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1. HEAVY TAILS IN REAL-LIFE DATA

1.1. Finance.
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Ficure 1. Plot of 9558 S¢P500 daily log-returns from January 2, 1953, to December 31, 1990. The
year marks indicate the beginning of the calendar year.
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Ficure 2. Left: Density plot of the S€&/P500 data. The limits on the x-axis indicate the range of the
data. QQ-plot of the S€&P500 data against the normal distribution.
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Ficure 3. Hill plot (dotted line) for the S&P500 data with 95% asymptotic confidence bounds. The
Hill estimator approximates the tail index a in the model P(X; > ) ~ cx~ as a function of the
m upper order statistics in the return sample.



1.2. Insurance.
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Ficure 4. Danish fire insurance data.
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Ficure 5. Histogram of the logarithmic Danish fire insurance data.
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Ficure 6. Empirical mean excess function of the Danish fire insurance data.
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1.3. Telecommunications.
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Ficure 7. Time series of transmission durations (BU data).
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Ficure 8. Mice and elephants plots (S. Marron).
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2. EXTREMAL DEPENDENCE/INDEPENDENCE IN REAL-LIFE DATA

2.1. Independence in insurance data.
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Ficure 9. Scatterplot of US fire insurance losses - independence.



2.2. Extremal independence in telecommunication data.
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Ficure 10. Scatterplot of file sizes of teletraffic data - extremal independence
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2.3. Extremal dependence in financial data.
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Ficure 11. Scatterplot of 5 minute foreign exchange rate log-returns, USD-DEM against USD-FRF.
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3. EXTREME VALUE THEORY FOR IID SEQUENCES LEADBETTER ET AL. (1983),

RESNICK (1987), EMBRECHTS ET AL. (1997), DE HAAN AND FERREIRA (2006)

3.1. Max-stable distributions (extreme value distributions).

e A random variable X and its distribution F' are max-stable if
for every n > 2 there exist ¢, > 0, d,, € R, such that for iid
copies (X;) of X,

c. '(M, —d,) = c,gl( max X; — dn) 2X.

1=1,...,m
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e Any max-stable distribution belongs to the location/scale
family of one of the three standard max-stable distributions

(also called extreme value distributions):

—

P(x) =e® , x>0, a>0 Fréchet

v, (x) e " <0, a>0 Weibull

xTr

A(x) =e* , x€R, Gumbel.

e The max-stable distributions are the only possible
non-degenerate weak limits for standardized maxima of an iid
sequence (Fisher-Tippett Theorem 1928, Gnedenko (1943)).

e The 3 max-stable types can be written as one parametric

family (generalized extreme value distribution (GEV)).



® Transformation of max-stable random variables .

If X > 0 has a &, distribution,
e log X“ has distribution A
e — X ! has distribution ¥,,.

17
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3.2. Maximum domains of attraction (MDA).

e The distribution F' of X is in the maximum domain of
attraction of the max-stable distribution G € {®,, ¥,, A}
(F € MDA(G)) if there exist constants a,, > 0, b,, € R such that

lim P(a,'(M, —b,) <z) - G(z), =z €R.

n—oo

e ' € MDA (®,): Regular variation of the right tail
Fx)=1—F(x)=P(X >z) =z °L(z), x>0,
for a slowly varying function L.
Then the moments E[X**], § > 0, are infinite.
e ' € MDA (W,): F has finite right endpoint xp.
e ' € MDA (A): Moderately heavy — light tails.



e Examples:
MDA (®,): Student with o degrees of freedom,
Cauchy (a = 1),
infinite variance a-stable distributions,
Pareto F(x) = 7%, = > 1,
log-gamma distribution.

MDA (W¥,): uniform, g-distribution.

MDA (W¥,): log-normal distribution,
Weibull F(z) =e @,z >0, 7 > 0,
gamma distribution,

normal distribution.

19
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4. THE EXTREMAL INDEX — A MEASURE OF THE EXTREMAL CLUSTER SIZE

e Let (X;):cz be a strictly stationary real-valued time series.
e Its autocovariance and autocorrelation functions do in general

not contain information about extremal dependence.

4.1. Definition.

e The extremal index Ox is a standard measure of extremal
3 .2 —
dependence in a sequence:” for M,, = max;—;,.. ., X; and a

suitable sequence u,, T ¢
P(M, < u,) ~ [P(X; < u,)]"%.
e Ox € [0, 1] has the interpretation as reciprocal of the expected

cluster size above high thresholds.

2See Leadbetter, Lindgren, Rootzén (1983); cf. Embrechts et al. (1997), Section 8.1
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Ficure 12. A sequence of iid random variables Y; (Top) with distribution function v F', where F' is
standard exponential. Bottom: the sequence of pairwise maxima max(Y;, Y;y1) with distribution
F'. By construction, extremes appear in clusters of size 2. The extremal index is 8 = 1/2.
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4.2. Examples.

e A Gaussian stationary sequence (X;) with autocorrelation
function px(h) = o(1/logh), h — oc:
Ox = 1. No extremal clustering.

e AR(1) model Xy = ¢ Xy 1+ Z, ¢ € (—1,1), (Z;) iid student
with o degrees of freedom:
Ox =1 — [o|

e Models for log-returns X; = log P; — log P;_ :

Xy =o0¢Zy, (4:)iid, o0¢>0
e The simple stochastic volatility model: (log o) linear

Gaussian, independent of iid student (Z;):

0 x = 1 Davis, Mikosch (2001ab,2009ab) INO extremal clustering.
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Ficure 13. Top: Stochastic volatility process X; = o Z; for iid student (Z;) with 4 degrees of free-
dom, Gaussian ARMA(1,1) process log oy = 0.5log o1 + 0.31:—1 + 1. Bottom: GARCH(1, 1)
process X; = (0.0001 + 0.1X?2 |, + 0.902 ,)%%Z, for iid standard normal (Z;).
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e The GARCH(1,1) model:® X; = 0:Z;,
ol =ag+ (a1 Z] ,+B1)o; ,, (Z)iid N(0,1).

There exists a > 0 such that E(a;Z? + 3;)*/? = 1 and’

¢ [P (maxy, 1 [Ty (a Z7 + B1) < y™') y~2 ' dy =6, € (0,1).

3Bollerslev (1986)
4de Haan, Resnick, Rootzén, de Vries (1989)
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e The GARCH(1,1) model: X; = 0.7,
ol =ag+ (a1 Z] ,+B1)o; ,, (Z)iid N(0,1).
There exists a > 0 such that E(a; Z? + 3,)*/? = 1 and

2 [P (maxp>1 [[1-, (01 Z7 + B1) < y™') vy~ 2 tdy =0, € (0,1).

e Expressions for the extremal index of a stationary process are

often complicated.
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e The GARCH(1,1) model: X; = 0,74,
ol =ag+ (a1 Z] ,+B1)o; ,, (Z)iid N(0,1).
There exists a > 0 such that E(a; Z? + 3,)*/? = 1 and

2 [P (maxp>1 [[1-, (01 Z7 + B1) < y™') vy~ 2 tdy =0, € (0,1).

e Expressions for the extremal index of a stationary process are

often complicated.

e Monte Carlo simulation is not straightforward.



e The GARCH(1,1) model: X; = 0.7,
ol =ag+ (a1 Z] ,+B1)o; ,, (Z)iid N(0,1).
There exists a > 0 such that E(a; Z? + 3,)*/? = 1 and

2 [P (maxp>1 [[1-, (01 Z7 + B1) < y™') vy~ 2 tdy =0, € (0,1).

e Expressions for the extremal index of a stationary process are

often complicated.
e Monte Carlo simulation is not straightforward.

e Estimation of the extremal index and extremal cluster size

distribution is non-trivial; see C. Y. Robert (2009)

27
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5. REGULAR VARIATION - UNIVARIATE AND MULTIVARIATE

5.1. Univariate regularly varying distributions. .°

e Recall that F € MDA (®,) for some a > 0 if and only if
F(x)=P(X >z)=z “°L(z), =>0,

for some slowly varying function L, (i.e. L(cx)/L(x) — 1,
xr — 0o, ¢ > 0)

e We call a random variable X € R and its distribution F
regularly varying with index a > 0 if there exist constants

p,q > 0 such that p+ g =1 and

F(—z) ~qxz *L(zx) and F(z)~px *L(z), = — co.

5See Bingham et al. [5], for an encyclopedia on regularly varying functions, Resnick [49, 50] for a modern
theory of regular variation for the purposes of applied probability and statistics.



elfeg. p=0: F(x) = o(z™*L(x)), x — oo.

e Equivalently, | X| is regularly varying with index a > 0 and

P(X < —z) i P(X > x)
POX|>z) P(X| > =)

e Examples. Pareto, student, Cauchy, a-stable, a € (0, 2), Burr,

log-gamma, Fréchet.

29
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e Two fundamental operations.®

Convolution. Feller (1971) Let X; > 0 be regularly varying with

a > 0. Assume X, regularly varying with index a and

independent of X; OR P(|Xz| > ) = o(P(X71 > x)).

Then X; + X, is regularly varying with index a and
PXi+Xo>x)~P(Xy>2)+P(Xe>x), x— 0.

Products. Breiman (1965) o > 0, X > 0 independent and

Eo®t? < oo for some § > 0, X regularly varying with index o.

Then, as * — oo,

PlcX >x) ~Eoc*P(X > x).

6See Resnick (2007)



e Examples.
Stochastic volatility model. X; = 0:Z;, t € Z, o4 log-normal,
(Z;) iid regularly varying with index «, (o;) and (Z;)
independent. Then, as  — oo,
P(X: > x) ~ Eog P(Zy > =),

P(X: < —x) ~ Eogy P(Zy < —x) .

Moving average. X; = 6004 + 60141+ -+ 0,2, t € Z,

m > 1, Z; > 0 iid regularly varying with index a.

P(X;>x) ~ Y P(0; Z; >x) ~P(Zo > ) > 6 Ip»0, T — 00.

=1 1=0

31
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How can one model spatio-temporal extremal dependence and

heavy tails?

® One needs to model both the size and the direction of extremes.



Asymptotic extremal independence
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Ficure 14. Scatterplot of file sizes of teletraffic data.
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Asymptotic extremal dependence
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Ficure 15. Scatterplot of 5 minute foreign exchange rate log-returns, USD-DEM against USD-FRF.
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5.2. Multivariate regular variation Resnick (1987,2007).

e A random vector X € R? and its distribution are regularly

varying with index a > 0: there exists a random vector

® € S 1 = {x e R¢: |z| = 1} such that for ¢ > 0:

P(|X| > tz,X/|X]| €*) w
P(|X| > =)

>t PO e, x— 0.

The distribution of ®: spectral measure of X.

e Equivalently,
P(z~'X € )

P(|X| > CB) ? I'L(')a

for a non-null Radon measure p on the Borel o-field of

RS = R\{0} with p(tA) = t=>u(A), t > 0.
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e Equivalently: as * — oo,
P(|X| > tx)
P(|X]| > x)

X w
P(EE-I |X|>:13> Y PO € ).

>t %, t>0, and

e A toy example. R, 6 independent, 0 distributed on [0, 27),
P(R>r)=r"%,r > 1, Pareto.
X = R (cos@,sinf) = RO,
Then
IX| =R and X/|X|=0O = (cosf,sinf),
P(R>tx) =t *P(R>x), tx>1,

POe:- | R>x)=PO € ).
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Ficure 16. 11D vectors X; from the toy model with tail index e = 5. Left: 6 is uniform on [0, 27).
Right: 6 has a discrete uniform distribution on the points 27z /50.




e Example
Assume X = (X3, X,) € Ri iid regularly varying with index
a > 0. Choose |X| = max(Xy, X2). Then, for any € > 0,

P(x~ X € (g,00)?) P(X, > ex, Xo > ex)
P(|X| > =) P(max(Xy, X3) > x)
[P(X1 > ex)]?

2P( X, > x) — [P(X71 > x)]?

— ”((5900)2) = 0.

i does not charge sets bounded away from the axes.
Hence p and the spectral measure P(® € -) are concentrated on

the axes.
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e In general, if a regularly varying vector X has independent
components the measures u and P(® € -) are concentrated on
the axes.

e This means: It is very unlikely that two distinct components of

X are large (extreme) at the same time.

Extremes occur close to the axes.

e For a vector X with dependent components, this property is

sometimes referred to as asymptotic extremal independence.
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e Eixample. The stochastic volatility model: for s # ¢, iid
regularly varying (Z;), independent of strictly stationary

log-normal (o),

P(| X¢| > ex, | Xs| > ex)

P(min(o¢|Z:|, 05| Zs|) > ex)
< P(max(o¢, 0s) min(|Z|, |Zs|) > ex)

E max(o;%, o2%) P(min(|Z4|, |Zs|) > ex)

%

Emax(o;%, a2%) [P(|Z] > ex)]?

= o(P(|X¢| > x)), x— o0,

Here we used Breiman’s result. Hence for any € > 0, as
T — 00,

P(| X¢| > ex, | Xs| > ex)
P(] (X, Xs)| > x)

0 = p({(x1, z2) : min(|z1|, |22[) > €}) .
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This means:

the limit measures p and P(© € -) of the regularly varying

vector (X, X;) are concentrated on the axes.
or
there is asymptotic extremal independence between X; and X

although X;, X, are dependent.
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e Further examples

— X has iid student(a) distributed components. P(©® € -) is

concentrated on the intersection of unit ball and axes.

— X has a multivariate student(a) distribution. P(® € ) is

supported on the whole unit ball.

— X is obtained from a (zaussian vector by transforming the
marginals to student(a). Then P(® € :) is concentrated on
the intersection of unit ball and axes.

X exhibits asymptotic extremal independence.
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5.3. Operations on regularly varying vectors.
e Lemma. Let X € R% be RV (ux,a) and g : R — R? be

continuous, positive homogeneous of order 1. Then
Pxz"'g(X) € ) w 1

P(X| > z) > px(g™ () -
If ux(g='(+)) is non-null g(X) is regularly varying with index a.

e In particular, if the inverse image of the null set in R under
the mapping g is the null set in R? the limit measure ux(g=1(-))

is non-null and g(X) is regularly varying with index «.
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e Examples. Let X be an R%valued random vector which is
RV (o, px)-
— If the support of X is the positive quadrant and
g(X) = max(Xy,..., Xy ), then the inverse image of the null
set is the null set and g(X) is regularly varying.
— The sum g(X) = X; + -+ + X4 is regularly varying if
px(g~'(+)) # o. In this case, for z > 0,

ux({y €R i yr+ -+ +ya > 2})

px(g~ ' (z, 00])

= 2 %ux({y €ERy t 1 4+ +wya > 1}),

px(g ' (—o0,—2]) = ux({y € @g ty1+ o+ ya < —2})

2 ux({y €Ry i yr+ - +ya < —1}).



The right-hand side can be zero, e.g. if X =Y (1, —1)" and
Y > 0 is regularly varying. Then X; + X, = 0.

— The function g(X) = 6’X is positive homogeneous for
0 € S%! (relative to the Euclidean norm). If 8 has positive
components and X is supported on the positive quadrant,
0’X = 0 a.s. implies X = 0 a.s. In this case, 8’X is regularly
varying.

— Any norm g(X) = |X]| is positive homogeneous and |X| = 0

implies X = 0 a.s. Hence |X| is regularly varying.
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e Convolution. Let X; be R%valued random vectors which are

RV (ux,,a), ¢ = 1,2. Assume that
P(|X2| > x)

im =
r—=o0 P(|X4| > )

for some non-negative constant ¢y and

(5.1)

Co

P(IXy| > @, [Xs| > 2) = o(B(|X4| > 2)), @ — oo.

Then
Pz~ (X, +X3) €4)
P(|Xs1] > x)
The result remains valid for regularly varying X; and any X, if

> WX, T Co 1X, -

(5.1) holds with ¢y = 0.



e Example. Assume (X;) iid and RV (pux, a). Then for
Sn:X1+"'+X’n7

P(x~'S, € )
P(|X]| > x)

»npx ().

47
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e Products.” Let A be a random d’ X d matrix, independent of
the R%valued random vector X which is RV (ux, «) for some
a > 0 and E||A||*T® < oo for some € > 0. Here ||A|| is any

norm of A. Then

Pz~ 'AX €.) ,
P(|X| > =)

e If the limit measure is non-null then AX is regularly varying

»Eux({y € R?: Ay € -}) = Epx(A7™h).

with index a.
e The result remains valid if E||A||* < oo and P(|X| > ) ~ cx™@

as £ — OQ.

7See Basrak et al. [1].
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6. REGULARLY VARYING STATIONARY SEQUENCES

® A real-valued stationary sequence (X,) is regularly varying
with index a > 0 if its finite-dimensional distributions are
regularly varying with index «a.

e Equivalently, for every k > 1, there exists a non-null Radon

measure on @’; such that
P(m_l(Xl, coes X)) €E0) o

P(] Xo| > x)
The measures up determine the extremal dependence structure

> p(+) -

of the finite-dimensional distributions.

e Notice: Normalization P(|Xy| > «) does not depend on k.
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6.1. Examples.

Linear process.

e Examples of linear processes are ARMA processes with iid

noise (Z;), e.g. the AR(p) and MA(q) processes

Xe =i+ o1 Xi 1+ + 0pXi_p,

Xe =21 +0Zi 1+ -+ 042
e A linear process
Xt = Z"pjzt—jv t ez,
J

is regularly varying with index a > 0 if the iid sequence (Z;) is

regularly varying with index a.



e Under mild conditions on (;),’

P(Xo > x)
P(|Zo| > x)

e Exxpressions for ui are complicated.

8See Resnick (1987); cf. Embrechts et al. (1997), Appendix

~ Y 1% (p Tys0 + a Iyy<0)= 91|, = — oo.
J

51
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Solutions to stochastic recurrence equations.

e For an iid sequence ((A¢, Bt))icz, A, B > 0, the stochastic

recurrence equation
Xt:AtXt—1+Bt7 tEZ,

has a unique stationary solution
t—1
X¢ = B + Z Ao+ A By, teZ,

1=—00

provided Elog A < 0, Elog™ | B| < oo.
e The sequence (X;) is regularly varying with index a which is
the unique solution to E[A”]| = 1, k > 0, (given this solution

exists) Kesten (1973), Goldie (1991) and

P(Xo>x) ~crx™™, x— o0.
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e Regular variation of the finite-dimensional distributions.

Notice that with II;, = A;--- A;, = > 1,
(X1, X)) = (T, . .., TI,) Xo + Ra
We assume E[|B|*] < oo hence E[|R,|%] < oo and therefore
P(|R,| > ) = o(P(|Xo| > x)), r — 00 .

e Applications of the convolution and product rules for regularly
varying vectors (p. 46 and 48) yield the joint regular variation
of (X1,...,X,): for smooth sets C € (0, c0)",

Pz~ (X4,...,X,) € C)
— Epux,({y € (0,00) : (1,II4,...,II,1)y € C}).
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e But for b > 0,

P($_1X0 > b)

> b~ = pux,((b,00)), x— oo.

Hence

EH'Xo({y € (09 OO) . (Hla ceey Hn)y S C})

= / ay_a_l]P’((Hl,...,Hn)y € C) dy
0

e Then we also have as * — oo,

Pz~ (X1 ..+, Xp) € C | Xo > )
P(CIZ_l(Xl, o oo ,Xn) c C, CE_lXO > ]_)

— / ay ' P((Iy,...,I,)y € C)dy
1

= P(Y (Iy,...,I0I,) € C),
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where Y has a Pareto distribution with density ay= "1, y > 1,
independent of (II;).
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e The GARCH(1, 1) process’ satisfies a stochastic recurrence
equation: for an iid standard normal sequence (Z;), positive

parameters og, o1, 31,
GtZ = Qo T (alZf—1 + ﬁ1)03—1 .
The process X; = 0;Z; is regularly varying with index «
satisfying E(a, Z% + (3,)%/? = 1.
e Then, by Breiman’s result (see p. 30), as * — oo,
P(Xy > x) = P(ordy > ) ~ E(Zo)  P(oo > ) ~ E(Zp) crx™,
P(X, < —x) = P(6,Z; < —x) ~ E(Zo)% P(og > x) ~ E(Z)% cym™®.

e Compare with the tails of a stochastic volatility model on p. 31.

IBollerslev (1986)
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Other examples of regularly varying sequences.

e c-stable stationary processes are regularly varying with index

o & (O, 2) Samorodnitsky and Taqqu (1994)

e Max-stable stationary processes with Fréchet (®,) marginals

are regularly varying with index o > 0; see Section 8.

e The simple stochastic volatility model (see p. 31) with iid

regularly varying noise.
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6.2. Limiting representation of a regularly varying stationary

sequerice.

® Basrak and Segers (2009) found a useful representation of the limiting
measures of the finite-dimensional distributions of a regularly

varying sequence.
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e Theorem. Assume that (X;) is an R%valued strictly stationary
sequence. TFAE to regular variation of (X;) with index a > 0.
(1) There exists a sequence (Y;) of R%valued random vectors
with P(|Yy| > =) = 7%, > 1, such that the following

conditional limit relation holds for every h > O:
IP<m_1()(09 <o 9Xh) S | |X0| > CL‘) — P((%v <o 9Yh) € ) )

(2) | Xo| is regularly varying with index a and there exists an

R4-valued process (0;) such that for every h > 0:
P(1Xo| ™ (Xoy -+ s X1) € « | [ Xol > 2) 5 P((@p,-..,00) €.

Moreover, the process (Y;) has representation Y (©;), where

y £ 1Yo|, and Y is independent of (©;).
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® Basrak and Segers (2009) refer to (Y;) and (©;) as the tail process and
tail spectral process, respectively.
e As a particular consequence we observe that the distribution of

®( is the spectral measure of X,. Indeed, we have

P(|Xo|™'Xo € - | | Xo| > ) = P(6q € -) .
Also, the distributions of ®,, k # 0, and ®( are in general not
the same. In general, |©| # 1 a.s. for k # 0. Also notice that,

in contrast to the sequence (X;), (Y;) and (®;) are not strictly

stationary.
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e Example. Assume (X;) iid regularly varying. Then, for k # 0,
e >0,

Pz Y X >e||Xo| >z) =Pz Xy >e) -0, x— co.
Thus 2~ ' X, - 0 and

(Yi,...,Y,) =(01,...,0,) =0 as. k>1.

e Example. Assume (X;) positive strictly stationary regularly

varying. Then the following limits exist (extremogram).

p(h) = CclirgOIP)(Xh >x | Xy > @)
= P(Y |Oy| > 1) :/ ay * 'P(|OL] >y ) dy
1

= Emin(1, |®|%), h>1.
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6.3. The extremal index of a regularly varying sequence revisited.

e The notion of extremal index originates from Newell (1964), Loynes
(1965), O’Brien (1974) and was made precise by Leadbetter (1983).

e The notion of extremal index depends on the definition of a
cluster of high level exceedances in the sequence (X4).

e Although it is “intuitively clear” what an extremal cluster
means (many unusually large values appear roughly at the
same time) an exact definition is not easy. Various probabilistic
definitions exist, depending on some asymptotic theory, in
particular on point process convergence Leadbetter et al. (1983), Falk et

al. (2004), Embrechts et al. (1997), Section 8.1, While for statistical purposes
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(estimation of 0) one has to be pragmatic since one cannot rely
on the form of a limiting point process.
e One way of defining a cluster in a sample X;,...,X,, is to split

the sample into blocks of equal size m:

Xla'"7Xm7Xm—|—17'"7X2m7°°'9X(kn—1)m—|—17"'7Xn-

k, = [n/m] for the number of (full) blocks.

e For asymptotic theory, it will be important that m = m,, — oo
and m = o(n).

e Now we simply assume that a block constitutes an extremal
cluster if there is at least one exceedance of the high threshold

u = u, | xr in this block, and the expected cluster size is given
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E(Z Iix,ouy | My > un)

t=1
- IPD()(t > Up s My > un)

B ; P(M,, > uy,)
B z’”’: P(X: > un) mP(X > u,) g1
 EP(My > up) P(My >w,) "

e We define the extremal index 6 as the limit of the reciprocal of

the expected cluster size of exceedances of u,, in a block of size
m:

P(M,, > u,
0 — lim 0, — lim ~Mm >tn)

provided this limit exists, and then 6 € [0, 1]."

10For positive @, Leadbetter (1983) showed that this definition is independent of the particular choice of a
threshold sequence u,, T TF.
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e Our next goal is to reduce the calculation of 8 to a problem for
finitely many random variables X;,...,X;. We use an
argument from Segers (2005); cf. Lemma 2.8 in Davis, Hsing (1995).

e Lemma. Assume u,, T *r = oo and the anti-clustering condition

lim lim sup P(M; ., > uy, | Xo > un) =0,

[—00 npn—oo
where M, ; = max,<;<¢ X; for s < t. Then the following relation

holds

lim limsup |60,, — P(M; < u, | Xo > u,)| =0,

l—00 nooo

and liminf, ... 0, > 0.
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e The anti-clustering condition prevents the sequence (X;) from
staying too long above the threshold u,. “No extremal
long-range dependence”.

e We conclude that if 8 = lim,,_,, 0,, exists,

lim limsup |0 — P(M; < u, | Xo > u,)| =0.

-0 npnooo

in agreement with 0’Brien’s (1987) characterization of the extremal

index as the limit

0 = lim P(M,;, <u, | Xo> u,)

for a sequence (l,,) with l,, = o(n), thresholds u,, T r such that
nF(u,) ~ 1 as n — oo, provided an asymptotic independence

and other conditions hold.
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Example. Basrak and Segers (2009) For a positive strictly stationary
regularly varying sequence (X;), satisfying the anti-clustering

condition, we know that the limits exists:
lim P(M; < u,, | Xo > uy,) = IP’(tr_riale} < 1)

| P(squ}Sl), [l — .
t>1

Hence the extremal index is given by

9 = P(Squt < 1) :IP(Y max ©, < 1)

t>1 t>1
2
= / ay‘“_lp(sup 0, < y_l) dy
1 t>1

— E|1 —sup @f}
- t>1 +

= E|sup ©; — sup @f} .
L >0 t>1
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Example. Recall that the solution to the stochastic recurrence
equation X; = A; X; 1 + By, t € Z, is regularly varying (see p. 52)
and the finite-dimensional distributions satisfy

Pz " (X1,...,X,) €C| Xo>z) — P(Y (Iy,...,II,) € C),
where Y has a Pareto distribution with density ay= %1, y > 1,
independent of II;, = A;---A;, « > 1. Hence

(©0,01,...,0,) = (1,,,...,1I,)

and

0 = E[supII}* — supII].
>0 t>1
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7. THE EXTREMOGRAM - AN ANALOG OF THE AUTOCORRELATION

FUNCTION
e Goals.

Find measure of serial extremal dependence in a strictly

stationary sequence (X4).

e Is there an analog of the sample autocorrelation function for

serial extremal dependence?

e Estimation of this function should be “uncomplicated” and

graphical visualization should be possible.
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7.1. A motivating example: the tail dependence coefficient.

e In risk management,'' the (upper) tail dependence coefficient
gained some popularity:

Ap = lim P(Xy > x| Xo>x), h>1.

r— 00

e If \;, = 0: no upper tail dependence as, for example, in a

non-trivial Gaussian stationary sequence.
® The definition of \;, requires that the limit exists.

e A sufficient condition is regular variation of (X;), i.e., the

finite-dimensional distributions of (X;) are regularly varying.

HFor example, McNeil et al. [40).
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Recall: Regularly varying strictly stationary time series

e A strictly stationary R?-valued sequence (X;) is regularly

varying with index a > 0: there exist limit measures p; # o,

h > 1, such that

Pz ' (Xy...,Xp) €4)
IP’(|X0| > {B)

>I,Lh('), Xr — OO.

e Equivalently, for any sequence (a,,) satisfying
P(|Xy| > a,) ~ n~! there exist limit measures u, # o, h > 1,

such that

nP(a; (Xis- -+ Xp) € 2) 2 pal-) .
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The upper tail dependence coefficient revisited

e Let (X;) be a strictly stationary real-valued sequence which is
regularly varying with index a > 0. Let A = B = (1,00) and
Yh = (XO, c ooy Xh) Then

A = lim P(X, > x| Xo > @)



The upper tail dependence coefficient revisited

e Let (X;) be a strictly stationary real-valued sequence which is
regularly varying with index a > 0. Let A = B = (1,00) and
Yh = (XO, c ooy Xh) Then

A = lim P(X, > x| Xo > @)

. P(z~'Y, € A x R}™! x B)
= 111
oo P(z-1Y, € A X RP)

73
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The upper tail dependence coefficient revisited

e Let (X;) be a strictly stationary real-valued sequence which is
regularly varying with index a > 0. Let A = B = (1,00) and
Yh = (XO, c ooy Xh) Then

A = lim P(Xp > x| Xy > @)

o P, € AX R;™ x B)
= 11
z—o0  P(x~1Y, € A X RE)
L P@TY, € Ax Ry ™! x B)/P(|Xo| > =)
= 111
z—o0  P(z=1Y, € A X Ry /P(| Xo| > z)
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The upper tail dependence coefficient revisited

e Let (X;) be a strictly stationary real-valued sequence which is

regularly varying with index a > 0. Let A = B = (1,00) and

Yh = (XO, . o .,Xh). Then

lim P(Xy, >« | Xo > x)

po P, € AX R x B)
T —00 Pz~ 'Y, € A X R})
s P@TYn € AXRGT X B)/P(|Xo| > @)
v—o0  P(z—1Y, € A X Ry /P(|Xo| > )
pn+1(A X Ry™' x B)

prt1(A X RE)
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7.2. Definition Davis, M. (2009).

e For an R%valued strictly stationary regularly varying sequence

(X;) and Borel sets A, B bounded away from zero the

12 is the limiting function

extremogram
nP(a 'Xo € A,a.'X, € B) — ppi1(A X Rg(h_l) X B)
= ~ap(h), h>0.

e Extremograms of the type

pap(h) = lim P(a 'X;, € B | a,'Xy € A)

n—0oo

. Pla;'Xo € A, a;'X;, € B)
= 111m
n— 00 P(G;lXO e A)

for sets A bounded away from zero are of main interest.

., h>0,

12A possible choice of (ay) is P(| Xo| > an) ~ n~1.
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® Since

I

n cov (I (41X, eB))

anXoeA}?

= n[P(a,'Xg € A,a "Xy, € B) — P(a,'Xy € A)P(a_'X, € B)]

— ’YAB(h) Z 0,

Yaa(h) vas(h)

1S a covariance matrix
vYBa(h) ’YBB(h))

the matrix function (

function.

e One can use the notions of time series analysis to describe the
extremal dependence structure in a strictly stationary

sequence.
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e One can define long/short range dependence in some
meaningful way or the spectral distribution for extremal events
in a strictly stationary sequence, or one can use the
extremogram to justify the selection of a particular time

sertes model.

e For example, the autocorrelation functions of a GARCH(1,1)
process and a stochastic volatility model can be very similar,

the extremogram of a stochastic volatility model vanishes while

it does not for a GARCH(1, 1) process.
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7.3. Examples. Take A = B = (1, 00).
e The AR(1) process X; = ¢ X;_1 + Z; with iid symmetric
regularly varying noise (Z;) with index o« and ¢ € (—1,1) has

the extremogram

vaa(h) = max(0, (sign(¢))"[¢|*") .
Short serial extremal dependence
e The extremogram of a GARCH(1, 1) process is not very
explicit, but v44(h) decays exponentially fast to zero. This is in
agreement with the geometric 8-mixing property of GARCH.

Short serial extremal dependence



80

® The stochastic volatility model with stationary Gaussian
(log o) and iid regularly varying (Z;) with index a > 0 has
extremogram vy 4(h) = 0 as in the iid case.

No serial extremal dependence



7.4. The sample extremogram.

e Let (X;) be strongly mixing (possibly vector-valued) regularly
varying.
e Assume m = m,, — oo and m,,/n — 0, and a,, — oo satisfies

P(|Xo| > a,,) ~ m~!. Then

m n
P (C) = - > Iix,jamecy

t=1

1s a consistent estimator of

p1(C) = lim mP(Xy/a, € C).

81
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e In particular,

EP,,(C) — ui(C),

var(Pn(C)) ~ —0*(C) = — | (C) +2 Y m(C)
for -

Th(C) = pri1(C x R » ©).

e For pq-continuity sets C bounded away from zero,

(%)”  [Pn(C) — mP(a;'Xy € C)] % N(0,05%(C)) .

(pre-asymptotic central limit theorem).

e An analogous result holds for finitely many sets C, ..., Ch.



e The ratio sample extremogram

m n—h
n Dt I{a;}XHheB,a;}XtEA}

pap(h) = o —n
" D i1 I{a;}XtEA}
?:_1h I{ar_rL1Xt+h€B ar_antEA}
— n I 9 h’ Z O 9
D t—1 {am!X:;€cA}
estimates

pap(h) = lim P(a "X, € B|a_ "X, € A)
—d(h—1)

AXR X B
_ Hnn(A X Ry ) n>o.

—dh
pri1(A X Ry)

83
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e Pre-asymptotic limit theory for the ratio estimator follows

from the previous central limit theory
nyi1/2/ ~ : : d
(—> / (PAB(Z) - PAB:m(”L)), — N(0,X),
m 1=0,...,h

where pap.,(h) = P(a;,Lth € B | a;leo € A).
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Ficure 17. The ratio sample extremogram with sample size n = 100, 000 for the GARCH(1, 1) (left)
and stochastic volatility processes (right). A = B = (1, 00).
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Ficure 18. Ratio sample extremogram with A = B = (1, 00) for 5 minute returns of USD-DEM
foreign exchange rates. The extremogram alternates between large values at even lags and small
ones at odd lags. This is an indication of AR behavior with negative leading coefficient.



87

PROBLEMS

(1) The central limit theorem for the ratio sample estimator is
pre-asymptotic. (For applications, the pre-asymptotic centering
papm(h) =P(a'X, € B|a 'Xy € A) is more relevant than
its limit pap(h).)

(2) The asymptotic variance-covariance structure of the ratio
sample estimator depends on expressions which are unknown.

Two methods to overcome (2):

random permutations and stationary bootstrap.
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Ficure 19. Sample extremogram for the max-moving average MMA(2) process X; =
max(Zy, Zs_1, Zi_2) for an iid positive regularly varying sequence (Z;), A = B = (1,00).
The diamonds superimposed on the figure represent the population extremogram values. Confidence
bands are based on random permutations of the data.
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7.5. Bootstrapping the sample extremogram.

® The stationary bootstrap Politis and Romano (1994) is well suited for
the sample extremogram.
e Stationary bootstrap setup. Have data X;,..., X,, and
construct a bootstrap (BS) sample as follows: Generate
K., K,,...iid uniformon 1,...,n
Ly, L, ... iid geometric(p,)
e The BS sample is given by the first n values (in the circular

sense) in the sequence

XK]_, e o o ’XK1+L1_1,XK2, e o o ’XK2_|_L2_1, e o o o

e Mean block size 1/p,, — oo, mean number of blocks np,, — oo.



e The stationary bootstrap ratio sample extremogram is

consistent:
wl TV \1/2 [ . A .
P ((E> / (PAB(Z) - PAB(Z))

for continuity sets A of the limit distribution ® 5.

c A) L 35(A),

i=0,...,h

David, M., Cribben (2012)
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Ficure 21. Left:  95% bootstrap confidence bands for pre-asymptotic extremogram of 6440 daily
FTSE log-returns. Mean block size 200. Right: For the residuals of a fitted GARCH(1, 1) model.
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7.6. Variations on the theme Davis, M., Cribben (2012ab), Davis, M., Zhao (2013).
Cross-extremogram Consider a strictly stationary bivariate
regularly varying time series ((Xi, Y3))tcz-

For two sets A and B bounded away from 0, the

cross-ext remograirn

vyap(h) = lim P(Y, €xB| X, €z A), h>0,

is an extremogram based on the two-dimensional sets A X R and

R X B.

The corresponding sample cross-extremogram for the time series

(X, Y2) ez
n—h
b\A B(h) _ t=1 I{Yi—l—heam,YBaXtEam,XA}
, Z?:l I{Xteam,XA}
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FIGURE

24. 5-minute log-return series of FX data and their sample autocorrelation functions: USD-FRF (top), USD-DEM (bottom).
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FIGURE 25. The sample cross-correlation function of the FX data (left) and their extremograms (right)
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The extremogram of return times between rare events.

e We say that X, is extreme if X; € x A for a set A bounded
away from zero and large x.

e If the return times were truly iid, the successive waiting times
between extremes should be iid geometric.

e Using the histogram of waiting times, this hypothesis can be
verified.

® The corresponding return times extremogram is given by

pa(h)

lim P(X; €xA,..., Xp 1 €A, X € xA| Xy € £A)

Hr1(A X (A9)"71 x A)

= — , h>0.
pry1(A X Ry)
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® The return times sample extremogram is then defined as

n—h
t=1 I{Xt+h€amA,Xt+h—1€amA,---,Xt+1 ZamA,Xi€amA}

pa(h) = -
> =1 LixicamA}

, h <n.

e It is consistent, asymptotically normal, and the stationary

bootstrap version has the same properties.
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Ficure 27. Left: Return times sample extremogram for extreme events with A = R\[&¢.05, &0.95]

for the daily log-returns of BAC using bootstrapped confidence intervals (dashed lines), geometric
probability mass function (light solid). Right: The corresponding extremogram for the residuals of
a fitted GARCH(1, 1) model (right).
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7.7. Frequency domain analysis M. and Zhao (2012).
e The extremogram for a given set A bounded away from zero
pa(h) = lim Pa'X,€ Ala,'Xo€ A), h>0,
is a correlation function.

® Therefore one can define the spectral density

@)

faA) =142 Zcos()\ h) pa(h) = Z e " ps(h).

h=1 h=—oc0

e We also introduce the periodogram for A € (0, 7):

, 2
La) BT e L axen
P,.(A) T et I{a;}XtEA}

m
n

an()\) —
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e One has EI,,4(A)/pu1(A) — fa(A) for A € (0, 7).
e As in classical time series analysis, fn 4(A) is not a consistent
estimator of f,(A): for distinct (fixed or Fourier) frequencies

Aj, and iid standard exponential E;,

(an(Aj))j:L...,h A (fFA(XN)E;)j=1,..h -

----- ARMA
— Spectral density

.
vy
"
'y
M)
M)
n.:,
K

Periodogram

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Frequency

Ficure 28. Sample extremogram and periodogram for ARMA(1,1) process with student(4) noise. A = (1, 00)
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e Smoothed versions of the periodogram converge to f(\):

If wn(j) 20, |7]| < sp — 00, 8p/1— 0, 3 51<,, wn(j) =1 and

D ljl<s, Wa(d) — 0 (e.g. wyu(j) = 1/(2s, + 1)) then for any

distinct Fourier frequencies A; such that A\; — A,

ST wa(@) Faa(Ng) = Fa(A), A€ (0,m).

|j|§3n

® These results do not follow from classical time series analysis:
the sequences (I (i, e A})tén constitute a triangular array of

rowwise stationary sequences.



o
5!
|
|
|
bl
° 1 1l
v
\,{ !
I
I
I
toghny
foght
S foan
g o foan i
- | |
o b
S R
o TR |
o PPN I
UL
[0} Pty '
o F e vy '
P :H .
! \
¢ _ et Ty :{E: :
¥ '
b
M
\
h
]
:
I
N —
\
nud 0
H Wi
my I W
Rt ‘ i
" : l‘l Vb n |:||:l:'l||:,:
' 0 )
“:‘:! ” ‘::l ! ":'l":|; I:‘”l"“'l': 'A'I:H:::‘.ulh:lM."ln
e L R

.y

---- ARMA
—— Spectral density

|
! |

4 N B \
] I \

4 ) [ n
[ TN SN T '
TR R T

Pivaen LN A LT U LRI

Y
N

R

v, T Py "
TN e punaT

I I I I
0.0 0.5 1.0 15

Frequency

Ficure 29. Raw and smoothed periodogram for ARMA(1,1) process with student(4) noise. A = (1, co)

I
2.0

I I
25 3.0

Periodogram

— ARMA

+ = Spectral density
--- Upper Bound
~~~~~~ Lower Bound

Frequency

105



106

o) 0 |
S S T Upper Bound
— Bank of America
- Lower Bound
(@]
© o
o
o
n
2
8
5 o g
o )
0 o O |
g 3 ¢
o
N
o
o
(@]
o 4
o
I [ [ [ [
0 100 200 300 400 0.0 05 1.0 15 2.0 25 3.0
Lag Frequency

Ficure 30. Sample extremogram and smoothed periodogram for BAC 5 minute returns. The end-of-
the day effects cannot be seen in the corresponding sample autocorrelation function.
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7.8. Problems and possible extensions.

e Frequency based tools for distinguishing between time series
models based on their extremes. (Goodness-of-fit tests. Zhao (2014)
in progress

e Choice of the threshold (a,) (depending on the data) Holger Drees;

Rafal Kulik, Philippe Soulier

e The extremogram for spatio-temporal data, estimating
max-stable processes with the extremogram,... Richard A. Davis and

co-workers, Claudia Kliippelberg, Christina Steinkohl,....

e Extremogram for functional data.
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8. MAX-STABLE PROCESSES WITH FRECHET MARGINALS

e Max-stable processes and random fields have recently attracted
some attention for modeling spatio-temporal extremal
phenomena.

e Recall that a max-stable random variable X satisfies

' (M,—b) =X, n>1,

n

for suitable constants ¢,, > 0 and d,, € R, iid copies (X;) of X.

® We will assume that X has a Fréchet distribution function

(81

®,(x) =e® ", x > 0. Then ¢, = n'* and d,, = 0.
® A Fréchet random variable has the following useful

representation.
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e Lemma. Let
'i=°kE,+---+E;, ©2>1,
be an iid standard exponential sequence (E;), independent of
an iid sequence (V;) of positive random variables with
E[V9] < oo for some a > 0. Then sup;-, I‘,L-_l/aVi has a Fréchet

E[V*]

P, distribution.

e Note. The counting process

N@)=#{i>1:T;<t}, t>0,

is a unit rate homogeneous Poisson process. Given N (t) = k,
d
(I‘l,...,I‘k | N(t) — k) — t(U(l),...U(k))

for the order statistics of an iid uniform sample on (0, 1).



110

e Proof. Let (U;) be iid uniform on (0, 1), independent of N and

(V). Using the order statistics property of IV, for > 0,

lim K

t—o0

P

sup I‘z-_l/aVz- < :B)
i>1
lim E

t—o0

lim K

t—o0

lim E

t—o0

lim e
t—00

t—o0

e

_IP’( sup I‘i_l/aVi < x| N(t))}

L \i<N (D)

IP( sup (tU(i))_l/O‘V,- < x| N(t))}
- t<N(t)

IP( sup (tU;)" YV, < x| N(t))}
L \i<N ()

Iim e

() ovs <)

—Q t.’Ea

T 0 ]P’(V1a>y) dy

EVE) = GEVE)(g) |
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8.1. Definition de Haan (1984).

e A (positive) max-stable process (Y;)ter, T C R with Fréchet

marginals: for iid copies (Y;(i))tET, 1t =1,2,..., of (Yo)ier,

/e i d
n~" (ifllaxn Yt( ))tET = (Yi)ter, mn=>1.

e Then, in particular, all one-dimensional marginals of the
process (Y;):cr are Fréchet distributed, i.e. Y; has distribution
®<() for some function c(t) > 0, t € T.

e Example (de Haan (1984)). 0 < I'y < I'y < -+, independent of the

iid sequence (U;) uniform on (0,1), (f;) non-negative functions

with E[f2(U;)] < oo.



112

e Then the process

Y, = Sg—?rz‘_l/aft(Ui)v teT,
is max-stable with F;échet marginals.
e We have to show (max-stability): For any t; € T, ; > 0,
t1=1,....m,n>1,
P(Yi, < x1y.. 3 Y, < ) = PV, < 20/, .., Y,, < zmn'/?).

e In view of the Lemma:

P(Yy < @1y...,Y;,, < @) = P(sup I‘i_l/a max (f(U;)/xy) < 1)
i>1 1<t<m

— e Emaxy<i<m (ft(U)/xt)”

— e fol maxlgtgm(ft(u)/ivt)a du .
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e Then the process

Y, = Sg—?rrb’_l/aft(Ui), teT,
is max-stable with F;échet marginals.
e We have to show (max-stability): For any t; € T, ; > 0,
t1=1,....m, n > 1,
P(Yi, < x1y.. 3 Y, < ) = PV, < 20/, .., Y,, < zmn'/?).

e In view of the Lemma:

P(Yy < @1y...,Y;,, < @) = P(sup I‘i_l/a max (f(U;)/xy) < 1)
i>1 1<t<m

e—E max) <t<m (St (U)/xt)*

— oo masiciem (fu(w)/ (0! Ow0)* du

e Max-stability is immediate. []
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8.2. Characterization of a-Fréchet max-stable processes.

e This Example already yields an almost complete
characterization of the finite-dimensional distributions of a
max-stable process.

® De Haan (1984) gave a complete characterization (we consider the
case T' = Z only).

® Theorem. The finite-dimensional distributions of a max-stable
sequence (Y;)icz with Fréchet marginals with index a« > 0

satisfy the relation for ; > 0,2 =1,...,m, m > 1,

— Jrn maxi<p(yt/zt)* Gm(dy)

P(Yigajla'"aYmSwm):e + ’
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where G,,, is the m-dimensional restriction to RT of a finite
measure on R,

e Moreover, there exists a finite measure p on [0, 1] such that
(Y:) has representation

(8.2) Y, =supl; Y*f(T})), tezZ,
i>1

where ((I';, T;))i=1,2,... is an enumeration of PRM/(Lebesgue X p)
on (0,00) X [0,1], (f:) are suitable non-negative measurable
functions on [0, 1] such that E[f*(T1)] = fol f(x)p(dx) < oo.

® Kabluchko (2009): any max-stable process (Y;)ier, T C R, with
a-Fréchet marginals has representation (8.2), f; € L%(E, £,v),

t € T, v a o-finite measure on the Borel o-field £ of the state
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space E, ((I';, T;)):;>1 are the points of a PRM/(Lebesgue X v) on
the state space R, X E.

e Using the same notation, one can introduce de Haan’s (1984)

extremal integral

Y,
/ fdM = sup I‘i_l/af(Ti) ,
E

i>1

where, as above f is a non-negative function in L*(E, £,v), and
M2 is an a-Fréchet random sup-measure with control

measure v.
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® Stoev (2008) proved that va JfdM?> has various properties similar
to the a-stable integrals; see Samorodnitsky and Taqqu (1994). A pI‘OOf

similar to the Example above yields
IP’(/EV fdMT < a:) — exp {—m_a/Efo‘du} = <I>£Efad"(a3) :
e The integral representation of a max-stable process is
convenient. For example, for any f; € L%(E, £,v), x; > 0,
t=1,....m, m > 1,

V
P(/ fth’?Swt,t:]_,...,m)
E

\Y

= IP( max (fi/x:)dM> < 1)

E t:1,...,m

=1,...,m

= exp {— max (ft/a:t)adl/} :
pt
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e We also have for x = (1,...,2,,) > 0 and y — oo,

y[1—P /Vftha <yomt=1,...,m)]
— yp( —Le / fidMg), & [o,x])
= y(l —eXp{—y_1 max (ft/wt) dV})

E t=1,..

(8.3) = | max (fi/x)*dv = pm,a ([0, x]°) .

Thus the finite-dimensional distributions of a max-stable
process (Y;)icr are regularly varying with index a and limiting

measure fm,. given by (8.3).
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8.3. Stationary max-stable processes.

e Recently, strictly stationary max-stable processes (Y;)er for
T = Z or T = R have attracted some attention. Such a process

has again integral representation

\Y
n:/ fth,?a tel,
E

where the family of functions (f;) has to satisfy some particular
conditions to ensure strict stationarity, ergodicity, mixing, and

other desirable properties; see Kabluchko (2009), Stoev (2008).
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e Example. Since (Y;) is regularly varying with index a one can
define its extremogram. For example, the extremogram with

respect to the set (1,00) is given by

lim P(z7'Y, > 1| 27'Y, > 1)

P(z~! min(Yy, Yz) > 1)
P(Yo > x)
. 1 —exp{— ™ ® [ min(f&, f)dv}
Z— 00 1 —exp{—z [, fidv}
Jp min(f§, f¥)dv
fE fo'dv .

p(h)
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e It is also straightforward to calculate the extremal index of (Y;)
provided it exists.
e Consider (a,) satisfying
P(Yo > @) = 1 — e~ fe 0,

ie. a, ~n'*( [, g‘du)l/a

P(agl max Y; < m) = exp{—a;aw_a/trrllax ffdl/}
B t=

. Then, for x > 0,

t=1,...,m yeoesTl

T g make,.. ”fad'//f f§dv(1+o(1))
— [(I)a(:n)} " =1 ¢ EJo .
If the limit
HY — lim le maxt—i,...,n ftadl/
e f]E Jodv

exists it is the extremal index of (Y;).
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The Brown-Resnick process Brown, Resnick (1977).

e Has representation

(8.4) Y, = sup I} /*eWil)=050°(®) = ¢ c R,
1>1

where 0 < I'; < I's < --- are the points of a unit rate
homogeneous Poisson process on (0, c0), independent of an iid
sequence (W;) of sample continuous zero-mean Gaussian
processes on R with stationary increments and variance

2. e.g. Brownian motions or fractional Brownian

function o
motions.
e The max-stable process (8.4) is stationary; see Kabluchko, Schlather,

de Haan (2009). In this paper, the authors also consider the case of

max-stable random fields, i.e. W is a mean zero Gaussian
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random field with stationary increments. They show that its

distribution only depends on the variogram
V(h) =var(W(t+h) — W(t)), teR? heR".

e The Brown-Resnick process has attracted some attention; see
€.g. Kabluchko (2009), Kabluchko et al. (2009), Stoev (2008), Oesting, Kabluchko,
Schlather (2012). The processes (8.4) can be extended to random
fields on RY. These fields found various applications for
modeling spatio-temporal extremal effects; see e.g. Kabluchko et al.
(2009), Davis, Kliippelberg, Steinkohl (2013), Davison, Padoan, Ribatet (2012).

e The Brown-Resnick process cannot be simulated in a naive way
by mimicking the formula (8.4) and replacing the supremum

over an infinite index set by a finite one.
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e For example, assume that W is standard Brownian motion.
Then (e ()-05%),5, is a martingale with expectation 1. On the
other hand, by virtue of the law of the iterated logarithm,

eW =05t _, 0 a.s. exponentially fast as t — oco. For every finite

—1/o _W,;(t)—0.50
M, SUP <<, L) eWi)

") — 0 exponentially fast as
t — oo. This fact turns the simulation of (Y;) into a
complicated problem; see e.g. Schlather (2002), Oesting et al. (2012), M.,

Dieker (2014)
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coords.x2
coords.x2
coords.x2

coords.x1 coords.x1 coords.x1

FIGURE 31. Sample of a Brown-Resnick random field on [0, 5] with variogram ~(t) = [¢|*/2 for @ = 1/2, a = 1, o = 3/2
from left to right, respectively. The grid mesh is 0.1.
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9. CONCLUDING REMARKS

e Over the last 10-15 years, multivariate regular variation has
become a major tool for dealing with extremes in time series
and spatial data.

e Regularly varying structures (such as regularly varying time
series, max-stable processes and random fields) are flexible
models for the extreme part of the data.

e This means that regular variation is well suited for describing
both tails and dependence of extremal events in space and time

beyond second order characteristics (covariances).
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e Important parts of the theory were left out in this course:

(1) Asymptotic theory for point processes, partial sums,
maxima, large deviations,... acting on dependent regularly
varying structures. e.g. Davis, Hsing (1995), Basrak, Segers (2009), M.,
Wintenberger (2013a,b)

(2) The statistical theory of these processes is far from being
complete.

(3) Functional regular variation. e.g. de Haan, Tao (2003), Davis, M. (2006)

(4) Regularly varying random matrices. e.g. Soshnikov (2006), Ben Arous
and Guionnet (2008), Belinschi, Dembo, Guionnet (2009), Bose, Hazra, Saha (2010),

Davis, M., Pfaffel (2013)
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(5) Simulation of max-stable and other regularly varying
structures. e.g. Schlather (2002), Oesting et al. (2012)

(6) Beyond the regularly varying case, the literature on
moderately heavy-tailed multivariate structures and time
series is sparse (e.g. natural generalisations of

subexponentiality to higher dimensions).
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