Generalized Additive Models

Simon Wood

Mathematical Sciences, University of Bath, U.K.

- We have seen how to

1. turn model $y_{i}=f\left(x_{i}\right)+\epsilon_{i}$ into $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ and a wiggliness penalty $\boldsymbol{\beta}^{\boldsymbol{\top}} \mathbf{S} \boldsymbol{\beta}$.
2. estimate $\boldsymbol{\beta}$ given $\boldsymbol{\lambda}$ as $\hat{\boldsymbol{\beta}}=\arg \min _{\beta}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}$.
3. estimate $\boldsymbol{\lambda}$ by GCV, AIC, REML etc.
4. use $\boldsymbol{\beta} \mid \mathbf{y} \sim N\left(\widehat{\boldsymbol{\beta}},\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \sigma^{2}\right)$ for inference.

-all this can be extended to models with multiple smooth terms, for exponential family response data ...

Representing the model

- Choose a basis and penalty for each f_{j}.
- Let the model matrix for f_{j} be \mathbf{X} and let $\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}$ be the penalty (more generally $\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}$).
- Reparameterize to absorb the constraint $\mathbf{1}^{\top} \mathbf{X}=0$. The simplest recipe is as follows

1. Subtract the column mean from each column of \mathbf{X} to give \mathbf{X}^{\prime}.
2. Drop the column of \mathbf{X}^{\prime} with lowest variance to give constrained model matrix $\mathbf{X}^{[]]}$, and drop the corresponding row and column of \mathbf{S} to give constrained penalty matrix \mathbf{S}_{j}.
3. After fitting, when creating a new version of $\mathbf{X}^{[j]}$ for predicting at new covariate values, it's important to subtract the original column means x from the new matrix's columns, and to drop the same column as before (simply repeating steps 1 and 2 on the new model matrix will lead to an interesting mess).

If $\mathbf{f}=\left[f\left(x_{1}\right), f\left(x_{2}\right), \ldots\right]$ then the constraint is $\mathbf{1}^{\top} \mathbf{f}=0$, i.e. \mathbf{f} is orthogonal to the intercept. Other constraints give wider Cls for the constrained f_{j}.

Additive Models

- Consider the model

$$
y_{i}=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} f_{j}\left(x_{j i}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- \mathbf{A}_{i} is the $i^{\text {th }}$ row of the model matrix for any parametric terms, with parameter vector $\boldsymbol{\theta}$. Assume it includes an intercept.
- f_{j} is a smooth function of covariate x_{j}, which may be vector valued.
- The f_{j} are confounded via the intercept, so that the model is only estimable under identifiability constraints on the f_{j}.
- The best constraints are $\sum_{i} f_{j}\left(x_{j i}\right)=0 \quad \forall j$.

The estimable AM

- Now $y_{i}=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} f_{j}\left(x_{j i}\right)+\epsilon_{i}$ becomes $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ where

$$
\mathbf{X}=\left[\mathbf{A}: \mathbf{X}^{[1]}: \mathbf{X}^{[2]}: \cdots\right]
$$

and $\boldsymbol{\beta}$ contains $\boldsymbol{\theta}$ followed by the basis coefficients for the f_{j}.

- After suitable padding of the \mathbf{S}_{j} with zeroes the penalty becomes $\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}$.
- Now $\hat{\boldsymbol{\beta}}=\arg \min _{\beta}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}$.
- Again $\boldsymbol{\lambda}$ can be estimated by GCV, REML etc.

Generalized Additive Models

- Generalizing again, we have

$$
g\left(\mu_{i}\right)=\mathbf{A}_{i} \theta+\sum_{j} L_{i j} f_{j}\left(x_{j}\right), \quad y_{i} \sim \operatorname{EF}\left(\mu_{i}, \phi\right)
$$

g is a known smooth monotonic link function, EF an exponential family distribution so that $\operatorname{var}\left(y_{i}\right)=V\left(\mu_{i}\right) \phi$.

- Set up model matrix and penalties as before.
- Estimate $\boldsymbol{\beta}$ by penalized MLE. Defining the Deviance. $D(\boldsymbol{\beta})=2\left\{I_{\max }-I(\boldsymbol{\beta})\right\}\left(I_{\text {max }}\right.$ is saturated \log likelihood $) \ldots$

$$
\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} D(\boldsymbol{\beta})+\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}
$$

- $\boldsymbol{\lambda}$ estimation is by generalizations of GCV, REML etc.

GAM computation: $\hat{\boldsymbol{\beta}} \mid \mathbf{y}$

- Penalized likelihood maximization is by Penalized IRLS.
- Initialize $\hat{\boldsymbol{\eta}}=g(\mathbf{y})$ and iterate the following to convergence.

1. Compute pseudodata $z_{i}=g^{\prime}\left(\hat{\mu}_{i}\right)\left(y_{i}-\hat{\mu}_{i}\right) / \alpha_{i}+\hat{\eta}_{i}$ and iterative weights, $w_{i}=\alpha_{i} /\left\{V\left(\hat{\mu}_{i}\right) g^{\prime}\left(\hat{\mu}_{i}\right)^{2}\right\}$ as for any GLM.
2. Compute a revised $\boldsymbol{\beta}$ estimate

$$
\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} \sum_{i} w_{i}\left(z_{i}-\mathbf{X}_{i} \boldsymbol{\beta}\right)^{2}+\sum \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}
$$

and hence revised estimates $\hat{\boldsymbol{\eta}}=\mathbf{X} \hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\mu}}=g^{-1}(\hat{\boldsymbol{\eta}})$.

- $\alpha_{i}=1+\left(y_{i}-\hat{\mu}_{i}\right)\left(V_{i}^{\prime} / V_{i}+g_{i}^{\prime \prime} / g_{i}^{\prime}\right)$ gives Newton's method.
- $\alpha_{i}=1$ gives Fisher scoring, where the expected Hessian of the likelihood replaces the actual Hessian in Newton's method.
- Newton based versions of w_{i} and z_{i} are best here, as it makes $\boldsymbol{\lambda}$ estimation easier.

EDF, $\boldsymbol{\beta} \mid \mathbf{y}$ and $\hat{\phi}$

- Let $\mathbf{S}=\sum_{j} \lambda_{j} \mathbf{S}_{j}$ and $\mathbf{W}=\operatorname{diag}\left\{E\left(w_{i}\right)\right\}$ (Fisher version).
- The Effective Degrees of Freedom matrix becomes

$$
\mathbf{F}=\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}+\mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{W} \mathbf{X}
$$

- Then the EDF is $\operatorname{tr}(\mathbf{F})$. EDFs for individual smooths are found by summing the $F_{i i}$ values for their coefficients.
- In the $n \rightarrow \infty$ limit

$$
\boldsymbol{\beta} \mid \mathbf{y} \sim N\left(\hat{\boldsymbol{\beta}},\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}+\mathbf{S}\right)^{-1} \phi\right)
$$

- The scale parameter can be estimated by

$$
\hat{\phi}=\sum_{i} w_{i}\left(z_{i}-\mathbf{X}_{i} \hat{\boldsymbol{\beta}}\right)^{2} /\{n-\operatorname{tr}(\mathbf{F})\} .
$$

Deviance based $\boldsymbol{\lambda}$ selection criteria

- Mallows' $C_{p} /$ UBRE generalizes to

$$
\mathcal{V}_{a}=D\left(\hat{\boldsymbol{\beta}}_{\lambda}\right)+2 \phi \operatorname{tr}(\mathbf{F})
$$

- GCV generalizes to

$$
\mathcal{V}_{g}=n D\left(\hat{\boldsymbol{\beta}}_{\lambda}\right) /\{n-\operatorname{tr}(\mathbf{F})\}^{2}
$$

- Laplace approximate (negative twice) REML is

$$
\begin{aligned}
\mathcal{V}_{r}= & \frac{D(\hat{\boldsymbol{\beta}})+\hat{\boldsymbol{\beta}}^{\top} \mathbf{S} \hat{\boldsymbol{\beta}}}{\phi}-2 I_{s}(\phi) \\
& \quad+\left(\log \left|\mathbf{X}^{\top} \mathbf{W} \mathbf{X}+\mathbf{S}\right|-\log |\mathbf{S}|_{+}\right)-M_{p} \log (2 \pi \phi) .
\end{aligned}
$$

$\boldsymbol{\lambda}$ estimation

- There are 2 basic computational strategies for $\boldsymbol{\lambda}$ selection.

1. Single iteration schemes estimate $\boldsymbol{\lambda}$ at each PIRLS iteration step, by applying GCV, REML or whatever to the working penalized linear model. This approach need not converge.
2. Nested iteration, defines a $\boldsymbol{\lambda}$ selection criterion in terms of the model deviance and optimizes it directly. Each evaluation of the criterion requires an 'inner' PIRLS to obtain $\hat{\boldsymbol{\beta}}_{\lambda}$. This converges, since a properly defined function of $\boldsymbol{\lambda}$ is optimized.

- The second option is usually preferable on grounds of reliability, but the first option can be made very memory efficient with very large datasets.
- The first option simply uses the smoothness selection criteria for the linear model case, but the second requires that these be extended...

Nested iteration computational strategy

- Optimization wrt $\rho=\log \boldsymbol{\lambda}$ is by Newton's method, using analytic derivatives.
- For each trial $\boldsymbol{\lambda}$ used by Newton's method...

1. Re-parameterize for maximum numerical stability in computing $\hat{\boldsymbol{\beta}}$ and terms like $\log |\mathbf{S}|_{+}$.
2. Compute $\hat{\boldsymbol{\beta}}$ by PIRLS (full Newton version).
3. Calculate derivatives of $\hat{\boldsymbol{\beta}}$ wrt $\boldsymbol{\rho}$ by implicit differentiation.
4. Evaluate the $\boldsymbol{\lambda}$ selection criterion and its derivatives wrt ρ

- after which all the ingredients are in place for Newton's method to propose a new $\boldsymbol{\lambda}$ value.
- As usual with Newton's method, some step halving may be needed, and the Hessian will have to be peturbed if it is not positive definite.

One last generalization: GAMM

- A generalized additive mixed model has the form

$$
g\left(\mu_{i}\right)=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} L_{i j} f_{j}\left(x_{j}\right)+\mathbf{Z}_{i} \mathbf{b}, \quad \mathbf{b} \sim N(\mathbf{0}, \psi), \quad y_{i} \sim \mathrm{EF}\left(\mu_{i}, \phi\right)
$$

- ... actually this is not much different to a GAM. The random effects term $\mathbf{Z b}$ is just like a smooth with penalty $\mathbf{b}^{\top} \boldsymbol{\psi}^{-1} \mathbf{b}$.
- If ψ^{-1} can be written in the form $\sum_{k} \lambda_{k} \mathbf{S}_{k}$ then the GAMM can be treated exactly like a GAM. (gam).
- Alternatively, using the mixed model representation of the smooths, the GAMM can be written in standard GLMM form and estimated as a GLMM. (gamm/gamm4).
- The latter option is often preferable when there are many random effects, and the former when there are fewer.
- A GAM is simply a GLM in which the linear predictor partly depends linearly on some unknown smooth functions.
- GAMs are estimated by a penalized version of the method used to fit GLMs.
- An extra criterion has to be optimized to find the smoothing parameters.
- A GAMM is simply a GLMM in which the linear predictor partly depends linearly on some unknown smooth functions.
- From the mixed model representation of smooths, GAMMs can be estimated as GAMs or GLMMs.
- Bayesian results are useful for inference.

