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Model checking overview

! Since a GAM is just a penalized GLM, residual plots
should be checked exactly as for a GLM.

! It should be checked that smoothing basis dimension is not
restrictively low. Defaults are essentially arbitrary.

! The GAM analogue of co-linearity is often termed
‘concurvity’. It occurs when one predictor variable could be
reasonably well modelled as a smooth function of another
predictor variable. Like co-linearity it is statistically
destabilising and complicates interpretation, so is worth
checking for.

Residual checking

! Deviance, Pearson, working and raw residuals are defined
for a GAM in the same way as for any GLM.

! In mgcv the residuals function will extract them,
defaulting to deviance residuals.

! Residuals should be plotted against
1. fitted values.
2. predictor variables (those included and those dropped).
3. time, if the data are temporal.

! Residual plotting aims to show that there is something
wrong with the model assumptions. It’s good to fail.

! The key assumptions are
1. The assumed mean variance relationship is correct, so that

scaled residuals have constant variance.
2. The response data are independent, so that the residuals

appear approximately so.

Distribution checking

! If the independence and mean-variance assumptions are
met then it is worth checking the distributional assumption
more fully.

! The implication of quasi-likelihood theory is that provided
the mean variance relationship is right, the other details of
the distribution are not important for many inferential tasks.

! QQ-plots of residuals against standard normal quantiles
can be misleading in some circumstances: for example low
mean Poisson data, with many zeroes.

! It is better to obtain the reference quantiles for the
deviance residuals by repeated simulation of response
data, and hence residuals, from the fitted model. mgcv
function qq.gam will do this for you.

! gam.check produces some default residual plots for you.



Residual checking example

> b <- gam(y˜s(x0)+s(x1,x2,k=40)+s(x3)+s(x4),
+ family=poisson,data=dat,method="REML")
>
> gam.check(b)

Method: REML Optimizer: outer newton
full convergence after 8 iterations.
Gradient range [-0.0001167555,3.321004e-05]
(score 849.8484 & scale 1).
Hessian positive definite, eigenvalue range [9.66288e-05,10.52249].

[edited]

! The printed output is rather detailed information about
smoothing parameter estimation convergence.

! 4 residual plots are produced, the first is from qq.gam, unless
quasi-likelihood is used, in which case we have to fall back on a
normal QQ-plot (but anyway don’t care about this plot). The rest
are self explanatory.

gam.check plots
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More residual plots

rsd <- residuals(b)
qq.gam(b,rep=100); plot(fitted(b),rsd)
plot(dat$x0,rsd); plot(dat$x1,rsd)
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Checking k the basis dimension
! Provided it is not restrictively low the choice of basis

dimension, k , is not critical, because the effective degrees
of freedom of a term are primarily controlled by the
smoothing penalty.

! But it must be checked that k is not restrictively low —
default values are arbitrary.

! Four checking methods are useful.
1. Plot partial residuals over term estimates, looking for

systematic departures.
2. Test the residuals for residual pattern.
3. Try re-smoothing the model deviance residuals with respect

to the covariate(s) of interest using a higher k , to see if any
pattern is found.

4. Try re-fitting the model with increased k and see if the
smoothness selection criterion increases substantially.

! 1 and 2 should be routine. 3 and 4 are useful if you are
suspicious, but are also more time consuming.



Partial residuals

! Partial residuals are specific to each smooth term.
! Recall that the working residuals for a GLM are the

weighted residuals from the working linear model using in
the IRLS fitting scheme, at convergence.

! The partial residuals for fj are the working residuals that
you obtain using a linear predictor with f̂j set to zero. These
are the same as the working residual added to f̂j .

! The partial residuals should look like a random scatter
around the smooth.

! Systematic deviation of the mean partial residual from f̂j
can indicate that k is too low.

Partial residual example

library(MASS)
m <- gam(accel˜s(times,bs="ps"),data=mcycle,weights=w)
plot(m,residuals=TRUE,pch=19,cex=.3)
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. . . note the systematic pattern in the departure of the partial
residuals from the smooth. Should increase k.

A simple residual test

! An estimate of scale parameter φ can be obtained by
differencing scaled residuals.

! Differencing residuals that are neighbours according to
some covariate(s) should give an estimate of φ that is
statistically indistinguishable from a differencing estimate
obtained with any random ordering of residuals, if there is
no residual pattern with respect to the covariates.

! This is the basis for a simple, and rapid, randomisation test.
! If pattern is detected, then it may indicate that k is too low.
! . . . but care is needed: pattern may also be caused by

mean-variance problems, missing covariates, structural
infelicities, zero inflation etc. . .

Residual test example

> gam.check(m)
[edited]
Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k’.

k’ edf k-index p-value
s(times) 9.000 7.981 0.529 0

! k-index is ratio of neighbour differencing scale estimate to
fitted model scale estimate.

! k’ is the maximum possible EDF for the term.
! Here a low p-value coupled with high EDF suggests k may

be too low.



Alternative check example

> rsd <- residuals(m)
> ## smooth residuals with k doubled, to check pattern
> ## gamma>1 favours smoother models.
> gam(rsd˜s(times,bs="ps",k=20),data=mcycle,gamma=1.4)

Family: gaussian
Link function: identity

Formula:
rsd ˜ s(times, bs = "ps", k = 20)

Estimated degrees of freedom:
12.875 total = 13.87489

GCV score: 83.21058

This approach is not really needed for a single term model, but
is usefully efficient, relative to refitting with larger k, when there
are many terms present.

k fixed

m <- gam(accel˜s(times,bs="ps",k=20),data=mcycle,weights=w)
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! Further check now find no suggestion that k is too low.
! There are some differences in the k required with different

bases. The default ”tp” basis gives acceptable results with
k=10 (it is designed to be the optimal basis at a given k).

Concurvity

! Consider a model containing smooths f1 and f2.
! We can decompose f2 = f12 + f22 where f12 is the part of f2

representable in the space of f1, while f22 is the remaining
component, which lies exclusively in the space of f2.

! A measure of concurvity is α = ‖f12‖2/‖f2‖2, leading to 3
estimates

1. α̂ = ‖f̂12‖2/‖f̂2‖2.
2. The maximum value that α could take for any estimates,

using the given bases for f1 and f2.
3. The ratio of the ‘size’ of the basis for f12 relative to the basis

for f2, using some matrix norm.
! Function concurvity reports 1 as ’observed’, 2 as ’worst’

and 3 as ’estimated’. All are in [0, 1].
! The measure generalizes to more components.

Concurvity consequences

! Concurvity can make interpretation difficult.
! Spatial confounding is a common example: you need a

spatial effect in the model, but all the other covariates are
somehow functions of space.

! A technical problem is that smoothing parameter estimates
may become highly correlated and variable, which
degrades the performance of inferential methods that are
conditional on those estimates (confidence intervals and
p-values).

! Under ML or REML smoothness selection sp.vcov and
gam.vcomp can help diagnose this problem.

! Model averaging over the sampling distribution of the
smoothing parameters can help in severe cases.



Concurvity/Spatial confounding example
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concurvity example

library(gamair)
data(mack)
gm <- gam(egg.count˜s(lon,lat,k=100)+s(I(b.depthˆ.5))+s(salinity)+s(temp.20m)

+offset(log.net.area),data=mack,family=quasipoisson,method="REML")
concurvity(gm)

para s(lon,lat) s(I(b.depthˆ0.5)) s(salinity) s(temp.20m)
worst 1.063513e-17 0.9899778 0.9874163 0.9300386 0.9621984
observed 1.063513e-17 0.8308139 0.9518048 0.9232639 0.8736039
estimate 1.063513e-17 0.5500618 0.9360886 0.8952500 0.9294740

! This output shows the concurvity of each term with all the other terms in the
model. Basically space is confounded with everything.

! With spatial confounding it sometimes helps to increase the smoothing
parameter for space, e.g. until the REML score is just significantly different to its
maximum.

gm1 <- gam(egg.count˜s(lon,lat,k=100,sp=0.05)+s(I(b.depthˆ.5)) +s(salinity)+s(temp.20m)
+offset(log.net.area),data=mack,family=quasipoisson,method="REML")

Model selection

! A large part of what would usually be thought of as model
selection is performed by smoothing parameter estimation,
but smoothing selection does not usually remove terms
altogether.

! There are three common approaches to deciding what
terms to include.

1. Get smoothing parameter estimation to do all the work, by
adding a penalty for the un-penalized space of each term.

2. Compute approximate p-values for testing terms for equality
to zero, and use conventional selection strategies
(backwards, forwards, backwards-forwards, etc).

3. Use similar strategies based on AIC, or on the GCV or ML
scores for the model.

Penalizing the penalty null space

! The penalty for a term is of the form βTSβ.
! Usually S is not full rank so some finite (M) dimensional

space of functions is un-penalized.
! In consequence penalization can not completely remove

the term from the model.
! Consider eigen-decomposition S = UΛUT. The last M

eigenvalues will be zero. Let Ũ denote their corresponding
eigenvectors.

! βTŨŨTβ can be used as an extra penalty on just the
component of the term that is unpenalized by βTSβ.

! Adding such a penalty to all the smooth terms in the model
allows smoothing parameter selection to remove terms
from the model altogether.



Null space penalization in action

> gm <- gam(egg.count˜s(lon,lat,k=100)+s(I(b.depthˆ.5))+
+ s(c.dist) + s(temp.surf)
+ +s(salinity)+s(temp.20m)+offset(log.net.area),
+ data=mack,family=quasipoisson,method="REML",select=TRUE)
> gm

Family: quasipoisson
Link function: log

Formula:
egg.count ˜ s(lon, lat, k = 100) + s(I(b.depthˆ0.5)) + s(c.dist) +

s(temp.surf) + s(salinity) + s(temp.20m) + offset(log.net.area)

Estimated degrees of freedom:
60.60 2.17 0.42 0.00 1.83 5.17 total = 71.19

REML score: 515.0758

! So temp.surf is penalized out, and c.dist nearly so!

p-values and all that

! A p-values for smooth term, f , with a finite dimensional
un-penalized space can be computed by a rather involved
inversion of the Bayesian intervals for a smooth, which give
good frequentist performance.

! The test statistic is f̂TVτ−
f f̂ where Vτ ′−

f is a generalized rank
τ ′ pseudoinverse of the Bayesian covariance matrix for f
the vector of f evaluated at the observed covariate values.
τ ′ is a version of the effective degrees of freedom of f̂ ,
based on 2F − FF in place of F.

! For random effects, and smooths with no un-penalized
space, another approach is needed.

! In both cases the p-values are conditional on the
smoothing parameter estimates (you have been warned!)

! Refitting the egg model without null space penalization and
calling summary(gm) gives. . .

summary(gm)
Family: quasipoisson
Link function: log

...

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9506 0.1237 23.85 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(lon,lat) 61.280 73.602 3.094 5.28e-13 ***
s(I(b.depthˆ0.5)) 2.593 3.164 3.154 0.02354 *
s(c.dist) 1.000 1.000 1.532 0.21688
s(temp.surf) 1.000 1.000 0.133 0.71597
s(salinity) 1.001 1.001 8.891 0.00313 **
s(temp.20m) 5.960 6.941 3.504 0.00136 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

R-sq.(adj) = 0.825 Deviance explained = 90.2%
REML score = 510.79 Scale est. = 4.4062 n = 330

generalized AIC etc

! An approximate AIC is often used for model selection:

−2l(β̂) + 2τ

where β̂ are the maximum penalized likelihood estimates
and τ is the effective degrees of freedom of the whole
model, and the UBRE (Mallows Cp) score used for
smoothness selection for known scale parameter is directly
proportional to this.

! AIC usually gives very similar results to selecting models
on the basis of the GCV (or UBRE) score.

! The ML score can also be used in the same way, but not
REML (because of the usual lack of comparability between
models with different fixed effect structures).



GLRT via anova

! Approximate generalized likelihood ratio testing can also
be performed, again based on the maximum penalized
likelihood estimates and effective degrees of freedom, and
again, conditional on the smoothing parameter estimates.

! The anova function in R can be used for this purpose.
! The approximation has limited justification. If the model

terms can all be closely approximated by unpenalized
terms, then the approximation is often reasonable, but note
that random effects can not be approximated in this way,
and the approximation breaks down in this case.

! Unless your smooths are really frequentist random effects,
resampled from their prior/marginal with every replication
of the data, then a GLRT (or AIC) based on the ML or
REML score is a bad idea.

Additive versus Interaction

! f1(x) + f2(z), f3(x , z) or f1(x) + f2(z) + f3(x , z)?
! Conceptually f1(x) + f2(z) appears nested in f3(x , z), but

unless you choose the smoothing penalties very carefully it
won’t be.

! The t2 tensor product construction in mgcv build smooths
with penalties that do nest f1(x) + f2(z) in f3(x , z) (basically
following a reduced rank version of the SS-ANOVA
approach of Gu and Wahba), but the price you pay is the
need to use penalties that are somewhat un-intuitive.
pen.edf and gam.vcomp are useful with such terms.

! A simpler approach simply removes the lower order
interactions from a higher order basis. ti terms in mgcv
do this.

Summary
! Model checking is just like for a GLM + check that

smoothing basis dimensions are not too small.
! Concurvity is the generalization of co-linearity to worry

about in interpretation.
! A variety of model selection tools are available, including

full penalization, generalized AIC, term specific p-values
and approximate GLRT tests.

! Tests/p-values are approximate and conditional on
smoothing parameter estimates.

1. When smoothing parameter estimators are highly
correlated (see e.g.sp.vcov), single term p-values should
be treated with caution.

2. GLRT tests are a particularly crude approximation, and can
fail completely when random effects are involved.

! GAMs are statistical models and there are reasonable
statistical tools available to help in the process of model
building, but if you want machine learning, GAMs are
probably not the place to start.


