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Introduction

! We have seen how to
1. turn model yi = f (xi ) + εi into y = Xβ + ε and a wiggliness

penalty βTSβ.
2. estimate β given λ as β̂ = arg minβ ‖y− Xβ‖2 + λβTSβ.
3. estimate λ by GCV, AIC, REML etc.
4. use β|y ∼ N(β̂, (XTX+ λS)−1σ2) for inference.

! . . . all this can be extended to models with multiple smooth
terms, for exponential family response data . . .

Additive Models

! Consider the model

yi = Aiθ +
∑

j

fj(xji ) + εi , εi ∼ N(0,σ2)

! Ai is the i th row of the model matrix for any parametric terms,
with parameter vector θ. Assume it includes an intercept.

! fj is a smooth function of covariate xj , which may be vector
valued.

! The fj are confounded via the intercept, so that the model is
only estimable under identifiability constraints on the fj .

! The best constraints are
∑

i fj(xji) = 0 ∀ j .

! If f = [f (x1), f (x2), . . .] then the constraint is 1Tf = 0, i.e. f
is orthogonal to the intercept. Other constraints give wider
CIs for the constrained fj .

Representing the model

! Choose a basis and penalty for each fj .

! Let the model matrix for fj be X and let λβTSβ be the
penalty (more generally

∑

j λjβ
TSjβ).

! Reparameterize to absorb the constraint 1TX = 0. The
simplest recipe is as follows
1. Subtract the column mean from each column of X to give X′.
2. Drop the column of X′ with lowest variance to give

constrained model matrix X[j], and drop the corresponding row
and column of S to give constrained penalty matrix Sj .

3. After fitting, when creating a new version of X[j] for predicting
at new covariate values, it’s important to subtract the original
column means x from the new matrix’s columns, and to drop
the same column as before (simply repeating steps 1 and 2 on
the new model matrix will lead to an interesting mess).



The estimable AM

! Now yi = Aiθ +
∑

j fj(xji) + εi becomes y = Xβ + ε where

X = [A : X[1] : X[2] : · · · ]

and β contains θ followed by the basis coefficients for the fj .

! After suitable padding of the Sj with zeroes the penalty
becomes

∑

j λjβ
TSjβ.

! Now β̂ = arg minβ ‖y − Xβ‖2 +
∑

j λjβ
TSjβ.

! Again λ can be estimated by GCV, REML etc.

Generalized Additive Models

! Generalizing again, we have

g(µi ) = Aiθ +
∑

j

Lij fj(xj), yi ∼ EF(µi ,φ)

g is a known smooth monotonic link function, EF an
exponential family distribution so that var(yi ) = V (µi)φ.

! Set up model matrix and penalties as before.

! Estimate β by penalized MLE. Defining the Deviance.
D(β) = 2{lmax − l(β)} (lmax is saturated log likelihood). . .

β̂ = argmin
β

D(β) +
∑

j

λjβ
TSjβ

! λ estimation is by generalizations of GCV, REML etc.

GAM computation: β̂|y

! Penalized likelihood maximization is by Penalized IRLS.
! Initialize η̂ = g(y) and iterate the following to convergence.

1. Compute pseudodata zi = g ′(µ̂i )(yi − µ̂i )/αi + η̂i and iterative
weights, wi = αi/

{

V (µ̂i )g ′(µ̂i )2
}

as for any GLM.
2. Compute a revised β estimate

β̂ = argmin
β

∑

i

wi(zi − Xiβ)
2 +

∑

λjβ
TSjβ

and hence revised estimates η̂ = Xβ̂ and µ̂ = g−1(η̂).

! αi = 1 + (yi − µ̂i )(V ′

i /Vi + g ′′

i /g
′

i ) gives Newton’s method.

! αi = 1 gives Fisher scoring, where the expected Hessian of the
likelihood replaces the actual Hessian in Newton’s method.

! Newton based versions of wi and zi are best here, as it makes
λ estimation easier.



EDF, β|y and φ̂

! Let S =
∑

j λjSj and W = diag{E (wi )} (Fisher version).

! The Effective Degrees of Freedom matrix becomes

F = (XTWX + S)−1XTWX

! Then the EDF is tr(F). EDFs for individual smooths are found
by summing the Fii values for their coefficients.

! In the n → ∞ limit

β|y ∼ N(β̂, (XTWX+ S)−1φ)

! The scale parameter can be estimated by

φ̂ =
∑

i

wi(zi − Xi β̂)
2/{n − tr(F)}.

λ estimation

! There are 2 basic computational strategies for λ selection.
1. Single iteration schemes estimate λ at each PIRLS iteration

step, by applying GCV, REML or whatever to the working
penalized linear model. This approach need not converge.

2. Nested iteration, defines a λ selection criterion in terms of the
model deviance and optimizes it directly. Each evaluation of
the criterion requires an ‘inner’ PIRLS to obtain β̂λ. This
converges, since a properly defined function of λ is optimized.

! The second option is usually preferable on grounds of
reliability, but the first option can be made very memory
efficient with very large datasets.

! The first option simply uses the smoothness selection criteria
for the linear model case, but the second requires that these
be extended. . .

Deviance based λ selection criteria

! Mallows’ Cp/ UBRE generalizes to

Va = D(β̂λ) + 2φtr(F)

! GCV generalizes to

Vg = nD(β̂λ)/{n − tr(F)}2

! Laplace approximate (negative twice) REML is

Vr =
D(β̂) + β̂TSβ̂

φ
− 2ls(φ)

+ (log |XTWX+ S|− log |S|+)−Mp log(2πφ).

Nested iteration computational strategy

! Optimization wrt ρ = logλ is by Newton’s method, using
analytic derivatives.

! For each trial λ used by Newton’s method. . .
1. Re-parameterize for maximum numerical stability in computing

β̂ and terms like log |S|+.
2. Compute β̂ by PIRLS (full Newton version).
3. Calculate derivatives of β̂ wrt ρ by implicit differentiation.
4. Evaluate the λ selection criterion and its derivatives wrt ρ

! . . . after which all the ingredients are in place for Newton’s
method to propose a new λ value.

! As usual with Newton’s method, some step halving may be
needed, and the Hessian will have to be peturbed if it is not
positive definite.



One last generalization: GAMM

! A generalized additive mixed model has the form

g(µi ) = Aiθ+
∑

j

Lij fj(xj)+Zib, b ∼ N(0,ψ), yi ∼ EF(µi ,φ)

! . . . actually this is not much different to a GAM. The random
effects term Zb is just like a smooth with penalty bTψ−1b.

! If ψ−1 can be written in the form
∑

k λkSk then the GAMM
can be treated exactly like a GAM. (gam).

! Alternatively, using the mixed model representation of the
smooths, the GAMM can be written in standard GLMM form
and estimated as a GLMM. (gamm/gamm4).

! The latter option is often preferable when there are many
random effects, and the former when there are fewer.

Summary

! A GAM is simply a GLM in which the linear predictor partly
depends linearly on some unknown smooth functions.

! GAMs are estimated by a penalized version of the method
used to fit GLMs.

! An extra criterion has to be optimized to find the smoothing
parameters.

! A GAMM is simply a GLMM in which the linear predictor
partly depends linearly on some unknown smooth functions.

! From the mixed model representation of smooths, GAMMs
can be estimated as GAMs or GLMMs.

! Bayesian results are useful for inference.


