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Overview

Introductory lecture: motivation why to consider weak convergence of
non-measurable elements in `∞(T) equipped with supremum distance

This lecture: weak convergence

1. first for general metric spaces (D, d)

2. then specialized to (`∞(T), ‖ · ‖∞)

Theory goes back to Hoffmann-Jørgensen (1984, 1991) and others.
Main sources for this lecture:

I van der Vaart and Wellner (1996, Part 1)

I van der Vaart (1998, Chapter 18)

See historic notes in van der Vaart and Wellner (1996, pp. 75–78)
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Stochastic Convergence in Metric Spaces

General metric spaces

Space of bounded functions
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Outer expectation

I Probability space (Ω,A,P)

I map T : Ω→ [−∞,∞], not necessarily measurable

Definition: Outer expectation.

E∗[T ] = inf
{
E[U]

∣∣∣ U : Ω→ [−∞,∞] measurable,

U > T and E[U] exists
}

Measurable cover: Borel measurable T∗ : Ω→ [−∞,∞] such that
T 6 T∗ 6 U almost surely for any U as above
I E∗[T ] = E[T∗] (provided the latter expectation exists in [−∞,∞])
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Inner expectation:
E∗[T ] = −E∗[−T ]

Inner and outer probability:

P∗(B) = E∗[1B ] = inf
{
P(A) | B ⊂ A , measurable A ⊂ Ω

}
P∗(B) = E∗[1B ] = 1 − P∗(Ω \ B)

Some care is required:
I (S + T)∗ 6 S∗ + T∗, but no equality in general
I Fubini’s theorem no longer works
I “Law” of a random variable depends on underlying probability space

I iid samples X1,X2, . . . ,Xn, . . . will be seen as coordinate projections on
the product space (Xn,An,Pn) or the sequence space (X∞,A∞,P∞)
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Stochastic convergence

I Metric space (D, d), Borel σ-field
I Random elements Xn,X : (Ω,A,P)→ D

X Borel measurable, but Xn not necessarily

Definition: Weak convergence. Xn  X if

lim
n→∞

E∗[f(Xn)] = E[f(X)]

for every bounded, continuous f : D→ R
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Other modes of convergence

Convergence:

I in (outer) probability: Xn
P
→ X if P[d(Xn,X)∗ > ε]→ 0 for all ε > 0

I (outer) almost surely: Xn
as∗
→ X if d(Xn,X)∗ → 0 a.s.

The usual implications hold:

I Xn
as∗
→ X implies Xn

P
→ X

I Xn
P
→ X implies Xn  X

I Xn
P
→ c (constant) if and only if Xn  c
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Characterizations of weak convergene

Portmanteau lemma. Are equivalent:

(i) Xn  X

(ii) lim infn→∞ P∗(Xn ∈ G) > P(X ∈ G) for every open G ⊂ D

(iii) lim supn→∞ P∗(Xn ∈ F) 6 P(X ∈ F) for every closed F ⊂ D

(iv) For Borel sets B ⊂ D such that P(X ∈ ∂B) = 0,

lim
n→∞

P∗(Xn ∈ B) = lim
n→∞

P∗(Xn ∈ B) = P(X ∈ B)

(v) . . .

Characterizations mostly useful in proofs

10 / 25



Choice of state space not so important

Corollary
I Subset D0 ⊂ D equipped with the same metric d
I Maps Xn,X : Ω→ D0

Then
Xn  X in D ⇐⇒ Xn  X in D0

Example:
I D = `∞([0, 1])

I D0 = C([0, 1]) or D0 = D([0, 1])
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Extracting new convergence relations

Continuous Mapping Theorem
I Metric spaces D,E
I g : D→ E is continuous at every x ∈ D0 ⊂ D

I Xn  X in D

If X takes values in D0, then g(Xn) g(X)

I Extended continuous mapping theorem: mappings depend on n but
gn(xn)→ g(x) for sufficiently many sequences xn → x

I Will serve to prove the functional delta method
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Extracting weakly convergent subsequences

Prohorov’s Theorem. If the sequence of maps Xn : Ω→ D is
I asymptotically measurable

limn→∞ E∗[f(Xn)] − E∗[f(Xn)] = 0 for every bounded, continuous f : D→ R

I asymptotically tight

For every ε > 0 there exists a compact K ⊂ D such that, for every δ > 0, we

have lim infn→∞ P∗[∃y ∈ K : d(Xn, y) < δ] > 1 − ε

then it has a subsequence that converges weakly to a tight X .

For every ε > 0 there exists a compact K ⊂ D such that P(X ∈ K) > 1 − ε.
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Proof strategy

Strategy to prove weak convergence Xn  X :
1. Show that every subsequence of Xn has a further subsequence that

convergence weakly
I Via Prohorov’s theorem

2. Show that all weak limits that can thus arise are the identical
I For stochastic process: via finite-dimensional distributions
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Little-oh calculus

Suppose D is actually a Banach space
Vector space over R equipped with a norm ‖ · ‖ such that the metric
d(x, y) = ‖x − y‖ is complete

Slutsky’s lemma
If Xn  X and Yn  c ∈ D and if X is tight, then

Xn + Yn  X + c

Common case: c = 0 ∈ D. Then we write Yn = oP(1) and thus

Xn  X tight =⇒ Xn + oP(1) X
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Stochastic Convergence in Metric Spaces

General metric spaces

Space of bounded functions
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Space of bounded functions

Let D be the space of bounded real functions on some set T :

`∞(T) =

{
z : T → R

∣∣∣∣∣∣ sup
t∈T
|z(t)| < ∞

}

I Banach space with norm ‖z‖∞ = supt∈T |z(t)|
I Supremum distance d(z1, z2) = ‖z1 − z2‖∞ = supt∈T |z1(t) − z2(t)|
I Non-separable when T is uncountable: Borel σ-field is very large
I Natural space in which to study empirical processes such as

f 7→ Pnf =
1
n

n∑
i=1

f(Xi)

indexed by f ∈ F = T , for i.i.d. X1,X2, . . . taking values in some
measurable space (X,A,P) and F some subset of L1(P) or L2(P)
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Theorem: Weak convergence in `∞(T).
Let Xn : Ω→ `∞(T). Then

Xn converges weakly to some tight limit

if and only if the following two properties hold:

1. Xn is asymptotically tight

2. for every (t1, . . . , tk ) ∈ Tk , the random vectors
(Xn(t1), . . . ,Xn(tk )) converge weakly in Rk

Special case of proof strategy on slide 15

1. Asymptotic tightness: by controlling the oscillations of the trajectories
(Arzèla–Ascoli)

2. Convergence of finite-dimensional distributions: via classical limit
theorems
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Theorem: Asymptotic tightness in `∞(T).
Let Xn : Ω → `∞(T) be such that Xn(t) : Ω → R is asymptotically
tight for every t ∈ T . Are equivalent:

(i) Xn is asymptotically tight

(ii) For every ε, η > 0 there exists a finite partition T =
⋃k

i=1 Ti with

lim sup
n→∞

P∗
[

max
i=1,...,k

sup
s,t∈Ti

|Xn(s) − Xn(t)| > ε
]
< η

(iii) there exists a semimetric ρ on T such that (T , ρ) is totally
bounded and such that for every ε, η > 0 there exists δ > 0 with

lim sup
n→∞

P∗
 sup
ρ(s,t)<δ

|Xn(s) − Xn(t)| > ε

 < η
i.e., Xn is asymptotically uniformly ρ-equicontinuous in probability

(T , ρ) totally bounded: for every δ > 0, there exists finitely many t1, . . . , t` ∈ T such that for
every t ∈ T , there is tj with ρ(t , tj) < δ
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I If, moreover, Xn  X , then almost all trajectories t 7→ X(t) are
uniformly ρ-continuous

I If, moreover, X is a Gaussian process, then the following semimetric
always works:

ρ(s, t) =
(
E
[{

X(s) − X(t)
}2])1/2

, s, t ∈ T

I Techniques to control the probabilities in (ii) and (iii):
I maximal inequalities
I symmetrization
I entropy: bracketing and covering numbers
I . . .
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Summary

Classical theory of weak convergence in metric spaces as in Billingsley
(1968) works well in separable metric spaces
I C([0, 1]) with supremum distance
I D([0, 1]) with Skorohod topology

The space `∞(T) in empirical process theory is non-separable and requires
handling non-measurable mappings: Hoffmann-Jørgensen theory

Classical results can be mostly recovered:
I Portmanteau lemma
I Continuous mapping theorem
I Prohorov’s theorem
I Slutsky’s lemma
I Tightness criteria for sequences of stochastic processes
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