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Estimating functions

! Here are some ancient data. . .
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! If f is ‘a smooth function’, a suitable model might be

acceli = f (timei ) + εi .

! How to represent f ? What function space should we search?

! A space that is good for approximating known functions
would be a sensible starting point.

A space for f

! Taylor’s theorem might suggest using the space of
polynomials, but look at the middle panel’s attempt to
approximate the function on the left with a polynomial.
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! Trying to pass through the black dots and maintain continuity
of all derivatives requires wild oscillation.

! Reducing the continuity requirements gives the better
behaved piecewise linear interpolant on the right.

A simple basis for f

! So, for now, let’s represent f as a piecewise linear function,
with derivative discontinuities at x∗k .
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! . . . this can be written f (x) =
∑

k βkbk(x), where the bk are
tent functions: there is one per •. The coefficients βk give
f (x∗k ) directly.



The tent basis

! The kth tent function is 1 at x∗k and descends linearly to zero
at x∗k± . Elsewhere it is zero.

! The full set look like this. . .
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! Under this definition of bk(x), we would interpolate x∗k , y
∗
k

data by just setting βk = y∗k .

How the tent basis works

! So the function is represented by multiplying each tent
function by its coefficient, βk , and summing the results. . .
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! Given the basis functions and coefficients, we can predict the
value of f anywhere in the range of the x∗ values.

Prediction matrix

! f is defined by the x∗k values defining the tent basis, and
coefficients βk .

! Now suppose that we want to evaluate the interpolant at a
series of values xi .

! If f = [f (x ), f (x ), . . .]T , then

f = Xβ

where the prediction matrix is given by

X









b x b x b x .
b x b x . .

. . . .

. . . .









Regression with a basis

! Returning to these data. . .
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! We can define a tent basis by choosing some t∗k values spread
evenly through the range of observed times.

! Then the model, ai = f (ti ) + εi becomes

a = Xβ + ε

. . . a straightforward linear model.



Estimation in R

! A few lines of R code are enough to produce X. Then lm can
be used to fit the model.

! Here is the result using K=40 evenly spaced t∗k (knots).
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! Far too wiggly! Reduce K

Reducing K

! After some experimentation, K = 15 seems reasonable. . .
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! . . . but K selection is a bit fiddly and ad hoc.
1. Models with different K are not nested, so we can’t use

hypothesis testing.
2. We have little choice but to fit with every possible K value if

AIC is to be used.
3. Very difficult to generalize this model selection approach to

models with more than one function.

Smoothing

! Using the basis for regression was ok, but there are some
problems choosing K and deciding where to put the knots, x∗k .

! To overcome these consider using the basis for smoothing.
1. Make K ‘large enough’ that bias is negligible.
2. Use even x∗k spacing.
3. To avoid overfit, penalize the wiggliness of f using, e.g.

P(f ) =
K−
∑

k

(βk− − 2βk + βk )2

Evaluating the penalty

! To get the penalty in convenient form, note that
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by definition of D

! Hence
P(f ) = β D Dβ = β Sβ

by definition of S.



Penalized fitting

! Now the penalized least squares estimates are

β̂ = argmin
β

∑

i

{ai − f (ti)} + λP(f )

smoothing parameter λ controls the fit-wiggliness tradeoff.

! For computational purposes this is re-written

β̂ = argmin
β

‖a− Xβ‖ + λβ Sβ.

! Formally,
β̂ = (X X+ λS)− X a

but direct use of this expression has sub-optimal
computational stability.

Computing the smooth fit

! In fact

‖a −Xβ‖ + λβ Sβ =

∥

∥

∥

∥

[

a

0

]

−
[

X√
λD

]

β

∥

∥

∥

∥

! The rhs is the RSS for an augmented linear model, which can
be stably fit using lm. Here’s an example using K = 40, but
now penalizing. . .
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Issues raised by smoothing

! Notice the dominant role of the penalty in the smoothed f —
the discontinuity of the basis is barely visible, the penalty has
so smoothed the results.

! But the dramatic effect of penalization raises questions
1. How do we measure complexity of the model now that

penalization has clearly yielded a result much smoother than
K=40 would suggest?

2. What distributional properties will f̂ have under penalized
estimation?

3. How do we go about choosing/estimating the degree of
penalization (λ)?

The natural basis

! To get started on these questions note that any basis-penalty
smoother can be reparameterized so that its basis matrix is
orthognal and its penalty is diagonal.

! Let a smoother have model matrix X and penalty matrix S.

! Form QR decomposition X = QR, followed by symmetric
eigen-decompostion

R− SR− = UΛU

! Define P = U R. And reparameterize β′ = Pβ.

! In the new parameterization the model matrix is X′ = QU,
which has orthogonal columns. (X = X′P.)

! The penalty matrix is now the diagonal matrix Λ (eigenvalues
in decreasing order down leading diagonal).



Effective Degrees of Freedom

! Penalization restricts the freedom of the coefficients to vary.
So with 40 coefficients we have < 40 effective degrees of

freedom (EDF).

! How the penalty restricts the coefficients is best seen in the
natural parameterization. (Let y be the response.)

! Without penalization the coefficients would be β̃′ = X′Ty.

! With penalization the coefficients are β̂′ = (I+ λΛ)− X′Ty.

! i.e. β̂j = β̃j(1 + λΛjj)− .

! So (1 + λΛjj)− is the shrinkage factor for the i th coefficient,

and is bounded between 0 and 1. It gives the EDF for β̂j .

! So total EDF is tr{(1 + λΛjj)− } = tr(F), where
F = (X X+ λS)− X X}, the ‘EDF matrix’.

EDF Illustrated
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Smoothing bias

! The formal expression for the penalized least squares
estimates is β̂ = (X X+ λS)− X y

! Hence

E (β̂) = (X X+ λS)− X E (y)

= (X X+ λS)− X Xβ

= Fβ $= β

! Smooths are baised!

! i.e. we control model mis-specification bias by using a large K

. . . but to control the resulting variance we have to penalize

. . . which leads to smoothing bias.

! The bias makes frequentist inference difficult (including
bootstrapping!).

A Bayesian smoothing model

! We penalize because we think that the truth is more likely to
be smooth than wiggly.

! Things can be formalized by putting a prior on wiggliness

wiggliness prior ∝ exp(−λβ Sβ/(2σ ))

! . . . equivalent to a prior β ∼ N(0,S−σ /λ) where S− is a
generalized inverse of S.

! From the model y|β ∼ N(Xβ, Iσ ), so from Bayes’ Rule

β|y ∼ N(β̂, (X X+ λS)− σ )

! Finally σ̂ = ‖y − Xβ̂‖ /{n − tr(F)} is useful.



Consequences of the Bayesian model

! The Bayesian model has the same structure as a linear mixed
model, and can be computed as such.

! β ∼ N(0,S−σ /λ) ⇒ f ∼ N(0, (XSX )−σ /λ), i.e. f is
equivalent to a Gaussian random field with covariance matrix
(XSX )−σ /λ.

! But even if we compute f using mixed model technology, we
are really being Bayesian in most cases. . .

! . . . usually we do not expect f to be re-drawn from the prior
on each replication of the response data, as a true random
effect would be.

The Bayesian model in action

! An argument due to Nychka (1988) shows that the intervals
for f based on the Bayesian posterior have good across the
function frequentist coverage, because the Bayesian covariance
matrix can be viewed as including a squared bias component.

! Here is an example of such an interval
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EDF = 13.7

Smoothness selection approaches

! The smoothing model yi = f (xi ) + εi , εi ∼ N(0,σ ), is
represented via a basis expansion of f , with coefficients β.

! The β estimates are β̂ = argminβ ‖y −Xβ‖ + λβ Sβ

where X is the model matrix derived from the basis, and S is
the wiggliness penalty matrix.

! λ controls smoothness — how should it be chosen?
! There are 3 main statistical approaches

1. Choose λ to minimize error in predicting new data.
2. Treat smooths as random effects, following the Bayesian

smoothing model, and estimate λ as a variance parameter
using a marginal likelihood approach.

3. Go fully Bayesian by completing the Bayesian model with a
prior on λ (requires simulation and not pursued here).

Prediction error: cross validation
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1. Choose λ to try to minimize the error predicting new data.

2. Minimize the average error in predicting single datapoints
omitted from the fit. Each datum left out once in average.

3. If A = X(X X+ λS)− X , it turns out that

Vo(λ) =
1

n

∑

i

(yi − µ̂ −i
i )2 =

1

n

∑

i

(yi − µ̂i)2

(1− Aii)2



OCV not invariant
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! OCV is not invariant in an odd way. If Q is orthogonal then
fitting objective

‖Qy −QXβ‖ + λβ Sβ

yields identical inferences about β as the original objective,
but it gives a different Vo .

GCV: generalized cross validation

! If we find the Q that causes the leading diagonal elements of
A to be constant, and then perform OCV, the result is the
invariant alternative GCV:

Vg =
n‖y − µ̂‖

{n − tr(A)}

! It is easy to show that tr(A) = tr(F), where F is the degrees
of freedom matrix.

! In addition to invariance, GCV is much easier to optimize
efficiently in the multiple smoothing parameter case.

Marginal Likelihood smoothness selection

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

15
20

λ too low, prior variance too high

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

15
20

λ and prior variance about right

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

15
20

λ too high, prior variance too low

x

y

1. Choose λ to maximize the average likelihood of random draws
from the prior implied by λ.

2. If λ too low, then almost all draws are too variable to have
high likelihood. If λ too high, then draws all underfit and have
low likelihood. The right λ maximizes the proportion of draws
close enough to data to give high likelihood.

3. Formally, maximize e.g. Vr (λ) = log
∫

f (y|β)fλ(β)dβ. -
Marginal Likelihood.

Prediction error vs. likelihood λ estimation
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1. Pictures show GCV and REML scores for different replicates
from same truth.

2. Compared to REML, GCV penalizes overfit only weakly, and
so is more likely to occasionally undersmooth.



Summary

! We can construct smoothers from sets of basis functions, with
associated quadratic penalties.

! Estimation is then by quadratically penalized least squares.

! Penalization reduces freedom to vary: we need a notion of
effective degrees of freedom.

! A Bayesian view of smoothing is useful for further inference.

! The appropriate amount of penalization can be estimated by
marginal likelihood or prediction error methods.


