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Lectures:
1. Intro to point processes and moment measures

2. The Poisson process

3. Cox and cluster processes

4. Estimating functions

5. The conditional intensity and Markov point processes

5. References

Aim: overview of

◮ spatial point process theory

◮ statistics for spatial point processes with emphasis on
estimating equation inference

◮ not comprehensive: the most fundamental topics and my
favorite things.

◮ all methods in Section 1-5 implemented in R package
spatstat
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Mucous membrane cells

Centres of cells in mucous membrane: Repulsion due to physical
extent of cells

Inhomogeneity - lower
intensity in upper part

Bivariate - two types of
cells

Same type of
inhomogeneity for two
types ?
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Data example: Capparis Frondosa

◮ observation window W
= 1000 m × 500 m

◮ seed dispersal⇒ clustering

◮ environment ⇒
inhomogeneity
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Potassium content in soil.

Objective: quantify dependence on environmental variables and
clustering
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Whale positions

Close up:
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Aim: estimate whale intensity λ

Observation window W = narrow strips around transect lines

Varying detection probability: inhomogeneity (thinning)

Variation in prey intensity: clustering
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Somalian pirates - two-type space-time
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Cotton plantations in the Deep South
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What is a spatial point process ?

Definitions:

1. a locally finite random subset X of R2 (#(X ∩ A) finite for all
bounded subsets A ⊂ R

2)

2. stochastic process of count variables {N(B)}B∈B0
indexed by

bounded Borel sets B0.

3. a random counting measure N on R
2

Equivalent provided no multiple points: (N(A) = #(X ∩ A) )

This course: appeal to 1. and skip measure-theoretic details.

In practice distribution specified by an explicit construction (second
and third lecture) or in terms of a probability density (second and
fifth lecture).
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Moments of a spatial point process

Fundamental characteristics of point process: mean and covariance
of counts N(A) = #(X ∩ A).

Intensity measure µ:

µ(A) = EN(A), A ⊆ R
2

In practice often given in terms of intensity function

µ(A) =

∫

A

ρ(u)du

Infinitesimal interpretation: N(A) binary variable (presence or
absence of point in A) when A very small. Hence

ρ(u)dA ≈ EN(A) ≈ P(X has a point in A)
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Second-order moments

Second order factorial moment measure:

α(2)(A× B) = E

6=∑

u,v∈X

1[u ∈ A, v ∈ B ] A,B ⊆ R
2

=

∫

A

∫

B

ρ(2)(u, v)du dv

where ρ(2)(u, v) is the second order product density

Infinitesimal interpretation of ρ(2):

ρ(2)(u, v)dAdB ≈ P(X has a point in each of A and B)

(u ∈ A ,v ∈ B)
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Second moment vs. second factorial moment measure

Second moment measure

µ(2)(A× B) = EN(A)N(B) = α(2)(A× B) + E

∑

u∈X

1[u ∈ A ∩ B ]

Hence due to “diagonal terms” in sum not absolutely continuous.
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Campbell formulae

By definition of intensity function and product density and the
standard proof we obtain the useful Campbell formulae:

E

∑

u∈X

h(u) =

∫
h(u)ρ(u)du

E

6=∑

u,v∈X

h(u, v) =

∫∫
h(u, v)ρ(2)(u, v)dudv
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Pair correlation function

Pair correlation tendency to cluster/repel relative to case of
independent points:

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
=

P(X has a point in each of A and B)

P(X has a point in A)P(X has a point in B)

= 1 if independence (Poisson process, next section)

Let ρ(u|v) denote intensity of X given v ∈ X (‘Palm’ intensity).
Then

g(u, v) =
ρ(u|v)
ρ(u)
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Covariance and pair correlation function

Cov[N(A),N(B)] =

∫

A∩B
ρ(u)du +

∫

A

∫

B

ρ(u)ρ(v)(g(u, v) − 1)dudv

(1)

= Poisson variance + additional/less variance due

to interaction
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K -function

K (t) =

∫

‖h‖≤t

g(h)dh

(provided g(u, v) = g(u − v) i.e. X second-order reweighted
stationary)

Examples of pair
correlation and
K -functions:
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Estimation and interpretation of K (t)

Unbiased estimate of K -function (W observation window):

K̂ (t) =
∑

u,v∈X∩W

1[0 < ‖u − v‖ ≤ t]

ρ(u)ρ(v)
eu,v

(eu,v edge correction factor)

In the homogeneous case (constant intensity ρ) K (t) has
interpretation as conditional expectation:

ρK (t) = E[number of further points within distance t of u|u ∈ X]
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Exercises

1. Show that the covariance between counts N(A) and N(B) is

Cov[N(A),N(B ] = µ(A ∩ B) + α(2)(A× B)− µ(A)µ(B)

2. Verify covariance formula (1) (covariance in terms of pair
correlation function).

3. Show that in the isotropic case (g(u, v) = g(‖u − v‖)),
K ′(r) = 2πrg(r).

4. Show that

K (t) :=

∫

R2

1[‖u‖ ≤ t]g(u)du =
1

|B |E
6=∑

u∈X∩B
v∈X

1[‖u − v‖ ≤ t]

ρ(u)ρ(v)

(Hint: use the Campbell formula)
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5. Show that the following estimate is unbiased:

K̂ (t) =

6=∑

u,v∈X∩W

1[‖u − v‖ ≤ t]

ρ(u)ρ(v)|W ∩Wu−v |

where Wu−v translated version of W (assume |W ∩Wh| > 0
for ‖h‖ ≤ t).
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The Poisson process
Assume µ locally finite measure on R

2 with density ρ.

X is a Poisson process with intensity measure µ if for any bounded
region B with µ(B) > 0:

1. N(B) ∼ Poisson(µ(B))

2. Given N(B), points in X ∩ B i.i.d. with density ∝ ρ(u), u ∈ B

B = [0, 1] × [0, 0.7]:
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Homogeneous: ρ = 150/0.7 Inhomogeneous: ρ(x , y) ∝ e
−10.6y
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Existence of Poisson process on R
2: use definition on disjoint

partitioning R
2 = ∪∞

i=1Bi of bounded sets Bi .
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Homogeneous Poisson process as limit of Bernouilli trials

Consider disjoint subdivision
W = ∪n

i=1Ci where |Ci | = |W |/n.
With probability ρ|Ci | a uniform point
is placed in Ci .

Number of points in subset A is b(n|A|/|W |, ρ|W |/n) which
converges to a Poisson distribution with mean ρ|A|.

Hence, Poisson process default model when points occur
independently of each other.
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Characterization in terms of void probabilities

The distribution of any point process X is uniquely determined by
the void probabilities P(X ∩ B = ∅), for bounded subsets B ⊆ R

2.

Intuition: consider very fine subdivision of observation window –
then at most one point in each cell and (joint) probabilities of
absence/presence determined by void probabilities.

Hence, a point process X with intensity measure µ is a Poisson
process if and only if

P(X ∩ B = ∅) = exp(−µ(B))

for any bounded subset B .
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Distribution and moments of Poisson process
X a Poisson process on S with µ(S) =

∫
S
ρ(u)du <∞ and F set

of finite point configurations in S .

Examples of F : all point configurations with total number of
points in a given interval, point configurations where all pairs of
points separated by distance δ,...

By definition of a Poisson process and law of total probability

P(X ∈ F )

=

∞∑

n=0

e
−µ(S)

n!

∫

Sn

1[{x1, x2, . . . , xn} ∈ F ]

n∏

i=1

ρ(xi )dx1 . . . dxn (2)

Similarly,

Eh(X) =
∞∑

n=0

e
−µ(S)

n!

∫

Sn

h({x1, x2, . . . , xn})
n∏

i=1

ρ(xi )dx1 . . . dxn
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Independent scattering:

◮ ρ(2)(u, v) = ρ(u)ρ(v) and g(u, v) = 1 (exercise)

◮ Cov[N(A),N(B)] =
∫
A∩B ρ(u)du

◮ A,B ⊆ R
2 disjoint ⇒ X ∩ A and X ∩ B independent
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Proof of independent scattering (finite case)
Consider bounded and disjoint A,B ⊆ R

2.

X ∩ (A ∪ B) Poisson process.
Hence

P(X ∩ A ∈ F ,X ∩ B ∈ G ) (x = {x1, . . . , xn})

=

∞∑

n=0

e
−µ(A∪B)

n!

∫

(A∪B)n
1[x ∩ A ∈ F , x ∩ B ∈ G ]

n∏

i=1

ρ(xi )dx1 . . . dxn

=

∞∑

n=0

e
−µ(A∪B)

n!

n∑

m=0

n!

m!(n −m)!

∫

Am

1[{x1, x2, . . . , xm} ∈ F ]

∫

Bn−m

1[{xm+1, . . . , xn} ∈ G ]
n∏

i=1

ρ(xi )dx1 . . . dxn

= (interchange order of summation and sum over m and k = n −m)

P(X ∩ A ∈ F )P(X ∩ B ∈ G )
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Superpositioning and thinning

If X1,X2, . . . are independent Poisson processes (ρi ), then
superposition X = ∪∞

i=1Xi is a Poisson process with intensity
function ρ(u) =

∑∞
i=1 ρi (u) (provided ρ integrable on bounded

sets).

Conversely: Independent π-thinning of Poisson process X:
independent retain each point u in X with probability π(u).
Thinned process Xthin and X \Xthin are independent Poisson
processes with intensity functions π(u)ρ(u) and (1− π(u))ρ(u).

(Superpositioning and thinning results most easily verified using
void probability characterization of Poisson process, see M & W,
2003)

For general point process X: thinned process Xthin has product
density π(u)π(v)ρ(2)(u, v) - hence g and K invariant under
independent thinning.
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Density (likelihood) of a finite Poisson process
X1 and X2 Poisson processes on S with intensity functions ρ1 and
ρ2 where

∫
S
ρ2(u)du <∞ and ρ2(u) = 0 ⇒ ρ1(u) = 0. Define

0/0 := 0.
Then

P(X1 ∈ F )

=
∞∑

n=0

e
−µ1(S)

n!

∫

Sn

1[x ∈ F ]
n∏

i=1

ρ1(xi )dx1 . . . dxn (x = {x1, . . . , xn})

=
∞∑

n=0

e
−µ2(S)

n!

∫

Sn

1[x ∈ F ]eµ2(S)−µ1(S)
n∏

i=1

ρ1(xi )

ρ2(xi )

n∏

i=1

ρ2(xi )dx1 . . . dxn

=E
(
1[X2 ∈ F ]f (X2)

)

where

f (x) = e
µ2(S)−µ1(S)

n∏

i=1

ρ1(xi )

ρ2(xi )

Hence f is a density of X1 with respect to distribution of X2. 29 / 93



In particular (if S bounded): X1 has density

f (x) = e

∫
S
(1−ρ1(u))du

n∏

i=1

ρ1(xi)

with respect to unit rate Poisson process (ρ2 = 1).
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Back to the rain forest

◮ observation window W
= 1000 m × 500 m

◮ seed dispersal⇒ clustering

◮ environment ⇒
inhomogeneity
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Potassium content in soil.

Objective: quantify dependence on environmental variables and
clustering
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Inhomogeneous Poisson process

Log linear intensity function

ρ(u;β) = exp(z(u)βT), z(u) = (1, zelev(u), zpotassium(u), . . .)

Estimate β from Poisson log likelihood (spatstat)

∑

u∈X∩W

z(u)βT −
∫

W

exp(z(u)βT)du (W = observation window)

Model check using edge-corrected estimate of K -function

K̂ (t) =

6=∑

u,v∈X∩W

1[‖u − v‖ ≤ t]

ρ(u; β̂)ρ(v ; β̂)|W ∩Wu−v |

Wu−v translated version of W .
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Capparis Frondosa and Poisson process ?

Fit model with covariates elevation, potassium,...

Fitted intensity function

ρ(u; β̂) = exp(β̂z(u)T)
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Estimated K -function and
K (t) = πt2-function for
Poisson process:
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Not Poisson process - aggregation due to unobserved factors (e.g.
seed dispersal)
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Exercises

1. What is K (t) for a Poisson process ?

2. Check that the Poisson expansion (2) indeed follows from the
definition of a Poisson process.

3. How can you simulate an inhomogeneous Poisson process on a
bounded region B in case ρ(u)/µ(B) is not a standard
probability density ?

4. Show that ρ(2)(u, v) = ρ(u)ρ(v) for a Poisson process X.

(Hint: a) use that counts on disjoint subsets uncorrelated or b)

compute second order factorial measure using the Poisson expansion

for X ∩ (A ∪ B) for bounded A,B ⊆ R2.)
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5. Assume that X has second order product density ρ(2) and
show that g (and hence K ) is invariant under independent
thinning (note that a heuristic argument follows easily from
the infinitesimal interpretation of ρ(2)).

(Hint: introduce random field R = {R(u) : u ∈ R2}, of independent
uniform random variables on [0, 1], and independent of X, and

compute second order factorial measure for thinned process

Xthin = {u ∈ X|R(u) ≤ p(u)}.)
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Cox processes
X is a Cox process driven by the random intensity function Λ if,
conditional on Λ = λ, X is a Poisson process with intensity
function λ.

Example: log Gaussian Cox process (“point process GLMM”)

log Λ(u) = βZ (u)T + Y (u)

where {Y (u)} Gaussian random field.

βZ (u)T Y (u) βZ (u)T + Y (u)
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2
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Z : systematic variation Y : random clustering around peaks in Y
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Wide range of covariance models available for Y : exponential,
Gaussian, Matérn,...

Cox processes ”bridge” between point processes and geostatistics.
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Shot-noise Cox process

Λ(u) =
∑

v∈C

γvk(u − v)

where

◮ C homogeneous Poisson with intensity κ

◮ k(·) probability density.

◮ γv iid positive random variables independent of C

NB: equivalent to cluster process with parents C, random cluster
size γv and dispersal density k .

Inhomogeneous shot-noise:

Λ(u) = exp[βZ (u)T]
∑

v∈C

γvk(u − v)

Inhomogeneous Thomas: inhomogeneous shot-noise with Gaussian
k(·) and γv = α > 0.
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Cluster process: Inhomogeneous Thomas process

Parents stationary Poisson point process
intensity κ

Poisson(α) number of offspring
distributed around parents according to
bivariate Gaussian density

Inhomogeneity: offspring survive
according to probability

p(u) ∝ exp(Z (u)βT)

depending on covariates (independent
thinning).

0
1

2
3
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Moments for Cox processes
Intensity function

ρ(u) = EΛ(u)

Second-order product density

ρ(2)(u, v) = EΛ(u)Λ(v) = Cov[Λ(u),Λ(v)] + ρ(u)ρ(v)

Cov[N(A),N(B)] =

∫

A∩B
EΛ(u)du +

∫

A

∫

B

Cov[Λ(u),Λ(v)]dudv

=

∫

A∩B
ρ(u)du +

∫

A

∫

B

ρ(u)ρ(v)[g(u, v) − 1]dudv

= Poisson variance + extra variance due to Λ

(overdispersion relative to a Poisson process)
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Common structure: log-linear model

Both log Gaussian and shot-noise Cox process of the form

Λ(u) = Λ0(u) exp[βZ (u)
T]

where Λ0 stationary non-negative reference process.

(interpretation: Cox process X independent inhomogeneous
thinning of stationary X0 with random intensity function Λ0).

Log-linear intensity (assume EΛ0(u) = 1)

ρ(u) = EΛ(u) = exp[βZ (u)T]

Pair correlation function (EΛ0(u) = 1):

g(h) = 1 + c0(h) c0(h) = Cov[Λ0(u),Λ0(u + h)]
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Specific models for c0(u − v) = Cov[Λ0(u),Λ0(v)]

Log-Gaussian:
Λ0(u) = exp[Y (u)]

where Y Gaussian field.

Covariance (Laplace transform of normal distribution):

c0(h) = exp[Cov(Y (u),Y (u + h))]− 1

Shot-noise:
Λ0(u) =

∑

v∈C

γvk(u − v)

Covariance (convolution):

c0(u − v) = κα2

∫

R2

k(u)k(u + h)du

(α = Eγv )
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normal-variance mixture Cox/cluster processes
Suppose kernel k(·) given by variance-gamma density.

Y variance-gamma if Y =
√
WU where W ∼ Γ and U ∼ Np(0, I )

⇒ closed under convolution.

Then Matérn covariance function:

c0(h) = σ20
(‖h‖/η)νKν(‖h‖/η)

2ν−1Γ(ν)

Suppose k(·) Cauchy density (W inverse-gamma)

k(u) =
1

2πω2
[1 + (‖u‖/ω)2)]−3/2

then
c0(r) = σ20[1 + (‖r‖/η)2]−3/2

Cauchy too (σ20 = κξ2/(2πη)2 η = 2ω)
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Density of a Cox process

◮ Restricted to a bounded region W , the density is

f (x) = E

[
exp

(
|W | −

∫

W

Λ(u)du

) ∏

u∈X

Λ(u)

]

◮ Not on closed form

◮ likelihood-based inference: MCMC or Laplace approximation
(INLA for log Gaussian Cox processes)

◮ estimating equations based on closed form expressions for
intensity and pair correlation
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Exercises

1. For a Cox process with random intensity function Λ, show that

VarN(A) ≥ EN(A), ρ(u) = EΛ(u), ρ(2)(u, v) = E[Λ(u)Λ(v)]

(hint: use conditioning on Λ)

2. Show that a cluster process with Poisson(α) number of iid
offspring is a Cox process with random intensity function

Λ(u) = α
∑

v∈C

k(u − v)

(using notation from previous slide on cluster processes. Hint:
use void probability characterisation and superposition result
for Poisson process. Note: C can be any point process)

3. Compute the intensity and second-order product density for an
inhomogeneous Thomas process. (Hint: interpret the Thomas
process as a Cox process and use the Campbell formula)

4. Show that pair correlation for LCGP is
g(u, v) = exp[Cov(Y (u),Y (v))]
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Maximum likelihood estimation for Poisson

Log likelihood for Poisson process with intensity function ρθ:

l(θ) =
∑

u∈X

log ρθ(u)−
∫

W

ρθ(u)du

Score (first derivative):

s(θ) =
d

dθ
l(θ) =

∑

u∈X

ρ′θ(u)

ρθ(u)
−

∫

W

ρ′θ(u)du

Find θ̂ by solving s(θ) = 0. Unique solution if observed information

− d
2

dθTdθ
l(θ)

positive definite.
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Information matrix:

i(θ) = −E
d
2

dθTdθ
l(θ)

Under weak regularity conditions,

θ̂ ≈ N(θ, i(θ)−1)

If Poisson process not appropriate due to clustering we might
consider Cox/cluster processes but likelihood function is then hard
to compute.

To move on, estimating function perspective is useful.
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Estimating function

Estimating function: e(θ) [e(θ,X)] function of θ and data X.

Parameter estimate θ̂ solution of

e(θ) = 0

First order Taylor:
e(θ) ≈ S(θ̂ − θ)

where sensitivity:

S = −E[
d

dθ
e(θ)]

minus expected derivative of e(θ)
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Using Taylor approximation: θ̂ approx. unbiased Eθ̂ = θ if e(θ)
unbiased Ee(θ) = 0 (θ true value).

Moreover (‘sandwich’-variance estimator):

Varθ̂ ≈ S−1ΣS−T Σ = Vare(θ)

Note: in case of Poisson process and e(θ) equal to likelihood score,
S = Vare(θ) = i(θ) whereby Varθ̂ = i(θ)−1.

How do we construct unbiased estimating functions involving X
and θ ?
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Composite likelihood

Disjoint subdivision W = ∪m
i=1Ci in

‘cells’ Ci .

ui ∈ Ci ‘center’ point.

Random indicator variables:

Yi = 1[X has a point in Ci ]

(presence/absence of points in Ci ).

P(Yi = 1) = |Ci |ρθ(ui )

Idea: form composite likelihoods based on Yi , e.g.∏

i

P(Yi = 1)Yi (1− P(Yi = 1))1−Yi

Consider limit when |Ci | → 0.
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Composite likelihood (in fact likelihood for Poisson):

[
∏

u∈X

ρθ(u)

]
exp

[ ∫

W

ρθ(u)du
]

Score:

e(θ) =
∑

u∈X

ρ′θ(u)

ρθ(u)
−

∫

W

ρ′θ(u)du

unbiased estimating function by Campbell.

Sensitivity is equal to Information matrix for Poisson process.
Variance

Vare(θ) = Var

∑

u∈X

ρ′θ(u)

ρθ(u)

can be evaluated using second Campbell formula. Larger than i(θ)
in case of Cox/cluster (gθ(·) > 1).
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Note: to evaluate sandwich estimator of variance

S−1
Vare(θ)S−T

of parameter estimates, we need estimate of pair correlation
function (later).

Other issue:

◮ integral ∫

W

ρ′θ(u)du

often not explicitly computable.

Can be approximated fairly easy using numerical quadrature
or Monte Carlo (later).
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Estimation of pair correlation function

Suppose parametric model g(·;ψ) for pair correlation.

Some options:

1. minimum contrast estimation based on K -function.

2. second-order composite likelihood: composite likelihood based
on indicators for joint occurrence of points in pairs of cells:

Xij = 1[Ni > 0 and Nj > 0]
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Minimum contrast estimation for ψ
Computationally easy alternative if X second-order reweighted
stationary so that K -function well-defined.

Estimate of K -function:

K̂β(t) =
∑

u,v∈X∩W

1[0 < ‖u − v‖ ≤ t]

ρ(u;β)ρ(v ;β)
eu,v

Unbiased if β ‘true’ regression parameter.

Minimum contrast estimation: minimize
squared distance between theoretical K
and K̂ :

ψ̂ = argmin
ψ

∫ r

0

(
K̂β̂(t)− K (t;ψ)

)2
dt
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Second-order composite likelihood
Consider indicators for joint occurrence of points in pairs of cells:

Xij = 1[Ni > 0 and Nj > 0]

with

Pβ,ψ(Xij = 1) = ρ(2)(u, v ;β, ψ)|Ci ||Cj |
= ρβ(ui )ρβ(vj)g(ui − uj ;ψ)|Ci ||Cj |

Second-order composite likelihood:

CL2(β, ψ) =

6=∏

u,v∈X∩W
‖u−v‖≤R

ρ(2)(u, v ;β, ψ)×exp

[
−
∫∫

‖u−v‖≤R

ρ(2)(u, v ;β, ψ)dudv

]

NB: second-order reweighted stationarity (translation invariant pair
correlation) not required.

In practice we plug in β̂ from first order composite likelihood.
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Two-step estimation

Obtain estimates (β̂, ψ̂) in two steps

1. obtain β̂ using composite likelihood

2. obtain ψ̂ using minimum contrast/second order composite
likelihood (replacing β by β̂ from first step)
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Implementation spatstat

Two-step estimation implemented in spatstat procedure kppm

Options composite likelihood, quasi-likelihood, minimum contrast,
second-order composite likelihood,...
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Example: rain forest trees
Capparis Frondosa

Loncocharpus Heptaphyllus

Potassium content in soil.

2
4

6
8

Covariates pH, elevation,
gradient, potassium,...

Clustered point patterns: Cox point process natural model.

Objective: infer regression model ρβ(u) = exp[βZ (u)T]

Composite likelihood targeted at estimating intensity function.
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Results with composite likelihood (and quasi-likelihood -

later)

species β̂

Loncocharpus
CL

−6.49 − 0.021Nmin − 0.11P − 0.59pH − 0.11twi
(81.06∗, 7.45∗, 58.78, 282.89∗ , 53.19∗)× 10−3

QL
−6.49 − 0.023Nmin − 0.12P − 0.55pH − 0.084twi
(80.15∗, 6.95∗, 55.23∗, 266.10∗ , 45.47) × 10−3

Capparis
CL

−5.07 + 0.028ele − 1.10grad + 0.0043K
(79.54∗, 9.98∗, 1200.36, 1.16∗)× 10−3

QL
−5.10 + 0.019ele − 2.50grad + 0.0039K
(77.77∗, 8.86∗, 935.02∗, 1.02∗)× 10−3

Estimated standard errors always smallest for QL. Covariate grad
significant according to QL but not for CL.
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Fitted pair correlation functions g(·) for Capparis and
Loncocharpus

Use shot-noise Cox process with dispersal kernel given by
variance-gamma density.

Then g(h)− 1 Matérn covariance function depending on
smoothness/shape parameter ν.
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Optimality

Composite likelihood score

∑

u∈X

ρ′β(u)

ρβ(u)
−

∫

W

ρ′β(u)du

optimal for Poisson (likelihood).

Which f makes

ef (β) =
∑

u∈X∩W

f (u)−
∫

W

f (u)ρβ(u)du

optimal for Cox point process (positive dependence between
points) ?
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Optimal first-order estimating equation

Optimal choice of f : smallest variance

Varβ̂ = Vf = S−1
f Σf S

−T
f

where

Sf = −E
d

dβT
ef (β) Σf = Varef (β)

Possible to obtain optimal f as solution of certain Fredholm
integral equation.

Numerical solution of integral equation leads to estimating
function of quasi-likelihood type.
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Quasi-likelihood

Integral equation approximated using
Riemann sum dividing W into cells Ci

with representative points ui .

Resulting estimating function is quasi-likelihood

(Y − µ)V−1D

based on

Y = (Y1, . . . ,Ym), Yi = 1[X has point in Ci ].

µ mean of Y :

µi = EYi = ρβ(ui)|Ci | and D =
[
dµ(ui)/dβl

]
il

V covariance of Y (involves covariance of random intensity):

Vij = Cov[Yi ,Yj ] = µi1[i = j] + µiµj [g(ui , uj)− 1]
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Approximation of integral in composite likelihood

Issue: integral ∫

W

ρ′(u)du

in composite likelihood typically not available in closed form.

Deterministic numerical quadrature:

1. resulting estimating function not unbiased

2. difficult to quantify resulting bias of parameter estimates.
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Monte Carlo approximation of integral in composite

likelihood
Let D ‘quadrature/dummy’ point process of intensity κ and
independent of X.

By Campbell

∫

W

ρ′(u)du = E

∑

u∈X∪D

ρ′(u)

ρ(u) + κ
≈

∑

u∈X∪D

ρ′(u)

ρ(u) + κ

Idea: replace integrals in pseudo- or composite likelihood with
unbiased estimates using D.

Advantages:

1. unbiased approximation ⇒ still unbiased estimating function !

2. CLT available for approximation ⇒ CLT for parameter
estimates.
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Dummy point process

Should be easy to simulate and mathematically tractable.

Possibilities:

1. Poisson process

2. binomial point process (fixed number
of independent points)

3. stratified binomial point process

Stratified:

+ +

+

+

+

+

+

+

+
+

+

+

+

+
+

+
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Approximate composite likelihood scores:

s(θ) =
∑

u∈X

ρ
′

θ(u)

ρθ(u)
−

∑

u∈(X∪D)

ρ
′

θ(u)

ρθ(u) + κ
(3)

Note: of logistic regression/case control form with ‘probabilities’

p(u) =
ρθ(u)

ρθ(u) + κ

I.e. probabilities that u ∈ X given u ∈ X ∪D.

Hence computations straightforward with glm() software !

Monte Carlo and deterministic numerical quadrature implemented
in spatstat procedure ppm
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Asymptotic results - first order estimating function

Divide R
2 into quadratic cells

Aij = [i , i + 1[×[j , j + 1[

W

Aij

b
b

b

bb

b

Then
ef (β) =

∑

ij :Aij⊆W

Uij

where

Uij =
∑

u∈X∩Aij

fβ(u)−
∫

Aij

fβ(u)ρβ(u)du

Assuming X is mixing, {Uij}ij mixing random field and

|W |−1/2ef (β) ≈ N(0,Σf )

(CLT for mixing random field {Uij}ij).
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Asymptotic results cntd.

Estimate β̂ solves
ef (β) = 0

And (Taylor)

ef (β) ≈ |W |Sf (β̂ − β) ⇔ (β̂ − β) = |W |−1S−1
f ef (β)

where

Sf = −E
d

dβT
ef (β)/|W |

It follows that
β̂ ≈ N(β,Vf /|W |)

where
Vf = S−1

f Σf S
−T
f
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Alternative: “infill”/increasing intensity-asymptotics

If X infinitely divisible (e.g. Poisson or Poisson-cluster) then

X = ∪n
i=1Xi

where Xi iid and intensity of X is ρβ(u) = nρ̃(u;β) where ρ̃β
intensity of Xi .

Thus

ef (β) =

n∑

i=1

[ ∑

u∈Xi

fβ(u)−
∫

W

fβ(u)ρ̃(u;β)du
]
.

Ordinary CLT applies !
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Exercises

1. Compute information matrix and variance of log likelihood
score in case of a Poisson process with intensity function ρθ(·).

2. Obtain expression for Vare(θ) in terms of pair correlation
function g in case of first order composite likelihood.

3. Check that the derivative of minimum contrast criterion and
the score of the second order composite likelihood function
are unbiased estimating functions when β is equal to the true
value.

4. How can you partition a Poisson-cluster process X into a
union ∪n

i=1Xi of iid Poisson-cluster processes ?

5. show that the approximate composite likelihood score (3) is of
logistic regression score form when the intensity is log linear.

6. Derive the second-order product density of a stratified
binomial point process with one point in each cell.
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Mucous membrane cells

Centres of cells in mucous membrane: Repulsion due to physical
extent of cells

Inhomogeneity - lower
intensity in upper part

Bivariate - two types of
cells

Same type of
inhomogeneity for two
types ?

75 / 93



Density with respect to a Poisson process

X on bounded S has density f with respect to unit rate Poisson Y
if

P(X ∈ F ) = E
(
1[Y ∈ F ]f (Y)

)

=

∞∑

n=0

e
−|S|

n!

∫

Sn

1[x ∈ F ]f (x)dx1 . . . dxn (x = {x1, . . . , xn})
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Example: Strauss process

For a point configuration x on a bounded region S , let n(x) and
s(x) denote the number of points and number of (unordered) pairs
of R-close points (R ≥ 0).

A Strauss process X on S has density

f (x) =
1

c
exp(βn(x) + ψs(x))

with respect to a unit rate Poisson process Y on S and

c = E exp(βn(Y) + ψs(Y)) (4)

is the normalizing constant (unknown).

Note: only well-defined (c <∞) if ψ ≤ 0.
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Intensity and conditional intensity
Suppose X has hereditary density f with respect to Y :
f (x) > 0 ⇒ f (y) > 0, y ⊂ x.

Intensity function ρ(u) = Ef (Y ∪ {u}) usually unknown (except for
Poisson and Cox/Cluster).

Instead consider conditional intensity

λ(u, x) =
f (x ∪ {u})

f (x)

(does not depend on normalizing constant !)

Note

ρ(u) = Ef (Y ∪ {u}) = E
[
λ(u,Y)f (Y)

]
= Eλ(u,X)

and

ρ(u)dA ≈ P(X has a point in A) = EP(X has a point in A|X\A), u ∈ A

Hence, λ(u,X)dA probability that X has point in very small region
A given X outside A.

78 / 93



Density and conditional intensity - factorization
One-to-one correspondence between density and conditional
intensity (up to normalizing constant)

f ({x1, . . . , xn}) ∝ h({x1, . . . , xn}) =
n∏

i=1

λ(xi , {x1, . . . , xi−1)

Normalizing constant:

f (x) =
1

c
h(x) c = Eh(Z)

Typically c is intractable so likelihood estimation is not
straightforward.

Options: pseudo-likelihood (later in this section) or Monte Carlo
approximation of c .
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Markov point processes

Def: suppose that f hereditary and λ(u, x) only depends on x
through x ∩ b(u,R) for some R > 0 (local Markov property). Then
f is Markov with respect to the R-close neighbourhood relation.

Thm (Hammersley-Clifford) The following are equivalent.

1. f is Markov.

2.
f (x) =

∏

y⊆x

φ(y)

where φ(y) = 1 whenever ‖u − v‖ ≥ R for some u, v ∈ y.

Pairwise interaction process: φ(y) = 1 whenever n(y) > 2.

NB: in H-C, R-close neighbourhood relation can be replaced by an
arbitrary symmetric relation between pairs of points.
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Modelling the conditional intensity function

Suppose we specify a model for the conditional intensity. Two
questions:

1. does there exist a density f with the specified conditional
intensity ?

2. is f well-defined (integrable) ?

Solution:

1. find f by identifying interaction potentials
(Hammersley-Clifford) or guess f .

2. sufficient condition (local stability): λ(u, x) ≤ K

NB some Markov point processes have interactions of any order in
which case H-C theorem is less useful (e.g. area-interaction
process).
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Some examples
Strauss (pairwise interaction):

λ(u, x) = exp
(
β+ψ

∑

v∈x

1[‖u−v‖ ≤ R ]
)
, f (x) =

1

c
exp

(
βn(x)+ψs(x)

)

Overlap process (pairwise interaction marked point process):

λ((u,m), x) =
1

c
exp

(
β+ψ

∑

(u′,m′)∈x

|b(u,m)∩b(u′,m′)|
)

(ψ ≤ 0)

where x = {(u1,m1), . . . , (un,mn)} and (ui ,mi ) ∈ R
2 × [a, b].

Area-interaction process:

f (x) =
1

c
exp

(
βn(x)+ψV (x)

)
, λ(u, x) = exp

(
β+ψ(V ({u}∪x)−V (x)

)

V (x) = | ∪u∈x b(u,R/2)| is area of union of balls b(u,R/2), u ∈ x.

NB: φ(·) complicated for area-interaction process.
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The Georgii-Nguyen-Zessin formula (‘Law of total

probability’)

E

∑

u∈X

k(u,X\{u}) =
∫

S

E[λ(u,X)k(u,X)]du =

∫

S

E
![k(u,X) | u]ρ(u)du

E
![· | u]: expectation with respect to the conditional distribution of

X \ {u} given u ∈ X (reduced Palm distribution)

Density of reduced Palm distribution:

f (x | u) = f (x ∪ {u})/ρ(u)

NB: GNZ formula holds in general setting for point process on R
d .

83 / 93



Statistical inference based on pseudo-likelihood
x observed within bounded S . Parametric model λθ(u, x).

Let Ni = 1[x ∩ Ci 6= ∅] where Ci disjoint partitioning of S = ∪iCi .

P(Ni = 1 |X \ Ci ) ≈ λθ(ui ,X \ Ci )dCi where ui ∈ Ci .

Hence composite likelihood based on the Ni :

n∏

i=1

(λθ(ui , x \ Ci)dCi )
Ni (1− λθ(ui , x \ Ci )dCi)

1−Ni ≡

n∏

i=1

λθ(ui , x \ Ci)
Ni (1− λθ(ui , x \ Ci )dCi)

1−Ni

which tends to pseudo-likelihood function
∏

u∈x

λθ(u, x \ {u}) exp
(
−

∫

S

λθ(u, x)du
)

Score of pseudo-likelihood: unbiased estimating function by GNZ.
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Pseudo-likelihood estimates asymptotically normal but asymptotic
variance is not straightforward.

Integral approximated by numerical quadrature or Monte Carlo

Flexible implementation for log linear conditional intensity (fixed
R) in spatstat

Estimation of interaction range R : profile likelihood (?)
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Monte Carlo approximation

Let D ‘quadrature/dummy’ point process of intensity ρ(·) and
independent of X. X ∪D has conditional intensity λ(u,X) + ρ(u)

By GNZ

E

∫

W

λ′(u,X)du = E

∑

u∈X∪D

λ′(u,X \ {u})
λ(u,X \ {u}) + ρ(u)

Idea: replace integral in pseudo-likelihood with unbiased estimates
using D.

Resulting estimating function formally equivalent to logistic
regression

86 / 93



The spatial Markov property and edge correction

Let B ⊂ S and assume X Markov
with interaction radius R .

Define: ∂B points in S \ B of
distance less than R

+

+

+

+

+

+

+
+

+
+

+

+

+

R ∂B

B

S

Factorization (Hammersley-Clifford):

f (x) =
∏

y⊆x∩(B∪∂B):
y∩B 6=∅

φ(y)
∏

y⊆x\B

φ(y)

Hence, conditional density of X ∩ B given X \ B

fB(z|y) ∝ f (z ∪ y)

depends on y only through ∂B ∩ y.
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Edge correction using the border method
Suppose we observe x realization of X ∩W where W ⊂ S .

Problem: density (likelihood) fW (x) = Ef (x ∪ YS\W ) unknown.

Border method: base inference on

fW⊖R
(x ∩W⊖R |x ∩ (W \W⊖R))

i.e. conditional density of X ∩W⊖R given X outside W⊖R .
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+
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Exercises
1. Suppose that S contains a disc of radius ǫ ≤ R/2. Show that

(4) is not finite, and hence the Strauss process not
well-defined, when ψ is positive.

(Hint:
∑∞

n=0
(πǫ2)n

n! exp(nβ + ψn(n − 1)/2) = ∞ if ψ > 0.)
2. Show that local stability for a spatial point process density

ensures integrability. Verify that the area-interaction process
is locally stable.

3. what is the unnormalized density of a Strauss (β, ψ) with
respect to a Poisson process of intensity exp(β) ?

4. Starting with the conditional intensity for a Strauss process,
identify the potential function φ

5. (if time) Verify the Georgii-Nguyen-Zessin formula for a finite
point process.

(Hint: consider first the case of a finite Poisson-process Y in
which case the identity is known as the Slivnyak-Mecke
theorem, next apply Eg(X) = E

[
g(Y)f (Y)

]
.)
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Solution: second order product density for Poisson

E

6=∑

u,v∈X

1[u ∈ A, v ∈ B ]

=

∞∑

n=0

e
−µ(A∪B)

n!

∫

(A∪B)n

6=∑

u,v∈{x1,...,xn}

1[u ∈ A, v ∈ B ]

n∏

i=1

ρ(xi )dx1 . . . dxn

=

∞∑

n=2

e
−µ(A∪B)

n!
2

(
n

2

)∫

(A∪B)2

∫

(A∪B)n−2

1[x1 ∈ A, x2 ∈ B ]

n∏

i=1

ρ(xi)dx1 . . . dx

=

∞∑

n=2

e
−µ(A∪B)

(n − 2)!
µ(A)µ(B)µ(A ∪ B)n−2

=µ(A)µ(B) =

∫

A×B

ρ(u)ρ(v)dudv
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Solution: invariance of g (and K ) under thinning

Since Xthin = {u ∈ X : R(u) ≤ π(u)},

E

6=∑

u,v∈Xthin

1[u ∈ A, v ∈ B ]

=E

6=∑

u,v∈X

1[R(u) ≤ π(u),R(v) ≤ π(v), u ∈ A, v ∈ B ]

=EE
[ 6=∑

u,v∈X

1[R(u) ≤ π(u),R(v) ≤ π(v), u ∈ A, v ∈ B ]
∣∣X

]

=E

6=∑

u,v∈X

π(u)π(v)1[u ∈ A, v ∈ B ]

=

∫

A

∫

B

π(u)π(v)ρ(2)(u, v)dudv
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