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Additive Models

» Consider the model

yi=RAib+> fi(xi)+ei, e~ N0 0?)
J

» A; is the i*" row of the model matrix for any parametric terms,
with parameter vector 8. Assume it includes an intercept.
» f; is a smooth function of covariate x;, which may be vector
valued.
» The f; are confounded via the intercept, so that the model is
only estimable under identifiability constraints on the f;.

» The best constraints are ), fi(xji) =0 VY j.

» If f = [f(x1), f(x2),...] then the constraint is 1Tf =0, i.e. f
is orthogonal to the intercept. Other constraints give wider
Cls for the constrained f;.

Introduction

» We have seen how to
1. turn model y; = f(x;) + €; into y = X3 + € and a wiggliness
penalty B37Sg3.
2. estimate 3 given A as B = arg ming |ly — X3|]2 + A\37SS.
3. estimate A by GCV, AIC, REML etc.
4. use By ~ N(B,(XTX + AS)152) for inference.

» ...all this can be extended to models with multiple smooth
terms, for exponential family response data ...

Representing the model

» Choose a basis and penalty for each f;.

> Let the model matrix for f; be X and let A\BTS3 be the
penalty (more generally Zj A\iBTS;B).

» Reparameterize to absorb the constraint 17X = 0. The
simplest recipe is as follows

1. Subtract the column mean from each column of X to give X'.

2. Drop the column of X’ with lowest variance to give
constrained model matrix XU, and drop the corresponding row
and column of S to give constrained penalty matrix S;.

3. After fitting, when creating a new version of XU for predicting
at new covariate values, it's important to subtract the original
column means x from the new matrix's columns, and to drop
the same column as before (simply repeating steps 1 and 2 on
the new model matrix will lead to an interesting mess).



The estimable AM
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Now y; = A;0 + Zj fi(xji) + €; becomes y = X3 + € where
X=[A:xM:x@...]

and 3 contains @ followed by the basis coefficients for the f;.
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After suitable padding of the S; with zeroes the penalty
becomes \BTS;B.

Now 3 = arg ming [ly — X812 + 3, \iB8TS;8.

Again X can be estimated by GCV, REML etc.

v
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Generalized Additive Models GAM computation: 3|y
» Generalizing again, we have » Penalized likelihood maximization is by Penalized IRLS.
» Initialize 7) = g(y) and iterate the following to convergence.
g(pi) = A6 + Z Lifi(x;),  yi ~ EF(ui, @) 1. Compute pseudodata z; = g’(f;)(yi — fii)/cvi + 7)i and iterative

J weights, w; = a;/ {V(fi)g'(fi)?} as for any GLM.

) . . 2. Compute a revised 3 estimate
g is a known smooth monotonic link function, EF an

exponential family distribution so that var(y;) = V/(u;)o. B=argmin> wi(z — X8+ > _XNB'S;3
B “=

» Set up model matrix and penalties as before. !

» Estimate B by penalized MLE. Defining the Deviance.

and hence revised estimates /) = X3 and fi = g~ 1(#).
D(B) = 2{lmax — 1(B)} (Imax is saturated log likelihood). ..

aj =1+ (yi — pi)(V//V;+ g/ /g!) gives Newton's method.
«aj = 1 gives Fisher scoring, where the expected Hessian of the
likelihood replaces the actual Hessian in Newton’'s method.

v
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B =arg mﬁin D(B) + Z \iB'S;3
J

v

Newton based versions of w; and z; are best here, as it makes

> A estimation is by generalizations of GCV, REML etc. \ estimation easier.



EDF, Bly and ¢

> Let S =3 \;S; and W = diag{E(w;)} (Fisher version).
The Effective Degrees of Freedom matrix becomes

v

F=(XTWX +8)"!XTwXx

v

Then the EDF is tr(F). EDFs for individual smooths are found
by summing the Fj; values for their coefficients.

In the n — oo limit

v

Bly ~ N(B,(XTWX +8)~*¢)

v

The scale parameter can be estimated by

6= wi(z —XiB)*/{n - tr(F)}.

i

Deviance based A selection criteria

» Mallows' C,/ UBRE generalizes to
Va = D(B) + 20tr(F)
» GCV generalizes to
Vg = nD(B))/{n — tr(F)}?

» Laplace approximate (negative twice) REML is

_DB)+8'sp
= 5 215(¢)

+ (log XTWX 4 S| — log |S|+) — M, log(27¢).

v,

A estimation

» There are 2 basic computational strategies for A selection.

1. Single iteration schemes estimate A at each PIRLS iteration
step, by applying GCV, REML or whatever to the working
penalized linear model. This approach need not converge.

2. Nested iteration, defines a A selection criterion in terms of the
model deviance and optimizes it directly. Each evaluation of
the criterion requires an ‘inner’ PIRLS to obtain BA- This
converges, since a properly defined function of A is optimized.

» The second option is usually preferable on grounds of
reliability, but the first option can be made very memory
efficient with very large datasets.

» The first option simply uses the smoothness selection criteria
for the linear model case, but the second requires that these
be extended. ..

Nested iteration computational strategy

» Optimization wrt p = log A is by Newton's method, using
analytic derivatives.
» For each trial A used by Newton’s method. ..
1. Fie-parameterize for maximum numerical stability in computing
B and terms like log [S|.
2. Compute 3 by PIRLS (full Newton version).
3. Calculate derivatives of 3 wrt p by implicit differentiation.
4. Evaluate the X selection criterion and its derivatives wrt p
» ...after which all the ingredients are in place for Newton's
method to propose a new A value.

» As usual with Newton's method, some step halving may be
needed, and the Hessian will have to be peturbed if it is not
positive definite.



One last generalization: GAMM
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A generalized additive mixed model has the form

J

... actually this is not much different to a GAM. The random
effects term Zb is just like a smooth with penalty b7+~ 1b.

If 4= can be written in the form >k ASk then the GAMM
can be treated exactly like a GAM. (gam).

Alternatively, using the mixed model representation of the
smooths, the GAMM can be written in standard GLMM form
and estimated as a GLMM. (gamm/gamm4).

The latter option is often preferable when there are many
random effects, and the former when there are fewer.

Summary

» A GAM is simply a GLM in which the linear predictor partly
depends linearly on some unknown smooth functions.

» GAMs are estimated by a penalized version of the method
used to fit GLMs.

» An extra criterion has to be optimized to find the smoothing
parameters.

» A GAMM is simply a GLMM in which the linear predictor
partly depends linearly on some unknown smooth functions.

» From the mixed model representation of smooths, GAMMs
can be estimated as GAMs or GLMMs.

» Bayesian results are useful for inference.



