Introduction

Generalized Additive Models

Simon Wood

Mathematical Sciences, University of Bath, U.K.

- We have seen how to
 - 1. turn model $y_i = f(x_i) + \epsilon_i$ into $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ and a wiggliness penalty $\boldsymbol{\beta}^{\mathsf{T}}\mathbf{S}\boldsymbol{\beta}$.
 - 2. estimate β given λ as $\hat{\beta} = \arg \min_{\beta} \|\mathbf{y} \mathbf{X}\beta\|^2 + \lambda \beta^{\mathsf{T}} \mathbf{S}\beta$.
 - 3. estimate λ by GCV, AIC, REML etc.
 - 4. use $\beta | \mathbf{y} \sim N(\hat{\beta}, (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{S})^{-1}\sigma^2)$ for inference.
- ...all this can be extended to models with multiple smooth terms, for exponential family response data ...

・ロト・日本・日本・日本・日本・日本

Additive Models

Consider the model

$$y_i = \mathbf{A}_i \boldsymbol{\theta} + \sum_j f_j(x_{ji}) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

- A_i is the ith row of the model matrix for any parametric terms, with parameter vector θ. Assume it includes an intercept.
- *f_j* is a smooth function of covariate *x_j*, which may be vector valued.
- ► The f_j are confounded via the intercept, so that the model is only estimable under identifiability constraints on the f_j.
- The best constraints are $\sum_i f_j(x_{ji}) = 0 \quad \forall j$.
- If f = [f(x₁), f(x₂),...] then the constraint is 1^Tf = 0, i.e. f is orthogonal to the intercept. Other constraints give wider Cls for the constrained f_j.

Representing the model

- Choose a basis and penalty for each f_j .
- Let the model matrix for f_j be **X** and let $\lambda \beta^T \mathbf{S} \beta$ be the penalty (more generally $\sum_i \lambda_j \beta^T \mathbf{S}_j \beta$).
- Reparameterize to absorb the constraint 1^TX = 0. The simplest recipe is as follows
 - 1. Subtract the column mean from each column of X to give X'.
 - Drop the column of X' with lowest variance to give constrained model matrix X^[j], and drop the corresponding row and column of S to give constrained penalty matrix S_j.
 - After fitting, when creating a new version of X^[J] for predicting at new covariate values, it's important to subtract the original column means x from the new matrix's columns, and to drop the same column as before (simply repeating steps 1 and 2 on the new model matrix will lead to an interesting mess).

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目目 のへで

The estimable AM

• Now $y_i = \mathbf{A}_i \boldsymbol{\theta} + \sum_i f_j(x_{ji}) + \epsilon_i$ becomes $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where

 $\mathbf{X} = [\mathbf{A} : \mathbf{X}^{[1]} : \mathbf{X}^{[2]} : \cdots]$

and β contains θ followed by the basis coefficients for the f_i .

- After suitable padding of the S_j with zeroes the penalty becomes Σ_i λ_jβ^TS_jβ.
- Now $\hat{\boldsymbol{\beta}} = \arg \min_{\boldsymbol{\beta}} \| \mathbf{y} \mathbf{X} \boldsymbol{\beta} \|^2 + \sum_j \lambda_j \boldsymbol{\beta}^{\mathsf{T}} \mathbf{S}_j \boldsymbol{\beta}.$
- Again λ can be estimated by GCV, REML etc.

・ロト・日本・ キョト・ ヨー うくぐ

Generalized Additive Models

Generalizing again, we have

$$g(\mu_i) = \mathbf{A}_i \boldsymbol{\theta} + \sum_j L_{ij} f_j(x_j), \quad y_i \sim \mathsf{EF}(\mu_i, \phi)$$

- g is a known smooth monotonic link function, EF an exponential family distribution so that $var(y_i) = V(\mu_i)\phi$.
- Set up model matrix and penalties as before.
- Estimate β by penalized MLE. Defining the *Deviance*.
 D(β) = 2{l_{max} l(β)} (l_{max} is saturated log likelihood)...

$$\hat{oldsymbol{eta}} = rg\min_{oldsymbol{eta}} D(oldsymbol{eta}) + \sum_j \lambda_j oldsymbol{eta}^\mathsf{T} \mathbf{S}_j oldsymbol{eta}$$

• λ estimation is by generalizations of GCV, REML etc.

GAM computation: $\hat{\boldsymbol{\beta}}|\mathbf{y}$

- ▶ Penalized likelihood maximization is by Penalized IRLS.
- Initialize $\hat{\eta} = g(\mathbf{y})$ and iterate the following to convergence.
 - 1. Compute pseudodata $z_i = g'(\hat{\mu}_i)(y_i \hat{\mu}_i)/\alpha_i + \hat{\eta}_i$ and iterative weights, $w_i = \alpha_i / \{V(\hat{\mu}_i)g'(\hat{\mu}_i)^2\}$ as for any GLM.
 - 2. Compute a revised β estimate

$$\hat{oldsymbol{eta}} = rg\min_{oldsymbol{eta}} \sum_{i} w_i (z_i - \mathbf{X}_i oldsymbol{eta})^2 + \sum \lambda_j oldsymbol{eta}^\mathsf{T} \mathbf{S}_j oldsymbol{eta}$$

and hence revised estimates $\hat{\eta} = {\sf X} \hat{eta}$ and $\hat{\mu} = g^{-1}(\hat{\eta}).$

- $\alpha_i = 1 + (y_i \hat{\mu}_i)(V'_i/V_i + g''_i/g'_i)$ gives Newton's method.
- α_i = 1 gives *Fisher scoring*, where the expected Hessian of the likelihood replaces the actual Hessian in Newton's method.
- Newton based versions of w_i and z_i are best here, as it makes λ estimation easier.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目目 のへで

EDF, $\pmb{\beta}|\mathbf{y} \text{ and } \hat{\phi}$

- Let $\mathbf{S} = \sum_{j} \lambda_j \mathbf{S}_j$ and $\mathbf{W} = \text{diag}\{E(w_i)\}$ (Fisher version).
- The Effective Degrees of Freedom matrix becomes

 $\mathbf{F} = (\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X} + \mathbf{S})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X}$

- Then the EDF is tr(F). EDFs for individual smooths are found by summing the F_{ii} values for their coefficients.
- ▶ In the $n \to \infty$ limit

$$\beta | \mathbf{y} \sim N(\hat{oldsymbol{eta}}, (\mathbf{X}^\mathsf{T}\mathbf{W}\mathbf{X} + \mathbf{S})^{-1}\phi))$$

▶ The scale parameter can be estimated by

$$\hat{\phi} = \sum_{i} w_i (z_i - \mathbf{X}_i \hat{\boldsymbol{\beta}})^2 / \{n - \operatorname{tr}(\mathbf{F})\}$$

・ロト ・日本 ・ 日本 ・ 日本 ・ 日本 ・ のへで

Deviance based λ selection criteria

• Mallows' C_p / UBRE generalizes to

$$\mathcal{V}_{\mathsf{a}} = D(\hat{oldsymbol{eta}}_{\lambda}) + 2\phi \mathsf{tr}(\mathbf{F})$$

► GCV generalizes to

$$\mathcal{V}_{g} = nD(\hat{\beta}_{\lambda})/\{n - \mathrm{tr}(\mathbf{F})\}^{2}$$

Laplace approximate (negative twice) REML is

$$\begin{aligned} \mathcal{V}_r &= \frac{D(\hat{\beta}) + \hat{\beta}^\mathsf{T} \mathbf{S} \hat{\beta}}{\phi} - 2I_s(\phi) \\ &+ (\log |\mathbf{X}^\mathsf{T} \mathbf{W} \mathbf{X} + \mathbf{S}| - \log |\mathbf{S}|_+) - M_p \log(2\pi\phi) \end{aligned}$$

$oldsymbol{\lambda}$ estimation

- There are 2 basic computational strategies for λ selection.
 - 1. Single iteration schemes estimate λ at each PIRLS iteration step, by applying GCV, REML or whatever to the working penalized linear model. This approach need not converge.
 - 2. Nested iteration, defines a λ selection criterion in terms of the model deviance and optimizes it directly. Each evaluation of the criterion requires an 'inner' PIRLS to obtain $\hat{\beta}_{\lambda}$. This converges, since a properly defined function of λ is optimized.
- The second option is usually preferable on grounds of reliability, but the first option can be made very memory efficient with very large datasets.
- The first option simply uses the smoothness selection criteria for the linear model case, but the second requires that these be extended...

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 ∽へ⊙

Nested iteration computational strategy

- Optimization wrt ρ = log λ is by Newton's method, using analytic derivatives.
- For each trial λ used by Newton's method...
 - 1. Re-parameterize for maximum numerical stability in computing $\hat{\beta}$ and terms like log $|\mathbf{S}|_+$.
 - 2. Compute $\hat{\beta}$ by PIRLS (full Newton version).
 - 3. Calculate derivatives of $\hat{\beta}$ wrt ρ by implicit differentiation.
 - 4. Evaluate the λ selection criterion and its derivatives wrt ho
- ... after which all the ingredients are in place for Newton's method to propose a new λ value.
- As usual with Newton's method, some step halving may be needed, and the Hessian will have to be peturbed if it is not positive definite.

One last generalization: GAMM

Summary

► A generalized additive mixed model has the form

$$g(\mu_i) = \mathbf{A}_i \mathbf{ heta} + \sum_j L_{ij} f_j(x_j) + \mathbf{Z}_i \mathbf{b}, \ \mathbf{b} \sim N(\mathbf{0}, \psi), \ y_i \sim \mathsf{EF}(\mu_i, \phi)$$

- ... actually this is not much different to a GAM. The random effects term **Zb** is just like a smooth with penalty $\mathbf{b}^{\mathsf{T}} \psi^{-1} \mathbf{b}$.
- If ψ⁻¹ can be written in the form Σ_k λ_kS_k then the GAMM can be treated *exactly* like a GAM. (gam).
- Alternatively, using the mixed model representation of the smooths, the GAMM can be written in standard GLMM form and estimated as a GLMM. (gamm/gamm4).
- The latter option is often preferable when there are many random effects, and the former when there are fewer.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A GAM is simply a GLM in which the linear predictor partly depends linearly on some unknown smooth functions.
- GAMs are estimated by a penalized version of the method used to fit GLMs.
- An extra criterion has to be optimized to find the smoothing parameters.
- A GAMM is simply a GLMM in which the linear predictor partly depends linearly on some unknown smooth functions.
- From the mixed model representation of smooths, GAMMs can be estimated as GAMs or GLMMs.
- ► Bayesian results are useful for inference.