Basis Penalty Smoothers

Simon Wood

Mathematical Sciences, University of Bath, U.K.

A space for f

» Taylor's theorem might suggest using the space of
polynomials, but look at the middle panel’s attempt to
approximate the function on the left with a polynomial.
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» Trying to pass through the black dots and maintain continuity
of all derivatives requires wild oscillation.

» Reducing the continuity requirements gives the better
behaved piecewise linear interpolant on the right.

Estimating functions

» Here are some ancient data. ..
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» If f is ‘a smooth function’, a suitable model might be
accel; = f(time;) + €;.

» How to represent f7 What function space should we search?

» A space that is good for approximating known functions
would be a sensible starting point.

A simple basis for f

» So, for now, let's represent f as a piecewise linear function,
with derivative discontinuities at x;.

> ...this can be written f(x) = )", Bkbk(x), where the by are
tent functions: there is one per o. The coefficients 5y give
f(x;) directly.



The tent basis

» The k™ tent function is 1 at x; and descends linearly to zero

at XZi . Elsewhere it is zero.
» The full set look like this. . .
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» Under this definition of bx(x), we would interpolate x;, y;
data by just setting Bk = y;.

Prediction matrix

» f is defined by the x; values defining the tent basis, and
coefficients [.

» Now suppose that we want to evaluate the interpolant at a
series of values x;.

» Iff=[f(x),f(x),...]7, then
f=Xg3
where the prediction matrix is given by

b x b x b x
b x b x

How the tent basis works

» So the function is represented by multiplying each tent
function by its coefficient, B, and summing the results. ..

» Given the basis functions and coefficients, we can predict the

value of f anywhere in the range of the x* values.

Regression with a basis

» Returning to these data. ..
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» We can define a tent basis by choosing some t; values spread

evenly through the range of observed times.
» Then the model, a; = f(t;) + ¢; becomes

a=XB+e€

... a straightforward linear model.



Estimation in R Reducing K

» After some experimentation, K = 15 seems reasonable. ..

» A few lines of R code are enough to produce X. Then 1m can
be used to fit the model.
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> Here is the result using K=40 evenly spaced t; (knots).
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» ...but K selection is a bit fiddly and ad hoc.
1. Models with different K are not nested, so we can’t use
hypothesis testing.
. We have little choice but to fit with every possible K value if
AIC is to be used.
3. Very difficult to generalize this model selection approach to
models with more than one function.
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» Far too wiggly! Reduce K

Smoothing Evaluating the penalty

. : . > T h Ity i ient f h
» Using the basis for regression was ok, but there are some © get the penaty In convenient form, note that

problems choosing K and deciding where to put the knots, x;. 8- 8 8 _ /
» To overcome these consider using the basis for smoothing. B-B8 B " 3 Dg

1. Make K ‘large enough’ that bias is negligible.
2. Use even x; spacing.

3. To avoid overfit, penalize the wiggliness of f using, e.g. by definition of D
K— » Hence
P(F) =Y (Bee — 2B+ B ) P(f)=B D DB =0 SB

g by definition of S.



Penalized fitting

» Now the penalized least squares estimates are
3 = arg min aj— ()} + NP(f
B=argmin 3 {ai— f(8)} + (1)

smoothing parameter )\ controls the fit-wiggliness tradeoff.

» For computational purposes this is re-written
B =arg mﬁin la—XB| +A8 SB.

» Formally,
B=(X X+AS)” X a

but direct use of this expression has sub-optimal
computational stability.

Issues raised by smoothing

» Notice the dominant role of the penalty in the smoothed f —
the discontinuity of the basis is barely visible, the penalty has
so smoothed the results.

» But the dramatic effect of penalization raises questions

1. How do we measure complexity of the model now that
penalization has clearly yielded a result much smoother than
K=40 would suggest?

2. What distributional properties will f have under penalized
estimation?

3. How do we go about choosing/estimating the degree of
penalization (\)?

Computing the smooth fit

» In fact

e s[5 oo

» The rhs is the RSS for an augmented linear model, which can

be stably fit using 1m. Here's an example using K = 40, but
now penalizing. ..
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The natural basis

To get started on these questions note that any basis-penalty
smoother can be reparameterized so that its basis matrix is
orthognal and its penalty is diagonal.

Let a smoother have model matrix X and penalty matrix S.

Form QR decomposition X = QR, followed by symmetric
eigen-decompostion

R™ SR™ =UAU

Define P = U R. And reparameterize 3 = P3.

In the new parameterization the model matrix is X’ = QU,
which has orthogonal columns. (X = X'P.)

The penalty matrix is now the diagonal matrix A (eigenvalues
in decreasing order down leading diagonal).



Effective Degrees of Freedom

Penalization restricts the freedom of the coefficients to vary.
So with 40 coefficients we have < 40 effective degrees of
freedom (EDF).

How the penalty restricts the coefficients is best seen in the
natural parameterization. (Let y be the response.)

Without penalization the coefficients would be 3’ = X'Ty.
With penalization the coefficients are B’ = (1+ AA)~ X'Ty.
ie. B =Bj(1+ M)~ .

So (1+ AAj)~ is the shrinkage factor for the i*h coefficient,
and is bounded between 0 and 1. It gives the EDF for ;.

So total EDF is tr{(1 4+ AA;)~ } = tr(F), where
F=(X X+AS)~ X X}, the 'EDF matrix'.

Smoothing bias
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The formal expression for the penalized least squares
estimatesis 3= (X X+ AS)” X y

Hence
E(B) = (X X+AS)” X E(y)
= (X X+ \AS)” X X3
~ F340
Smooths are baised!

i.e. we control model mis-specification bias by using a large K
... but to control the resulting variance we have to penalize
...which leads to smoothing bias.

The bias makes frequentist inference difficult (including
bootstrapping!).

EDF lllustrated
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A Bayesian smoothing model

v

>

2

v

v

We penalize because we think that the truth is more likely to
be smooth than wiggly.

Things can be formalized by putting a prior on wiggliness

wiggliness prior o exp(—AB SB/(20 ))

.. .equivalent to a prior 3 ~ N(0,S~ ¢ /)\) where S~ is a
generalized inverse of S.

From the model y|3 ~ N(X3,lo ), so from Bayes' Rule
Bly ~ N(B,(X X+18)” o)

Finally 6 = |ly — X3|| /{n — tr(F)} is useful.



Consequences of the Bayesian model

» The Bayesian model has the same structure as a linear mixed
model, and can be computed as such.

» B~ N(0,S" 0 /\)=f~ N0, (XSX )~c /N, ie fis
equivalent to a Gaussian random field with covariance matrix
(XSX )70 /A

» But even if we compute f using mixed model technology, we
are really being Bayesian in most cases. ..

» .. .usually we do not expect f to be re-drawn from the prior
on each replication of the response data, as a true random
effect would be.

Smoothness selection approaches

» The smoothing model y; = f(x;) + €j, € ~ N(0,0 ), is
represented via a basis expansion of f, with coefficients 3.

» The 3 estimates are 3 = arg ming |ly — XB|| + 8 SpB
where X is the model matrix derived from the basis, and S is
the wiggliness penalty matrix.

» )\ controls smoothness — how should it be chosen?

» There are 3 main statistical approaches

1. Choose A to minimize error in predicting new data.

2. Treat smooths as random effects, following the Bayesian
smoothing model, and estimate \ as a variance parameter
using a marginal likelihood approach.

3. Go fully Bayesian by completing the Bayesian model with a
prior on A (requires simulation and not pursued here).

The Bayesian model in action

» An argument due to Nychka (1988) shows that the intervals
for f based on the Bayesian posterior have good across the
function frequentist coverage, because the Bayesian covariance
matrix can be viewed as including a squared bias component.

» Here is an example of such an interval

Prediction
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error: cross validation

A too high A about right ’ too low
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1. Choose A to try to minimize the error predicting new data.

2. Minimize the average error in predicting single datapoints
omitted from the fit. Each datum left out once in average.

3. f A=X(X X+ AS)~ X , it turns out that

, )2
Vo) = £ 0 - i =



OCV not invariant GCV: generalized cross validation

» If we find the Q that causes the leading diagonal elements of
A to be constant, and then perform OCV, the result is the
invariant alternative GCV:
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> It is easy to show that tr(A) = tr(F), where F is the degrees
» OCV is not invariant in an odd way. If Q is orthogonal then of freedom matrix.

fitting objective

» In addition to invariance, GCV is much easier to optimize
IQy — QX8| + A3 S3 efficiently in the multiple smoothing parameter case.

yields identical inferences about 3 as the original objective,
but it gives a different V,.

Marginal Likelihood smoothness selection Prediction error vs. likelihood A estimation

. too low, prior variance too high A and prior variance about right 2 too high, prior variance too low
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1. Choose A to maximize the average likelihood of random draws
from the prior implied by A.
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2. If X too low, then almost all draws are too variable to have o . oa) 0a)
high likelihood. If A too high, then draws all underfit and have 1. Pictures show GCV and REML scores for different replicates
low likelihood. The right A maximizes the proportion of draws from same truth.

close enough to data to give high likelihood. 2. Compared to REML, GCV penalizes overfit only weakly, and

3. Formally, maximize e.g. V,()\) = |0gf f(y|B)H(8)dB. - so is more likely to occasionally undersmooth.
Marginal Likelihood.



Summary

» We can construct smoothers from sets of basis functions, with
associated quadratic penalties.

» Estimation is then by quadratically penalized least squares.

» Penalization reduces freedom to vary: we need a notion of
effective degrees of freedom.

» A Bayesian view of smoothing is useful for further inference.

» The appropriate amount of penalization can be estimated by
marginal likelihood or prediction error methods.



