ‖g − fi‖ < ε}

Centers fi need not belong to F but should have ‖fi‖ < ∞.
I Entropy (without bracketing):

log N(ε,F , ‖ · ‖)

Covering vs bracketing: if norm is such that |f | 6 |g| =⇒ ‖f‖ 6 ‖g‖, then

N(ε,F , ‖ · ‖) 6 N[](2ε,F , ‖ · ‖)
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Glivenko–Cantelli with covering

Glivenko–Cantelli theorem with random covering numbers
Suppose F ⊂ L1(P) satisfies:
I F is P-measurable (see below)
I F has a P-integrable envelope F : X → R

|f | 6 F for all f ∈ F and PF < ∞

I random entropy condition:

1
n

log N(εPnF ,F , L1(Pn))
P
→ 0, n → ∞

then F is P-Glivenko–Cantelli, i.e.,

sup
f∈F
|Pnf − Pf |

as∗
→ 0, n → ∞

Sufficient that F is pointwise measurable, i.e., there exists countable G ⊂ F such that for
every f ∈ F there exists gm ∈ G such that limm→∞ gm(x) = f(x) for all x ∈ X (van der Vaart
and Wellner, 1996, p. 110).
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Uniform covering numbers

I Recall covering number N(ε,F , ‖ · ‖)

I Let F : X → [0,∞) be a cover of F

Definition: Uniform covering.
For r > 1 and ε > 0, the uniform covering number is

sup
Q

N(ε‖F‖Q ,r ,F , Lr(Q))

I ‖F‖Q ,r = ‖F‖Lr (Q) = (QF r)1/r = (
∫

F r dQ)1/r

I Supremum over all finitely discrete probability measures Q on X
with ‖F‖Q ,r > 0

The discrete measure Pn is among the Q in the supremum
=⇒ Random covering numbers are bounded by the uniform ones
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Donsker with entropy

Donsker theorem with uniform entropy
Suppose F ⊂ L2(P) satisfies
I F is “suitably measurable”
I F has a cover F ∈ L2(P)

I F satisfies the uniform entropy condition:
for some (and then for all) δ > 0,

J(δ,F , L2) :=

∫ δ

0

√
log sup

Q
N(ε‖F‖Q ,2,F , L2(Q))dε < ∞

then F is P-Donsker, i.e., Gn  G as n → ∞ in `∞(F ).

For “suitably measurable”: see Theorem 2.5.2 in van der Vaart and Wellner (1996).
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Vapnik–C̆ervonenkis index

Let C be a collection of subsets C ⊂ X.

I Number of subsets A of {x1, . . . , xn} ⊂ X picked out by C:

∆n(C, x1, . . . , xn) = #
{
A ⊂ {x1, . . . , xn}

∣∣∣∃C ∈ C : A = C ∩ {x1, . . . , xn}
}

I C shatters {x1, . . . , xn} if every A ⊂ {x1, . . . , xn} is picked out by C:

∆n(C, x1, . . . , xn) = 2n

Definition: VC-index. The VC-index of C is the smallest n such that
no set of size n is shattered by C:

V(C) = inf
{
n ∈ N

∣∣∣∀x1, . . . , xn : ∆n(C, x1, . . . , xn) < 2n
}

with inf ∅ = ∞
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Example: rectangles in Euclidean space
In X = Rd , let C be the class of all rectangles

d∏
j=1

([aj , bj] ∩ R)

with −∞ 6 aj 6 bj 6 ∞. Then

V(C) 6 2d + 1

(Could take open/closed rectangles too.)

Proof.
For any x1, . . . , xn ∈ R

d with n = 2d + 1, there exists i ∈ {1, . . . , n} such that xi is
“boxed in” by the other n − 1 points {xk : k , i}.

The set A = {xi : k , i} is not picked out by C, i.e., there exists no rectangle C ∈ C
such that

{xk : k , i} = C ∩ {x1, . . . , xn}

Hence, {x1, . . . , xn} is not shattered by C. �
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VC-classes of sets and functions

I Let C be a collection of subsets C ⊂ X
I Let F be a collection of functions f : X → R

Definition: VC-class.
I C is a VC-class if V(C) < ∞

There exists n ∈ N such that no set of size n is shattered by C

I F is a VC-class if the collection of subgraphs{
{(x, t) ∈ X × R | t < f(x)}

∣∣∣ f ∈ F
}

is a VC-class in X × R
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VC-classes and uniform covering numbers

Theorem: uniform covering numbers of VC-classes
There exists a universal constant K > 0 such that for any VC-class F
of functions with envelope F , any r > 1, any 0 < ε < 1,

sup
Q

N(ε‖F‖Q ,r ,F , Lr(Q)) 6 K V(F ) (16e)V(F )

(
1
ε

)r(V(F )−1)

the supremum being over all finitely discrete probability measures.

Proof via Sauer’s lemma: if C is a VC-class of sets, then

max
x1,...,xn∈X

∆n(C, x1, . . . , xn) 6

V(C)−1∑
j=0

(
n
j

)
= O

(
nV(C)−1

)
, n → ∞
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Empirical processes indexed by VC-classes

VC-classes F are “small”:
I the random entropy condition (slide 30) is trivially satisfied
I the uniform entropy integral (slide 32) converges:∫ δ

0

√
log(1/ε) dε < ∞

=⇒ A VC-class F is Glivenko–Cantelli and Donsker provided it is suitably
measurable and possesses an appropriate envelope F

Extensions to:

VC-hull classes F : There exists a VC-class G such that every f ∈ F is the pointwise limit
of a sequence fm =

∑m
i=1 αmigmi with

∑m
i=1 |αmi | 6 1 and gmi ∈ G

VC-major classes F : The collection C = {Cf ,t | f ∈ F , t ∈ R} with Cf ,t = {x ∈ X | f(x) > t}
is VC in X

(van der Vaart and Wellner, 1996, Sections 2.6.3 and 2.6.4)
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Example: finite-dimensional vector spaces
Suppose there exists f1, . . . , fk : X → R such that

F ⊂ {λ1f1 + · · ·+ λk fk | λ1, . . . , λk ∈ R}

Then V(F ) 6 k + 2.

Proof.
Let n = k + 2. Take any (x1, t1), . . . , (xn, tn) ∈ X × R. The vectors

vf = (f(x1) − t1, . . . , f(xn) − tn), f ∈ F

lie in a (k + 1)-dimensional subspace V in Rk+2. There exists
0 , a ∈ Rk+2 with at least one positive coordinate such that a ⊥ V, i.e.,

∀f ∈ F ,
∑

i:ai>0

ai (f(xi) − ti) =
∑

i:ai<0

(−ai) (f(xi) − ti)

The set A =
{
(xi , ti) | those i = 1, . . . , n such that ai > 0

}
is not picked out

by a subgraph
{
(x, t) : t < f(x)

}
. �
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Example: sets defined by polynomial equations

I If F is a VC-class of functions, then

C =
{{

x ∈ X | f(x) > 0
} ∣∣∣ f ∈ F

}
is a VC-class of sets.
Proof: Suppose C is not VC. For any n, there exists {x1, . . . , xn} ⊂ X shattered by C.

Then
{
(x1, 0), . . . , (xn, 0)

}
⊂ X ×R is shattered by the subgraphs

{
(x, t) : t < f(x)

}
for

f ∈ F . Hence F is not a VC-class of functions, a contradiction. �

I The set F of polynomials on Rd up to a fixed degree m is a VC-class
of functions by slide 42.

I Hence, the collection of half-spaces

C =
{{

x ∈ Rd | a1x1 + · · ·+ adxd 6 b
} ∣∣∣ a1, . . . , ad , b ∈ R

}
is a VC-class of sets. So are the ellipsoids, . . .
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Generating more examples through stability properties

If C and D are VC-classes of sets, then so are
I {C ∩ D | C ∈ C,D ∈ D}
I {C ∪ D | C ∈ C,D ∈ D}

Proof.
By Sauer’s lemma, the number of subsets of any {x1, . . . , xn} picked out by
intersections C ∩ D is only O(nV(C)+V(D)−2) < 2n. �

If F and G are VC-classes of functions, then so are
I {f ∧ g | f ∈ F , g ∈ G}
I {f ∨ g | f ∈ F , g ∈ G}

Proof.
The subgraph of f ∧ g is the intersection of the subgraphs of f and g. �
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Counterexample: convex sets

In X = [−1, 1]2, the following class is not VC:

C =
{
all convex polygons in [−1, 1]2

}
Proof.
Any set of n distinct points on the unit circle is shattered by C. �

The class F = {1C | C ∈ C} is not P-Glivenko–Cantelli or Donsker for the
uniform distribution P on the unit circle: for all n,

sup
f∈F
|Pnf − Pf | = sup

C∈C

∣∣∣Pn(C) − P(C)
∣∣∣ = 1
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Glivenko–Cantelli and Donsker Theorems

Bracketing entropy

Uniform entropy
VC-classes

Extension: Changing function classes
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Local empirical processes

Let X1,X2, . . . be iid uniform on [0, 1].

Tail empirical process: for bandwidths h = hn → 0 such that nh → ∞,

0 6 t 7→
√

nh

 1
nh

n∑
i=1

1 {Xi 6 ht} − t


Example of a local empirical process:
I Density estimation
I Extreme-value theory (usual notation: nh = k )

Lindeberg–Feller central limit theorem: since h → 0, the finite-dimensional
distributions converge to those of a Wiener process (W(t))t>0

Centered Gaussian process such that E[W(s)W(t)] = s ∧ t for s, t > 0

Weak convergence in `∞([0,M]) for fixed M > 0?
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Sums of independent stochastic processes

Alternative representation of the usual empirical process:

Gnf =
n∑

i=1

f(Xi) − Pf
√

n
=

n∑
i=1

(
Zn,i(f) − E[Zn,i(f)]

)
, f ∈ F

Representation also encompasses tail empirical process on slide 48:

Zn,i(t) =
1
√

nh
1{Xi 6 ht}, t ∈ [0,M] = F

Convergence in `∞(F )?
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Asymptotic tightness

Theorem. For each n, let Zn,1, . . . ,Zn,n be independent stochastic
processes with finite second moments indexed by a set F . Suppose

1. limn→∞
∑n

i=1 E∗ [‖Zn,i‖F 1{‖Zn,i‖F > λ}] = 0 for all λ > 0
Notation: ‖Zn,i‖F = supf∈F |Zn,i(f)|

2. There exists c > 0 and, for all sufficiently small ε > 0, a covering
F =

⋃Nε

j=1 Fε,j such that, for every set Fε,j and every n,

n∑
i=1

E∗
 sup
f ,g∈Fε,j

∣∣∣Zn,i(f) − Zn,i(g)
∣∣∣2 6 cε2

3. For some δ > 0, we have
∫ δ

0

√
log Nε dε < ∞

Then
∑n

i=1{Zn,i − E(Zn,i)} is asymptotically tight in `∞(F ).
It converges weakly provided finite-dimensional distributions do so.

Corollary to Theorem 2.11.9 in van der Vaart and Wellner (1996)
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Example: bracketing
Empirical process Gnf =

√
n(Pnf − Pf) indexed by f ∈ F ⊂ L2(P) and

J[](δ,F , L2(P)) < ∞

Then F is P-Donsker by slide 16.
Alternatively, check conditions on slide 50 for Zni(f) = n−1/2f(Xi):

1. Cover F by N1 brackets [lj , uj] with P[(uj − lj)2] 6 1, then

sup
f∈F
|f(x)| 6 max

j=1,...,N(1)
max(|lj(x)|, |uj(x)|) =: F(x)

‖Zn,i‖F 6 n−1/2F(Xi)

Since F ∈ L2(P), the condition follows from Markov’s inequality
2. Cover F by Nε brackets [lj , uj] = Fε,j with P[(uj − lj)2] 6 ε2. Then

sup
f ,g∈[lj ,uj ]

∣∣∣Zn,i(f) − Zn,i(g)
∣∣∣2 6 1

n

∣∣∣uj(Xi) − lj(Xi)
∣∣∣2

3. Since J[](δ,F , L2(P)) < ∞.
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Example: tail empirical process

Check three conditions on slide 50 for

Zn,i(t) = (nh)−1/2
1{Xi 6 ht}, t ∈ [0,M] = F

1. Trivial, since 0 6 ‖Zn,i‖F 6 (nh)−1/2 → 0

2. Construct a grid 0 = t0 < t1 < . . . < tNε = M with mesh ε > 0 and put

Fε,j = [tj−1, tj], j = 1, . . . ,Nε

3. Nε = O(1/ε) as ε ↓ 0, hence
∫ δ

0

√
log Nε dε < ∞

�
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Summary

Empirical process indexed by family F ⊂ L1(P) or L2(P) of functions
f : X → R

I P-Glivenko–Cantelli: uniform large of law numbers

sup
f∈F
|Pnf − Pf |

as∗
→ 0

I P-Donsker: uniform central limit theorem

Gn =
√

n (Pn − P) G in `∞(F )

Seek asymptotic tightness =⇒ techniques to control the complexity of F :
I bracketing numbers
I random and uniform covering numbers

I VC-classes of sets and functions
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