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Posterior simulation

! Recall that for any fitted GAM we have the result

β|y ∼ N(β̂,Vβ)

(large sample approximation in the generalized case).
! This means that we can rapidly simulate from the posterior

of any quantity derived from the fitted model.
! Such simulation is made much easier, if we can obtain the

prediction matrix Xp, mapping the model coefficents to the
linear predictor, for any desired set of predictor variable
values.

! mgcv:predict.gam computes such an Xp using
predict(...,type="lpmatrix")

Posterior simulation example

! Here is an adaptive smooth fit to the motorcycle data.
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! Suppose we would like a 95% CI for the trough to peak
height.

Trough to peak CI

pd <- data.frame(times=seq(10,40,length=1000))
Xp <- predict(b,pd,type="lpmatrix") ## map coefs to fitted curves
beta <- coef(b);Vb <- vcov(b) ## posterior mean and cov of coefs
n <- 10000
br <- mvrnorm(n,beta,Vb) ## simulate n rep coef vectors from post.
a.range <- rep(NA,n)
for (i in 1:n) { ## loop to get trough to peak diff for each sim
pred.a <- Xp%*%br[i,] ## curve for this replicate
a.range[i] <- max(pred.a)-min(pred.a) ## range for this curve

}
quantile(a.range,c(.025,.975))

2.5% 97.5%
137.0796 174.5402

! This is very fast compared to boot-strapping, and less
problematic.

! The for loop is only for clarity, it can be eliminated.



Correlated data

! Correlated data can be modelled using high rank Gaussian
random fields (smoothers), or by GEE type assumption of
a covariance structure for the response.

! For Gaussian data it is straightforward to incorporate a
known correlation structure into the likelihood. If such a
structure is sparse (it’s Choleski factor, or inverse Choleski
factor is sparse) then efficient computation is sometimes
possible.

! An AR1 model is an example of such a sparse structure.
! Unknown correlation parameters can be optimized

numerically, or by simple profile likelihood grid search.
! Software for correlated data is a bit limited at the moment

(but if you don’t have too many smooth terms, check out
INLA).

GAM + AR1 example

! The Hadley Centre (UK) assembles monthly global mean
temperature datasets, going back to 1850 (e.g. hadcrut3
from their web site).

! The data appear quite noisy, so it is important to be able to
say, objectively, what the underlying smooth trend in the
data looks like.

! There is an annual cycle in the data, essentially because
the Northern and Southern Hemispheres respond
differently to incoming solar radiation.

! A reasonable model, of temperature anomaly, ai , is

ai = f (ti) + g(mi) + ei

where the ei are AR1 gaussian errors, with unknown
correlation parameter. g(mi) is cyclic function of month.

bam(...,rho=.98) fit of AR1 GAM
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! Upper is fit with REML optimal correlation parameter, lower
is equivalent model without auto-correlation, but forced to
have same smoothing parameters.

Annual data
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! Top is what is currently done for IPCC presentation to

policy makers.



Spatial correlation

! Sometimes a relatively high rank smooth suffices (e.g. a
thin plate spline of space).

! Sometimes bam can be more efficient than gam for such
high rank terms, but much over rank 1000 and the methods
become impractically slow.

! A GEE type approach to correlation can be used with
gamm via nlme type correlation structures, but
convergence is not very reliable.

! Essentially the approach assumes a parameterized
correlation structure for the working data used at each
PQL iteration during fitting (of course this is just a
likelihood method if the response is Gaussian).

Spatial correlation example

! Revisiting the fish egg data, from earlier, we could try to
force more of the explanatory power onto the covariates by
replacing the spatial smooth with an assumption about
residual spatial autocorrelation. Let’s assume a simple
model in which correlation decays as a half Gaussian. . .

mack$lon <- mack$lon + (runif(n)-.5)/20 ## jitter location

gmm <- gamm(egg.count ˜ s(I(b.depthˆ.5)) + s(c.dist) +
s(temp.surf) + s(temp.20m)+offset(log.net.area),
data=mack,family=quasipoisson,
correlation=corGaus(.1,form=˜lon+lat))

! See nlme documentation for more on the correlation
structure.

! Fitting takes 10s of minutes. . .

CorGaus GAM effects
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! The sea bed depth effect is much stronger in this model.
! Spatial correlation in these models is an active area of

research.

Functional data

! Function on scalar, and scalar on function regressions can
readily be cast as GAMs/ penalized GLMs.

! Start with scalar on function and consider predicting
octane rating from near infrared spectrum of gasoline.
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scalar on function

! There are 60 such spectrum (ki(x)) - octane (yi ) pairs (x is
wavelength), and a model might be

yi = α+

∫
f (x)ki(x)dx + εi " α+

1
h

p∑

k=1

ki(xk )f (xk ) + εi

where f (x) is a smooth function of wavelength, and the xk
are evenly spaced h apart.

! Let Xik = xk ∀ i and Lik = ki(xk )/h. In mgcv:gam

s(X,by=L)

evaluates
∑

k f (Xik )Lik = 1
h
∑p

k=1 ki(xk )f (xk ), by invoking a
summation convention for matrix arguments of smooths
(including te/2).

Octane fit

library(pls);data(gasoline);gas <- gasoline
nm <- seq(900,1700,by=2) ## create wavelength matrix...
gas$nm <- t(matrix(nm,length(nm),length(gas$octane)))
b <- gam(octane˜s(nm,by=NIR,bs="ad"),data=gas)
plot(b,rug=FALSE,shade=TRUE,main="Estimated function")
plot(fitted(b),gas$octane,...)

1000 1200 1400 1600

−8
−4

0
2

4
6

Estimated function

nm

s(
nm

,7
.9
):N

IR

84 85 86 87 88 89

84
86

88

octane

fitted

m
ea
su
re
d

function-on-scalar
! Annual temperature data from some Canadian locations.
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! Colour denotes region: blue is Arctic, black continental, red
Pacific, green Atlantic.

! Model: if profile from region j :

tempi = fj(ti) + f (ti)latitudei + ε(ti)

i.i.d error fit

b <- gam(T˜region+s(time,k=20,bs="cr",by=region)+
s(time,k=40,bs="cr",by=latitude),
data=dat,method="REML")
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AR1 error fit

b1 <- gamm(T˜region+s(time,k=20,bs="cr",by=region)+
s(time,k=40,bs="cr",by=latitude),
data=dat,correlation=corAR1(form=˜1|place))
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The end.


