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Usages of simulation in Econometrics

Similar exploration of simulation-based techniques in Econometrics

• Simulated method of moments

• Method of simulated moments

• Simulated pseudo-maximum-likelihood

• Indirect inference

[Gouriéroux & Monfort, 1996]



Simulated method of moments

Given observations yo
1:n from a model

yt = r(y1:(t−1), εt , θ) , εt ∼ g(·)

simulate ε?1:n, derive

y?t (θ) = r(y1:(t−1), ε
?
t , θ)

and estimate θ by

arg min
θ

n∑
t=1

(yo
t − y?t (θ))2
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Method of simulated moments

Given a statistic vector K (y) with

Eθ[K (Yt)|y1:(t−1)] = k(y1:(t−1); θ)

find an unbiased estimator of k(y1:(t−1); θ),

k̃(εt , y1:(t−1); θ)

Estimate θ by

arg min
θ

∣∣∣∣∣
∣∣∣∣∣

n∑
t=1

[
K (yt)−

S∑
s=1

k̃(εst , y1:(t−1); θ)/S

]∣∣∣∣∣
∣∣∣∣∣

[Pakes & Pollard, 1989]



Indirect inference

Minimise (in θ) the distance between estimators β̂ based on
pseudo-models for genuine observations and for observations
simulated under the true model and the parameter θ.

[Gouriéroux, Monfort, & Renault, 1993;
Smith, 1993; Gallant & Tauchen, 1996]



Indirect inference (PML vs. PSE)

Example of the pseudo-maximum-likelihood (PML)

β̂(y) = arg max
β

∑
t

log f ?(yt |β, y1:(t−1))

leading to

arg min
θ
||β̂(yo)− β̂(y1(θ), . . . , yS(θ))||2

when
ys(θ) ∼ f (y|θ) s = 1, . . . ,S



Indirect inference (PML vs. PSE)

Example of the pseudo-score-estimator (PSE)

β̂(y) = arg min
β

{∑
t

∂ log f ?

∂β
(yt |β, y1:(t−1))

}2

leading to

arg min
θ
||β̂(yo)− β̂(y1(θ), . . . , yS(θ))||2

when
ys(θ) ∼ f (y|θ) s = 1, . . . ,S



Consistent indirect inference

...in order to get a unique solution the dimension of
the auxiliary parameter β must be larger than or equal to
the dimension of the initial parameter θ. If the problem is
just identified the different methods become easier...

Consistency depending on the criterion and on the asymptotic
identifiability of θ

[Gouriéroux, Monfort, 1996, p. 66]
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AR(2) vs. MA(1) example

true (AR) model
yt = εt − θεt−1

and [wrong!] auxiliary (MA) model

yt = β1yt−1 + β2yt−2 + ut

R code
x=eps=rnorm(250)

x[2:250]=x[2:250]-0.5*x[1:249]

simeps=rnorm(250)

propeta=seq(-.99,.99,le=199)

dist=rep(0,199)

bethat=as.vector(arima(x,c(2,0,0),incl=FALSE)$coef)

for (t in 1:199)

dist[t]=sum((as.vector(arima(c(simeps[1],simeps[2:250]-propeta[t]*

simeps[1:249]),c(2,0,0),incl=FALSE)$coef)-bethat)^2)



AR(2) vs. MA(1) example

One sample:
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AR(2) vs. MA(1) example

Many samples:
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Choice of pseudo-model

Pick model such that

1 β̂(θ) not flat
(i.e. sensitive to changes in θ)

2 β̂(θ) not dispersed (i.e. robust agains changes in ys(θ))

[Frigessi & Heggland, 2004]



ABC using indirect inference (1)

We present a novel approach for developing summary statistics
for use in approximate Bayesian computation (ABC) algorithms by
using indirect inference(...) In the indirect inference approach to
ABC the parameters of an auxiliary model fitted to the data become
the summary statistics. Although applicable to any ABC technique,
we embed this approach within a sequential Monte Carlo algorithm
that is completely adaptive and requires very little tuning(...)

[Drovandi, Pettitt & Faddy, 2011]

c© Indirect inference provides summary statistics for ABC...



ABC using indirect inference (2)

...the above result shows that, in the limit as h→ 0, ABC will
be more accurate than an indirect inference method whose auxiliary
statistics are the same as the summary statistic that is used for
ABC(...) Initial analysis showed that which method is more
accurate depends on the true value of θ.

[Fearnhead and Prangle, 2012]

c© Indirect inference provides estimates rather than global inference...
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Genetic background of ABC

ABC is a recent computational technique that only requires being
able to sample from the likelihood f (·|θ)

This technique stemmed from population genetics models, about
15 years ago, and population geneticists still contribute
significantly to methodological developments of ABC.

[Griffith & al., 1997; Tavaré & al., 1999]



Population genetics

[Part derived from the teaching material of Raphael Leblois, ENS Lyon, November 2010]

• Describe the genotypes, estimate the alleles frequencies,
determine their distribution among individuals, populations
and between populations;

• Predict and understand the evolution of gene frequencies in
populations as a result of various factors.

c© Analyses the effect of various evolutive forces (mutation, drift,
migration, selection) on the evolution of gene frequencies in time
and space.



Wright-Fisher model
Le modèle de Wright-Fisher 

•! En l’absence de mutation et de 

sélection, les fréquences 

alléliques dérivent (augmentent 

et diminuent) inévitablement 

jusqu’à la fixation d’un allèle 

•! La dérive conduit donc à la 

perte de variation génétique à 

l’intérieur des populations 

• A population of constant
size, in which individuals
reproduce at the same time.

• Each gene in a generation is
a copy of a gene of the
previous generation.

• In the absence of mutation
and selection, allele
frequencies derive inevitably
until the fixation of an
allele.



Coalescent theory

[Kingman, 1982; Tajima, Tavaré, &tc]
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Coalescence theory interested in the genealogy of a sample of
genes back in time to the common ancestor of the sample.



Common ancestor
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Modélisation du processus de dérive génétique 

en “remontant dans le temps” 

jusqu’à l’ancêtre commun d’un échantillon de gènes 

Les différentes 

lignées fusionnent 

(coalescent) au fur 
et à mesure que 

l’on remonte vers le 

passé 

The different lineages merge when we go back in the past.



Neutral mutations

20 

Arbre de coalescence et mutations 

Sous l’hypothèse de neutralité des marqueurs génétiques étudiés, 

les mutations sont indépendantes de la généalogie 

i.e. la généalogie ne dépend que des processus démographiques 

On construit donc la généalogie selon les paramètres 

démographiques (ex. N), 

 puis on ajoute a posteriori les 

mutations sur les différentes 

branches, du MRCA au feuilles de 

l’arbre 

On obtient ainsi des données de 

polymorphisme sous les modèles 

démographiques et mutationnels 

considérés 

• Under the assumption of
neutrality, the mutations
are independent of the
genealogy.

• We construct the genealogy
according to the
demographic parameters,
then we add a posteriori the
mutations.



Neutral model at a given microsatellite locus, in a closed
panmictic population at equilibrium

Kingman’s genealogy
When time axis is
normalized,
T (k) ∼ Exp(k(k−1)/2)

Mutations according to
the Simple stepwise
Mutation Model
(SMM)
• date of the mutations ∼
Poisson process with
intensity θ/2 over the
branches
• MRCA = 100
• independent mutations:
±1 with pr. 1/2
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Neutral model at a given microsatellite locus, in a closed
panmictic population at equilibrium

Observations: leafs of the tree
θ̂ =?

Kingman’s genealogy
When time axis is
normalized,
T (k) ∼ Exp(k(k−1)/2)

Mutations according to
the Simple stepwise
Mutation Model
(SMM)
• date of the mutations ∼
Poisson process with
intensity θ/2 over the
branches
• MRCA = 100
• independent mutations:
±1 with pr. 1/2



Much more interesting models. . .

• several independent locus
Independent gene genealogies and mutations

• different populations
linked by an evolutionary scenario made of divergences,
admixtures, migrations between populations, selection
pressure, etc.

• larger sample size
usually between 50 and 100 genes

A typical evolutionary scenario:

MRCA

POP 0 POP 1 POP 2

τ1

τ2



Demo-genetic inference

Each model is characterized by a set of parameters θ that cover
historical (time divergence, admixture time ...), demographics
(population sizes, admixture rates, migration rates, ...) and genetic
(mutation rate, ...) factors

The goal is to estimate these parameters from a dataset of
polymorphism (DNA sample) y observed at the present time

Problem: most of the time, we can not calculate the likelihood of
the polymorphism data f (y|θ).



Untractable likelihood

Missing (too missing!) data structure:

f (y|θ) =

∫
G

f (y|G ,θ)f (G |θ)dG

The genealogies are considered as nuisance parameters.

This problematic thus differs from the phylogenetic approach
where the tree is the parameter of interesst.



Instance of ecological questions [message in a beetle]

• How the Asian Ladybird
beetle arrived in Europe?

• Why does they swarm right
now?

• What are the routes of
invasion?

• How to get rid of them?

[Lombaert & al., 2010, PLoS ONE]
beetles in forests



Worldwide invasion routes of Harmonia Axyridis

For each outbreak, the arrow indicates the most likely invasion
pathway and the associated posterior probability, with 95% credible
intervals in brackets

[Estoup et al., 2012, Molecular Ecology Res.]



Worldwide invasion routes of Harmonia Axyridis

For each outbreak, the arrow indicates the most likely invasion
pathway and the associated posterior probability, with 95% credible
intervals in brackets

[Estoup et al., 2012, Molecular Ecology Res.]



Approximate Bayesian computation
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Untractable likelihoods

Cases when the likelihood function
f (y|θ) is unavailable and when the
completion step

f (y|θ) =

∫
Z

f (y, z|θ) dz

is impossible or too costly because of
the dimension of z
c© MCMC cannot be implemented!
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Illustrations

Example ()

Stochastic volatility model: for
t = 1, . . . ,T ,

yt = exp(zt)εt , zt = a+bzt−1+σηt ,

T very large makes it difficult to
include z within the simulated
parameters
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Illustrations

Example ()

Potts model: if y takes values on a grid Y of size kn and

f (y|θ) ∝ exp

{
θ
∑
l∼i

Iyl=yi

}

where l∼i denotes a neighbourhood relation, n moderately large
prohibits the computation of the normalising constant



Illustrations

Example (Genesis)

Phylogenetic tree: in population
genetics, reconstitution of a common
ancestor from a sample of genes via
a phylogenetic tree that is close to
impossible to integrate out
[100 processor days with 4
parameters]

[Cornuet et al., 2009, Bioinformatics]



The ABC method

Bayesian setting: target is π(θ)f (x |θ)

When likelihood f (x |θ) not in closed form, likelihood-free rejection
technique:

ABC algorithm

For an observation y ∼ f (y|θ), under the prior π(θ), keep jointly
simulating

θ′ ∼ π(θ) , z ∼ f (z|θ′) ,

until the auxiliary variable z is equal to the observed value, z = y.

[Tavaré et al., 1997]
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Why does it work?!

The proof is trivial:

f (θi ) ∝
∑
z∈D

π(θi )f (z|θi )Iy(z)

∝ π(θi )f (y|θi )
= π(θi |y) .

[Accept–Reject 101]



Earlier occurrence

‘Bayesian statistics and Monte Carlo methods are ideally
suited to the task of passing many models over one
dataset’

[Don Rubin, Annals of Statistics, 1984]

Note Rubin (1984) does not promote this algorithm for
likelihood-free simulation but frequentist intuition on posterior
distributions: parameters from posteriors are more likely to be
those that could have generated the data.



A as A...pproximative

When y is a continuous random variable, equality z = y is replaced
with a tolerance condition,

%(y, z) ≤ ε

where % is a distance

Output distributed from

π(θ) Pθ{%(y, z) < ε} ∝ π(θ|%(y, z) < ε)

[Pritchard et al., 1999]
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ABC algorithm

Algorithm 1 Likelihood-free rejection sampler 2

for i = 1 to N do
repeat

generate θ′ from the prior distribution π(·)
generate z from the likelihood f (·|θ′)

until ρ{η(z), η(y)} ≤ ε
set θi = θ′

end for

where η(y) defines a (not necessarily sufficient) statistic



Output

The likelihood-free algorithm samples from the marginal in z of:

πε(θ, z|y) =
π(θ)f (z|θ)IAε,y (z)∫

Aε,y×Θ π(θ)f (z|θ)dzdθ
,

where Aε,y = {z ∈ D|ρ(η(z), η(y)) < ε}.

The idea behind ABC is that the summary statistics coupled with a
small tolerance should provide a good approximation of the
posterior distribution:

πε(θ|y) =

∫
πε(θ, z|y)dz ≈ π(θ|y) .
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Convergence of ABC (first attempt)

What happens when ε→ 0?

If f (·|θ) is continuous in y , uniformly in θ [!], given an arbitrary
δ > 0, there exists ε0 such that ε < ε0 implies



Convergence of ABC (first attempt)

What happens when ε→ 0?

If f (·|θ) is continuous in y , uniformly in θ [!], given an arbitrary
δ > 0, there exists ε0 such that ε < ε0 implies

π(θ)
∫

f (z|θ)IAε,y (z) dz∫
Aε,y×Θ π(θ)f (z|θ)dzdθ

∈ π(θ)f (y|θ)(1∓ δ)µ(Bε)∫
Θ π(θ)f (y|θ)dθ(1± δ)µ(Bε)



Convergence of ABC (first attempt)

What happens when ε→ 0?

If f (·|θ) is continuous in y , uniformly in θ [!], given an arbitrary
δ > 0, there exists ε0 such that ε < ε0 implies

π(θ)
∫

f (z|θ)IAε,y (z) dz∫
Aε,y×Θ π(θ)f (z|θ)dzdθ

∈ π(θ)f (y|θ)(1∓ δ)����XXXXµ(Bε)∫
Θ π(θ)f (y|θ)dθ(1± δ)����XXXXµ(Bε)



Convergence of ABC (first attempt)

What happens when ε→ 0?

If f (·|θ) is continuous in y , uniformly in θ [!], given an arbitrary
δ > 0, there exists ε0 such that ε < ε0 implies

π(θ)
∫
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[Proof extends to other continuous-in-0 kernels Kε]



Convergence of ABC (second attempt)

What happens when ε→ 0?

For B ⊂ Θ, we have∫
B

∫
Aε,y

f (z|θ)dz∫
Aε,y×Θ π(θ)f (z|θ)dzdθ

π(θ)dθ =

∫
Aε,y

∫
B f (z|θ)π(θ)dθ∫

Aε,y×Θ π(θ)f (z|θ)dzdθ
dz

=

∫
Aε,y

∫
B f (z|θ)π(θ)dθ

m(z)

m(z)∫
Aε,y×Θ π(θ)f (z|θ)dzdθ

dz

=

∫
Aε,y

π(B|z)
m(z)∫

Aε,y×Θ π(θ)f (z|θ)dzdθ
dz

which indicates convergence for a continuous π(B|z).
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Probit modelling on Pima Indian women

Example (R benchmark)
200 Pima Indian women with observed variables

• plasma glucose concentration in oral glucose tolerance test

• diastolic blood pressure

• diabetes pedigree function

• presence/absence of diabetes

Probability of diabetes function of above variables

P(y = 1|x) = Φ(x1β1 + x2β2 + x3β3) ,

Test of H0 : β3 = 0 for 200 observations of Pima.tr based on a
g -prior modelling:

β ∼ N3(0, n
(

XTX)−1
)

Use of importance function inspired from the MLE estimate
distribution

β ∼ N (β̂, Σ̂)
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Pima Indian benchmark
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Figure: Comparison between density estimates of the marginals on β1

(left), β2 (center) and β3 (right) from ABC rejection samples (red) and
MCMC samples (black)

.



MA example

Back to the MA(q) model

xt = εt +

q∑
i=1

ϑiεt−i

Simple prior: uniform over the inverse [real and complex] roots in

Q(u) = 1−
q∑

i=1

ϑiu
i

under the identifiability conditions



MA example

Back to the MA(q) model

xt = εt +

q∑
i=1

ϑiεt−i

Simple prior: uniform prior over the identifiability zone, e.g.
triangle for MA(2)



MA example (2)

ABC algorithm thus made of

1 picking a new value (ϑ1, ϑ2) in the triangle

2 generating an iid sequence (εt)−q<t≤T

3 producing a simulated series (x ′t)1≤t≤T

Distance: basic distance between the series

ρ((x ′t)1≤t≤T , (xt)1≤t≤T ) =
T∑
t=1

(xt − x ′t)
2

or distance between summary statistics like the q autocorrelations

τj =
T∑

t=j+1

xtxt−j
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Comparison of distance impact

Evaluation of the tolerance on the ABC sample against both
distances (ε = 100%, 10%, 1%, 0.1%) for an MA(2) model
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Homonomy

The ABC algorithm is not to be confused with the ABC algorithm

The Artificial Bee Colony algorithm is a swarm based meta-heuristic
algorithm that was introduced by Karaboga in 2005 for optimizing
numerical problems. It was inspired by the intelligent foraging
behavior of honey bees. The algorithm is specifically based on the
model proposed by Tereshko and Loengarov (2005) for the foraging
behaviour of honey bee colonies. The model consists of three
essential components: employed and unemployed foraging bees, and
food sources. The first two components, employed and unemployed
foraging bees, search for rich food sources (...) close to their hive.
The model also defines two leading modes of behaviour (...):
recruitment of foragers to rich food sources resulting in positive
feedback and abandonment of poor sources by foragers causing
negative feedback.

[Karaboga, Scholarpedia]



ABC advances

Simulating from the prior is often poor in efficiency

Either modify the proposal distribution on θ to increase the density
of x ’s within the vicinity of y ...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation
and by developing techniques to allow for larger ε

[Beaumont et al., 2002]

.....or even by including ε in the inferential framework [ABCµ]
[Ratmann et al., 2009]
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ABC-NP

Better usage of [prior] simulations by
adjustement: instead of throwing away
θ′ such that ρ(η(z), η(y)) > ε, replace
θ’s with locally regressed transforms

(use with BIC)

θ∗ = θ − {η(z)− η(y)}Tβ̂ [Csilléry et al., TEE, 2010]

where β̂ is obtained by [NP] weighted least square regression on
(η(z)− η(y)) with weights

Kδ {ρ(η(z), η(y))}

[Beaumont et al., 2002, Genetics]



ABC-NP (regression)

Also found in the subsequent literature, e.g. in Fearnhead-Prangle (2012) :
weight directly simulation by

Kδ {ρ(η(z(θ)), η(y))}

or

1

S

S∑
s=1

Kδ {ρ(η(zs(θ)), η(y))}

[consistent estimate of f (η|θ)]

Curse of dimensionality: poor estimate when d = dim(η) is large...
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ABC-NP (density estimation)

Use of the kernel weights

Kδ {ρ(η(z(θ)), η(y))}

leads to the NP estimate of the posterior expectation∑
i θiKδ {ρ(η(z(θi )), η(y))}∑
i Kδ {ρ(η(z(θi )), η(y))}

[Blum, JASA, 2010]



ABC-NP (density estimation)

Use of the kernel weights

Kδ {ρ(η(z(θ)), η(y))}

leads to the NP estimate of the posterior conditional density∑
i K̃b(θi − θ)Kδ {ρ(η(z(θi )), η(y))}∑

i Kδ {ρ(η(z(θi )), η(y))}

[Blum, JASA, 2010]



ABC-NP (density estimations)

Other versions incorporating regression adjustments∑
i K̃b(θ∗i − θ)Kδ {ρ(η(z(θi )), η(y))}∑

i Kδ {ρ(η(z(θi )), η(y))}

In all cases, error

E[ĝ(θ|y)]− g(θ|y) = cb2 + cδ2 + OP(b2 + δ2) + OP(1/nδd)

var(ĝ(θ|y)) =
c

nbδd
(1 + oP(1))
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E[ĝ(θ|y)]− g(θ|y) = cb2 + cδ2 + OP(b2 + δ2) + OP(1/nδd)
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ABC-NP (density estimations)

Other versions incorporating regression adjustments∑
i K̃b(θ∗i − θ)Kδ {ρ(η(z(θi )), η(y))}∑

i Kδ {ρ(η(z(θi )), η(y))}

In all cases, error

E[ĝ(θ|y)]− g(θ|y) = cb2 + cδ2 + OP(b2 + δ2) + OP(1/nδd)

var(ĝ(θ|y)) =
c

nbδd
(1 + oP(1))

[standard NP calculations]



ABC-NCH

Incorporating non-linearities and heterocedasticities:

θ∗ = m̂(η(y)) + [θ − m̂(η(z))]
σ̂(η(y))

σ̂(η(z))

where

• m̂(η) estimated by non-linear regression (e.g., neural network)

• σ̂(η) estimated by non-linear regression on residuals

log{θi − m̂(ηi )}2 = log σ2(ηi ) + ξi

[Blum & François, 2009]
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ABC-NCH (2)

Why neural network?

• fights curse of dimensionality

• selects relevant summary statistics

• provides automated dimension reduction

• offers a model choice capability

• improves upon multinomial logistic

[Blum & François, 2009]
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ABC as knn

[Biau et al., 2013, Annales de l’IHP]

Practice of ABC: determine tolerance ε as a quantile on observed
distances, say 10% or 1% quantile,

ε = εN = qα(d1, . . . , dN)

• Interpretation of ε as nonparametric bandwidth only
approximation of the actual practice

[Blum & François, 2010]

• ABC is a k-nearest neighbour (knn) method with kN = NεN
[Loftsgaarden & Quesenberry, 1965]
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ABC consistency

Provided

kN/ log log N −→∞ and kN/N −→ 0

as N →∞, for almost all s0 (with respect to the distribution of
S), with probability 1,

1

kN

kN∑
j=1

ϕ(θj) −→ E[ϕ(θj)|S = s0]

[Devroye, 1982]

Biau et al. (2013) also recall pointwise and integrated mean square error
consistency results on the corresponding kernel estimate of the
conditional posterior distribution, under constraints

kN →∞, kN/N → 0, hN → 0 and hp
NkN →∞,
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Rates of convergence

Further assumptions (on target and kernel) allow for precise
(integrated mean square) convergence rates (as a power of the
sample size N), derived from classical k-nearest neighbour
regression, like

• when m = 1, 2, 3, kN ≈ N(p+4)/(p+8) and rate N−
4

p+8

• when m = 4, kN ≈ N(p+4)/(p+8) and rate N−
4

p+8 log N

• when m > 4, kN ≈ N(p+4)/(m+p+4) and rate N−
4

m+p+4

[Biau et al., 2013]

Drag: Only applies to sufficient summary statistics
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ABC inference machine

1 simulation-based methods in
Econometrics

2 Genetics of ABC

3 Approximate Bayesian
computation

ABC basics
Alphabet soup
ABC as an inference
machine
Automated summary
statistic selection

4 ABC for model choice

5 ABC model choice via random
forests



How Bayesian is aBc..?

• may be a convergent method of inference (meaningful?
sufficient? foreign?)

• approximation error unknown (w/o massive simulation)

• pragmatic/empirical B (there is no other solution!)

• many calibration issues (tolerance, distance, statistics)

• the NP side should be incorporated into the whole B picture

• the approximation error should also be part of the B inference



ABC-MCMC

Markov chain (θ(t)) created via the transition function

θ(t+1) =


θ′ ∼ Kω(θ′|θ(t)) if x ∼ f (x |θ′) is such that x = y

and u ∼ U(0, 1) ≤ π(θ′)Kω(θ(t)|θ′)
π(θ(t))Kω(θ′|θ(t))

,

θ(t) otherwise,

has the posterior π(θ|y) as stationary distribution
[Marjoram et al, 2003]
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ABC-MCMC (2)

Algorithm 2 Likelihood-free MCMC sampler

Use Algorithm 1 to get (θ(0), z(0))
for t = 1 to N do

Generate θ′ from Kω

(
·|θ(t−1)

)
,

Generate z′ from the likelihood f (·|θ′),
Generate u from U[0,1],

if u ≤ π(θ′)Kω(θ(t−1)|θ′)
π(θ(t−1)Kω(θ′|θ(t−1))

IAε,y (z′) then

set (θ(t), z(t)) = (θ′, z′)
else

(θ(t), z(t))) = (θ(t−1), z(t−1)),
end if

end for



Why does it work?

Acceptance probability does not involve calculating the likelihood
and

πε(θ
′, z′|y)

πε(θ
(t−1), z(t−1)|y)

× q(θ(t−1)|θ′)f (z(t−1)|θ(t−1))

q(θ′|θ(t−1))f (z′|θ′)

=
π(θ′)���

�XXXXf (z′|θ′) IAε,y (z′)

π(θ(t−1)) f (z(t−1)|θ(t−1)) IAε,y (z(t−1))

× q(θ(t−1)|θ′) f (z(t−1)|θ(t−1))

q(θ′|θ(t−1))���
�XXXXf (z′|θ′)
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ABCµ

[Ratmann, Andrieu, Wiuf and Richardson, 2009, PNAS]

Use of a joint density

f (θ, ε|y) ∝ ξ(ε|y, θ)× πθ(θ)× πε(ε)

where y is the data, and ξ(ε|y, θ) is the prior predictive density of
ρ(η(z), η(y)) given θ and y when z ∼ f (z|θ)

Warning! Replacement of ξ(ε|y, θ) with a non-parametric kernel
approximation.
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ABCµ details

Multidimensional distances ρk (k = 1, . . . ,K ) and errors
εk = ρk(ηk(z), ηk(y)), with

εk ∼ ξk(ε|y, θ) ≈ ξ̂k(ε|y, θ) =
1

Bhk

∑
b

K [{εk−ρk(ηk(zb), ηk(y))}/hk ]

then used in replacing ξ(ε|y, θ) with mink ξ̂k(ε|y, θ)

ABCµ involves acceptance probability

π(θ′, ε′)

π(θ, ε)

q(θ′, θ)q(ε′, ε)

q(θ, θ′)q(ε, ε′)

mink ξ̂k(ε′|y, θ′)
mink ξ̂k(ε|y, θ)



ABCµ details

Multidimensional distances ρk (k = 1, . . . ,K ) and errors
εk = ρk(ηk(z), ηk(y)), with

εk ∼ ξk(ε|y, θ) ≈ ξ̂k(ε|y, θ) =
1

Bhk

∑
b

K [{εk−ρk(ηk(zb), ηk(y))}/hk ]

then used in replacing ξ(ε|y, θ) with mink ξ̂k(ε|y, θ)
ABCµ involves acceptance probability

π(θ′, ε′)

π(θ, ε)

q(θ′, θ)q(ε′, ε)

q(θ, θ′)q(ε, ε′)

mink ξ̂k(ε′|y, θ′)
mink ξ̂k(ε|y, θ)



ABCµ multiple errors

[ c© Ratmann et al., PNAS, 2009]



ABCµ for model choice

[ c© Ratmann et al., PNAS, 2009]



Questions about ABCµ

For each model under comparison, marginal posterior on ε used to
assess the fit of the model (HPD includes 0 or not).

• Is the data informative about ε? [Identifiability]

• How is the prior π(ε) impacting the comparison?

• How is using both ξ(ε|x0, θ) and πε(ε) compatible with a
standard probability model? [remindful of Wilkinson ]

• Where is the penalisation for complexity in the model
comparison?

[X, Mengersen & Chen, 2010, PNAS]
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A PMC version

Use of the same kernel idea as ABC-PRC (Sisson et al., 2007) but
with IS correction
Generate a sample at iteration t by

π̂t(θ
(t)) ∝

N∑
j=1

ω
(t−1)
j Kt(θ

(t)|θ(t−1)
j )

modulo acceptance of the associated xt , and use an importance

weight associated with an accepted simulation θ
(t)
i

ω
(t)
i ∝ π(θ

(t)
i )
/
π̂t(θ

(t)
i ) .

c© Still likelihood free
[Beaumont et al., 2009]



ABC-PMC algorithm

Given a decreasing sequence of approximation levels ε1 ≥ . . . ≥ εT ,

1. At iteration t = 1,

For i = 1, ...,N

Simulate θ
(1)
i ∼ π(θ) and x ∼ f (x |θ(1)

i ) until %(x , y) < ε1

Set ω
(1)
i = 1/N

Take τ 2 as twice the empirical variance of the θ
(1)
i ’s

2. At iteration 2 ≤ t ≤ T ,

For i = 1, ...,N, repeat

Pick θ?i from the θ
(t−1)
j ’s with probabilities ω

(t−1)
j

generate θ
(t)
i |θ

?
i ∼ N (θ?i , σ

2
t ) and x ∼ f (x |θ(t)

i )

until %(x , y) < εt
Set ω(t)

i ∝ π(θ
(t)
i )/

∑N
j=1 ω

(t−1)
j ϕ

(
σ−1
t

{
θ

(t)
i − θ

(t−1)
j )

})
Take τ 2

t+1 as twice the weighted empirical variance of the θ
(t)
i ’s



Sequential Monte Carlo

SMC is a simulation technique to approximate a sequence of
related probability distributions πn with π0 “easy” and πT as
target.
Iterated IS as PMC: particles moved from time n to time n via
kernel Kn and use of a sequence of extended targets π̃n

π̃n(z0:n) = πn(zn)
n∏

j=0

Lj(zj+1, zj)

where the Lj ’s are backward Markov kernels [check that πn(zn) is a
marginal]

[Del Moral, Doucet & Jasra, Series B, 2006]



Sequential Monte Carlo (2)

Algorithm 3 SMC sampler

sample z
(0)
i ∼ γ0(x) (i = 1, . . . ,N)

compute weights w
(0)
i = π0(z

(0)
i )/γ0(z

(0)
i )

for t = 1 to N do
if ESS(w (t−1)) < NT then

resample N particles z(t−1) and set weights to 1
end if
generate z

(t−1)
i ∼ Kt(z

(t−1)
i , ·) and set weights to

w
(t)
i = w

(t−1)
i−1

πt(z
(t)
i ))Lt−1(z

(t)
i ), z

(t−1)
i ))

πt−1(z
(t−1)
i ))Kt(z

(t−1)
i ), z

(t)
i ))

end for

[Del Moral, Doucet & Jasra, Series B, 2006]



ABC-SMC

[Del Moral, Doucet & Jasra, 2009]

True derivation of an SMC-ABC algorithm
Use of a kernel Kn associated with target πεn and derivation of the
backward kernel

Ln−1(z , z ′) =
πεn(z ′)Kn(z ′, z)

πn(z)

Update of the weights

win ∝ wi(n−1)

∑M
m=1 IAεn (xm

in )∑M
m=1 IAεn−1

(xm
i(n−1))

when xm
in ∼ K (xi(n−1), ·)



ABC-SMCM

Modification: Makes M repeated simulations of the pseudo-data z
given the parameter, rather than using a single [M = 1] simulation,
leading to weight that is proportional to the number of accepted
zi s

ω(θ) =
1

M

M∑
i=1

Iρ(η(y),η(zi ))<ε

[limit in M means exact simulation from (tempered) target]



Properties of ABC-SMC

The ABC-SMC method properly uses a backward kernel L(z , z ′) to
simplify the importance weight and to remove the dependence on
the unknown likelihood from this weight. Update of importance
weights is reduced to the ratio of the proportions of surviving
particles
Major assumption: the forward kernel K is supposed to be invariant
against the true target [tempered version of the true posterior]

Adaptivity in ABC-SMC algorithm only found in on-line
construction of the thresholds εt , slowly enough to keep a large
number of accepted transitions
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A mixture example (2)

Recovery of the target, whether using a fixed standard deviation of
τ = 0.15 or τ = 1/0.15, or a sequence of adaptive τt ’s.
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Wilkinson’s exact BC

ABC approximation error (i.e. non-zero tolerance) replaced with
exact simulation from a controlled approximation to the target,
convolution of true posterior with kernel function

πε(θ, z|y) =
π(θ)f (z|θ)Kε(y − z)∫
π(θ)f (z|θ)Kε(y − z)dzdθ

,

with Kε kernel parameterised by bandwidth ε.
[Wilkinson, 2008]

Theorem

The ABC algorithm based on the assumption of a randomised
observation y = ỹ + ξ, ξ ∼ Kε, and an acceptance probability of

Kε(y − z)/M

gives draws from the posterior distribution π(θ|y).
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,

with Kε kernel parameterised by bandwidth ε.
[Wilkinson, 2008]

Theorem

The ABC algorithm based on the assumption of a randomised
observation y = ỹ + ξ, ξ ∼ Kε, and an acceptance probability of

Kε(y − z)/M

gives draws from the posterior distribution π(θ|y).



How exact a BC?

“Using ε to represent measurement error is
straightforward, whereas using ε to model the model
discrepancy is harder to conceptualize and not as
commonly used”

[Richard Wilkinson, 2008, 2013]



How exact a BC?

Pros

• Pseudo-data from true model and observed data from noisy
model

• Interesting perspective in that outcome is completely
controlled

• Link with ABCµ and assuming y is observed with a
measurement error with density Kε

• Relates to the theory of model approximation
[Kennedy & O’Hagan, 2001]

Cons

• Requires Kε to be bounded by M

• True approximation error never assessed

• Requires a modification of the standard ABC algorithm



Noisy ABC

Idea: Modify the data from the start

ỹ = y0 + εζ1

with the same scale ε as ABC
[ see Fearnhead-Prangle ] and

run ABC on ỹ

Then ABC produces an exact simulation from π(θ|ỹ) = π(θ|ỹ)
[Dean et al., 2011; Fearnhead and Prangle, 2012]
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Consistent noisy ABC

• Degrading the data improves the estimation performances:
• Noisy ABC-MLE is asymptotically (in n) consistent
• under further assumptions, the noisy ABC-MLE is

asymptotically normal
• increase in variance of order ε−2

• likely degradation in precision or computing time due to the
lack of summary statistic [curse of dimensionality]



Semi-automatic ABC

Fearnhead and Prangle (2010) study ABC and the selection of the
summary statistic in close proximity to Wilkinson’s proposal

ABC then considered from a purely inferential viewpoint and
calibrated for estimation purposes
Use of a randomised (or ‘noisy’) version of the summary statistics

η̃(y) = η(y) + τε

Derivation of a well-calibrated version of ABC, i.e. an algorithm
that gives proper predictions for the distribution associated with
this randomised summary statistic

[calibration constraint: ABC
approximation with same posterior mean as the true randomised
posterior]
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Summary statistics

• Optimality of the posterior expectation E[θ|y] of the
parameter of interest as summary statistics η(y)!

• Use of the standard quadratic loss function

(θ − θ0)TA(θ − θ0) .

bare summary
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Details on Fearnhead and Prangle (F&P) ABC

Use of a summary statistic S(·), an importance proposal g(·), a
kernel K (·) ≤ 1 and a bandwidth h > 0 such that

(θ, ysim) ∼ g(θ)f (ysim|θ)

is accepted with probability (hence the bound)

K [{S(ysim)− sobs}/h]

and the corresponding importance weight defined by

π(θ)
/

g(θ)

[Fearnhead & Prangle, 2012]



Errors, errors, and errors

Three levels of approximation

• π(θ|yobs) by π(θ|sobs) loss of information
[ignored]

• π(θ|sobs) by

πABC(θ|sobs) =

∫
π(s)K [{s− sobs}/h]π(θ|s) ds∫
π(s)K [{s− sobs}/h] ds

noisy observations

• πABC(θ|sobs) by importance Monte Carlo based on N
simulations, represented by var(a(θ)|sobs)/Nacc [expected
number of acceptances]

[M. Twain/B. Disraeli]



Average acceptance asymptotics

For the average acceptance probability/approximate likelihood

p(θ|sobs) =

∫
f (ysim|θ) K [{S(ysim)− sobs}/h] dysim ,

overall acceptance probability

p(sobs) =

∫
p(θ|sobs)π(θ) dθ = π(sobs)hd + o(hd)

[F&P, Lemma 1]



Optimal importance proposal

Best choice of importance proposal in terms of effective sample size

g?(θ|sobs) ∝ π(θ)p(θ|sobs)
1/2

[Not particularly useful in practice]

• note that p(θ|sobs) is an approximate likelihood

• reminiscent of parallel tempering

• could be approximately achieved by attrition of half of the
data
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Calibration of h

“This result gives insight into how S(·) and h affect the Monte
Carlo error. To minimize Monte Carlo error, we need hd to be not
too small. Thus ideally we want S(·) to be a low dimensional
summary of the data that is sufficiently informative about θ that
π(θ|sobs) is close, in some sense, to π(θ|yobs)” (F&P, p.5)

• turns h into an absolute value while it should be
context-dependent and user-calibrated

• only addresses one term in the approximation error and
acceptance probability (“curse of dimensionality”)

• h large prevents πABC(θ|sobs) to be close to π(θ|sobs)

• d small prevents π(θ|sobs) to be close to π(θ|yobs) (“curse of
[dis]information”)



Calibrating ABC

“If πABC is calibrated, then this means that probability statements
that are derived from it are appropriate, and in particular that we
can use πABC to quantify uncertainty in estimates” (F&P, p.5)

Definition

For 0 < q < 1 and subset A, event Eq(A) made of sobs such that
PrABC(θ ∈ A|sobs) = q. Then ABC is calibrated if

Pr(θ ∈ A|Eq(A)) = q

• unclear meaning of conditioning on Eq(A)
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Calibrated ABC

Theorem (F&P)

Noisy ABC, where

sobs = S(yobs) + hε , ε ∼ K (·)

is calibrated

[Wilkinson, 2008]
no condition on h!!



Calibrated ABC

Consequence: when h =∞

Theorem (F&P)

The prior distribution is always calibrated

is this a relevant property then?



More about calibrated ABC

“Calibration is not universally accepted by Bayesians. It is even more
questionable here as we care how statements we make relate to the
real world, not to a mathematically defined posterior.” R. Wilkinson

• Same reluctance about the prior being calibrated

• Property depending on prior, likelihood, and summary

• Calibration is a frequentist property (almost a p-value!)

• More sensible to account for the simulator’s imperfections
than using noisy-ABC against a meaningless based measure

[Wilkinson, 2012]



Converging ABC

Theorem (F&P)

For noisy ABC, the expected noisy-ABC log-likelihood,

E {log[p(θ|sobs)]} =

∫ ∫
log[p(θ|S(yobs) + ε)]π(yobs|θ0)K (ε)dyobsdε,

has its maximum at θ = θ0.

True for any choice of summary statistic? even ancilary statistics?!
[Imposes at least identifiability...]

Relevant in asymptotia and not for the data



Converging ABC

Corollary

For noisy ABC, the ABC posterior converges onto a point mass on
the true parameter value as m→∞.

For standard ABC, not always the case (unless h goes to zero).

Strength of regularity conditions (c1) and (c2) in Bernardo
& Smith, 1994?

[out-of-reach constraints on likelihood and posterior]
Again, there must be conditions imposed upon summary
statistics...



Loss motivated statistic

Under quadratic loss function,

Theorem (F&P)

(i) The minimal posterior error E[L(θ, θ̂)|yobs] occurs when
θ̂ = E(θ|yobs) (!)

(ii) When h→ 0, EABC(θ|sobs) converges to E(θ|yobs)

(iii) If S(yobs) = E[θ|yobs] then for θ̂ = EABC[θ|sobs]

E[L(θ, θ̂)|yobs] = trace(AΣ) + h2

∫
xTAxK (x)dx + o(h2).

measure-theoretic difficulties?
dependence of sobs on h makes me uncomfortable inherent to noisy
ABC
Relevant for choice of K ?



Optimal summary statistic

“We take a different approach, and weaken the requirement for
πABC to be a good approximation to π(θ|yobs). We argue for πABC

to be a good approximation solely in terms of the accuracy of
certain estimates of the parameters.” (F&P, p.5)

From this result, F&P

• derive their choice of summary statistic,

S(y) = E(θ|y)

[almost sufficient]

• suggest

h = O(N−1/(2+d)) and h = O(N−1/(4+d))

as optimal bandwidths for noisy and standard ABC.



Optimal summary statistic

“We take a different approach, and weaken the requirement for
πABC to be a good approximation to π(θ|yobs). We argue for πABC

to be a good approximation solely in terms of the accuracy of
certain estimates of the parameters.” (F&P, p.5)

From this result, F&P

• derive their choice of summary statistic,

S(y) = E(θ|y)

[wow! EABC[θ|S(yobs)] = E[θ|yobs]]

• suggest

h = O(N−1/(2+d)) and h = O(N−1/(4+d))

as optimal bandwidths for noisy and standard ABC.



Caveat

Since E(θ|yobs) is most usually unavailable, F&P suggest

(i) use a pilot run of ABC to determine a region of non-negligible
posterior mass;

(ii) simulate sets of parameter values and data;

(iii) use the simulated sets of parameter values and data to
estimate the summary statistic; and

(iv) run ABC with this choice of summary statistic.

where is the assessment of the first stage error?
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[my]questions about semi-automatic ABC

• dependence on h and S(·) in the early stage

• reduction of Bayesian inference to point estimation

• approximation error in step (i) not accounted for

• not parameterisation invariant

• practice shows that proper approximation to genuine posterior
distributions stems from using a (much) larger number of
summary statistics than the dimension of the parameter

• the validity of the approximation to the optimal summary
statistic depends on the quality of the pilot run

• important inferential issues like model choice are not covered
by this approach.

[Robert, 2012]



A Brave New World?!



ABC for model choice

1 simulation-based methods in
Econometrics

2 Genetics of ABC

3 Approximate Bayesian computation

4 ABC for model choice

5 ABC model choice via random forests



Bayesian model choice

Several models M1,M2, . . . are considered simultaneously for a
dataset y and the model index M is part of the inference.
Use of a prior distribution. π(M = m), plus a prior distribution on
the parameter conditional on the value m of the model index,
πm(θm)
Goal is to derive the posterior distribution of M, challenging
computational target when models are complex.



Generic ABC for model choice

Algorithm 4 Likelihood-free model choice sampler (ABC-MC)

for t = 1 to T do
repeat

Generate m from the prior π(M = m)
Generate θm from the prior πm(θm)
Generate z from the model fm(z|θm)

until ρ{η(z), η(y)} < ε
Set m(t) = m and θ(t) = θm

end for



ABC estimates

Posterior probability π(M = m|y) approximated by the frequency
of acceptances from model m

1

T

T∑
t=1

Im(t)=m .

Issues with implementation:

• should tolerances ε be the same for all models?

• should summary statistics vary across models (incl. their
dimension)?

• should the distance measure ρ vary as well?



ABC estimates

Posterior probability π(M = m|y) approximated by the frequency
of acceptances from model m

1

T

T∑
t=1

Im(t)=m .

Extension to a weighted polychotomous logistic regression estimate
of π(M = m|y), with non-parametric kernel weights

[Cornuet et al., DIYABC, 2009]



The Great ABC controversy

On-going controvery in phylogeographic genetics about the validity
of using ABC for testing

Against: Templeton, 2008,
2009, 2010a, 2010b, 2010c
argues that nested hypotheses
cannot have higher probabilities
than nesting hypotheses (!)



The Great ABC controversy

On-going controvery in phylogeographic genetics about the validity
of using ABC for testing

Against: Templeton, 2008,
2009, 2010a, 2010b, 2010c
argues that nested hypotheses
cannot have higher probabilities
than nesting hypotheses (!)

Replies: Fagundes et al., 2008,
Beaumont et al., 2010, Berger et
al., 2010, Csillèry et al., 2010
point out that the criticisms are
addressed at [Bayesian]
model-based inference and have
nothing to do with ABC...



Gibbs random fields

Gibbs distribution

The rv y = (y1, . . . , yn) is a Gibbs random field associated with
the graph G if

f (y) =
1

Z
exp

{
−
∑
c∈C

Vc(yc)

}
,

where Z is the normalising constant, C is the set of cliques of G
and Vc is any function also called potential sufficient statistic

U(y) =
∑

c∈C Vc(yc) is the energy function

c© Z is usually unavailable in closed form
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Potts model

Potts model

Vc(y) is of the form

Vc(y) = θS(y) = θ
∑
l∼i

δyl=yi

where l∼i denotes a neighbourhood structure

In most realistic settings, summation

Zθ =
∑
x∈X

exp{θTS(x)}

involves too many terms to be manageable and numerical
approximations cannot always be trusted

[Cucala, Marin, CPR & Titterington, 2009]
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Bayesian Model Choice

Comparing a model with potential S0 taking values in Rp0 versus a
model with potential S1 taking values in Rp1 can be done through
the Bayes factor corresponding to the priors π0 and π1 on each
parameter space

Bm0/m1
(x) =

∫
exp{θT

0 S0(x)}/Zθ0,0
π0(dθ0)∫

exp{θT
1 S1(x)}/Zθ1,1

π1(dθ1)

Use of Jeffreys’ scale to select most appropriate model



Bayesian Model Choice

Comparing a model with potential S0 taking values in Rp0 versus a
model with potential S1 taking values in Rp1 can be done through
the Bayes factor corresponding to the priors π0 and π1 on each
parameter space

Bm0/m1
(x) =

∫
exp{θT

0 S0(x)}/Zθ0,0
π0(dθ0)∫

exp{θT
1 S1(x)}/Zθ1,1

π1(dθ1)

Use of Jeffreys’ scale to select most appropriate model



Neighbourhood relations

Choice to be made between M neighbourhood relations

i
m∼ i ′ (0 ≤ m ≤ M − 1)

with
Sm(x) =

∑
i
m∼i ′

I{xi=xi′}

driven by the posterior probabilities of the models.



Model index

Formalisation via a model index M that appears as a new
parameter with prior distribution π(M = m) and
π(θ|M = m) = πm(θm)

Computational target:

P(M = m|x) ∝
∫

Θm

fm(x|θm)πm(θm) dθm π(M = m) ,
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Sufficient statistics

By definition, if S(x) sufficient statistic for the joint parameters
(M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .

For each model m, own sufficient statistic Sm(·) and
S(·) = (S0(·), . . . ,SM−1(·)) also sufficient.
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Sufficient statistics in Gibbs random fields

For Gibbs random fields,

x |M = m ∼ fm(x|θm) = f 1
m(x|S(x))f 2

m(S(x)|θm)

=
1

n(S(x))
f 2
m(S(x)|θm)

where
n(S(x)) = ] {x̃ ∈ X : S(x̃) = S(x)}

c© S(x) is therefore also sufficient for the joint parameters
[Specific to Gibbs random fields!]



ABC model choice Algorithm

ABC-MC

• Generate m∗ from the prior π(M = m).

• Generate θ∗m∗ from the prior πm∗(·).

• Generate x∗ from the model fm∗(·|θ∗m∗).

• Compute the distance ρ(S(x0), S(x∗)).

• Accept (θ∗m∗ ,m
∗) if ρ(S(x0),S(x∗)) < ε.

Note When ε = 0 the algorithm is exact



ABC approximation to the Bayes factor

Frequency ratio:

BFm0/m1
(x0) =

P̂(M = m0|x0)

P̂(M = m1|x0)
× π(M = m1)

π(M = m0)

=
]{mi∗ = m0}
]{mi∗ = m1}

× π(M = m1)

π(M = m0)
,

replaced with

B̂Fm0/m1
(x0) =

1 + ]{mi∗ = m0}
1 + ]{mi∗ = m1}

× π(M = m1)

π(M = m0)

to avoid indeterminacy (also Bayes estimate).
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Toy example

iid Bernoulli model versus two-state first-order Markov chain, i.e.

f0(x|θ0) = exp

(
θ0

n∑
i=1

I{xi=1}

)/
{1 + exp(θ0)}n ,

versus

f1(x|θ1) =
1

2
exp

(
θ1

n∑
i=2

I{xi=xi−1}

)/
{1 + exp(θ1)}n−1 ,

with priors θ0 ∼ U(−5, 5) and θ1 ∼ U(0, 6) (inspired by “phase
transition” boundaries).



Toy example (2)
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(left) Comparison of the true BFm0/m1
(x0) with B̂Fm0/m1

(x0) (in
logs) over 2, 000 simulations and 4.106 proposals from the prior.
(right) Same when using tolerance ε corresponding to the 1%
quantile on the distances.



Back to sufficiency

‘Sufficient statistics for individual models are unlikely to
be very informative for the model probability.’

[Scott Sisson, Jan. 31, 2011, X.’Og]

If η1(x) sufficient statistic for model m = 1 and parameter θ1 and
η2(x) sufficient statistic for model m = 2 and parameter θ2,
(η1(x), η2(x)) is not always sufficient for (m, θm)

c© Potential loss of information at the testing level
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Limiting behaviour of B12 (T →∞)

ABC approximation

B̂12(y) =

∑T
t=1 Imt=1 Iρ{η(zt),η(y)}≤ε∑T
t=1 Imt=2 Iρ{η(zt),η(y)}≤ε

,

where the (mt , z t)’s are simulated from the (joint) prior

As T go to infinity, limit

Bε
12(y) =

∫
Iρ{η(z),η(y)}≤επ1(θ1)f1(z|θ1) dz dθ1∫
Iρ{η(z),η(y)}≤επ2(θ2)f2(z|θ2) dz dθ2

=

∫
Iρ{η,η(y)}≤επ1(θ1)f η1 (η|θ1) dη dθ1∫
Iρ{η,η(y)}≤επ2(θ2)f η2 (η|θ2) dη dθ2

,

where f η1 (η|θ1) and f η2 (η|θ2) distributions of η(z)
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Limiting behaviour of B12 (ε→ 0)

When ε goes to zero,

Bη
12(y) =

∫
π1(θ1)f η1 (η(y)|θ1) dθ1∫
π2(θ2)f η2 (η(y)|θ2) dθ2

,

c© Bayes factor based on the sole observation of η(y)
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Limiting behaviour of B12 (under sufficiency)

If η(y) sufficient statistic for both models,

fi (y|θi ) = gi (y)f ηi (η(y)|θi )

Thus

B12(y) =

∫
Θ1
π(θ1)g1(y)f η1 (η(y)|θ1) dθ1∫

Θ2
π(θ2)g2(y)f η2 (η(y)|θ2) dθ2

=
g1(y)

∫
π1(θ1)f η1 (η(y)|θ1) dθ1

g2(y)
∫
π2(θ2)f η2 (η(y)|θ2) dθ2

=
g1(y)

g2(y)
Bη

12(y) .

[Didelot, Everitt, Johansen & Lawson, 2011]

c© No discrepancy only when cross-model sufficiency
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Poisson/geometric example

Sample
x = (x1, . . . , xn)

from either a Poisson P(λ) or from a geometric G(p) Then

S =
n∑

i=1

yi = η(x)

sufficient statistic for either model but not simultaneously

Discrepancy ratio

g1(x)

g2(x)
=

S!n−S/
∏

i yi !

1
/(n+S−1

S

)



Poisson/geometric discrepancy

Range of B12(x) versus Bη
12(x) B12(x): The values produced have

nothing in common.



Formal recovery

Creating an encompassing exponential family

f (x|θ1, θ2, α1, α2) ∝ exp{θT
1 η1(x) + θT

1 η1(x) + α1t1(x) + α2t2(x)}

leads to a sufficient statistic (η1(x), η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]



Formal recovery

Creating an encompassing exponential family

f (x|θ1, θ2, α1, α2) ∝ exp{θT
1 η1(x) + θT

1 η1(x) + α1t1(x) + α2t2(x)}

leads to a sufficient statistic (η1(x), η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]

In the Poisson/geometric case, if
∏

i xi ! is added to S , no
discrepancy



Formal recovery

Creating an encompassing exponential family

f (x|θ1, θ2, α1, α2) ∝ exp{θT
1 η1(x) + θT

1 η1(x) + α1t1(x) + α2t2(x)}

leads to a sufficient statistic (η1(x), η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]

Only applies in genuine sufficiency settings...

c© Inability to evaluate loss brought by summary statistics



Meaning of the ABC-Bayes factor

‘This is also why focus on model discrimination typically
(...) proceeds by (...) accepting that the Bayes Factor
that one obtains is only derived from the summary
statistics and may in no way correspond to that of the
full model.’

[Scott Sisson, Jan. 31, 2011, X.’Og]

In the Poisson/geometric case, if E[yi ] = θ0 > 0,

lim
n→∞

Bη
12(y) =

(θ0 + 1)2

θ0
e−θ0



Meaning of the ABC-Bayes factor

‘This is also why focus on model discrimination typically
(...) proceeds by (...) accepting that the Bayes Factor
that one obtains is only derived from the summary
statistics and may in no way correspond to that of the
full model.’

[Scott Sisson, Jan. 31, 2011, X.’Og]

In the Poisson/geometric case, if E[yi ] = θ0 > 0,

lim
n→∞

Bη
12(y) =

(θ0 + 1)2

θ0
e−θ0
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Evolution [against ε] of ABC Bayes factor, in terms of frequencies of
visits to models MA(1) (left) and MA(2) (right) when ε equal to
10, 1, .1, .01% quantiles on insufficient autocovariance distances. Sample
of 50 points from a MA(2) with θ1 = 0.6, θ2 = 0.2. True Bayes factor
equal to 17.71.
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of 50 points from a MA(1) model with θ1 = 0.6. True Bayes factor B21

equal to .004.



Further comments

‘There should be the possibility that for the same model,
but different (non-minimal) [summary] statistics (so
different η’s: η1 and η∗1) the ratio of evidences may no
longer be equal to one.’

[Michael Stumpf, Jan. 28, 2011, ’Og]

Using different summary statistics [on different models] may
indicate the loss of information brought by each set but agreement
does not lead to trustworthy approximations.



A stylised problem

Central question to the validation of ABC for model choice:

When is a Bayes factor based on an insufficient statistic T(y)
consistent?

Note/warnin: c© drawn on T(y) through BT
12(y) necessarily differs

from c© drawn on y through B12(y)
[Marin, Pillai, X, & Rousseau, JRSS B, 2013]
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When is a Bayes factor based on an insufficient statistic T(y)
consistent?

Note/warnin: c© drawn on T(y) through BT
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from c© drawn on y through B12(y)
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A benchmark if toy example

Comparison suggested by referee of PNAS paper [thanks!]:
[X, Cornuet, Marin, & Pillai, Aug. 2011]

Model M1: y ∼ N (θ1, 1) opposed
to model M2: y ∼ L(θ2, 1/

√
2), Laplace distribution with mean θ2

and scale parameter 1/
√

2 (variance one).

Four possible statistics

1 sample mean y (sufficient for M1 if not M2);

2 sample median med(y) (insufficient);

3 sample variance var(y) (ancillary);

4 median absolute deviation mad(y) = med(|y −med(y)|);



A benchmark if toy example

Comparison suggested by referee of PNAS paper [thanks!]:
[X, Cornuet, Marin, & Pillai, Aug. 2011]

Model M1: y ∼ N (θ1, 1) opposed
to model M2: y ∼ L(θ2, 1/

√
2), Laplace distribution with mean θ2

and scale parameter 1/
√

2 (variance one).
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Framework

move to random forests

Starting from sample

y = (y1, . . . , yn)

the observed sample, not necessarily iid with true distribution

y ∼ Pn

Summary statistics

T(y) = Tn = (T1(y),T2(y), · · · ,Td(y)) ∈ Rd

with true distribution Tn ∼ Gn.



Framework

move to random forests

c© Comparison of

– under M1, y ∼ F1,n(·|θ1) where θ1 ∈ Θ1 ⊂ Rp1

– under M2, y ∼ F2,n(·|θ2) where θ2 ∈ Θ2 ⊂ Rp2

turned into

– under M1, T(y) ∼ G1,n(·|θ1), and θ1|T(y) ∼ π1(·|Tn)

– under M2, T(y) ∼ G2,n(·|θ2), and θ2|T(y) ∼ π2(·|Tn)



Assumptions

A collection of asymptotic “standard” assumptions:

[A1] is a standard central limit theorem under the true model with
asymptotic mean µ0

[A2] controls the large deviations of the estimator Tn from the
model mean µ(θ)
[A3] is the standard prior mass condition found in Bayesian
asymptotics (di effective dimension of the parameter)
[A4] restricts the behaviour of the model density against the true
density

[Think CLT!]



Asymptotic marginals

Asymptotically, under [A1]–[A4]

mi (t) =

∫
Θi

gi (t|θi )πi (θi ) dθi

is such that
(i) if inf{|µi (θi )− µ0|; θi ∈ Θi} = 0,

Clv
d−di
n ≤ mi (Tn) ≤ Cuvd−di

n

and
(ii) if inf{|µi (θi )− µ0|; θi ∈ Θi} > 0

mi (Tn) = oPn [vd−τi
n + vd−αi

n ].



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value of Tn under both
models. And only by this mean value!



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value of Tn under both
models. And only by this mean value!

Indeed, if

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} = inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0

then

Clv
−(d1−d2)
n ≤ m1(Tn)

/
m2(Tn) ≤ Cuv

−(d1−d2)
n ,

where Cl ,Cu = OPn(1), irrespective of the true model.
c© Only depends on the difference d1 − d2: no consistency



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value of Tn under both
models. And only by this mean value!

Else, if

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} > inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0

then
m1(Tn)

m2(Tn)
≥ Cu min

(
v
−(d1−α2)
n , v

−(d1−τ2)
n

)



Checking for adequate statistics

Run a practical check of the relevance (or non-relevance) of Tn

null hypothesis that both models are compatible with the statistic
Tn

H0 : inf{|µ2(θ2)− µ0|; θ2 ∈ Θ2} = 0

against
H1 : inf{|µ2(θ2)− µ0|; θ2 ∈ Θ2} > 0

testing procedure provides estimates of mean of Tn under each
model and checks for equality



Checking in practice

• Under each model Mi , generate ABC sample θi ,l , l = 1, · · · , L
• For each θi ,l , generate yi ,l ∼ Fi ,n(·|ψi ,l), derive Tn(yi ,l) and

compute

µ̂i =
1

L

L∑
l=1

Tn(yi ,l), i = 1, 2 .

• Conditionally on Tn(y),

√
L {µ̂i − Eπ [µi (θi )|Tn(y)]} N (0,Vi ),

• Test for a common mean

H0 : µ̂1 ∼ N (µ0,V1) , µ̂2 ∼ N (µ0,V2)

against the alternative of different means

H1 : µ̂i ∼ N (µi ,Vi ), with µ1 6= µ2 .



Toy example: Laplace versus Gauss
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ABC model choice via random forests

1 simulation-based methods in
Econometrics

2 Genetics of ABC

3 Approximate Bayesian computation

4 ABC for model choice

5 ABC model choice via random forests
Random forests
ABC with random forests
Illustrations



Leaning towards machine learning

Main notions:

• ABC-MC seen as learning about which model is most
appropriate from a huge (reference) table

• exploiting a large number of summary statistics not an issue
for machine learning methods intended to estimate efficient
combinations

• abandoning (temporarily?) the idea of estimating posterior
probabilities of the models, poorly approximated by machine
learning methods, and replacing those by posterior predictive
expected loss

[Cornuet et al., 2014, in progress]



Random forests

Technique that stemmed from Leo Breiman’s bagging (or
bootstrap aggregating) machine learning algorithm for both
classification and regression

[Breiman, 1996]

Improved classification performances by averaging over
classification schemes of randomly generated training sets, creating
a “forest” of (CART) decision trees, inspired by Amit and Geman
(1997) ensemble learning

[Breiman, 2001]



Growing the forest

Breiman’s solution for inducing random features in the trees of the
forest:

• boostrap resampling of the dataset and

• random subset-ing [of size
√

t] of the covariates driving the
classification at every node of each tree

Covariate xτ that drives the node separation

xτ ≷ cτ

and the separation bound cτ chosen by minimising entropy or Gini
index



Breiman and Cutler’s algorithm

Algorithm 5 Random forests

for t = 1 to T do
//*T is the number of trees*//
Draw a bootstrap sample of size nboot

Grow an unpruned decision tree
for b = 1 to B do

//*B is the number of nodes*//
Select ntry of the predictors at random
Determine the best split from among those predictors

end for
end for
Predict new data by aggregating the predictions of the T trees



Breiman and Cutler’s algorithm

[ c© Tae-Kyun Kim & Bjorn Stenger, 2009]



Subsampling

Due to both large datasets [practical] and theoretical
recommendation from Gérard Biau [private communication], from
independence between trees to convergence issues, boostrap
sample of much smaller size than original data size

N = o(n)

Each CART tree stops when number of observations per node is 1:
no culling of the branches



Subsampling

Due to both large datasets [practical] and theoretical
recommendation from Gérard Biau [private communication], from
independence between trees to convergence issues, boostrap
sample of much smaller size than original data size

N = o(n)

Each CART tree stops when number of observations per node is 1:
no culling of the branches



ABC with random forests

Idea: Starting with

• possibly large collection of summary statistics (s1i , . . . , spi )
(from scientific theory input to available statistical softwares,
to machine-learning alternatives)

• ABC reference table involving model index, parameter values
and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer M from (s1i , . . . , spi )



ABC with random forests

Idea: Starting with

• possibly large collection of summary statistics (s1i , . . . , spi )
(from scientific theory input to available statistical softwares,
to machine-learning alternatives)

• ABC reference table involving model index, parameter values
and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer M from (s1i , . . . , spi )

at each step O(
√

p) indices sampled at random and most
discriminating statistic selected, by minimising entropy Gini loss



ABC with random forests

Idea: Starting with

• possibly large collection of summary statistics (s1i , . . . , spi )
(from scientific theory input to available statistical softwares,
to machine-learning alternatives)

• ABC reference table involving model index, parameter values
and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer M from (s1i , . . . , spi )

Average of the trees is resulting summary statistics, highly
non-linear predictor of the model index



Outcome of ABC-RF

Random forest predicts a (MAP) model index, from the observed
dataset: The predictor provided by the forest is “sufficient” to
select the most likely model but not to derive associated posterior
probability

• exploit entire forest by computing how many trees lead to
picking each of the models under comparison but variability
too high to be trusted

• frequency of trees associated with majority model is no proper
substitute to the true posterior probability

• And usual ABC-MC approximation equally highly variable and
hard to assess
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picking each of the models under comparison but variability
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• And usual ABC-MC approximation equally highly variable and
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Posterior predictive expected losses

We suggest replacing unstable approximation of

P(M = m|xo)

with xo observed sample and m model index, by average of the
selection errors across all models given the data xo ,

P(M̂(X ) 6= M|xo)

where pair (M,X ) generated from the predictive∫
f (x |θ)π(θ,M|xo)dθ

and M̂(x) denotes the random forest model (MAP) predictor



Posterior predictive expected losses

Arguments:

• Bayesian estimate of the posterior error

• integrates error over most likely part of the parameter space

• gives an averaged error rather than the posterior probability of
the null hypothesis

• easily computed: Given ABC subsample of parameters from
reference table, simulate pseudo-samples associated with
those and derive error frequency



toy: MA(1) vs. MA(2)

Comparing an MA(1) and an MA(2) models:

xt = εt − ϑ1εt−1[−ϑ2εt−2]

Earlier illustration using first two autocorrelations as S(x)
[Marin et al., Stat. & Comp., 2011]

Result #1: values of p(m|x) [obtained by numerical integration]
and p(m|S(x)) [obtained by mixing ABC outcome and density
estimation] highly differ!



toy: MA(1) vs. MA(2)

Difference between the posterior probability of MA(2) given either
x or S(x). Blue stands for data from MA(1), orange for data from
MA(2)



toy: MA(1) vs. MA(2)

Comparing an MA(1) and an MA(2) models:

xt = εt − ϑ1εt−1[−ϑ2εt−2]

Earlier illustration using two autocorrelations as S(x)
[Marin et al., Stat. & Comp., 2011]

Result #2: Embedded models, with simulations from MA(1)
within those from MA(2), hence linear classification poor



toy: MA(1) vs. MA(2)

Simulations of S(x) under MA(1) (blue) and MA(2) (orange)



toy: MA(1) vs. MA(2)

Comparing an MA(1) and an MA(2) models:

xt = εt − ϑ1εt−1[−ϑ2εt−2]

Earlier illustration using two autocorrelations as S(x)
[Marin et al., Stat. & Comp., 2011]

Result #3: On such a small dimension problem, random forests
should come second to k-nn ou kernel discriminant analyses



toy: MA(1) vs. MA(2)

classification prior
method error rate (in %)

LDA 27.43
Logist. reg. 28.34
SVM (library e1071) 17.17
“näıve” Bayes (with G marg.) 19.52
“näıve” Bayes (with NP marg.) 18.25
ABC k-nn (k = 100) 17.23
ABC k-nn (k = 50) 16.97
Local log. reg. (k = 1000) 16.82
Random Forest 17.04
Kernel disc. ana. (KDA) 16.95
True MAP 12.36



Evolution scenarios based on SNPs

Three scenarios for the evolution of three populations from their
most common ancestor



Evolution scenarios based on SNPs

DIYBAC header (!)

7 parameters and 48 summary statistics

3 scenarios: 7 7 7

scenario 1 [0.33333] (6)

N1 N2 N3

0 sample 1

0 sample 2

0 sample 3

ta merge 1 3

ts merge 1 2

ts varne 1 N4

scenario 2 [0.33333] (6)

N1 N2 N3

..........

ts varne 1 N4

scenario 3 [0.33333] (7)

N1 N2 N3

........

historical parameters priors (7,1)

N1 N UN[100.0,30000.0,0.0,0.0]

N2 N UN[100.0,30000.0,0.0,0.0]

N3 N UN[100.0,30000.0,0.0,0.0]

ta T UN[10.0,30000.0,0.0,0.0]

ts T UN[10.0,30000.0,0.0,0.0]

N4 N UN[100.0,30000.0,0.0,0.0]

r A UN[0.05,0.95,0.0,0.0]

ts>ta

DRAW UNTIL



Evolution scenarios based on SNPs

Model 1 with 6 parameters:

• four effective sample sizes: N1 for population 1, N2 for
population 2, N3 for population 3 and, finally, N4 for the
native population;

• the time of divergence ta between populations 1 and 3;

• the time of divergence ts between populations 1 and 2.

• effective sample sizes with independent uniform priors on
[100, 30000]

• vector of divergence times (ta, ts) with uniform prior on
{(a, s) ∈ [10, 30000]⊗ [10, 30000]|a < s}



Evolution scenarios based on SNPs

Model 2 with same parameters as model 1 but the divergence time
ta corresponds to a divergence between populations 2 and 3; prior
distributions identical to those of model 1
Model 3 with extra seventh parameter, admixture rate r . For that
scenario, at time ta admixture between populations 1 and 2 from
which population 3 emerges. Prior distribution on r uniform on
[0.05, 0.95]. In that case models 1 and 2 are not embeddeded in
model 3. Prior distributions for other parameters the same as in
model 1



Evolution scenarios based on SNPs

Set of 48 summary statistics:
Single sample statistics

• proportion of loci with null gene diversity (= proportion of monomorphic
loci)

• mean gene diversity across polymorphic loci
[Nei, 1987]

• variance of gene diversity across polymorphic loci

• mean gene diversity across all loci



Evolution scenarios based on SNPs

Set of 48 summary statistics:
Two sample statistics

• proportion of loci with null FST distance between both samples
[Weir and Cockerham, 1984]

• mean across loci of non null FST distances between both samples

• variance across loci of non null FST distances between both samples

• mean across loci of FST distances between both samples

• proportion of 1 loci with null Nei’s distance between both samples
[Nei, 1972]

• mean across loci of non null Nei’s distances between both samples

• variance across loci of non null Nei’s distances between both samples

• mean across loci of Nei’s distances between the two samples



Evolution scenarios based on SNPs

Set of 48 summary statistics:
Three sample statistics

• proportion of loci with null admixture estimate

• mean across loci of non null admixture estimate

• variance across loci of non null admixture estimated

• mean across all locus admixture estimates



Evolution scenarios based on SNPs

For a sample of 1000 SNIPs measured on 25 biallelic individuals
per population, learning ABC reference table with 20, 000
simulations, prior predictive error rates:

• “näıve Bayes” classifier 33.3%

• raw LDA classifier 23.27%

• ABC k-nn [Euclidean dist. on summaries normalised by MAD]
25.93%

• ABC k-nn [unnormalised Euclidean dist. on LDA components]
22.12%

• local logistic classifier based on LDA components with
• k = 500 neighbours 22.61%

• random forest on summaries 21.03%

(Error rates computed on a prior sample of size 104)
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Evolution scenarios based on SNPs

For a sample of 1000 SNIPs measured on 25 biallelic individuals
per population, learning ABC reference table with 20, 000
simulations, prior predictive error rates:

• “näıve Bayes” classifier 33.3%

• raw LDA classifier 23.27%

• ABC k-nn [Euclidean dist. on summaries normalised by MAD]
25.93%

• ABC k-nn [unnormalised Euclidean dist. on LDA components]
22.12%

• local logistic classifier based on LDA components with
• k = 5000 neighbours 22.43%

• random forest on LDA components only 23.1%

(Error rates computed on a prior sample of size 104)



Evolution scenarios based on SNPs

For a sample of 1000 SNIPs measured on 25 biallelic individuals
per population, learning ABC reference table with 20, 000
simulations, prior predictive error rates:

• “näıve Bayes” classifier 33.3%

• raw LDA classifier 23.27%

• ABC k-nn [Euclidean dist. on summaries normalised by MAD]
25.93%

• ABC k-nn [unnormalised Euclidean dist. on LDA components]
22.12%

• local logistic classifier based on LDA components with
• k = 5000 neighbours 22.43%

• random forest on summaries and LDA components 19.03%

(Error rates computed on a prior sample of size 104)



Evolution scenarios based on SNPs

Posterior predictive error rates



Evolution scenarios based on SNPs

Posterior predictive error rates

favourable: 0.010 error – unfavourable: 0.104 error



Evolution scenarios based on microsatellites

Same setting as previously

Sample of 25 diploid individuals per population, on 20 locus
(roughly corresponds to 1/5th of previous information)



Evolution scenarios based on microsatellites

One sample statistics

• mean number of alleles across loci

• mean gene diversity across loci (Nei, 1987)

• mean allele size variance across loci

• mean M index across loci (Garza and Williamson, 2001;
Excoffier et al., 2005)



Evolution scenarios based on microsatellites

Two sample statistics

• mean number of alleles across loci (two samples)

• mean gene diversity across loci (two samples)

• mean allele size variance across loci (two samples)

• FST between two samples (Weir and Cockerham, 1984)

• mean index of classification (two samples) (Rannala and
Moutain, 1997; Pascual et al., 2007)

• shared allele distance between two samples (Chakraborty and
Jin, 1993)

• (δµ)2 distance between two samples (Golstein et al., 1995)

Three sample statistics

• Maximum likelihood coefficient of admixture (Choisy et al.,
2004)



Evolution scenarios based on microsatellites

classification prior error∗

method rate (in %)

raw LDA 35.64
“näıve” Bayes (with G marginals) 40.02
k-nn (MAD normalised sum stat) 37.47
k-nn (unormalised LDA) 35.14
RF without LDA components 35.14
RF with LDA components 33.62
RF with only LDA components 37.25

∗estimated on pseudo-samples of 104 items drawn from the prior



Evolution scenarios based on microsatellites

Posterior predictive error rates



Evolution scenarios based on microsatellites

Posterior predictive error rates

favourable: 0.183 error – unfavourable: 0.435 error



Back to Asian Ladybirds [message in a beetle]

Comparing 10 scenarios of Asian beetle invasion beetle moves



Back to Asian Ladybirds [message in a beetle]

Comparing 10 scenarios of Asian beetle invasion beetle moves

classification prior error†

method rate (in %)

raw LDA 38.94
“näıve” Bayes (with G margins) 54.02

k-nn (MAD normalised sum stat) 58.47
RF without LDA components 38.84

RF with LDA components 35.32

†estimated on pseudo-samples of 104 items drawn from the prior



Back to Asian Ladybirds [message in a beetle]

Comparing 10 scenarios of Asian beetle invasion beetle moves

Random forest allocation frequencies

1 2 3 4 5 6 7 8 9 10

0.168 0.1 0.008 0.066 0.296 0.016 0.092 0.04 0.014 0.2

Posterior predictive error based on 20,000 prior simulations and
keeping 500 neighbours (or 100 neighbours and 10 pseudo-datasets
per parameter)

0.3682
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Back to Asian Ladybirds [message in a beetle]

Comparing 10 scenarios of Asian beetle invasion
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Conclusion

• unlimited aggregation of arbitrary summary statistics

• recovery of discriminant statistics when available

• automated implementation with reduced calibration

• self-evaluation by posterior predictive error

• soon to appear in DIYABC
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