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Abstract Approximate Bayesian Computation (ABC) methods have become a “main-
stream” statistical technique in the past decade, following the realisation that they
were a form of non-parametric inference, connected as well with the econometric
technique of indirect inference. In this survey of ABC methods, we focus on the
recent literature, following our earlier survey in Marin et al. (2011). Given the recent
paradigm shift in the perception and practice of ABC model choice, we particularly
insist on this aspect of ABC techniques, including in addition convergence results.
Most sections are edited versions of posts published on xianblog.wordpress.com
between 2011 and 2015.

1 Mudmap: ABC at a glance

While statistical (probabilistic) models are always to be held at a critical distance,
being at best approximations of real phenomena (Box, 1959?, Gelman et al., 2013),
and while more complex statistical models are not necessarily better representations
of those phenomena, it is becoming increasingly the case that the complexity of
models is a barrier to the most common tools in statistical analysis. Complexity might
stem from many possible causes, from an elaborate description of the randomness
behind the phenomenon to be analysed, to the handling of massive amounts of
observations, to imperatives for real-time analysis, to considerable percentages of
missing data in an otherwise regular model. All those reasons contribute to make
computing the likelihood function a formidable task.

Example 1. Kingman’s coalescent Inference in population genetic relies on models
such as Kingman’s coalescent trees. This is a representative example of cases when
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2 Christian P. Robert

the likelihood function associated with the data cannot be computed in a manageable
time (Tavaré et al., 1997, Beaumont et al., 2002, Cornuet et al., 2008). The fundamen-
tal reason for this impossibility is that the statistical model associated with coalescent
data needs to integrate over trees of high complexity.

Kingman’s coalescent trees are probabilistic models representing the evolution
from an unobserved common ancestor to a collection of N (observed) populations,
described by the frequencies of genetic traits such as alleles of loci from the genome
in single nucleotide polymorphism (SNP) datasets. For two populations j1 and j2
and a given locus, at current time, with allele sizes x j1 and x j2 , a binary tree has
for root the most recent time in the past for which they have a common ancestor,
defined as the coalescence time τ j1, j2 . The two copies are thus separated by a branch
of gene genealogy of total length 2τ j1, j2 . As explained in Slatkin (1995), according to
Kingman’s coalescent process, during that duration 2τ j1, j2 , the number of mutations
is a random variable distributed from a Poisson distribution with parameter 2µτ j1, j2 .
Aggregating all populations by pairing the most recently diverged pairs and repeating
the pairing on the most recent common ancestors of those pairs produces a binary
tree which root is the most recent common ancestor of the collection of populations
and with as many branches as there are populations. For a given tree topology, such
as the one provided in Figure 1, inferring the tree parameters (coalescent times
and mutation rate) is a challenge, because the likelihood of the observations is not
available, while the likelihood of the completed model involves missing variables,
namely the 2(N−1) mutations along all edges of the graph. While this is not a large
dimension issue in the case of Figure 1, building an efficient completion mecchanism
such as data augmentation or importance sampling proves to be quite complicated
(Stephens and Donnelly, 2000). J

Pop 1 Pop 3 Pop 2

tA

tS

Scenario 1

Fig. 1 Possible model of historical relationships between three populations of a given species
(Source: Pudlo et al. (2014), with permission.

Example 2. Lotka–Volterra prey-predator model The Lotka-Volterra model (Wilkin-
son, 2006) describes interactions between a first species, referred to as the prey
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species, and a second species, referred to as the predator species, in terms of pop-
ulation sizes, x1(t) and x2)t). Given the parameter θ = (θ1,θ2), the model on the
respective population sizes is driven by a system of differential equations (ODEs):

dx1

dt
= θ1x1− x1x2,

dx2

dt
= θ2x1x2− x2.

with initial values (x1(0),x2(0)). Typically, one does not observe the entire curve x(t),
but only at a finite number of times t1, ..., tR. Furthermore, the x(ti)’s are measured
with error,

y(ti) = x(ti)+ν(ti),

where ν(ti)
i.i.d.∼ N2(0,Σv).

While the likelihood associated with this collection of observations is intractable,
the process y can be simulated, which means particle MCMC solutions exist, as
in Golightly and Wilkinson (2011), even though an ABC implementation is more
straightforward (Toni et al., 2009). J

[REALISTIC EXAMPLES HERE]
In such situations, statisticians will try to provide answers by

– modifying the original model towards a more manageable version (see, e.g., the
variational Bayes literature as in Jaakkola and Jordan, 2000);

– using only relevant aspects of the model (see, e.g., the many versions of the
method of moments in econometrics, Gouriéroux et al., 1993, Heggland and
Frigessi, 2004, Gallant and Tauchen, 1996);

– constructing new tools (with numerous examples ranging from the EM algorithm,
Dempster et al., 1977, to machine learning, Breiman et al., 1984, Hastie et al.,
2001).

The Approximate Bayesian computation (ABC) method covered by this survey is a
mix of these different solutions in that it does not return an answer to the original
question (namely, to deliver the posterior distribution associated with the original
dataset and the postulated model(s)), only uses some summaries of the data (even
though it most often requires a constructive definition of the model), and construct a
simulation tool that is to some extent novel (albeit a rudimentary version of accept-
reject algorithm, Robert and Casella, 2004).

Without yet attempting to justify the ABC method from a theoretical perspective,
let me provide here a quick and handwaving description of its modus vivendi (op-
erational mode). Its goal is to substitute a Monte Carlo approach to an intractable
posterior distribution, while preserving the Bayesian aspect of the statistical analysis.
The ABC method is based on the intuition that if a parameter value θ produces one
or several simulated datasets xxx(θ) that are resembling1 the observed data set xxx(θ 0)

1 The notation xxx(θ) is stressing the point that the simulated data is a random transform of the
parameter θ , xxx(θ) ∼ f (·|θ). From a programming perspective, xxx(θ) actually is a function of θ
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then θ must be close to the value of the parameter that stands behind the data, θ 0.
And, conversely, if the simulated dataset xxx(θ) differs a lot from the observed data
xxx(θ 0), then θ is presumably different from θ . ABC goes beyond this intuition by
quantifying the resemblance and estimating the bound for the datasets to be “close
enough”. Starting from a collection of parameter values usually generated from the
prior, ABC first associates with each value a simulated dataset of the same nature as
the observed one and then rejects all values of θ for which the simulated dataset is
too far from the observed one. The surviving parameter values are subsequently used
as if they were generated from the posterior distribution, even though they are not,
due to several reasons discussed below. The major reason for failing to accomodate
for this difference is that the approximation effect is difficult (and costly) to evaluate.

While ABC is rarely fast, due to the reason that many simulated samples need
to be produced and that the underlying statistical model is complex enough to lead
to costly generations, it often is the unique answer to settings where regular Monte
Carlo methods (including MCMC, Robert and Casella, 2004, and particle filters,
Doucet et al., 1999). The method is easily parallelisable as well as applicable to
sequential settings, due to its rudimentary nature. Furthermore, once the (massive)
collection of pairs (θ ,xxx(θ)) is produced, it can be exploited multiple times, which
makes it paradoxically available for some real time applications.

2 Introduction

2.1 ABC Basics

2.1.1 Intractable likelihoods

Although it has now spread to a wide range of application domains, Approximate
Bayesian Computation (ABC) was first introduced in population genetics (Tavaré
et al., 1997, Pritchard et al., 1999) to handle models with intractable likelihoods
Beaumont (2010). By intractable, we mean models where the likelihood function
`(θ |y)

– is completely defined by the probabilistic model, y∼ f (y|θ);
– is available nor in closed form, neither by numerical derivation;
– cannot easily be either completed or demarginalised (Tanner and Wong, 1987,

Robert and Casella, 2004);
– cannot be estimated by an unbiased estimator (Andrieu and Roberts, 2009).

This intractability prohibits the direct implementation of a generic MCMC algorithm
like Gibbs or Metropolis–Hastings schemes. Examples of latent variable models
of high dimension abound, primarily in population genetics, but more generally in

and of a random variable or sequence, o: xxx(θ ,o). By extension, assuming the postulated model is
correct, there exists a “true” value of the parameter, θ o, such that the observed data writes as xxx(θ 0).
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models including combinatorial structures (e.g., trees, graphs), intractable normalis-
ing constants as in f (y|θ) = g(y|θ)/Z(θ) (e.g. Markov random fields, exponential
graphs) and other missing (or latent) variables, i.e. when

f (y|θ) =
∫

G
f (y|G,θ) f (G|θ)dG

cannot be computed in a manageable way (while f (y|G,θ) and f (G|θ) are available).

Example 3. As an intuitive (or pedestrian!) entry to untractable likelihoods, consider
the “case of the single socks”, as proposed by Rasmus Bååth on his blog. At the end
of one’s laudry, the 11 first socks extracted from the washing machine are single
(meaning that no complete pair is recovered). What is the posterior distribution on
the number of socks? and on the number of pairs?

This sounds like an impossible task, but it can be solved by setting a prior on the
number of socks, ns, chosen to be a negative binomial N eg(N,ρ) random variable
based on the size of the family, with mean 30 and standard deviation 15, and on
the proportion of pairs in the laundry, chosen to derived from a Beta p∼Be(15,2)
weight to reflect on the low proportion of single socks, namely np = dpns/2e. Given
(ns,np), it is then straightforward to generate a laundry sequence of 11 socks by a
simple sampling without replacement from the population of socks. A contrario, it
is much more involved to express the distribution of the number of single socks in
those 11 random draws (albeit possible, see below). J

The idea of the approximation behind ABC is both surprisingly simple and funda-
mentally related to the very nature of statistics, as solving an inverse problem (Stigler,
1986). Indeed, ABC relies on the feasibility of producing simulated (parameters and)
data from the inferred model or models, as it evaluates the unavailable likelihood by
the proximity of this simulated data to the observed data. In other words, it relies on
the natural assumption that the forward step induced by the probabilistic model—
from model to data—is reasonably easy to implement in contrast with the backward
step—from data to model.

2.1.2 An exact Bayesian computation

“Bayesian statistics and Monte Carlo methods are ideally suited to the task of passing many
models over one dataset.” D. Rubin, 1984

Not so coincidentally, Rubin (1984), quoted above, used this representation as a
mostly non-algorithmic motivation for conducting Bayesian analysis (as opposed
to other forms of inference). This paper indeed details the accept-reject algorithm
(Robert and Casella, 2004) at the core of the ABC algorithm. Namely, the following
algorithm
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Algorithm 1 Accept-reject for Bayesian analysis
repeat

Generate θ ∼ π(θ);
Generate x∼ f (x|θ);
Accept θ if x = x0

until acceptance
return the accepted value of θ

returns as accepted value an output exactly generated from the posterior distribution,
π(θ |x0).

Example 4. If we return to the socks example 3, running Algorithm 1 means running
the following steps

repeat
Generate ns ∼N e}(N,ρ) and p∼Be(15,2)
Set np = dpns/2e
Sample 11 terms from {o11,o12, . . . ,onp1,onp2,s1, . . . ,sns−2np}
Accept (ns,np) if there is no pair (oi1,oi2) in the sample

until acceptance
return the accepted value of (ns,np)

and this loop will produce an output from the posterior distribution of (ns,np), that is,
conditional on the event that no pair occurred out of 11 draws without replacement.
Running the implementation of the above algorithm as done in Bååth’s R code leads
to Fig. 2. The number of proposals in the above loop was 105, resulting in above 104

acceptances.
As mentionned above, the probability that the 11 socks all come from different

pairs can be computed by introducing a latent variable, namely the number k of
orphan socks in the 11 socks, out of the ns−2np existing orphans. Integrating out
this latent variable k (and using Feller, 1970, Chap. 2, Exercise 26 for the number of
different pairs in the remaining 11− k socks), leads to

11

∑
k=0

(ns−2np
k

)( 2np
11−k

)(ns
11

) 211−k
( np

11−k

)( 2np
11−k

)
as the probability of returning no complete pair out of the 11 draws. If we discretise
the Beta Be(15,2) distribution to obtain the probability mass function of np, we are
therefore endowed with a closed-form posterior distribution

π(ns,np|D)∝
(ns+N−1

ns

)
ρns

∫ 2(np+1)/ns

2np/ns
p16(1− p)3 d p

11

∑
k=0

(ns−2np
k

)( 2np
11−k

)(ns
11

) 211−k
( np

11−k

)( 2np
11−k

)
that we can compare with the ABC output (even though this ABC output is garanteed
to correspond to simulations from the true posterior distribution2). As demonstrated
in Fig. 3, there is indeed a perfect fit bewtween the simulations and the target.

2 This feature means that the ‘A’ in ‘ABC’ is superfluous in this special case!
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Obviously, a slight extension of this setup with, say, a second type of socks
or a different rule for pulling the socks out of the washing machine (or out of
different laundry bags) could sufficiently complicate the likelihood associated with
the observations to reach intractability. See for instance Arratia and DeSalvo (2012)
for an interesting alternative of Feller’s (1970) shoes cupboard problem. J
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Fig. 2 ABC based simulation of posterior distributions on (left) the number of socks, ns, and (right)
the number of odd socks, no, relying on 106 proposals (ns,np) simulated from the prior. (R code
kindly provided by Rasmus Bååth)

2.1.3 Enters the approximation

Now, ABC proceeds one step further in the approximation, replacing the acceptance
step with the tolerance condition

d(x,x0)< ε

in order to handle continuous (and large finite) sampling spaces, X, but this early
occurrence in Rubin (1984) is definitely worth signalling. It is also relevant that
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Fig. 3 Same graphs as in Fig. 2 with true posterior marginal distributions.

Rubin does not promote this simulation method in situations where the likelihood is
not available but rather as an intuitive way to understand posterior distributions from
a frequentist perspective, because θ ‘s from the posterior are those that could have
generated the observed data. (The issue of the zero probability of the exact equality
between simulated and observed data is not dealt with in the paper, maybe because
the notion of a “match” between simulated and observed data is not clearly defined.)
Another (just as) early occurrence of an ABC-like algorithm was proposed by Diggle
and Gratton (1984).

Algorithm 2 ABC (basic version)
for t = 1 to N do

repeat
Generate θ ∗ from the prior π(·)
Generate xxx∗ from the model f (·|θ ∗)
Compute the distance ρ(x0,x∗)
Accept θ ∗ if ρ(x0,x∗)< ε

until acceptance
end for
return N accepted values of θ ∗

The ABC method is formally implemented as in Algorithm 2, which requires
calibrating the objects ρ(·, ·), called the distance or divergence measure, N, number
of accepted simulations, and ε , called the tolerance. Algorithm 2 is exact (in the
sense of Algorithm 1) when ε = 0. However, this is at best a formal remark since this
ideal setting cannot be found in most problems where ABC is needed (see Grelaud
et al. (2009) for a specific counterexample) and a positive tolerance is required in
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practical settings3. While several approaches are found in the literature, we follow
here the practice of selecting ε as a quantile of the simulated distances ρ(x0,x∗),
which turns out to express ABC as a k-nn method, as pointed out by Biau et al. (2014)
and discussed in Section 3.1.

This algorithm is easy to call when checking the performances of the ABC
methods on toy examples where the exact posterior distribution is known, in order
to test the impact of the various calibration parameters. See for instance Marin et al.
(2011) with the case of the MA(2) model. We illustrate the behaviour of the algorithm
in a slightly more challenging setting.

Example 5. A surprisingly complex probability density (and hence likelihood func-
tion) is the one associated with the empirical mean x̄n of a Student’s t sample.4

Indeed, if
(x1, . . . ,xn)

i.i.d.∼ T(ν ,µ,τ) ,

the resulting x̄n has no standard distribution, even though it is also a location scale
distribution with parameters µ and τ . To see this, consider that xi = µ + τξi, with
ξi ∼ Tν . Then

x̄n = µ + τξ̄n , (1)

with ξ̄n distributed from a density that cannot be expressed otherwise than as an
(n−1)-convolution of t’s.

If we observe p≥ 1 realisations of x̄n, denoted x̄1, . . . , x̄p, Algorithm 2 may be the
solution to handling the corresponding implicit likelihood. When the prior on (µ,τ)
is the normal-gamma prior

τ
−1 ∼ G a(1,1) , µ|τ ∼N (0,2τ) ,

Algorithm 2 consists in

1. generating a large sample of (µ,τ) from this prior (the sample is often called a
reference table, then

2. generating a pseudo-sample (x̄1, . . . , x̄p) for each pair (µ,τ) in the reference table,
and

3. deriving the distances ρ between pseudo- and true samples.

The reference table is then post-processed by keeping the parameter values that lead
to the (100ε)% smallest distances. The choice of the distance is arbitrary, it could
for instance be the average squared error

ρ(x0,x1) =
p

∑
i=1

(x̄i
0− x̄i

1)
2 .

3 There even are arguments, see e.g. Fearnhead and Prangle (2012), to justify positive values of ε as
preferable.
4 We are aware that there exist two differing definitions for the T(ν ,µ,τ) distribution. One is
considering µ and τ as location and scale parameters: this is the interpretation chosen in this
example. Another one starts from a N (µ,τ) variate and divides it by a normalised χν variate,
which leads to a non-standard density for even a single variable.
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Figure 4 compares the parameter values selected by Algorithm 2 with the entire
reference table, based on 105 simulations. The concentration of the parameter values
near the true value (0,1) is noticeable, albeit with a skewness towards the smalled
values of τ that may reflect the strong skewness in the prior distiribution on τ . J

Fig. 4 Sample of 1,000 simulations from Algorithm 2 when the data is made of 10 t averages with
the same sample size n = 21 and when the 105 ABC simulations in the background constitute the
reference table, taken from the normal-gamma prior. (Note: the true value of (µ,τ) is (0,1).)

A further difficulty arises when the prior on θ is improper and hence cannot be
simulated. It is then impossible to use directly Algorithm 2. Instead, we can proceed
by either

1. using a proper prior with a very large variance, à la BUGS (Lunn et al., 2010), but
this is a very inefficient and wasteful proposal, both per se and in this particular
setting, since most values generated from this prior will be fully incompatible
with the data; or

2. replacing the prior simulation by a simulation from a pseudo-posterior, based
on the data and mimicking to some extent the true posterior distribution, and
weighting the outcome by the ratio of the prior over the pseudo-posterior. In the
case of Example 5, we could instead use the posterior distribution associated with
a normal sample, that is, by pretending the sample of the x̄n’s is made of normal
observations with mean µ and variances (ν/ν−2)(τ2/n); or
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3. using part of the data to build a simpler but achievable posterior distribution. This
solution is not available for Example 5, since even a single x̄i is associated with a
complex density; or

4. introducing latent variables to recover a closed form conditional posterior. In the
setting of Example 5, it would prove very dear, since this requires producing n
pairs (y j,z j)∼N (0,1)×χ2

ν to decompose x̄ni as

x̄n = µ + τ
1/2 1

n

n

∑
j=1

y j/
√

z j/ν .

Example 6. Lettuce thus consider the more (when compared with Example 5) chal-
lenging case where (a) we observed independently x̄n1 , . . . , x̄np that all are averages
of Student’s t samples with different sample sizes n1, . . . ,np, and (b) the prior on
(µ,τ) is the reference prior π(µ,τ) = 1/τ.

We select the second solution proposed above, namely to rely on a normal ap-
proximation for the distribution of the observations, in order to build the following
proposal:

(µ,τ−2)|x̄n1 , . . . , x̄np ∼N
(

¯̄x,ντ2/(ν−2)∑ni

)
×G

(
1+ p/2, (ν−2)s2/2ν

)
that serves as a proxy generator in the first step of the above algorithm.

If we apply Algorithm 2 to this problem, due to the representation (1), we can
follow the next steps:

for t = 1 to N do
Generate θ ∗ from the pseudo-posterior π∗(·|xxx)
Create a sample (ξ̄ t

n1
, . . . , ξ̄ t

np )

Derive the transform xxxt = (x̄t
n1
, . . . , x̄t

np )

Compute the distance ρ(x0,xt)
Accept θ ∗ if ρ(x0,xt)< ε

end for
return N accepted values of θ ∗ along with importance weights ω∗ ∝ π(θ ∗)

/
π∗(θ ∗|xxx)

or resample those θ ∗ with replacement according to the corresponding ω∗’s

where the distance is again arbitrarily chosen as the sum of the weighted squared
differences.

Following this algorithm for a dataset of 10 averages simulated from central t
distributions (i.e., with µ = 0, τ = 1), we obtain an ABC sample displayed on Fig. 5,
which shows a reasonable variability of the sample around the true value (0,1). The
103 points indicated on this picture are the output of a weighted resampling. If we
compare the θ ∗’s simulated from the pseudo-posterior π∗(·|xxx) with those finally
sampled, the difference is quite limited, as exhibited in Fig. 6. The selected points
do remain in a close neighbourhood of the mode. This behaviour remains constant
through the choice of ε , so we can attribute it to (at least) two possible reasons.
The first explanation is that the likelihood associated with x̄ni should be quite close
to a normal likelihood, hence that the pseudo-posterior provides a fairly accurate
representation of the true posterior distribution. The second explanation is a contrario
that the ABC output reflects a lack of discrimination in the condition ρ(x0,xt)< ε ,
even for small values of ε and hence corresponds to simulations from a pseudo-
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posterior that differs from the posterior. J

Fig. 5 Sample of 1,000 simulations from Algorithm 2 when the data is made of 10 t averages with
respective sample sizes ni = 9,8,8,11,10,5,4,3,5,3, and when the 106 ABC simulations are taken
from a pseudo-posterior. (Note: the true value of (µ,τ) is (0,1).)

2.1.4 Enter the summaries

In realistic settings, Algorithm 2 is almost never ever used as such, due to the curse
of dimensionality. Indeed, the data xxx0 is generally complex enough for the proximity
ρ(x0,x∗) to be far from small. As illustrated on the time series (toy) example of Marin
et al. (2011), the signal-to-noise ratio produced by ρ(x0,x∗)< ε falls dramatically
as the dimension (of the data) increases. This means a corresponding increase in
either the total number of simulations Nref or in the tolerance ε is required to preserve
a positive acceptance rate. In other words, we are aiming at the parameters to be
close rather than the observations themselves. In practice, it is thus paramount to first
summarise the data (and decrease the dimension) in a so-called summary statistic
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Fig. 6 Same legend as Fig. 5, representing the ABC posterior sample (in blue) along with the
reference table (in brown) and with the level sets of the pseudo-posterior density (in log scale).

before computing a proximity index. Thus enters the notion of summary statistics5

that is central to operational ABC algorithms, as well as the subject of much debate,
as discussed in Marin et al. (2011), Blum et al. (2013) and below. A more realistic
version of the ABC algorithm is produced in Algorithm 3, where S(·) denotes the
summary statistic.

Algorithm 3 ABC (version with summary)
for t = 1 to Nre f do

Generate θ (t) from the prior π(·)
Generate xxx(t) from the model f (·|θ (t))
Compute dt = ρ(S(x0),S(x(t)))

end for
Order distances d(1) ≤ d(2) ≤ . . .≤ d(Nre f )

return the values θ (t) associated with the k smallest distances

5 While, for a statistician, a statistic is by nature a summary of the data, hence making the term
redundant, the non-statisticians who introduced this notion in the ABC algorithms felt the need to
stress this aspect.
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Example 7. Getting back to the Student’s t setting of Example 6, the p averages x̄ni

contain information about the parameters µ and τ , but also exhibit variability that is
not relevant to the approximation of the posterior probability. It thus makes sense to
explore the impact of considering solely the summaries

S(x̄n1 , . . . , x̄np) = ( ¯̄x,s2)

already used in the construction of the pseudo-posterior. Algorithm 3 then implies
generating pseudo-samples and comparing the values of their summary statistics
through a distance. A major issue often overlooked in ABC applications is that the
distance needs to be scaled, i.e., the plain sum of squares

( ¯̄x1− ¯̄x2)
2 +(s2

1− s2
1)

2

is not appropriate because both components are commensurable. Instead, we suggest
using a normalised version like

( ¯̄x1− ¯̄x2)
2/mad( ¯̄x)2 + (s2

1−s2
1)

2/mad(s2)2

where the median absolute deviation (MAD)

mad(S(x)) = median |S(x)−median(S(x))|

is estimated from the (prior) reference table simulated in the ABC algorithm. Running
Algorithm 3 with this calibration produces an outcome summarised in Figures 7 and
8. The difference with Figure 4 is striking: while using the same prior, the outcome
is not centred around the true value of the parameter in the former case while it is
much more accurate in the second case. J

The choice of the summary statistics is definitely essential to ensure ABC produces
a reliable approximation to the true posterior distribution π(θ |x0). A first important
remark is that, at best, the outcome of Algorithm 3 will approximate simulation
from π(θ |S(x0)). If the later strongly differs from π(θ |x0), there is no way ABC
can recover from this. Obviously, when S(·) is a sufficient statistic, there is no loss
encurred but this is almost never the case, as exponential families very rarely call
for the use of an ABC processing (see Grelaud et al. (2009) for an exception in the
setting of the Ising model). A second remark is that, due to the nature of the ABC
algorithm, namely the simulation of a huge reference table, followed by the selection
of the “closest” parameters, several collections of summaries can be compared at a
reasonable computational cost (assuming storing the entire pseudo-datasets a large
number of time is feasible).

Example 8. Consider the most standard setting of a normal sample x1, . . . ,xn ∼
N (µ,σ2) under a conjugate prior

µ ∼N (0,τ2) ,σ−2 ∼ G a(a,b) .
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Fig. 7 Sample of 1,000 simulations from Algorithm 3 when the data is made of 10 t averages with
sample sizes ni = 21 and when the 106 ABC simulations are taken from the prior. The summary
statistics are the empirical mean and variance, while the distance is normalised by the MAD. (Note:
the true value of (µ,τ) is (0,1).)
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Fig. 8 Marginal histograms of a sample of 1,000 simulations as in Fig. 7.
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If we decide to use the summary statistic (x̄n,s2
n), the (true) posterior will not change

when compared with using the entire data, since this statistic is sufficient. On the
other hand, if we use the pair (med(x1, . . . ,xn),mad(x1, . . . ,xn)), it is not sufficient
and the (true) posterior will differ. Note that, in this second setting, this true posterior
is not available as the joint distribution of the pair (med(x1, . . . ,xn),mad(x1, . . . ,xn))
is not available in closed form. Although there is no particular incentive to operate
inference conditional on this pair, it provides a most simple illustration of a case
when ABC must be used.

In this setting, in order to eliminate scaling effects due to some summaries varying
more than others, we once more propose scaling by the mad statistics of those
summaries,

ρ(S(x0),S(x(t))) =
2

∑
i=1

|Si(x0)−Si(x(t)))|/mad(Si)

where mad(Si) is thus based on the reference table.
When implementing ABC based on either of those pairs of summary statistics and

a normal dataset of 5,000 observations, Figure 9 shows that the outcome is identical!
Furthermore, a comparison with the genuine output exhibits a significant difference,
meaning that the impact of the tolerance is quite large in this case. J

2.1.5 Wikipedia entry

For a further introduction to ABC methods, I refer the reader to our earlier survey
(Marin et al., 2011). I further recommend Sunnåker et al. (2013), the publication
constituting the original version of the Wikipedia page on ABC (Wikipedia, 2014).
As a referee of this entry for PLoS One, I supported the presentation made in that
page as comprehensive and correct, rightly putting stress on the most important
aspects of the method. The authors also properly warn about the need to assess
assumptions behind and calibrations of the method. (Comments of both referees are
included in the original paper, available on-line.)

Note that the ABC method was not introduced for conducting model choice, even
though this implementation may currently constitute the most frequent application
of the method, and the derivation of ABC model choice techniques appeared rather
recently (Grelaud et al., 2009, Toni et al., 2009). In almost every setting where ABC
is used, there is no non-trivial sufficient summary statistic. Relying on an insufficient
statistic then implies a loss of statistical information, as discussed futher below, and
I appreciate very much that the authors advertise our warning (Robert et al., 2011)
about the potential lack of validity when using an ABC approximation to a Bayes
factor for model selection. I also like the notion of “quality control”. And the pseudo-
example is quite fine as an introduction, while it could be supplemented with the
outcome resulting from a large n, to be compared with the true posterior distribution.
The section “Pitfalls and remedies” is remarkable in that it details the necessary steps
for validating a ABC implementation: the only entry I would remove is the one about
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Fig. 9 Marginal histograms in µ and σ2 (left and right) based on two ABC algorithms (top
and middle) and on the (non-ABC) corresponding Gibbs sampler, for a sample of 5,000 nor-
mal N (2,4) observations, 106 ABC and Gibbs iterations, a subsampling rate of 5% for all al-
gorithms and the use of the summary statistics S(x1, . . . ,xn) = (x̄n,s2

n) (top) and S(x1, . . . ,xn) =
(med(x1, . . . ,xn),mad(x1, . . . ,xn)) (middle).

“Prior distribution and parameter ranges”, in that this is not a problem inherent to
ABC. A last comment is that the section on the non-zero tolerance could emphasise
more strongly the fact that this tolerance ε should not be zero. (This recommendation
may sound paradoxical, but from a practical perspective, ε = 0 can only be achieved
with an infinite computing power.)
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2.1.6 What does ABC stand for?

An important6 question that arises in the wake of defining this approximative algo-
rithm is whether or not it constitutes a valid approximation to the posterior distribution
π(θ |S(y0)), if not to the original π(θ |y0). And in case it does not, whether or not it
constitutes a proper form of Bayesian inference. Answers to the latter vary according
to one’s perspective:

– asymptotically, an infinite computing power allows for a zero tolerance, hence for
a proper posterior conditioning on S(y0);

– the outcome of Algorithm 3 is an exact posterior distribution when assuming an
error-in-variable model with scale ε (Wilkinson, 2008, 2013);

– it is also an exact posterior distribution once data has been randomised at scale ε

(Fearnhead and Prangle, 2012);
– it remains a formal Bayesian procedure albeit applied to an estimated likelihood.

Those answers are not fully satisfactory, in particular because using ABC implies
an ad hoc modification to the sampling model, but they are also illuminating about
the tension that exists between information and precision in complex models. ABC
indeed provides a worse approximation of the posterior distribution when the di-
mension of the summary statistics increase, at a given computational cost. This may
sound paradoxical from a purely statistical perspective but it is in fine a consequence
of the curse of dimensionality and of the fact that the signal-to-noise ratio may be
higher in a low dimension statistic than in the raw data. While π(θ |S(y0)) is less
concentrated than the original π(θ |y0), the ABC versions of those two posteriors,

π(θ |d(S(Y ),S(y0))≤ εη) and π(θ |d(Y,y0)≤ ε) ,

may exhibit the opposite feature. (In the above, we introduce the tolerance εη to
stress the fundamental dependence in the choice of the tolerance on the summary
statistics.) A related difficulty with ABC is that the approximation error–of using
π(θ |d(S(Y ),S(y0))≤ εη) instead of π(θ |S(y0)) or the original π(θ |y0)–is unknown
unless one is ready to run costly simulation experiments.

2.2 ABC in the Front Pages

Since their introduction in the late 90’s, ABC methods have been implemented in
many fields and have helped in validating scientific scenarios and in taking political
decisions. Two examples are provided here: First, the science leaflet of Le Monde
dated October 28, 2012, interviewed my co-author Arnaud Estoup for a work on the
multi-coloured Asian ladybird (HA), establishing “that the recent burst of worldwide
invasions of HA followed a bridgehead scenario, in which an invasive population in
eastern North America acted as the source of the colonists that invaded the European,

6 Important at least in my opinion!
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South American and African continents, with some admixture with a biocontrol
strain in Europe”.

The Asian ladybird dataset aimed at making inference about the introduction
pathway of this insect for the first recorded outbreak of this species in eastern North
America. It was first analysed in Lombaert et al. (2011) and Estoup et al. (2012) and
includes five natural and biocontrol populations (18 to 35 individuals per sample)
genotyped at 18 microsatellite markers. The problem considered—discriminating
between evolutionary pathways—required the formalisation and comparison of 10
complex competing scenarios corresponding to various possible routes of introduc-
tion (see Analysis 1 in Lombaert et al. (2011) for details).

Fig. 10 Topology of the most likely evolutationary tree linking the European Asian ladybird with
other populations (Source: ????).

“We predict that control of local badger populations and hence control of environmental
transmission will have a relatively limited effect on all measures of bovine TB incidence.” E.
Brooks-Pollock et al., 2014

The second example relates to a Nature paper (Brooks-Pollock et al., 2014) by
University of Warwick researchers (including Gareth Roberst) on the modelling of
bovine tuberculosis (TB) dynamics in Britain and on the impact of control measures.
The data came from the Cattle Tracing System and the VetNet national testing
database. The mathematical model was based on a stochastic process and its six
parameters were estimated by sequential ABC (SMC-ABC) (Beaumont et al., 2009).
The summary statistics chosen in the model were the number of infected farms per
county per year and the number of reactors (cattle failing a test) per county per year.
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This advanced modelling of a comprehensive dataset on TB in Britain quickly got
into a high media profile (see, e.g., The Guardian headline of “tuberculosis threat
requires mass cull of cattle”) as it addressed the definitely controversial culling of
badgers (who also carry TB) advocated by the British Government. The study con-
cluded that “only generic measures such as more national testing, whole herd culling
or vaccination that affect all routes of transmission are effective at controlling the
spread of bovine TB”, while the elimination of badgers from the English countryside
would have a limited effect. Unsurprisingly, the study was immediately rejected
by the UK farming minister: not only did he object to the herd culling solution for
economic reasons, but he could not “accept the paper’s findings”, hopefully not
because it relied on ABC techniques.

3 ABC Consistency

While ABC was first perceived with suspicion by the mainstream statistical commu-
nity (as well as some population geneticists, see Templeton (2008, 2010), Beaumont
et al. (2010), Berger et al. (2010), representations of the ABC posterior distribution
as a true posterior distribution (Wilkinson, 2013) and of ABC as an auxiliary vari-
able method (Wilkinson, 2013), as a non-parametric technique (Blum, 2010, Blum
and François, 2010), connected with both indirect inference (Drovandi et al., 2011)
and k-nearest neighbour estimation (Biau et al., 2014) helped to turn ABC into an
acceptable component of Bayesian computational methods, albeit requiring caution
and calibration (Wikipedia, 2014). The following entries cover some of the advances
made in the statistical analysis of the method.

3.1 ABC as knn

Biau et al. (2014) made a significant contribution to the statistical foundations of
ABC. It analyses the convergence properties of the ABC algorithm the way it is truly
implemented (as in DIYABC (Cornuet et al., 2008) for instance), i.e. with a tolerance
bound ε that is determined as a quantile of the simulated distances as in Algorithm 3,
say the 10% or the 1% quantile. This means in particular that the interpretation of ε

as a non-parametric density estimation bandwidth, while interesting and prevalent in
the literature (see, e.g., Blum (2010) and Fearnhead and Prangle (2012)), is only an
approximation of the actual practice.

The focus of Biau et al. (2014) is on the mathematical foundations of this practice,
an advance obtained by (re)analysing ABC as a k-nearest neighbour (knn) method.
Using generic knn results, they derive a consistency property for the ABC algorithm
by imposing some constraints upon the rate of decrease of the quantile k as a function
of n. More specifically, provided
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kN/ log logN −→ ∞ and kN/N −→ 0

when N → ∞, for almost all s0 (with respect to the distribution of S(Y )), with
probability 1, convergence occurs, i.e.

1
kN

kN

∑
j=1

ϕ(θ j)−→ E[ϕ(θ j)|S = s0]

(The setting is restricted to the use of sufficient statistics or, equivalently, to a
distance over the whole sample. The issue of summary statistics is not addressed by
the paper.) The paper also contains a rigorous proof of the convergence of ABC when
the tolerance ε goes to zero. The mean integrated square error consistency of the
conditional kernel density estimate is established for a generic kernel (under usual
assumptions). Further assumptions (both on the target and on the kernel) allow the
authors to obtain precise convergence rates (as a power of the sample size), derived
from classical k-nearest neighbour regression, like

kN ≈ N(p+4)/(m+p+4)

in dimensions m larger than 4 (where N is the simulation size). The paper is theoretical
and highly mathematical (with 25 pages of proofs!), but this work clearly constitutes
a major reference for the justification of ABC. The authors also mention future work
in that direction: I would suggest they consider the case of the insufficient summary
statistics from this knn perspective.

3.2 Optimality of Kernels

Filippi et al. (2013) is in the lineage of our (Beaumont et al., 2009) ABC-PMC
(population Monte Carlo) paper. The paper focuses on the impact of the transition
kernel in our PMC scheme: while we used component-wise adaptive proposals, the
paper studies multivariate adaptivity with a covariance matrix adapted from the
whole population, or locally or from an approximation to the information matrix. The
simulation study run in the paper shows that, even when accounting for the additional
cost due to the derivation of the matrix, the multivariate adaptation can improve the
acceptance rate by a fair amount. So this is an interesting and positive sequel to our
paper.

The main limitation about the paper is that the selection of the tolerance sequence
is not done in an adaptive way, while it could, given the recent developments of
Del Moral et al. (2012) and of Drovandi and Pettitt (2010) (as well as Marin et al.
(2011)). Even though the target is the same for all transition kernels, thus the compar-
ison still makes sense as is, the final product is to build a complete adaptive scheme
that comes as close as possible to the genuine posterior.
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This paper also raised a new question: there is a slight distinction between the
Kullback-Leibler divergence we used and the Kullback-Leibler divergence the au-
thors use here. (In fact, we do not account for the change in the tolerance.) Now, since
what only matters is the distribution of the current particles, while the distribution on
the past particles is needed to compute the double integral leading to the divergence,
there is a complete freedom in the choice of this past distribution. As in Del Moral
et al. (2012), the backward distribution L(θt−1|θt) could therefore be chosen towards
an optimal acceptance rate or something akin.

3.3 Convergence Rates

Dean et al. (2014) addresses ABC consistency in the special setting of hidden Markov
models. It relates to Fearnhead and Prangle (2012) discussed below in that those
authors also establish ABC consistency for the noisy ABC, given in Algorithm 4,
where h(·) is a kernel bounded by one (as for instance the unnormalised normal
density).

Algorithm 4 ABC (noisy version)
Compute S(xxx0) and generate S̃0 ∼ h({s−S(xxx0)}/ε)
for t = 1 to N do

repeat
Generate θ ∗ from the prior π(·)
Generate x∗ from the model f (·|θ ∗)
Accept θ ∗ with probability h({S̃0−S(xxx)}/ε)

until acceptance
end for
return N accepted values of θ ∗

The authors construct an ABC scheme such that the ABC simulated sequence
remains an HMM, the conditional distribution of the observables given the latent
Markov chain being modified by the ABC acceptance ball. This means that con-
ducting maximum likelihood (or Bayesian) estimation based on the ABC sample
is equivalent to exact inference under the perturbed HMM scheme. In this sense,
this equivalence bridges with Wilkinson (2013) and Fearnhead and Prangle (2012)
perspectives on “exact ABC”. While the paper provides asymptotic bias for a fixed
value of the tolerance ε , it also proves that an arbitrary accuracy can be attained with
enough data and a small enough ε . The authors of the paper show in addition (as
in Fearnhead’s and Prangle’s) that an ABC inference based on noisy observations
y1 + εz1, . . . ,yn + εzn with the same tolerance ε , is equivalent to a regular inference
based on the original data y1, . . . ,yn, hence the asymptotic consistence of Algorithm
4. Furthermore, the asymptotic variance of the ABC version is proved to always be
greater than the asymptotic variance of the standard MLE, and decreasing as ε2. The
paper also contains an illustration on an HMM with α-stable observables. (Of course,
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the restriction to summary statistics that preserve the HMM structure is paramount
for the results in the paper to apply, hence preventing the use of truly summarising
statistics that would not grow in dimension with the size of the HMM series.) In
conclusion, a paper that validates noisy ABC without non-parametric arguments
and which makes me appreciate even further the idea of noisy ABC: at first, I liked
the concept but found the randomisation it involved rather counter-intuitive from a
Bayesian perspective. Now, I perceive it as a duplication of the randomness in the
data that brings the simulated model closer to the observed model.

Bornn et al. (2014) is a note on the convergence properties of ABC, when com-
pared with acceptance-rejection or regular MCMC. Unsurprisingly, ABC does worse
in both cases. What is central to this note is that ABC can be (re)interpreted as
a pseudo-marginal method where the data comparison step acts like an unbiased
estimator of the true ABC target (not of the original ABC target). From there, it is
mostly an application of Andrieu and Vihola (2014) in this setup. The authors also
argue that using a single pseudo-data simulation per parameter value is the optimal
strategy (as compared with using several), when considering asymptotic variance.
This makes sense in terms of simulating in a larger dimensional space but there may
be a trade-off when considering the cost of producing those pseudo-datasets against
the cost of producing a new parameter. There are a few (rare) cases where the datasets
are much cheaper to produce.

Barber et al. (2013) is essentially theoretical and establishes the optimal rate
of convergence of the MSE—for approximating a posterior moment—at a rate
of 2/(q+4), where q is the dimension of the summary statistic, associated with an
optimal tolerance in n−1/4. I was first surprised at the role of the dimension of the
summary statistic, but rationalised it as being the dimension where the non-parametric
estimation takes place. There are obviously links with earlier convergence results
found in the literature: for instance, Blum (2010) relates ABC to standard kernel
density non-parametric estimation and finds a tolerance (bandwidth) of order n−1/q+4

and an MSE of order 2/(q+4) as well. Similarly, Biau et al. (2014) obtain precise
convergence rates for ABC interpreted as a k-nearest-neighbour estimator (Section
3.1). And, as detailed in Section 5.1, Fearnhead and Prangle (2012) derive rates
similar to Blum’s with a tolerance of order n−1/q+4 for the regular ABC and of order
n−1/q+2 for the noisy ABC.

3.4 Accelerated and Geometric Convergence

Picchini and Lyng Forman (2013) relates to earlier ABC works (and the MATLAB
abc-sde package) by the first author. Among other things, it proposes an accelera-
tion device for ABC-MCMC: when simulating from the proposal, the Metropolis-
Hastings acceptance probability can be computed and compared with a uniform
prior to simulating pseudo-data. In case of rejection, the pseudo-data does not need
to be simulated. In case of acceptance, it is compared with the observed data as
usual. This is interesting for two reasons: first it always speeds up the algorithm.
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Second, it shows the strict limitations of ABC-MCMC, since the rejection takes place
without incorporating the information contained in the data. (Even when the proposal
incorporates this information, the comparison with the prior does not go this way.)
This also relates to one important open problem, namely how to simulate directly
summary statistics without simulating the whole pseudo-dataset.

Another thing (related with acceleration) is that the authors use a simulated
subsample rather than the simulated sample in order to gain time: this worries me
somehow as the statistics corresponding to the observed data is based on the whole
observed data. I thus wonder how both statistics could be compared, since they have
different distributions and variabilities, even when using the same parameter value.
Or is this a sort of pluggin/bootstrap principle, the true parameter being replaced
with its estimator based on the whole data? Maybe this does not matter in the end
(when accounting for the several levels of approximation).

Lee and Latuszynski (2014) compares four algorithms, from the standard (#1)
ABC-MCMC (with N replicates of the pseudo-data) to versions involving simulations
of those replicates repeated at the subsequent step (#2), use of a stopping rule
in the generation of the pseudo data (#3), and an “ideal” algorithm based on the
(unavailable) measure of the ε ball around the data (#4). They recall a result by
Tweedie and Roberts (1996), also used in Mengersen and Tweedie (1996), namely that
the chain cannot be geometrically ergodic when there exist almost absorbing/sticky
states. From there, they derive that (under their technical assumptions) versions #1
and #2 cannot be variance bounding (i.e. the spectral gap is zero), while #3 and #4
can be both variance bounding and geometrically ergodicity under conditions on the
prior and the above ball measure. It is thus interesting if a wee bit mysterious that
simulating a random number of auxiliary variables is sufficient to achieve geometric
ergodicity.

3.5 Checking ABC Convergence

Prangle et al. (2013) is a paper on diagnostics for ABC validation via coverage
diagnostics. Getting valid approximation diagnostics for ABC is clearly and badly
needed. When simulation time is not an issue (!), the DIYABC (Cornuet et al., 2008)
software does implement a limited coverage assessment by computing the type I
error, i.e. by simulating data under the null model and evaluating the number of time
it is rejected at the 5% level (see sections 2.11.3 and 3.8 in the documentation). The
current paper builds on a similar perspective.

The core idea is that a (Bayesian) credible interval at a given credible level α

should have a similar confidence level (at least asymptotically and even more for
matching priors) and that simulating pseudo-data with a known parameter value
allows for a Monte-Carlo evaluation of the credible interval “true” coverage, hence
for a calibration of the tolerance. The delicate issue is about the generation of
those “known” parameters. For instance, if the pair (θ ,y) is generated from the
joint distribution prior x likelihood, and if the credible region is also based on
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the true posterior, the average coverage is the nominal one. On the other hand, if
the credible interval is based on a poor (ABC) approximation to the posterior, the
average coverage should differ from the nominal one. Given that ABC is always
wrong, however, this may fail to be a powerful diagnostic. In particular, when using
insufficient (summary) statistics, the discrepancy should make testing for uniformity
harder, shouldn’t it?

I was puzzled by the coverage property found on page 7:

“Let g(θ |y) be a density approximating the univariate posterior π(θ |y), and Gy be the
corresponding distribution function. Consider a function B(α ′) [taking values in the set of
Borel sets of] [0,1] defined on [0,1] such that the resulting set has Lebesgue measure α ′.
Let C(y,α ′) = G−1

y (B(α ′)) and H(θ ,y0) be the distribution function for (θ0,y0). We say g
satisfies the coverage property with respect to distribution H(θ0,y0) if for every function B
and every α ′ in [0,1], the probability that θ0 is in C(y0,α ’) is α .”

as the probability that belongs to C(y0,α
′) is the probability that Gy0(θ0) belongs

to B(α ′), which means the conditional of H(θ ,y0) has to be Gy0 if the probability
is conditional on y0. However, I then realised the paper does consider coverage in
frequentist terms, which means that the probability is on the pair (θ0,y0). In this case,
the coverage property will be satisfied for any distribution on y0 if the conditional
is g(θ |y). This covers both Result 1 and Result 2 (and it seems to relate to ABC
being “well-calibrated” for every value of the tolerance, even infinity). I actually find
the whole section 2.1 vaguely confusing both because of the use of double indexing
((θ0,y0) vs. (θ ,y)) and because of the apparent lack of relevance of the posterior
π(θ |y) in the discussion (all that matters is the connection between G and H). In
their implementation, the authors end up approximating the p-value P(θ0 < θ) and
checking for uniformity.

As duly noted in the paper, things get more delicate when m the model index itself
is involved in this assessment. When integrating the parameters out, the posterior
distribution on the model index is a mixture of point masses. Giving e.g. masses
0.7, 0.2, and 0.1 to the three possible values of m. I thus fail to understand how
this translates into [non-degenerate] intervals: I would not derive from these figures
that the posterior gives a “70% credible interval that m= 1” as there is no interval
involved. The posterior probability is a number, uniquely defined given the data,
without an associated variability in the Bayesian sense. Now, the definition found
in the paper is once again one of calibration of the ABC distributions, already
discussed in Fearnhead and Prangle (2012). (The paper actually makes not mention
of calibration.) At last, I am also lost as to why the calibration condition (5) on the
posterior distribution of the model index is a testable one: there is a zero probability
to observe again a given value of the posterior probability g(m|y) when generating a
new y. In the following diagnostic, the authors use instead a test that the (generated)
model index is an outcome from a Bernoulli with parameter the posterior probability,
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3.6 Threshold Schedules

Silk et al. (2013) attack a typical problem with SMC (and PMC, and even MCMC!)
methods, namely the ability to miss (global) modes of the target due to a poor initial
exploration. So, if a proposal is built on previous simulations and if those simulations
have missed an important mode, it is quite likely that this proposal will concentrate
on other parts of the space and miss the important mode even more. This is also
why simulated annealing and other stochastic optimisation algorithms are so fickle:
a wrong parameterisation (like the temperature schedule) induces the sequence to
converge to a local optimum rather than to the global optimum. Since sequential
ABC is a form of simulated annealing, the decreasing tolerance (or threshold) playing
the part of the temperature, it is no surprise that it suffers from this generic disease.

The method proposed in the paper aims at avoiding this difficulty by looking at
sudden drops in the acceptance rate curve (as a function of the tolerance ε),

ℵt(ε) =
∫

pt(x)I(∆(x,x?)≤ ε)dx,

suggesting for threshold the value of ε that maximises the second derivative of this
curve. Now, before getting to the issue of turning this principle into a practical
algorithm, let me linger at the motivation for it:

“To see this, one can imagine an ε-ball expanding about the true data; at first the ball only
encompasses a small number of particles that were drawn from very close to the global
maximum, corresponding to the low gradient at the foot of the shape. Once ε is large enough
we are able to accept the relatively large number of particles sitting in the local maximum,
which causes the increase in gradient.” D. Silk et al., 2013

Thus, the argument for looking at values of ε preceding fast increases in the
acceptance rate ℵ is that we are thus avoiding flatter and lower regions of the
posterior support corresponding to a local maximum. It clearly encompasses the case
studied by the authors of a global highly concentrated global mode, surrounded by
flatter lower modes, but it seems to me that this is not necessarily the only possible
reason for changes in the shape of the acceptance probability ℵ. First, we are looking
at an ABC acceptance rate, not at a genuine likelihood. Second, this acceptance
rate function depends on the current (and necessarily rough) approximate to the
genuine predictive, pt . Furthermore, when taking into account this rudimentary
replacement of the true likelihood function, it is rather difficult to envision how it
impacts the correspondence between a proximity in the data and a proximity in the
parameter space. (The toy example is both illuminating and misleading, because it
considers a setting where the data is a deterministic transform of the parameter.) I
thus think the analysis should refer more strongly to the non-parametric literature
and in particular to the k-nearest-neighbour approach reformulated by Biau et al.
(2014): there is no reason to push the tolerance ε all the way down to zero as this
limit does not correspond to the optimal value of the tolerance. If one does not use a
non-parametric determination of the “right” tolerance, the lingering question is when
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and why stopping the sequence of ABC simulations. The acceptance rate function ℵ

is approximated using an unscented transform that escapes me.
In Sedki et al. (2012), we build on the sequential ABC scheme of Del Moral

et al. (2012), where the tolerance level at each step is adapted from the previous
iterations as a quantile of the distances. (The quantile level is based on a current
effective sample size.) In a “systematic” step, the particles that are closest to the
observations are preserved and duplicated, while those farther away are sampled
randomly. The resulting population of particles is then perturbed by an adaptive
(random walk) kernel and the algorithm stops when the tolerance level does not
decrease any longer or when the acceptance rate of the Metropolis step is too low.
Pierre Pudlo and Mohammed Sedki experimented a parallel implementation of the
algorithm, with an almost linear improvement in the number of cores. It is less
clear the same would work on a GPU because of the communication requirements.
Overall, the new algorithm brings a significant improvement in computing time when
compared with earlier versions, mainly because the number of simulations from the
model is minimised. (It was tested on a rather complex population scenario retracing
the invasion of honeybees in Europe.)

3.7 ABC for big data

“The results in this paper suggest that ABC can scale to large data, at least for models with a
xed number of parameters, under the assumption that the summary statistics obey a central
limit theorem.” W. Li and P. Fearnhead, 2015

Li and Fearnhead (2015) propose a different lecture of ABC convergence, in that
they see it as a big data issue. I somewhat disagree with this choice in that the paper
does not address the issue of big or tall data per se, e.g., the impossibility to handle
the whole data at once and to reproduce it by simulation, but rather asymptotics
of ABC. The setting is not dissimilar to the earlier Fearnhead and Prangle (2012)
Read Paper. The central theme of this theoretical paper is to study the connection
between the number N of Monte Carlo simulations and the tolerance value ε when
the number of observations n goes to infinity. A main result of Li and Fearnhead
(2015) is that the ABC posterior mean can have the same asymptotic distribution as
the MLE when ε = o(n−1/4). This is however of no direct use in practice as the second
main result that the Monte Carlo variance is well-controlled only when ε = O(n−1/2).
However, as pointed out by the authors (comments on xianblog.wordpress.com), the
Monte Carlo variance can be kept under control by a “sensible” choice of importance
function, even though it is hard to imagine a universal strategy in this respect.

It may thus seem unrealistic to envision the construction of an importance sam-
pling function of the form fABC(s|θ)α when, obviously, this function cannot be
used for simulation purposes. The authors acknowledge this fact, but still build an
argument about the optimal choice of α , namely away from 0 and 1, for instance
1
2 . Actually, any value different from 0 and 1, is sensible, meaning that the range
of acceptable importance functions is wide, which is the key message there (see
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comments). Most interestingly, the paper constructs an iterative importance sampling
ABC in a spirit similar to Beaumont et al. (2009) ABC-PMC. Even more interestingly,
the 1

2 factor amounts to updating the scale of the proposal as twice the scale of the
target, just as in PMC.

Another aspect of the analysis I do not catch is the reason for keeping the Monte
Carlo sample size to a fixed value N, while setting a sequence of acceptance prob-
abilities (or of tolerances) along iterations. This is a very surprising result in that
the Monte Carlo error does remain under control and does not dominate the overall
error!

“Whilst our theoretical results suggest that point estimates based on the ABC posterior have
good properties, they do not suggest that the ABC posterior is a good approximation to
the true posterior, nor that the ABC posterior will accurately quantify the uncertainty in
estimates.” W. Li and P. Fearnhead, 2015

Overall, this is clearly a paper worth reading for understanding the convergence
issues related with ABC. With more theoretical support than the earlier Fearnhead
and Prangle (2012). However, it does not provide guidance into the construction of a
sequence of Monte Carlo samples nor does it discuss the selection of the summary
statistic, which has obviously a major impact on the efficiency of the estimation.
And to relate to the earlier warning, it does not cope with “big data” in that it still
reproduces the original simulation of the n sized sample.

4 Improvements, implementations, and applications

4.1 ABC for State-Space Models

As described in the survey written by Jasra (Jasra, 2014) on the use of ABC methods
in a rather general class of time-series models, those methods allow to handle setting
where the likelihood of the current observation conditional on the past observations
and on a latent (discrete-time) process cannot be computed. Jasra makes the pre-
liminary useful remark that, in most cases, the probabilistic structure of the model
(e.g., an hidden Markov type of dependence) is lost within the ABC representation.
An exception Jasra and other authors (Calvet and Czellar, 2014, Dean et al., 2014,
Ehrlich et al., 2014, Jasra et al., 2014, 2012, Martin et al., 2014, McKinley et al.,
2014) exploited quite thoroughly is when the difference between the observed data
and the simulated pseudo-data is operated time step by time step, as in

∏
t=1

Id(yt ,y0
t )≤ε

where y0 = (y0
1, . . . ,y

0
T ) is the actual observation. The ABC approximation indeed

retains the same likelihood structure and allows for derivations of consistency prop-
erties (in the number of observations) of the ABC estimates. In particular, using such
a distance in the algorithm allows for the approximation to converge to the genuine
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posterior when the tolerance ε goes to zero (Biau et al., 2014). This is the setting
where (Fearnhead and Prangle, 2012, Theorem 2, see also Dean et al. (2014)) show
that noisy ABC is well-calibrated, i.e. has asymptotically proper convergence proper-
ties. Most of the results obtained by Jasra and co-authors are dedicated to specific
classes of models, from iid models (Dean et al., 2014, Fearnhead and Prangle, 2012,
Jasra et al., 2014) to “observation-driven times-series” (Jasra et al., 2014) to other
forms of HMM (Dean et al., 2014, Ehrlich et al., 2014, Martin et al., 2014) mostly
for MLE consistency results. The constraint above leads to computational difficulties
as the acceptance rate quickly decreases with n (unless the tolerance ε is increasing
with n). Jasra et al. (2014) then suggest to raise the number of pseudo-observations
to average indicators in the above product and to make it random in order to ensure
a fixed number of acceptances. Moving to SMC within MCMC, Jasra et al. (2013)
establish unbiasedness and convergence within this framework, in connection with
the alive particle filter (Le Gland and Oudjane, 2006).

4.2 Accelerated ABC

Richard Wilkinson (2014) starts with a link to the synthetic likelihood approximation
of Wood (2010). Wilkinson presents the generalised ABC as a kernel-based accep-
tance probability, using a kernel π(y|x), when y is the observed data and x = x(θ)
the simulated one. He proposes a Gaussian process modelling for the log-likelihood
(at the observed data y), with a quadratic (in θ ) mean and Matérn covariance matrix.
Hence the connection with Wood’s synthetic likelihood. Another connection is with
QMC (Niederreiter, 1992): the θ ’s are chosen following a Sobol sequence “in order
to minimise the number of design points”. Which requires a reparameterisation to
[0,1]p. I find this “uniform” exploration of the whole parameter space delicate to
envision in complex parameter spaces and realistic problems, since the likelihood is
highly concentrated on a tiny subregion of the original [0,1]p. Not mentioning the
issue of the spurious mass on the boundaries of the hypercube possibly induced by
the change of variable. Wilkinson’s sequential algorithm also attempts at eliminating
implausible zones of the parameter space. i.e. zones where the likelihood is essen-
tially zero. My questions about this interesting notion are that (a) the early Gaussian
process approximations may be poor and hence exclude zones they should not; (b)
all Gaussian process approximations at all iterations must be saved; (c) the Sobol
sequences apply to the whole [0,1]p at each iteration but the non-implausible region
shrinks at each iteration, which induces a growing inefficiency in the algorithm. The
Sobol sequence should be restricted to the previous non-implausible zone.

Overall, this inclusion of Gaussian processes clearly is an interesting proposal that
would need more prodding to understand whether or not it is robust to poor initialisa-
tion and complex structures. And a proposal belonging to the estimated likelihood
branch of ABC, which makes use of the final Gaussian process approximation to run
an MCM algorithm. Without returning to pseudo-data simulation, replacing it with
log-likelihood simulation.
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“These algorithms sample space randomly and naı̈vely and do not learn from previous
simulations.” R. Wilkinson, 2014

The above criticism is moderated in a footnote about ABC-SMC using the “current
parameter value to determine which move to make next [but] parameters visited
in previous iterations are not taken into account”. I still find it excessive in that
SMC algorithms and in particular ABC-SMC algorithms are completely free to use
the whole past to build the new proposal. This was clearly enunciated in our earlier
population Monte Carlo papers. For instance, the complete collection of past particles
can be recycled by weights computing through our AMIS algorithm (Cornuet et al.,
2012).

4.3 ABC-SubSim

Chiachio et al. (2014) developed a new ABC algorithm, called ABC-SubSim. The
SubSim stands for subset simulation and corresponds to an approach developed by
one of the authors for rare-event simulation. This approach looks somewhat similar
to the cross-entropy method of Rubinstein and Kroese (2004), in that successive tail
sets are created towards reaching a very low probability tail set. Simulating from the
current subset increases the probability to reach the following and less probable tail
set. The extension to the ABC setting is done by looking at the acceptance region (in
the augmented space) as a tail set and by defining a sequence of tolerances. The paper
could also be connected with nested sampling (Skilling, 2006) in that constrained
simulation through MCMC occurs there as well. Following the earlier paper, the
MCMC implementation therein is a random-walk-within-Gibbs algorithm. This is
somewhat the central point in that the sample from the previous tolerance level is
used to start a Markov chain aiming at the next tolerance level. (Del Moral et al.
(2012) use instead a particle filter, which could easily be adapted to the modified
Metropolis move considered in the paper.) The core difficulty with this approach,
not covered in the paper, is that the MCMC chains used to produce samples from
the constrained sets have to be stopped at some point, especially since the authors
run those chains in parallel. The stopping rule is not provided (see, e.g., Algorithm
3) but its impact on the resulting estimate of the tail probability could be far from
negligible, in particular because there is no burning. The authors re-examined the
MA(2) toy benchmark we had used in Marin et al. (2011), reproducing as well the
graphical representation on the simplex as shown above.

4.4 Adaptive ABC

Lenormand et al. (2013) develop a refinement of the ABC-PMC algorithm of ours
(Beaumont et al., 2009). The authors state in their introduction that ABC-PMC
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“...presents two shortcomings which are particularly problematic for costly to simulate
complex models. First, the sequence of tolerance levels ε1, . . . ,εT has to be provided to the
ABC algorithm. In practice, this implies to do preliminary simulations of the model, a step
which is computationally costly for complex models. Furthermore, a badly chosen sequence
of tolerance levels may inflate the number of simulations required to reach a given precision
as we will see below. A second shortcoming of the PMC-ABC algorithm is that it lacks a
criterion to decide whether it has converged. The final tolerance level εT may be too large
for the ABC approach to satisfactorily approximate the posterior distribution of the model.
Inversely, a larger εT may be sufficient to obtain a good approximation of the posterior
distribution, hence sparing a number of model simulations.” Lenormand et al., 2013

shortcomings which I thought were addressed by the ABC-SMC algorithm of
Del Moral et al. (2012), the similar algorithm of Drovandi and Pettitt (2010), and our
recent paper (Sedki et al., 2012). It is correct that we did not address the choice of
the εt‘s in the original paper, even though we already used an on-line selection as
a quantile of the current sample of distances. In essence, given the fundamentally
non-parametric nature of ABC, the tolerances εt should always be determined from
the simulated samples, as regular bandwidths. The paper essentially proposes the
same scheme as in Del Moral et al. (2012), before applying it to the toy example of
Sisson et al. (2007) and to a more complex job dynamic model in central France.

4.5 ABC with Empirical Likelihood

Mengersen et al. (2013) is a paper on ABC using empirical likelihood (EL) that was
started by me listening to Brunero Liseo’s tutorial in O’Bayes-2011 in Shanghai.
Brunero mentioned empirical likelihood as a semi-parametric technique w/o much
Bayesian connections and this got me thinking of a possible recycling within ABC.
The details about empirical likelihood can be found in Owen (2001), a comprehensive
entry, The core idea of empirical likelihood is to use a maximum entropy discrete
distribution supported by the data and constrained by estimating equations related
with the parameters of interest or of the whole model. Given a dataset xxx made of n
independent replicates xxx = (x1, . . . ,xn) of a rv X ∼ F , and a collection of generalized
moment conditions that identify the parameter (of interest) φ

EF [h(X ,φ)] = 0

where h is a known function, the induced empirical likelihood (Owen, 1988) is
defined as

Lel(φ |x) = max
p

n

∏
i=1

pi

where the maximum is taken on for all p’s on the simplex of Rn such that

∑
i

pih(xi,φ) = 0.
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As such, it is a non-parametric approach in the sense that the distribution of the data
does not need to be specified, only some of its characteristics. Econometricians have
been quite busy at developing this kind of approach over the years, see e.g. Gouriéroux
and Monfort (1995). However, this empirical likelihood technique can also be seen
as a convergent approximation to the likelihood and hence exploited in cases when
the exact likelihood cannot be derived. For instance, as a substitute to the exact
likelihood in Bayes’ formula, as sketched in Algorithm 5.

Algorithm 5 ABC (with empirical likelihood)
for i = 1→ N do

Generate φi from the prior distribution π(·)
Set the weight ωi = Lel(φi|xobs)

end for
return (φi,ωi), i = 1, . . . ,N
Use weighted sample as in importance sampling

Our paper thus examines the consequences of using an empirical likelihood in
ABC contexts. Although we called the derived algorithm ABCel, it differs from
genuine ABC algorithms in that it does not simulate pseudo-data.7 We had indeed
started looking at a simulated data version, but the performances were rather poor,
and we thus opted for an importance sampling version where the parameters are
simulated from an importance distribution (e.g., the prior) and then weighted by the
empirical likelihood (times a regular importance factor if the importance distribution
is not the prior).

The difficulty with the method is in connecting the parameters of the assumed dis-
tribution with moments of the (iid) data. While this operates rather straightforwardly
for quantile distributions (Allingham et al., 2009), it is less clear for dynamic models
like ARCH and GARCH (Bollerslev et al., 1992), where we have to reconstruct the
underlying iid process. (In this setting, ABCel clearly improves upon ABC for the
GARCH(1,1) model but remains less informative than a regular MCMC analysis.
And it is even harder for population genetic models, where parameters like diver-
gence dates, effective population sizes, mutation rates, &tc., cannot be expressed
as moments of the distribution of the sample at a given locus. In particular, the
data-points are not iid. Pierre Pudlo then had the brilliant idea to resort instead to
a composite likelihood, approximating the intra-locus likelihood by a product of
pairwise likelihoods over all pairs of genes in the sample at a given locus. Indeed,
in Kingman’s coalescent theory, the pairwise likelihoods can be expressed in closed
form, hence we can derive the pairwise composite scores. The comparison with opti-
mal ABC outcomes shows an improvement brought by ABCel in the approximation,
at an overall computing cost that is negligible against ABC (i.e., it takes minutes to
produce the ABCel outcome, compared with hours for ABC.) We are now looking

7 The final accronym in Mengersen et al. (2013) thus became BCel, to stress the difference with
“standard” ABC.
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for extensions and improvements of ABCel, both at the methodological and at the
genetic levels, and we would of course welcome any comment at this stage.

Example 9. Quantile distributions constitute a special class of parametric distribu-
tions that are (only) defined through their quantile function F−1(p;θ), in the sense
that they have no closed form density function (Haynes et al., 1997, Gilchrist, 2000).
They thus constitute an excellent benchmark for ABC algorithms since the corre-
sponding likelihood function is untractable but they can be simulated by the inverse
cdf result (Robert and Casella, 2004, Chapter 2). See (Marjoram et al. (2003), McVin-
ish (2012)) for illustrations.

The four-parameter g-and-k distribution is associated with the quantile function

Q(r;A,B,g,k) = A+B
(

1+ c
1− exp(−gz(r))
1+ exp(−gz(r))

)(
1+ z(r)2)k

z(r)

where z(r) is the rth normal N (0,1) quantile. Mengersen et al. (2013) evaluated
our BCel algorithm on this distribution using different ranges of quantiles to define
the empirical likelihood. Figure 11 illustrates the result of this evaluation for several
sets of quantiles and two sample sizes. As described in Mengersen et al. (2013),
the performances of BCel are overall comparable with those obtained by Allingham
et al. (2009) when using MCMC for the same distribution. However, the much
improved speed of BCel compared with competing ABC algorithms means that
higher performances could be achieved by increasing the number of simulations
and using more efficient simulations than sampling from the prior, as suggested by
(Drovandi and Pettitt, 2011) for ABC. J
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Fig. 11 Boxplots of the variations of the posterior means of the four parameters of the g-and-
k distribution, based on BCel approximations, for n = 100 observations (1 to 5) and n = 500
observations (6 to 10), using M = 104 simulations and 10 replications. The moment conditions used
in the BCel algorithm are quantiles of order (0.2,0.5,0.8) (1 and 6), (0.2,0.4,0.6,0.8) (2 and 7),
(0.1,0.4,0.6,0.9) (3 and 8), (0.1,0.25,0.5,0.75,0.9) (4 and 9), and (0.1,0.2, . . . .0.9) (5 and 10).
(Source: Mengersen et al., 2013.)
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In the revision of this paper, the main issue raised by the referees was that the
potential use of the empirical likelihood (EL) approximation is much less widespread
than the possibility of simulating pseudo-data, because EL essentially relies on
an iid sample structure, plus the availability of parameter defining moments. This
is indeed the case to some extent and also the reason why we used a compound
likelihood for our population genetic model. There are in fact many instances where
we simply cannot come up with a regular EL approximation... However, the range
of applications of straight EL remains wide enough to be of interest, as it includes
most dynamical models like hidden Markov models. To illustrate this point further,
we added in the revision an example borrowed from Cox and Kartsonaki (2012),
which proposes a frequentist alternative to ABC based on fractional design. This
model ended up being fairly appealing wrt our perspective: while the observed data
is dependent in a convoluted way, being a superposition of N renewal processes with
gamma waiting times, it is possible to recover an iid structure at the same cost as
a regular ABC algorithm by using the pseudo-data to recover an iid process. This
revision was thus quite beneficial to our perception of ABC in that (a) it is indeed not
as universal as regular ABC and this restriction should be spelled out (the advantage
being that, when it can be implemented, it usually runs much much faster!), and (b) in
cases where the pseudo-data must be simulated, EL provides a reference/benchmark
for the ABC output that comes for free.

Zhu et al. (2014) proposes an alternative to our paper, based on Davison et al.
(1992) bootstrap likelihood, which relies on a double-bootstrap to produce a non-
parametric estimate of the distribution of a given estimator of the parameter θ .
Including a smooth curve-fitting algorithm step, for which not much description is
available from the paper.

”...in contrast with the empirical likelihood method, the bootstrap likelihood doesn’t require
any set of subjective constrains taking advantage from the bootstrap methodology. This
makes the algorithm an automatic and reliable procedure where only a few parameters need
to be specified.”

The spirit is indeed quite similar to ours in that a non-parametric substitute
plays the role of the actual likelihood, with no correction for the substitution. Both
approaches are convergent, with similar or identical convergence speeds. While
the empirical likelihood relies on a choice of parameter identifying constraints, the
bootstrap version starts directly from the [subjectively] chosen estimator of θ . For it
indeed needs to be chosen. And computed.

”Another benefit of using the bootstrap likelihood (...) is that the construction of bootstrap
likelihood could be done once and not at every iteration as the empirical likelihood. This
leads to significant improvement in the computing time when different priors are compared.”

This is an improvement that could apply to the empirical likelihood approach, as
well, once a large enough collection of likelihood values has been gathered. But only
in small enough dimensions where smooth curve-fitting algorithms can operate. The
same criticism applying to the derivation of a non-parametric density estimate for
the distribution of the estimator of θ . Critically, the paper only processes examples
with a few parameters.

Page:34 job:Ogshrif macro:svmult.cls date/time:5-Feb-2016/13:53



ABC: recent trends 35

In the comparisons between BCel and BCbl that are produced in the paper, the
gain is indeed towards BCbl. Since this paper is mostly based on examples and
illustrations, not unlike ours, I would like to see more details on the calibration of
the non-parametric methods and of regular ABC, as well as on the computing time.
And the variability of both methods on more than a single Monte Carlo experiment.

I am however uncertain as to how the authors process the population genetic
example. They refer to the composite likelihood used in our paper to set the moment
equations. Since this is not the true likelihood, how do the authors select their
parameter estimates in the double-bootstrap experiment? The inclusion of Crackel
and Flegal (2014) bivariate Beta, is somewhat superfluous as this example sounds to
me (see above) like an artificial setting.

In the case of the Ising model, maybe the pre-processing step in Moores et al.
(2014) could be compared with the other algorithms. In terms of BCbl, how does
the bootstrap operate on an Ising model, i.e. (a) how does one subsample pixels and
(b)what are the validity guarantees?

A test that would be of interest is to start from a standard ABC solution and use
this solution as the reference estimator of θ , then proceeding to apply BCbl for that
estimator. Given that the reference table would have to be produced only once, this
would not necessarily increase the computational cost by a large amount...

Li and Jiang (2014) is connected with an interrogation of ours on the manner to
extend our empirical likelihood ABC (Mengersen et al., 2013) to model choice. The
current paper is of a theoretical nature, considering a moment defined model

E[g(D,θ)] = 0,

where D denotes the data, as the dimension p of the parameter θ grows with n, the
sample size. The approximate model is derived from a prior on the parameter θ and
of a Gaussian quasi-likelihood on the moment estimating function g(D,θ). Examples
include single index longitudinal data, quantile regression and partial correlation
selection. The model selection setting is one of variable selection, resulting in 2p

models to compare, with p growing to infinity. Which makes the practical implemen-
tation rather delicate to conceive. And the probability one of hitting the right model a
fairly asymptotic concept.

4.6 ABC via Regression Density Estimation

Fan et al. (2013) argue that one could take advantage of the joint simulation of the pair
parameter/sample to derive a non-parametric estimate of the conditional distribution
of the summary statistic given the parameter, i.e. the sampling distribution. While
most or even all regular ABC algorithms do implicitly or explicitly rely on some level
of non-parametric estimation, from non-parametric regression (Beaumont et al., 2002)
to direct derivations on non-parametric convergence speeds on the kernel bandwidths
(Blum and François, 2010, Fearnhead and Prangle, 2012, Biau et al., 2014), this
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paper centres on the idea to use those same simulations ABC relies upon to build an
estimate of the sampling distribution, to be used afterwards as the likelihood in either
Bayesian or frequentist inference. Rather than relying on traditional kernel estimates,
the adopted approach merges mixtures of experts, namely normal regression mixtures
with logit weights (Jordan and Jacobs, 1994) for the marginals, along with a copula
representation of the joint distribution (of the summary statistics).

So this is a new kid on the large block of ABC methods! In terms of comput-
ing time, it sounds roughly equivalent to regular ABC algorithms in that it relies
on the joint simulation of the pair parameter/sample. Plus a certain number of
mixtures/mixtures of experts estimations. I have no intuition on how greedy those
estimations are. In their unique illustration, the authors report density estimation in
dimension 115, which is clearly impressive. I did not see any indication of respective
computing times. In terms of inference and connection with the Bayesian exact
posterior, I see a few potential caveats: first, the method provides an approximation
of the conditional density of the summary statistics given the parameters, while the
Bayesian approach considers the opposite. This could induce inefficiencies when the
prior is vague and leads to a very wide spread for the values of the summary statistics.
Using a neighbourhood of the observed statistics to restrict the range of the simulated
statistics thus seems appropriate. Second, the use of mixtures of experts assume some
linear connection between the parameters and the summary statistics: while this
reflects Fearnhead and Prangle (2012) strategy, this is not necessarily appropriate in
settings where those parameters cannot be expressed directly as expectations of the
summary statistics (see, e.g., the case of population genetics). Third, the approxima-
tion proposed by the paper is a pluggin estimate, whose variability and imprecision
are not accounted for in the inference process. Maybe not a major issue, as other
solutions also rely on pluggin estimates. And I note the estimation is done once for
all, when compared with, e.g., our empirical likelihood solution that requires a (fast)
optimisation for each new value of the parameters. Fourth, once the approximation is
constructed, a new MCMC run is required and since the (approximated) target is a
black box the calibration of the MCMC sampler may turn to be rather delicate, as in
the 115 dimensional example.

Li et al. (2015) extends on the above through two central ideas: (i) estimate
marginal posterior densities for the components of the model parameter by non-
parametric means; and (ii) consider all pairs of components to deduce the correlation
matrix R of the Gaussian (pdf) transform of the pairwise rank statistic. From those two
low-dimensional estimates, the authors derive a joint Gaussian-copula distribution
by using inverse pdf transforms and the correlation matrix R, to end up with a
meta-Gaussian representation

f (θ) =
1
|R|1/2 exp{η ′(I−R−1)η/2}

p

∏
i=1

gi(θi)

where the η’s are the Gaussian transforms of the inverse-cdf transforms of the θ ’s,that
is,

ηi = Φ
−1(Gi(θi))
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or rather
ηi = Φ

−1(Ĝi(θi))

given that the g’s are estimated. This is obviously an approximation of the joint
in that, even in the most favourable case when the g’s are perfectly estimated, and
thus the components perfectly Gaussian, the joint is not necessarily Gaussian. But
it sounds quite interesting, provided the cost of running all those transforms is not
overwhelming. For instance, if the g’s are kernel density estimators, they involve
sums of possibly a large number of terms.

One thing that bothers me in the approach, albeit mostly at a conceptual level for
I realise the practical appeal is the use of different summary statistics for approximat-
ing different uni- and bi-dimensional marginals. This makes for an incoherent joint
distribution, again at a conceptual level as I do not see immediate practical conse-
quences. Those local summaries also have to be identified, component by component,
which adds another level of computational cost to the approach, even when using a
semi-automatic approach as in Fernhead and Prangle (2012). Although the whole
algorithm relies on a single reference table. As pointed out by the authors in com-
ments on xianblog.wordpress.com, the impact of using a subset of the whole vector
of summary statistics can be checked against incoherences, at least on principle as
the cost may get quickly huge. They also note existing work in density estimation on
such approaches.

The examples in the paper are (i) the banana shaped “Gaussian” distribution of
Haario et al. (1999) that we used in our PMC papers, with a twist; and (ii) a g-and-k
quantile distribution. The twist in the banana (!) is that the banana distribution is
the prior associated with the mean of a Gaussian observation. In that case, the meta-
Gaussian representation seems to hold almost perfectly, even in p = 250 dimensions.
(If I remember correctly, the hard part in analysing the banana distribution was
reaching the tails, which are extremely elongated in at least one direction.) For the
g-and-k quantile distribution, the same holds, even for a regular ABC. What seems
to be of further interest would be to exhibit examples where the meta-Gaussian is
clearly an approximation. If such cases exist.

4.7 ABC via emulators

Jabot et al. (2014) run a comparison of so-called emulation methods for ABC. The
idea therein is to bypass costly simulations of pseudo-data by running cheaper
simulations from a pseudo-model (or emulator) constructed via a preliminary run
of the original and costly model. To borrow from the paper introduction, ABC-
Emulation runs as follows:

– design a small number n of parameter values covering the parameter space;

– generate n corresponding realisations from the model and store the corresponding sum-
mary statistics;

– build an emulator (model) based on those n values;
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– run ABC using the emulator in lieu of the original model.

A first emulator proposed in the paper is absed on local regression, as in Beaumont
et al. (2002), except that it goes the reverse way: the regression model predicts
a summary statistics given the parameter value. The second emulator relies on
Gaussian processes, as in Wilkinson (2014) as well as Meeds and Welling (2014). The
comparison of the above emulators is based on an ecological community dynamics
model. The results are that the stochastic version is superior to the deterministic one,
but overall not very useful when implementing the Beaumont et al. (2002) correction.
The paper however does not define what deterministic and what stochastic mean.

“We therefore recommend the use of local regressions instead of Gaussian processes.” Jabot
et al., 2015

While I find the conclusions of the paper somewhat over-optimistic given the range
of the experiment and the limitations of the emulator options (like non-parametric
conditional density estimation), it seems to me that this is a direction to be pursued
as we need to be able to simulate directly a vector of summary statistics instead of
the entire data process, even when considering an approximation to the distribution
of those summaries.

4.8 Hamiltonian ABC

Meeds et al. (2015) manages the tour de force of associating antagonistic terms, since
ABC is intended for complex and mostly intractable likelihoods, while Hamiltonian
Monte Carlo requires a lot from the target, in order to compute gradients and Hessians.

Somewhat obviously (it is always obvious, ex-post!), the paper suggests to use
Hamiltonian dynamics on ABC approximations of the likelihood. They compare a
Gaussian kernel version

1
S

S

∑
s=1

ϕ(yobs− xs(θ);ε
2)

with the synthetic Gaussian likelihood version of Wood (2010)

ϕ(yobs−µ(θ);σ(θ)2 + ε
2)

where both mean and variance are estimated from the simulated data. If ε is taken as
an external quantity and driven to zero, the second approach is much more stable.
But ε is never driven to zero in ABC, or fixed at ε = 0.378: It is instead considered
as a kernel bandwidth and hence estimated from the simulated data. Hence ε is
commensurable with σ(θ). And this makes me wonder at the relevance of the
conclusion that synthetic is better than kernel for Hamiltonian ABC. More globally, I

8 In a personnal comment, the authors explain that this value was chosen as a small fraction of the
simulator noise at the MAP θ .
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wonder at the relevance of better simulating from a still approximate target when the
true goal is to better approximate the genuine posterior.

Some of the paper covers separate issues like handling gradient by a fast algorithm
à la Spall (2003) and incorporating the random generator as part of the Markov chain.
And using S common random numbers in computing the gradients for all values
of θ . (Although I am not certain all random generators can be represented as a
deterministic transform of a parameter θ and of a fixed number of random uniforms.
But the authors may consider a random number of random uniforms when they
represent their random generators as deterministic transform of a parameter θ and of
the random seed. I am also uncertain about the distinction between common, sticky,
and persistent random numbers!) As pointed out by the authors in their comments
on xianblog.wordpress.com, they bypass finite differences, Hessian computations,
and only require a small number of simulations, which may make this approach of
considerable interest if explored further in high dimensional settings

4.9 ABC via population annealing

“We are recommended to try a number of annealing schedules to check the influence of the
schedules on the simulated data (...) As a whole, the simulations with the posterior parameter
ensemble could, not only reproduce the data used for parameter inference, but also capture
and predict the data which was not used for parameter inference.” Y. Murakami, 2014

Population annealing is a notion introduced by Iba, the very same Iba (2000)
who introduced the notion of population Monte Carlo that we studied in subsequent
papers (Cappé et al., 2004, Douc et al., 2007, Cappé et al., 2008) . It reproduces
the setting found in many particle filter papers of a sequence of (annealed or rather
tempered) targets ranging from an easy (i.e., almost flat) target to the genuine target,
and of an update of a particle set by MCMC moves and reweighing. I actually have
trouble perceiving the difference with other sequential Monte Carlo schemes as those
exposed in Del Moral et al. (2006). And the same is true of the ABC extension
covered in Murakami (2014), where the annealed intermediate targets correspond
to larger tolerances. This sounds like a traditional ABC-SMC algorithm. Without
the adaptive scheme on the tolerance ε found e.g. in Del Moral et al. (2006), since
the sequence is set in advance. [However, the discussion about the implementation
includes the above quote that suggests a vague form of cross-validated tolerance
construction]. The approximation of the marginal likelihood also sounds standard,
the marginal being approximated by the proportion of accepted pseudo-samples. Or
more exactly by the sum of the SMC weights at the end of the annealing simulation.
This actually raises several questions: (a) this estimator is always between 0 and
1, while the marginal likelihood is not restricted [but this is due to a missing 1/ε
in the likelihood estimate that cancels from both numerator and denominator]; (b)
seeing the kernel as a non-parametric estimate of the likelihood led me to wonder
why different ε could not be used in different models, in that the pseudo-data used
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for each model under comparison differs. If we were in a genuine non-parametric
setting the bandwidth would be derived from the pseudo-data.

“Thus, Bayesian model selection by population annealing is valid.” Y. Murakami, 2014

The discussion about the use of ABC population annealing somewhat misses the
point of using ABC, which is to approximate the genuine posterior distribution, to
wit the above quote: that the ABC Bayes factors favour the correct model in the
simulation does not tell anything about the degree of approximation wrt the original
Bayes factor. [The issue of non-consistent Bayes factors does not apply here as there
is no summary statistic applied to the few observations in the data.] Further, the
magnitude of the variability of the values of this Bayes factor as ε varies, from 1.3
to 9.6, mostly indicates that the numerical value is difficult to trust. (I also fail to
explain the huge jump in Monte Carlo variability from 0.09 to 1.17 in Table 1.) That
this form of ABC-SMC improves upon the basic ABC rejection approach is clear.
However it needs to build some self-control to avoid arbitrary calibration steps and
reduce the instability of the final estimates.

“The weighting function is set to be large value when the observed data and the simulated
data are “close”, small value when they are “distant”, and constant when they are “equal”.”
Y. Murakami, 2014

The above quote is somewhat surprising as the estimated likelihood f (xobs|xobs,θ)
is naturally constant when xobs = xsim. I also failed to understand how the model
intervened in the indicator function used as a default ABC kernel.

4.10 Integrated Likelihood via ABC

Grazian and Liseo (2014) rely on ABC for marginal density estimation. The idea in
the paper is to produce an integrated likelihood approximation in intractable problems
via the ratio

L(ψ|x) ∝
π(ψ|x)
π(ψ)

both terms in the ratio being estimated from simulations,

L̂(ψ|x) ∝
π̂ABC(ψ|x)

π̂(ψ)

(with possible closed form for the denominator). Although most of the examples pro-
cessed in the paper (Poisson means ratio, Neyman–Scott’s problem, g-&-k quantile
distribution (Allingham et al., 2009), semi-parametric regression) rely on summary
statistics, hence de facto replacing the numerator above with a pseudo-posterior
conditional on those summaries, the approximation remains accurate (for those ex-
amples). In the g-&-k quantile example, Grazian and Liseo (2014) compare our
ABC-MCMC algorithm with the one of Allingham et al. (2009): the later does better
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by not replicating values in the Markov chain but instead proposing a new value
until it is accepted by the usual Metropolis step. (An amazing feature is that both
approaches are simultaneously correct!) As noted by the authors, “the main draw-
back of the present approach is that it requires the use of proper priors”, unless the
marginalisation of the prior can be done analytically. (This opens an interesting com-
putational question: how can one provide an efficient approximation to a marginal
density of a σ -finite measure, assuming this density exists.)

4.11 ABC for MRFs

Everitt (2014) provides a fairly interesting comparison of ABC and MCMC algo-
rithms applied to the cases of MRFs observed with MRF errors (latent MRF models)
and of exponential random graphs with errors as those used for social network mod-
elling. The MCMC algorithm is a combination of SMC, of particle MCMC à la
Andrieu et al. (2011) and of the exchange algorithm of Murray et al. (2006) that
improves upon the single auxiliary variable method of Møller et al. (2006), which
can also be reinterpreted à la Andrieu and Roberts (2009). Recall that the exchange
algorithm provides a direct evaluation of the ratio of the normalising constants based
on a running pair of parameters (hence the possible “exchange”). The issue of simu-
lating exactly from an MRF is bypassed by validating an MCMC algorithm based on
a finite number of iterations (under strong conditions). The SMC sampler for MRFs
mixes hot coupling (based on a clique completion of a spanning tree of the true graph)
and tempering. The ABC algorithm uses the same approach as ours (in Grelaud et al.
(2009)) through the summary (sufficient!) statistics, plus the ABC-SMC sampler of
Del Moral et al. (2012). The comparison is run on a small 10×10 Ising model and
on the Florentine family network Yves Atchadé used in our Wang-Landau paper
(Atchadé et al., 2013).

Now, comparing ABC with MCMC is not a thing that would come naturally to
me and my answer to the question about their relative merits is to say that one only
uses ABC when MCMC cannot work. This study shows a bit more depth in the
analysis: First, ABC managed to pick the major features of the posterior in both cases,
while a regular MCMC got either stuck in one region or fairly inefficient. Second,
the involved fusion algorithm constructed by Richard managed to overcome those
difficulties and provided a richer sample than ABC in the same number of runs (as it
should, ABC being a slow learner.)

4.12 ABC for copula estimation

Clara Grazian and Brunero Liseo (di Roma) have just arXived a note on a method
merging copulas, ABC, and empirical likelihood. The approach is rather hybrid
and thus not completely Bayesian, but this must be seen as a consequence of an ill-
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posed problem. Indeed, as in many econometric models, the model there is not fully
defined: the marginals of iid observations are represented as being from well-known
parametric families (and are thus well-estimated by Bayesian tools), while the joint
distribution remains uncertain and hence so does the associated copula. The approach
in the paper is to proceed stepwise, i.e., to estimate correctly each marginal, well
correctly enough to transform the data by an estimated cdf, and then only to estimate
the copula or some aspect of it based on this transformed data. Like Spearman’s ρ .
For which an empirical likelihood is computed and aggregated to a prior to make
a BCel weight. (If this sounds unclear, each BEel evaluation is based on a random
draw from the posterior samples, which transfers some uncertainty in the parameter
evaluation into the copula domain. Thanks to Brunero and Clara for clarifying this
point for me!)

At this stage of the note, there are two illustrations revolving around Spearman’s
ρ . One on simulated data, with better performances than a nonparametric frequentist
solution. And another one on a Garch (1,1) model for two financial time-series.

I am quite glad to see an application of our BCel approach in another domain
although I feel a tiny bit uncertain about the degree of arbitrariness in the approach,
from the estimated cdf transforms of the marginals to the choice of the moment
equations identifying the parameter of interest like Spearman’s ρ . Especially if one
uses a parametric copula which moments are equally well-known. While I see the
practical gain in analysing each component separately, the object created by the
estimated cdf transforms may have a very different correlation structure from the
true cdf transforms. Maybe there exist consistency conditions on the estimated cdfs...
Maybe other notions of orthogonality or independence could be brought into the
picture to validate further the two-step solution...

4.13 ABC for Bivariate Betas

Crackel and Flegal (2014) is running ABC for inference on the parameters of two
families of bivariate betas. I however wonder why ABC was that necessary to handle
the model. The said bivariate betas are defined from

V1 = (U1 +U5 +U7)/(U3 +U6 +U8) ,

V2 = (U2 +U5 +U8)/(U4 +U6 +U7)

when
Ui ∼ G a(δi,1)

and
X1 =V1/(1+V1) , X2 =V2/(1+V2)

This makes each term in the pair Beta and both components dependent. This construct
was proposed by Arnold and Ng (2011). (The five-parameter version cancels the
gammas for i=3,4,5.)
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Since the pdf of the joint distribution is not available in closed form, Crackel and
Flegal (2014) zoom on ABC-MCMC as the method of choice and discuss simulation
experiments. (The choice of the tolerance ε as an absolute rather than relative value,
ε=0.2,0.0.6,0.8, puzzles me, esp. since the distance between the summary statistics
is not scaled.) I however wonder why other approaches are impossible. (Or why it is
necessary to use this distribution to model correlated betas. Unless I am confused
copulas were invented to this effect.) First, this is a latent variable model, so latent
variables could be introduced inside an MCMC scheme. A wee bit costly but feasible.
Second, several moments of those distributions are known so an empirical likelihood
approach could be considered.

4.14 Transdimensional ABC

Transdimensional ABC including inference on invasive species models is the theme
of Chkrebtii et al. (2013). It attracted my attention for at least two reasons: (a) it
brings a new perspective on Bayesian inference in varying dimension models (or in
multiple models and model comparison); (b) the application is about invasive species,
as in our ABC paper on tracing pathways for the Asian beetle invasion in Europe.

After reading the paper, I however remain unconvinced that a direct duplication
of Green’s reversible jump MCMC algorithm (Green, 1995) is relevant in this ABC
setting: this is indeed the central idea of the authors, namely to apply the reversible
jump construct in an ABC-MCMC algorithm, with exactly the same validation as
the usual ABC-MCMC algorithm where the indicator of a small enough distance
between the observed and the simulated data acts as a (biased) estimator of the
likelihood function. There is thus no doubt about the validity of the method. What
leaves me somehow lukewarm about this idea is the same feature in the accelerated
ABC paper by Picchini and Lyng Forman (2013), that is, the fact that the acceptance
step actually occurs at the prior level, the Metropolis-Hastings acceptance probability
being the ratio of the priors over the ratio of the proposals. (Plus a second acceptance
step induced by the distance between the observed and the simulated data.)

The application to the invasion of European earthworms in northern Alberta is
quite interesting, from the fact that those worms did not crawl their way up there but
instead hitch-hiked!, to the modelling of the number of introductions by a Poisson
spatial process, to the fact that the ABC algorithm can run with infinite precision!
This last point makes me wonder whether or not a regular MCMC algorithm is
unattainable for this problem. (However, the authors rely on a two-dimensional
summary statistic for each pair (g,r), which helps in picking an ε equal to zero.)
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4.15 ABC for Design

Hainy et al. (2013) relies on ABC to the construction of optimal designs. Remember
that Müller (1999) uses a natural simulated annealing that is quite similar to our MAP
[SAME] algorithm (Doucet et al., 2002), relying on multiple versions of the data set
to get to the maximum. The paper also builds upon our 2006 paper (Amzal et al.,
2006), that took advantage of the then emerging particle methods to improve upon
a static horizon target. While our method is sequential in that it pursues a moving
target, it does not rely on the generic methodology developed by Del Moral et al.
(2006), where a backward kernel brings more stability to the moves. The paper also
implements a version of our population Monte Carlo ABC algorithm (Beaumont
et al., 2009), as a first step before an MCMC simulation. Overall, the paper sounds
more like a review than like a strongly directive entry into ABC based design in that
it remains quite generic. I somewhat doubt a realistic implementation (as opposed to
the linear model used in the paper) could do without a certain amount of calibration.

4.16 Interacting Particles ABC

Albert et al. (2014) provides a new perspective on ABC. It relates to ABC-MCMC
and to ABC-SMC in different ways, but the major point is to propose a sequential
schedule for decreasing the tolerance that ensures convergence. Although there exist
other proofs of convergence in the literature, this one is quite novel in that it connects
ABC with the cooling schedules of simulated annealing. (The fact that the sample
size does not appear as in Fearnhead and Prangle (2012) and their non-parametric
perspective can be deemed less practical, but I think this is simply another perspective
on the problem) The corresponding ABC algorithm is a mix of MCMC and SMC
in that it lets a population of N particles evolve in a quasi-independent manner, the
population being only used to update the parameters of the independent (normal)
proposal and those of the cooling tolerance. Each particle in the population moves
according to a Metropolis-Hastings step, but this is not an ABC-MCMC scheme in
that the algorithm works with a population at all times, and this is not an ABC-SMC
scheme in that there is no weighting and no resampling.

4.17 Preprocessing ABC

Moores et al. (2014) proposes to cut down on the cost of running an ABC experiment
by removing the simulation of a humongous state-space vector, as in Potts and hidden
Potts model, and replacing it by an approximate simulation of the 1-d sufficient
(summary) statistics. In that case, we used a division of the 1-d parameter interval
to simulate the distribution of the sufficient statistic for each of those parameter
values and to compute the expectation and variance of the sufficient statistic. Then

Page:44 job:Ogshrif macro:svmult.cls date/time:5-Feb-2016/13:53



ABC: recent trends 45

the conditional distribution of the sufficient statistic is approximated by a Gaussian
with these two parameters. And those Gaussian approximations substitute for the
true distributions within an ABC-SMC algorithm à la Del Moral et al. (2012).

Across 20 125 × 125 pixels simulated images, Matt Moores’ algorithm took
an average of 21 minutes per image for between 39 and 70 SMC iterations, while
resorting to pseudo-data and deriving the genuine sufficient statistic took an average
of 46.5 hours for 44 to 85 SMC iterations. On a realistic Landsat image, with a total of
978,380 pixels, the precomputation of the mapping function took 50 minutes, while
the total CPU time on 16 parallel threads was 10 hours 38 minutes. By comparison,
it took 97 hours for 10,000 MCMC iterations on this image, with a poor effective
sample size of 390 values. Regular SMC-ABC algorithms cannot handle this scale:
It takes 89 hours to perform a single SMC iteration! (Note that path sampling also
operates in this framework, thanks to the same precomputation: in that case it took
2.5 hours for 105 iterations, with an effective sample size of 104.)

4.18 Lazy Version

““A more automated approach would be useful for lazy versions of ABC SMC algorithms.”
D. Prangle, 2014

Prangle (2014) is based upon the notion of cutting down massively on the genera-
tion of pseudo-samples that are “too far” from the observed sample. This is formalised
through a stopping rule that puts the estimated likelihood to zero with a probability
1−α(θ ,x) and otherwise divide the original ABC estimate by α(θ ,x). Which makes
the modification unbiased when compared with basic ABC. The efficiency appears
when α(θ ,x) can be computed much faster than producing the entire pseudo-sample
and its distance to the observed sample. When considering an approximation to the
asymptotic variance of this modification, Prangle derives a optimal (in the sense of
the effective sample size) if formal version of the acceptance probability α(θ ,x),
conditional on the choice of a “decision statistic” ϕ(θ ,x). And of an importance
function g(θ). This approach requires to estimate

P(d(S(Y ),S(yo))< ε|ϕ)

as a function of ϕ : I would have thought (non-parametric) logistic regression a good
candidate towards this estimation, but Dennis is rather critical of this solution.

I added the quote above as I find it somewhat ironical: at this stage, to enjoy
laziness, the algorithm has first to go through a massive calibration stage, from the
selection of the subsample [to be simulated before computing the acceptance prob-
ability α(θ ,x)] to the construction of the (somewhat mysterious) decision statistic
ϕ(θ ,x) to the estimation of the terms composing the optimal α(θ ,x). The most
natural choice of ϕ(θ ,x) seems to be involving subsampling, still with a wide range
of possibilities and ensuing efficiencies. (The choice found in the application is
somehow anticlimactic in this respect.)
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A slight point of perplexity about this “lazy” proposal, namely the static role of ε ,
which is impractical because not set in stone. As stressed many times, the tolerance is
a function of many factors including all the calibration parameters of the lazy ABC,
rather than an absolute quantity. It seems to me that playing with a large collection
of tolerances may be too costly in this setting.

4.19 ABC vs. EP

“It seems quite absurd to reject an EP-based approach, if the only alternative is an ABC
approach based on summary statistics, which introduces a bias which seems both larger
(according to our numerical examples) and more arbitrary, in the sense that in real-world
applications one has little intuition and even less mathematical guidance on to why p(θ |s(y))
should be close to p(θ |y) for a given set of summary statistics s.” S. Barthelmé and N.
Chopin, 2014

Barthelmé and Chopin (2014) is selling expectation-propagation as quick and
dirty version of ABC, avoiding the selection of summary statistics by using the
constraint

||yi− y?i || ≤ ε

on each component of the simulated pseudo-data vector y* being the actual data.
Expectation-propagation is a variational technique and it consists in replacing the
target with the “closest” member from an exponential family, like the Gaussian
distribution. The expectation-propagation approximation is found by including a
single “observation” at a time, using the other approximations for the prior, and
finding the best Gaussian in this pseudo-model. In addition, expectation-propagation
provides an approximation of the evidence. In the “likelihood-free” setting, this
means computing empirical mean and empirical variance, one observation at a time,
under the above tolerance constraint.

Unless I am confused, the expectation-propagation approximation to the posterior
distribution is a [sequentially updated] Gaussian distribution, which means that it
will only be appropriate in cases where the posterior distribution is approximately
Gaussian. Since the three examples processed in the paper are of this kind, e.g. the
above reproduction, I wonder at the performances of the expectation-propagation
method in less smooth cases, such as ridge-like or multimodal posteriors. The authors
mention two limitations: “First, it [EP] assumes a Gaussian prior; and second, it
relies on a particular factorisation of the likelihood, which makes it possible to
simulate sequentially the data-points“, but those seem negligible. I thus remain
unconvinced by the concluding sentence quoted above. (The current approach to
ABC is to consider p(θ |s(y)) as a target per se, not as an approximation to p(θ |y).)
Nonetheless, expectation-propagation constitutes a quick approximation method that
can always used as a reference against other approximations.
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4.20 Data-cloning ABC

“By accepting of having obtained a poor approximation to the posterior, except for the
location of its main mode, we switch to maximum likelihood estimation.” U. Picchini, 2015

Picchini (2015) is merging ABC with prior feedback (Robert and Soubiran, 1993,
rechristened data cloning in Lele et al. (2007), where a maximum likelihood estimate
is produced by an ABC-MCMC algorithm, in the case of state-space models. This
relates to an earlier paper by Rubio and Johansen (2013), who also suggested using
ABC to approximate the maximum likelihood estimate. Here, the idea is to use an
increasing number of replicates of the latent variables, as in our SAME algorithm,
to spike the posterior around the maximum of the (observed) likelihood. An ABC
version of this posterior returns a mean value as an approximate maximum likelihood
estimate.

“This is a so-called “likelihood-free” approach [Sisson and Fan, 2011], meaning that knowl-
edge of the complete expression for the likelihood function is not required.” U. Picchini,
2015

The above remark is sort of inappropriate in that it applies to a non-ABC setting
where the latent variables are simulated from the exact marginal distributions, that is,
unconditional on the data, and hence their density cancels in the Metropolis-Hastings
ratio. This pre-dates ABC by a few years, since this was an early version of particle
filter.

“In this work we are explicitly avoiding the most typical usage of ABC, where the posterior
is conditional on summary statistics of data S(y), rather than y.” U. Picchini, 2015

Another point I find rather negative is the abve in that, for state-space models,
using the entire time-series as a “summary statistic” is unlikely to produce a good
approximation.

The discussion on the respective choices of the ABC tolerance δ and on the
prior feedback number of copies K is quite interesting, in that Umberto Picchini
suggests setting δ first before increasing the number of copies. However, since
the posterior gets more and more peaked as K increases, the consequences on
the acceptance rate of the related ABC algorithm are unclear. Another interesting
feature is that the underlying MCMC proposal on the parameter θ is an independent
proposal, tuned during the warm-up stage of the algorithm. Since the tuning is
repeated at each temperature, there are some loose ends as to whether or not it is
a genuine Markov chain method (unless, as pointed by the author in comments on
xianblog.wordpress.com, the adaptation is only done over a long burn-in). The same
question arises when considering that additional past replicas need to be simulated
when K increases. (Although they can be considered as virtual components of a
vector made of an infinite number of replicas, to be used when needed.)

The simulation study involves a regular regression with 101 observations, a
stochastic Gompertz model studied by Donnet et al. (2010) with 12 points and a
simple Markov model, again with 12 points. While the ABC-DC solutions are close
enough to the true MLEs whenever available, a comparison with the cheaper ABC
Bayes estimates would have been of interest as well.
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5 Summary Statistics, the ABC Conundrum

The main focus of the recent ABC literature has been on the selection and evaluation
of summary statistics, including a Royal Statistical Society Read Paper (Fearnhead
and Prangle, 2012) that set a reference and gave prospective developments in the dis-
cussion section. Reducing the data into a small dimension but sufficienlt informative
statistics constitutes a fundamental difficulty when there is no non-trivial sufficient
statistic and when the summary statistics are not already provided by the software
(like DIYABC, Cornuet et al. (2008)) or imposed by experimenters in the field. This
choice has to balance a loss of statistical information a gain in ABC precision, with
little available on the amounts of error and information loss involved in the ABC
substitution.

5.1 The Read Paper

Fearnhead and Prangle (2012) proposed an original approach to ABC, where ABC is
considered from a purely inferential viewpoint and calibrated for estimation purposes.
Fearnhead and Prangle do not follow the “traditional” perspective of looking at
ABC as a converging approximation to the true posterior density. As Wilkinson
(2013) (first posted in 2008), they take instead a randomised/noisy version of the
summary statistics and derive a calibrated version of ABC, i.e. an algorithm that
gives proper predictions, the drawback being that it is for the posterior given this
randomised version of the summary statistics. The paper also contains an important
result in the form of a consistency theorem that shows that noisy ABC is a convergent
estimation method when the number of observations or datasets grows to infinity.
The most interesting aspect in this switch of perspective is that the kernel h used in
the acceptance probability

h((s− sobs)/h)

does not have to act as an estimate of the true sampling density, since it appears
in the (randomised) pseudo-model. (Everything collapses to the true model when
the bandwidth h goes to zero.) The Monte Carlo error is taken into account through
the average acceptance probability, which collapses to zero when h goes to zero,
therefore a suboptimal choice!

A form of tautology stems from the comparison of ABC posteriors via a loss
function

(θ0− θ̂)TA(θ0− θ̂)

that ends up with the “best” asymptotic summary statistic being

E[θ |yobs].

This result indeed follows from the very choice of the loss function rather than
from an intrinsic criterion. Using the posterior expectation as the summary statistics
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still makes sense, especially when the calibration constraint implies that the ABC
approximation has the same posterior mean as the true (randomised) posterior. Un-
fortunately this result is parameterisation dependent and unlikely to be available in
settings where ABC is necessary. In the semi-automatic implementation proposed
by Fearnhead and Prangle (2012), the authors suggest to use a pilot run of ABC to
approximate the above statistics. I wonder at the resulting cost since a simulation
experiment must be repeated for each simulated dataset (or sufficient statistic). The
simplification in the paper follows from a linear regression on the parameters, thus
linking the approach with Beaumont et al. (2002).

Using the same evaluation via a posterior loss, the authors show that the “optimal”
kernel is uniform over a region

xTAx < c

where c makes a ball of volume 1. A significant remark is that the error evaluated by
Fearnhead and Prangle is

tr(AΣ)+h2Eh[xTAx]+
C0

hd

which means that, due to the Monte Carlo error, the “optimal” value of h is not zero
but akin to a non-parametric optimal speed in 2/2+d. There should thus be a way to
link this decision-theoretic approach with the one of Ratmann et al. (2009) since the
latter take h to be part of the parameter vector.

As exposed in my discussion (Robert, 2012), I remain skeptical about the “opti-
mality” resulting from the choice of summary statistics in the paper, partly because
practice shows that proper approximation to genuine posterior distributions stems
from using a (much) larger number of summary statistics than the dimension of the
parameter (albeit unachievable at a given computing cost), partly because the validity
of the approximation to the optimal summary statistics depends on the quality of
the pilot run, and partly because there are some imprecisions in the mathematical
derivation of the results (Robert, 2012). Furthermore, important inferential issues like
model choice are not covered by this approach. But, nonetheless, the paper provides
a way to construct default summary statistics that should come as a supplement to
summary statistics provided by the experts, or even as a substitute.

The paper is also connecting to the computing cost and stressing the relevance
of the indirect inference literature (Gouriéroux et al., 1993). A clear strength of the
paper remains with Section 4 which provides a major simulation experiment. My
only criticism on this section would be about the absence of a phylogeny example that
would relate to the models that launched ABC methods. This is less of a mainstream
statistics example, but it would be highly convincing to those primary users of ABC.

Page:49 job:Ogshrif macro:svmult.cls date/time:5-Feb-2016/13:53



50 Christian P. Robert

5.2 Another Review

“What is very apparent from this study is that there is no single ‘best’ method of dimension
reduction for ABC.“ M. Blum, M. Nunes, D. Prangle, and S. Sisson, 2012

Blum et al. (2013) offers a detailed review of dimension reduction methods in
ABC, along with a comparison on three specific models. Given that, as put above, the
choice of the vector of summary statistics is presumably the most important single
step in an ABC algorithm and keeping in mind that selecting too large a vector is
bound to fall victim of the dimension curse, this constitutes a reference for the ABC
literature. Therein, the authors compare regression adjustments à la Beaumont et al.
(2002), subset selection methods, as in Joyce and Marjoram (2008), and projection
techniques, as in Fearnhead and Prangle (2012). They add to this impressive battery
of methods the potential use of AIC and BIC. An argument for using AIC/BIC is that
either provides indirect information about the approximation of p(θ |y) by p(θ |s(y)),
even though this does not seem obvious to me.

The paper also suggests a further regularisation of Beaumont et al. (2002) by ridge
regression, although L1 penalty à la Lasso would be more appropriate in my opinion
for removing extraneous summary statistics. (I must acknowledge never being a big
fan of ridge regression, esp. in the ad hoc version à la Hoerl and Kennard (1970), i.e.
in a non-decision theoretic approach where the hyperparameter λ is derived from
the data by cross-validation, since it then sounds like a poor man’s version of Bayes’
and Stein’ estimators, just like BIC is a first order approximation to regular Bayes
factors). Unsurprisingly, ridge regression does better than plain regression in the
comparison experiment when there are many almost collinear summary statistics, but
an alternative conclusion could be that regression analysis is not that appropriate with
many summary statistics. Indeed, summary statistics are not quantities of interest
but data summarising tools towards a better approximation of the posterior at a
given computational cost. (I do not get the final comment about the relevance of
summary statistics for MCMC or SMC algorithms: the criterion should be the best
approximation of p(θ |y) which does not depend on the type of algorithm.)

5.3 Accurate ABC

Ratmann et al. (2013) introduced the notion of accurate ABC. The central idea is that,
if the distribution of the summary statistics is known and if replicas of those summary
statistics are available for the true data (and less problematically for the generated
data), then a classical statistical test can be turned into a natural distance measure for
each statistics and even “natural” bounds can be found on that distance, to the point
of recovering most properties of the original posterior distribution... A first worry
is this notion that the statistical distribution of a collection of summary statistics is
available in closed form: this sounds unrealistic even though it may not constitute a
major contention issue. Indeed, replacing a tailored test with a distribution-free test
of identical location parameter could not hurt that much. The paper also insists on
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sufficiency, which I fear is a lost cause. In my current understanding of ABC, the
loss of some amount of information contained in the data should be acknowledged
and given a write-off as a Big Data casualty. (See, e.g., Lemma 1.)

Another worry is that the rephrasing of the acceptance distance as the maximal
difference for a particular test relies on an elaborate calibration, incl. α , c+, τ+, &tc.
(I am not particularly convinced by the calibration in terms of the power of the test
being maximised at the point null value.) When cumulating tests and aiming at a
nominal α level, the orthogonality of the test statistics in Theorem 1(iii) is puzzling
and I think unrealistic.

The notion of accuracy that is central to the paper and its title corresponds to the
power of every test being maximal at the true value of the parameter. And somehow
to the ABC approximation being maximises at the true parameter, even though I
am lost by then [i.e. around eqn (18)] about the meaning of ρ*... The major result
in the paper is however that, under the collection of assumptions made therein, the
ABC MLE and MAP versions are equal to their exact counterparts. And that these
versions are also unbiased. This Theorem 3 sounds fantastic but makes me uneasy:
unbiasedness is a sparse property that is rarely found in statistical problems. Change
the parameterisation and you loose unbiasedness. And even the possibility to find
an unbiased estimator. Since this difficulty does not appear in the paper, I would
conclude that either the assumptions are quite constraining or the result holds in a
weaker sense... (Witness the use of “essentially unbiased” in Fig. 4.)

The paper seems to imply that the summary statistics are observed repeatedly
over the true sample. Unless n = 1, this does not seem realistic. (I do not understand
everything in Example 1, in particular the complaint that the ABC solutions were
biased for finite values of n. That sounds like an odd criticism when applied to
Bayesian estimators. Now, it seems the paper is very intent on achieving unbiasedness.
So maybe it should be called the aAnsBC algorithm for “not-so-Bayes!) I am also
puzzled by the distinction between summary values and summary statistics. This
sounds like insisting on having a large enough iid dataset. Or the discussion that
the summary parameters are replaced by estimates seems out of context because
this adds an additional layer of notation to the existing summary “stuff”... With the
additional difficulty that Lemma 1 assumes reparameterisation of the model in terms
of those summary parameters. I also object to the point null hypotheses being written
in terms of a point estimate, i.e. of a quantity depending on the data x: it sounds
like confusing the test [procedure] with the test [problem]. Another example: I read
several times Lemma 5 about the calibration of the number of ABC simulations m
but cannot fathom what this m is calibrated against. It seems only a certain value of
m achieves the accurate correspondence with the genuine posterior, which sounds
counter-intuitive.
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5.4 ABC with Indirect Summary Statistics

After reading Drovandi et al. (2011), I checked the related Gleim and Pigorsch (2013)
about indirect summary statistics. The setting is indeed quite similar to the above,
with a description of three ways of connecting indirect inference with ABC, albeit
with a different range of illustrations. This preprint states most clearly its assumption
that the generating model is a particular case of the auxiliary model, which sounds
anticlimactic since the auxiliary model is precisely used because the original one
is mostly out of reach! This certainly was the original motivation for using indirect
inference.

The part of the paper that I find the most intriguing is the argument that the
indirect approach leads to sufficient summary statistics, in the sense that they “are
sufficient for the parameters of the auxiliary model and (...) sufficiency carries over
to the model of interest”. Looking at the details in the Appendix, I found that the
argument is lacking, because the likelihood as a functional is shown to be a (sufficient)
statistic, which seems both a tautology and irrelevant because this is different from
the likelihood considered at the (auxiliary) MLE, which is the summary statistic used
in fine.

“...we expand the square root of an innovation density h in a Hermite expansion and truncate
the infinite polynomial at some integer K which, together with other tuning parameters of the
SNP density, has to be determined through a model selection criterion (such as BIC). Now
we take the leading term of the Hermite expansion to follow a Gaussian GARCH model.” A.
Gleim and C. Pigorsch, 2013

As in Drovandi et al. (2011), the performances of the ABC-I schemes are tested
on a toy example, which is a very basic exponential iid sample with a conjugate
prior and a gamma model as auxiliary. The authors use a standard ABC based on the
first two moments as their benchmark, however they do not calibrate those moments
in the distance and end up with poor performances of ABC (in a setting where
there is a sufficient statistic!). The best choice in this experiment appears as the
solution based on the score, but the variances of the distances are not included in the
comparison tables. The second implementation considered in the paper is a rather
daunting continuous-time non-Gaussian Ornstein-Uhlenbeck stochastic volatility
model à la Barndorff-Nielsen and Shephard (2001). The construction of the semi-
nonparametric (why not semi-parametric?) auxiliary model is quite involved as well,
as illustrated by the quote above. The approach provides an answer, with posterior
ABC-IS distributions on all parameters of the original model, which kindles the
question of the validation of this answer in terms of the original posterior. Handling
simultaneously several approximation processes would help in this regard.

5.5 ABC with Score Functions

Ruli et al. (2013) advocate the use of composite score functions for ABC. While the
paper provides a survey of composite likelihood methods, the core idea of the paper
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is to use the score function (of the composite likelihood) as the summary statistic,

∂ c`(θ ;y)
∂ θ

,

when evaluated at the maximum composite likelihood at the observed data point.
In the specific (but unrealistic) case of an exponential family, an ABC based on the
score is asymptotically (i.e., as the tolerance ε goes to zero) exact. The choice of
the composite likelihood thus induces a natural summary statistics and, as in our
empirical likelihood paper, where we also use the score of a composite likelihood,
the composite likelihoods that are available for computation are usually quite a few,
thus leading to an automated choice of a summary statistic..

An interesting (common) feature in most examples found in this paper is that
comparisons are made between ABC using the (truly) sufficient statistic and ABC
based on the pairwise score function, which essentially relies on the very same
statistics. So the difference, when there is a difference, pertains to the choice of
a different combination of the summary statistics or, somehow equivalently to the
choice of a different distance function. One of the examples starts from our MA(2)
toy-example (Marin et al., 2011). The composite likelihood is then based on the
consecutive triplet marginal densities. As shown in the paper, the composite version
improves to some extent upon the original ABC solution using three autocorrelations.
The overall difficulty with this ABC-cs proposal is that the composite likelihood
need to be constructed afresh for every new problem. It thus requires some expertise
from the user that precludes its implementation by practitionners from other fields,
as was the case for the original ABC algorithm developped by population geneticists
(albeit the original ABC algorithm does require the collection of enough summary
statistics).

A suggestion I would have about a refinement of the proposed method deals with
the distance utilised in the paper, namely the sum of the absolute differences between
the statistics. Indeed, this sum is not scaled at all, neither for regular ABC nor for
composite ABC, while the composite likelihood perspective provides in addition to
the score a natural metric through the matrix A(θ). So I would suggest comparing the
performances of the methods using instead this rescaling since, in my opinion and
in contrast with a remark on page 13, it is relevant in some (many?) settings where
the amount of information brought by the composite model widely varies from one
parameter to the next.

In a related vein, our paper (Martin et al., 2014) offers a new perspective on ABC
based on pseudo-scores. For one thing, it concentrates on the selection of summary
statistics from a more econometrics than usual point of view, defining asymptotic
sufficiency in this context and demonstrated that both asymptotic sufficiency and
Bayes consistency can be achieved when using maximum likelihood estimators of
the parameters of an auxiliary model as summary statistics. In addition, the proximity
to (asymptotic) sufficiency yielded by the MLE is replicated by the score vector.
Using the score instead of the MLE as a summary statistics allows for huge gains in
terms of speed. The method is then applied to a continuous time state space model,
using as auxiliary model an augmented unscented Kalman filter. We also found in
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the various state space models tested therein that the ABC approach based on the
marginal [likelihood] score was performing quite well, including wrt Fearnhead and
Prangle (2012) approach. I strongly support the idea of using such a generic object as
the unscented Kalman filter for state space models, even when it is not a particularly
accurate representation of the true model. Another appealing feature of the paper is
in the connections made with indirect inference.

6 ABC Model Choice

While ABC is a substitute for a proper—possibly MCMC based—Bayesian inference,
and thus pertains to all aspects of Bayesian inference, including testing and model
checking, the special issue of comparing models via ABC is highly delicate and
concentrated most of the criticisms addressed against ABC (Templeton, 2008, 2010).
The implementation of ABC model choice follows by treating the model index m as
an extra parameter with an associated prior, as detailed in the following algorithm:

Algorithm 6 ABC (model choice)
for i = 1 to N do

repeat
Generate m from the prior π(M = m)
Generate θm from the prior πm(θm)
Generate zzz from the model fm(zzz|θm)

until ρ{S(zzz),S(yyy)} ≤ ε

Set m(i) =m and θ (i) = θm

end for
return the values m(i) associated with the k smallest distances

Improvements upon returning raw model indexe frequencies as ABC estimates
have been proposed in Fagundes et al. (2007), via a regression regularisation. In
this approach, indices are processed as categorical variables in a formal multinomial
regression, using for instance logistic regression. Rejection-based approaches as in
Algorithm 6 were introduced in Cornuet et al. (2008), Grelaud et al. (2009) and Toni
et al. (2009), in a Monte Carlo perspective simulating model indices as well as model
parameters. Those versions are widely used by the population genetics community,
as exemplified by Belle et al. (2008), Cornuet et al. (2010), Excoffier et al. (2009),
Ghirotto et al. (2010), Guillemaud et al. (2009), Leuenberger and Wegmann (2010),
Patin et al. (2009), Ramakrishnan and Hadly (2009), Verdu et al. (2009), Wegmann
and Excoffier (2010). As described in the following sections, this adoption may
be premature or over-optimistic, since caution and cross-checking are necessary to
completely validate the output.
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6.1 ABC Model Criticism

Ratmann et al. (2009) is a very original approach to ABC model criticism and thus
indirectly to ABC model choice. It is about the use of the ABC approximation error
ε in an altogether different way, namely as a tool assessing the goodness of fit of a
given model. The fundamental idea is to process ε as an additional parameter of the
model, simulating from a joint posterior distribution

f (θ ,ε|x0) ∝ ξ (ε|x0,θ)×πθ (θ)×πε(ε)

where x0 is the data and ξ (ε|x0,θ) plays the role of the likelihood. (The π’s are
obviously the priors on θ and ε .) In fact, ξ (ε|x0,θ) is the prior predictive density of
ρ(S(x),S(x0)) given θ and x0 when x is distributed from f (x|θ). The authors then
derive an ABC algorithm they call ABCµ to simulate an MCMC chain targeting this
joint distribution, replacing ξ (ε|x0,θ) with a non-parametric kernel approximation.
For each model under comparison, the marginal posterior distribution on the error
ε is then used to assess the fit of the model, the logic of it being that this posterior
should include 0 in a reasonable credible interval. (Contrary to other ABC papers, ε

can be negative and multidimensional in this paper.)
As written above, Ratmann et al. (2009) is a very interesting paper, full of inno-

vations, that should span new directions in the way one perceives ABC. It is also
quite challenging, partly due to the frustrating constraints PNAS imposes on the
organisation (and submission) of papers. The paper thus contains a rather sketchy
main part, a Materials and Methods addendum, and a Supplementary Material file.
Flipping back and forth between those files certainly does not improve reading. I
have never understood why PNAS was is so rigid about a format that does not suit
non-experimental sciences.

Given the wealth of innovations contained in the paper, let me add here that,
while the authors stress they use the data once (a point always uncertain to me), they
also define the above target by using simultaneously a prior distribution on ε and a
conditional distribution on the same ε–that they interpret as the likelihood in (ε,θ ).
The product being most often defined as a density in (ε,θ), it can be simulated from,
but I have trouble seeing this as a regular Bayesian problem, especially because
it seems the prior on ε significantly contributes to the final assessment (but is not
particularly discussed in the paper, except in the §1.10 section).

Another Bayesian conundrum is the fact that both θ and ε are taken to be the
same across models. In a sense, I presume θ can be completely different, but using
the same prior on ε over all models under comparison is more of an issue. Further
and better developped criticisms were published as Robert et al. (2010), along with a
reply by the authors (Ratmann et al., 2010). Let me stress one more time how original
this paper is and deplore a lack of follow-up in the literature for a practical method
that should be implemented on existing ABC softwares.
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6.2 A Clear Lack of Confidence

In Robert et al. (2011), we came to the conclusion, shocking to us, that ABC ap-
proximations to posterior probabilities cannot be uniformly trusted. Approximating
posterior probabilities by an ABC algorithm, ie by using the frequencies of accep-
tances of simulations from those models (assuming the use of a common summary
statistic to define the distance to the observations). Rather obviously (a posteriori!),
we ended up with the limiting behaviour being ruled by a true Bayes factor, except it
is the one based on the distributions of the summary statistics under both models.

At first, this did not sound a particularly novel and fundamental result, since all
ABC approximations rely on the posterior distributions based on those summary
statistics, rather than on the whole dataset. However, while this approximation only
has consequences in terms of the precision of the inference for most inferential
purposes, it induces a dramatic arbitrariness in the Bayes factor. To illustrate this
arbitrariness, consider the case of using a sufficient statistic S(x) for both models.
Then, by the factorisation theorem, the true likelihoods factorise as

`1(θ1|x) = g1(x)p1(θ1|S(x)) and `2(θ2|x) = g2(x)p2(θ2|S(x))

resulting in a true Bayes factor equal to

B12(x) =
g1(x)
g2(x)

BS
12(x)

where the last term is the limiting ABC Bayes factor. Therefore, in the favourable
case of the existence of a sufficient statistic, using only the sufficient statistic induces
a difference in the result that fails to converge with the number of observations
or simulations. On the opposite, it may diverge one way or another as the number
of observations increases. Again, this is in the favourable case of sufficiency. In
the realistic setting of using summary statistics, things deteriorate further! This
practical situation indeed implies a wider loss of information compared with the
exact inferential approach, hence a wider discrepancy between the exact Bayes
factor and the quantity produced by an ABC approximation. It thus appeared to us
as an urgent duty to warn the community about the dangers of this approximation,
especially when considering the rapidly increasing number of applications using ABC
for conducting model choice and hypothesis testing. Furthermore, we unfortunately
did not see at the time an immediate and generic alternative for the approximation of
Bayes factor.

The paper stresses what I consider a fundamental or even foundational distinction
between ABC point (and confidence) estimation and ABC model choice, namely
that the problem was at another level for Bayesian model choice (using posterior
probabilities). When doing point estimation with in-sufficient summary statistics,
the information content is poorer, but unless one uses very degraded summary
statistics, inference is converging. The posterior distribution is still different from
the true posterior in this case but, at least, gathering more observations brings more
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information about the parameter (and convergence when the number of observations
goes to infinity). For model choice, this is not guaranteed if we use summary statistics
that are not inter-model sufficient, as shown by the Poisson and normal examples.
Furthermore, except for very specific cases such as Gibbs random fields (Grelaud
et al., 2009), it is almost always impossible to derive inter-model sufficient statistics,
beyond the raw sample.

Example 10. Another example is described in the introduction of the “sequel” by
Marin et al. (2014), to be discussed below. The setting is one of a comparison between
a normal yyy∼N (θ1,1) model and a double exponential yyy∼L (θ2,1/

√
2) model9

The summary statistics used in the corresponding ABC algorithm are the sample
mean, the sample median and the sample variance. Figure 12 exhibits the absence
of discrimination between the two models, since the posterior probability of the
normal model converges to a central value around 0.5-0.6 when the sample size
grows, irrelevant of the true model behind the simulated datasets! J
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Fig. 12 Comparison of the range of the ABC posterior probability that data is from a normal model
(and not from a Laplace model) with unknown mean θ when the data is made of n = 10,100,1000
observations (left, center, right, resp.) either from a Gaussian (lighter) or Laplace distribution
(darker) and when the ABC summary statistic is made of the empirical mean, median, and variance.
The ABC algorithm generates 104 simulations (5,000 for each model) from the prior θ ∼N (0,4)
and selects the tolerance ε as the 1% distance quantile over those simulations. (Source: Marin et al.
(2014).)

The paper includes a realistic population genetic illustration, where two scenarios
including three populations were compared, two populations having diverged 100
generations ago and the third one resulting of a recent admixture between the first
two populations (scenario 1) or simply diverging from population 1 (scenario 2) at
the same time of 5 generations in the past. In scenario 1, the admixture rate is 0.7
from population 1. Pseudo observed datasets (100) of the same size as in experi-
ment 1 (15 diploid individuals per population, 5 independent microsatellite loci)

9 The double exponential distribution is also called the Laplace distribution, hence the notation
L (θ2,1/

√
2), with mean θ2 and variance one.
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have been generated assuming an effective population size of 1000 and mutation
rates of 0.0005. There are six parameters (provided with the corresponding pri-
ors): admixture rate (U[0.1,0.9]), three effective population sizes (U[200,2000]), the
time of admixture/second divergence (U[1,10]) and the time of the first divergence
(U[50,500]). Although this is rather costly in computing time, the posterior probabil-
ity can nonetheless be estimated by importance sampling, based on 1000 parameter
values and 1000 trees per parameter value, based on the modules of Stephens and
Donnelly (2000). The ABC approximation is obtained from DIYABC (Cornuet et al.,
2008), using a reference sample of two million parameters and 24 summary statistics.
The result of this experiment is shown above, with a clear divergence in the numeri-
cal values despite stability in both approximations. Taking the importance sampling
approximation as the reference value, the error rates in using the ABC approximation
to choose between scenarios 1 and 2 are 14.5% and 12.5% (under scenarios 1 and 2),
respectively. Although a simpler experiment with a single parameter and the same
24 summary statistics shows a reasonable agreement between both approximations,
this result comes an additional support to our warning about a blind use of ABC
for model selection. The corresponding simulation experiment was quite intense, as,
with 50 markers and 100 individuals, the product likelihood suffers from such an
enormous variability that 100,000 particles and 100 trees per locus have trouble to
address (despite a huge computing cost of more than 12 days on a powerful cluster).

A quite related if less pessimistic paper is Didelot et al. (2011), also concerned
with the limiting behaviour for the ratio,

B12(x) =
g1(x)
g2(x)

BS
12(x).

Indeed, the authors reach the opposite conclusion from ours, namely that the problem
can be solved by a sufficiency argument. Their point is that, when comparing models
within exponential families (which is the natural realm for sufficient statistics), it
is always possible to build an encompassing model with a sufficient statistic that
remains sufficient across models. This construction is correct from a mathematical
perspective, as seen for instance in the Poisson versus geometric example we first
mentioned in Grelaud et al. (2009): adding

n

∏
i=1

xi!

to the sum of the observables into a large sufficient statistic produces a ratio g1/g2
that is equal to 1, hence avoids any discrepancy..

Nonetheless, we do not think this encompassing property has a direct impact
on the performances of ABC model choice. In practice, complex models do not
enjoy sufficient statistics (if only because the overwhelming majority of them are
not exponential families, with the notable exception of Gibbs random fields where
the above agreement graph is derived). There is therefore a strict loss of information
in using ABC model choice, due to the call both to insufficient statistics and to
non-zero tolerances. Looking at what happens in the limiting case when one is
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relying on a common sufficient statistic is a formal study that brings light on the
potentially huge discrepancy between the ABC-based Bayes factor and the true Bayes
factor. This is why we consider that finding a solution in this formal case—while a
valuable extension of the Gibbs random fields case—does not directly help towards
the understanding of the discrepancy found in non-exponential complex models.

6.3 Validating Summaries for ABC Model Choice

Our answer to the (well-received) above warning is provided in Marin et al. (2014),
which deals with the evaluation of summary statistics for Bayesian model choice.
Even though the idea of separating the mean behaviour of the statistics under both
model came rather early, establishing a complete theoretical framework that validated
this intuition took quite a while and the assumptions changed a few times around
the summer. The simulations associated with the paper were straightforward in that
(a) the setup had been suggested to us by a referee (Robert et al., 2011): as detailed
in Example 10, they consist in comparing normal and Laplace distributions with
different summary statistics (inc. the median absolute deviation, which is the median
of the absolute deviation from the median, med(|xxx−med(xxx)|)), (b) the theoretical
results told us what to look for, and (c) they did very clearly exhibit the consistency
and inconsistency of the Bayes factor/posterior probability predicted by the theory.
Both boxplots shown on Figures 12 and 13 exhibit this agreement: when using
(empirical) mean, median, and variance to compare normal and Laplace models,
the posterior probabilities do not select the “true” model but instead aggregate near
a fixed value. hence ABC based on those summary statistics is not discriminative.
When using instead the median absolute deviation as summary statistic, the posterior
probabilities concentrate near one or zero depending on whether or not the normal
model is the true model. Hence, this summary statistic is highly discriminant for
the comparison of the two models. From an ABC perspective, this means that using
the median absolute deviation is then satisfactory, as opposed to the above three
statistics.

The above example illustrates very clearly the major result of this paper, namely
that the mean behaviour of the summary statistic S(yyy) under both models under
comparison is fundamental for the convergence of the Bayes factor, i.e. of the
Bayesian model choice based on S(yyy). This result, described in the next section, thus
brings an almost definitive answer to the question raised in Robert et al. (2011) about
the validation of ABC model choice.

The main result in Marin et al. (2014) is that the mean behaviour of the summary
statistic S(yyy) under both models under comparison is fundamental for the convergence
of the Bayes factor, i.e. of the Bayesian model choice based on S(yyy). This work thus
brings an almost definitive answer to the question raised in Robert et al. (2011) about
the validation of ABC model choice.

More precisely, Marin et al. (2014) states that, under some “heavy-duty” Bayesian
asymptotics assumptions, (a) if the “true” mean of the summary statistic can be
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Fig. 13 Comparison of the distributions of the posterior probabilities that the data is from a
normal model (as opposed to a Laplace model) with unknown mean θ when the data is made
of n = 10,100,1000 observations (left, center, right, resp.) either from a Gaussian or Laplace
distribution with mean equal to zero and when the summary statistic in the ABC algorithm is the
median absolute deviation. The ABC algorithm uses a reference table of 104 simulations (5,000 for
each model) from the prior θ ∼N (0,4) and selects the tolerance ε as the 1% distance quantile
over those simulations.

recovered for both models under comparison, then the Bayes factor is of order

O
(

n−(d1–d2)/2
)
,

where di is the intrinsic dimension of the parameters driving the summary statistic
in model i = 1,2, irrespective of which model is true. (Precisely, the dimensions
di are the dimensions of the asymptotic mean of the summary statistic under both
models.) Therefore, the Bayes factor always asymptotically selects the model having
the smallest effective dimension and cannot be consistent. (b) if, instead, the “true”
mean of the summary statistic cannot be represented in the other model, then the
Bayes factor is consistent. This means that, somehow, the best statistics to be used in
an ABC approximation to a Bayes factor are ancillary statistics with different mean
values under both models. Else, the summary statistic must have enough components
to prohibit a parameter under the “wrong” model to meet the “true” mean of the
summary statistic.

One of the referee’s comments on the paper was that maybe Bayes factors were
not appropriate for conducting model choice, thus making the whole derivation
irrelevant. This is a possible perspective but it can be objected that Bayes factors
and posterior probabilities are used in conjunction with ABC in dozens of genetic
papers. Further arguments are provided in the various replies to both of Templeton’s
radical criticisms (Templeton, 2008, 2010). That more empirical and model-based
assessments also are available is quite correct, as demonstrated in the multicriterion
approach of Ratmann et al. (2009). This is simply another approach, not followed by
most geneticists so far.

Another criticism was that the paper is quite theoretical and the mathematical
assumptions required to obtain the convergence theorems are rather overwhelming.
Meaning that in practical cases they cannot truly be checked. However, I think we
can eventually address those concerns for two distinct reasons: first, the paper comes
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as a third step in a series of papers where we first identified a sufficiency property,
then realised that this property was actually quite a rare occurrence, and finally made
a theoretical advance as to when is a summary statistic enough (i.e. “sufficient” in
the standard sense of the term!) to conduct model choice, with a clear answer that the
mean ranges of the summary statistic under each model could not intersect. Second,
my own personal view is that those assumptions needed for convergence are not of the
highest importance for statistical practice (even though they are needed in the paper!)
and thus that, from a methodological point of view, only the conclusion should be
taken into account. It is then rather straightforward to come up with (quick-and-dirty)
simulation devices to check whether a summary statistic behaves differently under
both models, taking advantage of the reference table already available (instead of
having to run Monte Carlo experiments with ABC basis). The final version of the
paper (Marin et al., 2014) includes a χ2 check about the relevance of a given summary
statistics.

At last, we could not answer in depth a query about the different speeds of con-
vergence of the posterior probabilities under the Gaussian and Laplace distributions.
This was a most interesting question in that the marginal likelihoods do indeed seem
to converge at different speeds. However, the only precise information we can derive
from our result (Theorem 1) is when the Bayes factor is not consistent. Otherwise,
we only have a lower bound on its speed of convergence (under the correct model).
Getting precise speeds in this case sounds beyond our reach...

6.4 Sufficient and Insufficient Statistics

Barnes et al. (2012) also consider the selection of sufficient statistics towards ABC
model choice. It builds on our earlier warning (Robert et al., 2011) about (unfounded)
ABC model selection to propose a selection of summary statistics that partly alle-
viates the original problem. (The part about the discrepancy with the true posterior
probability remains to be addressed. As does the issue of whether or not the selected
collection of statistics provides a convergent model choice inference, solved in Marin
et al. (2014).) Their section “Resuscitating ABC model choice” states quite clearly
the goal of the paper:

– “this [use of inadequate summary statistics] mirrors problems that can also be
observed in the parameter estimation context,

– for many important, and arguably the most important applications of ABC, this
problem can in principle be avoided by using the whole data rather than summary
statistics,

– in cases where summary statistics are required, we argue that we can construct
approximately sufficient statistics in a disciplined manner,

– when all else fails, a change in perspective, allows us to nevertheless make use of
the flexibility of the ABC framework.”
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The driving idea in the paper is to use an entropy approximation to measure the
lack of information due to the use of a given set of summary statistics. The corre-
sponding algorithm then proceeds from a starting pool of summary statistics to build
sequentially a collection of the most informative summary statistics (which, in a
sense, reminded me of a variable selection procedure based on Kullback-Leibler, we
developed with Costas Goutis and Jérôme Dupuis). It is a very interesting advance
in the issue of ABC model selection, even though it cannot eliminate all stumbling
blocks. The interpretation that ABC should be processed as an inferential method on
its own rather than an approximation to Bayesian inference is clearly appealing.

While the information theoretic motivation is attractive, I do not see [as a
Bayesian?] the point of integrating over the data space (Result 1 and 2) since the
expectation should be only against the parameter and not against the data. If S = S(X)
is sufficient, then almost surely, the posterior given X = x is the same as the posterior
given S(x) = s(x). Checking for the expectation in X of the log divergence between
both posteriors to be zero is unnecessary. So, in the end, this makes me wonder
whether (mutual) information theory is the right approach to the problem... Or rather
to motivate the use of the Kullback-Leibler divergence, as I fully support the use of
this measure of divergence! Also, what is the exact representation used in the paper
for computing the Kullback-Leibler divergence KL and for evaluating the posterior
densities from an ABC output in the log divergence?

Of course, and as clearly stated in the paper, the whole method relies on the
assumption that there is a reference collection of summary statistics that is somehow
sufficient. Which is rather unlikely in most realistic settings (this is noted in the
discussion of Fearnhead and Prangle (2012) as well as in Robert et al. (2011)). So
the term sufficient should not be used as in Figure 3 for instance. Overall, the method
of statistic selection [approximately] provides the subset of the reference collection
with the same information content as the whole collection. So, its main impact is
to exclude irrelevant summary statistics from a given collection. Which is already a
very interesting outcome. What would be even more interesting in my opinion would
be to evaluate the Kullback-Leibler distance to the true posterior.

Figure 1 of the paper compares the ABC outcome when using four different
statistics, empirical mean, empirical variance, minimum and maximum, for a normal
sample with imprecise size and unknown mean. The comment that only the empirical
mean recovers the true posterior is both correct and debatable because the minimum
and maximum observations also contain information about the unknown mean, albeit
at a lower convergence rate. This leads to the issue raised by one referee of our PNAS
paper about the [lack of] worth in distinguishing between estimation and testing.
At a mathematical level, it is correct that a wrong choice of summary statistic (like
the empirical variance above) may provide no information for estimation as well as
testing. At a methodological level, we now agree that different statistics should be
used for testing and for estimation. Minor point: I find it surprising that the tolerance
is the same for all collections of summary statistics. Using a log transform is certainly
not enough to standardise the thing.

The quite interesting conclusion about the population genetic study states that one
model requires more statistics than another one. This is when considering estimation
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separately for each model. From a model choice perspective, this cannot be the case:
all models must involve the same collection of summary statistics for the posterior
probability to be correctly defined. This issue has been puzzling me for years about
ABC: a proper ABC approximation is model dependent however one needs the
“same” statistics to run the comparison.

Stoehr et al. (2014) consider summary statistics for ABC model choice in hidden
Gibbs random fields. The move to a hidden Markov random field means that our
original approach (Grelaud et al., 2009) does not apply: there is no dimension-
reduction sufficient statistics in that case... The authors introduce a small collection
of focussed statistics to discriminate between Potts models. They further define a
novel misclassification, the predictive error rate discussed below. In a simulation
experiment, the paper shows that the predictive error rate decreases quite a lot by
including 2 or 4 geometric summary statistics on top of the no-longer-sufficient
concordance statistics.

“[the ABC posterior probability of index m] uses the data twice: a first one to calibrate the
set of summary statistics, and a second one to compute the ABC posterior.” J. Stoehr et al.,
2014

It took me a while to understand the above quote. If we consider ABC model
choice as we did in our original paper, it only and correctly uses the data once. How-
ever, if we select the vector of summary statistics based on an empirical performance
indicator resulting from the data then indeed the procedure does use the data twice!
Is there a generic way or trick to compensate for that, apart from cross-validation?

6.5 Optimal Choice of Summary Statistics

Prangle et al. (2014) offers another study of the selection of summary statistics for
ABC model choice. The crux of the analysis is that the Bayes factor is a good type
of summary when comparing two models, this result extending to more model by
considering instead the vector of evidences. As in the initial Read Paper (Fearnhead
and Prangle, 2012), there is no true optimality in using the Bayes factor or vector of
evidences, strictly speaking, besides the fact that the vector of evidences is minimal
sufficient for the marginal models (integrating out the parameters). The implementa-
tion of the principle is similar to this Read Paper setting as well: run a pilot ABC
simulation, estimate the vector of evidences, and re-run the main ABC simulation
using this estimate as the summary statistic. The paper contains a simulation study
using some of our examples (Marin et al., 2011), as well as an application to genetic
bacterial data.

That the Bayes factor was acceptable as a statistic was quite natural in terms of
our consistency result (Marin et al., 2014) as it is converging to 0 and to ∞ depending
from which model the data is generated. The paper is well-written and clear enough
to understand how the method is implemented. It also provides a very fair coverage
of our own paper. However, I do not understand several points. For one thing, given
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that the vector of evidence is the target, I do not see why the vector of Bayes factors
for all pairs is used instead, leading to a rather useless inflation in the dimension of
the summary statistic. Using a single model for the denominator would be enough
(and almost sufficient).

Somehow in connection with the above, the use of the logistic regularisation for
computing the posterior probability (following an idea of Marc Beaumont in the mid
2000’s) is interesting but difficult to quantify. Using a logistic regression based on
the training sample sounds like the natural solution to compute the sufficient statistic,
however the construction of the logistic regression by regular variable selection
techniques means that different transforms of the data are used to compare different
models, an issue that worries me (see again below). Obviously, the overall criticism
on the Read Paper, namely that the quality of the outcome ultimately depends on the
choice of the first batch of statistics, still applies: too many statistics and there is no
reason to believe in the quality of the ABC, too few statistics and there is no reason
to trust the predictive power of the logistic regression.

The authors also introduce a different version of the algorithm where they select a
subregion of the parameter space(s) during the pilot run and replace the prior with
the prior restricted to that region during the main run. The paper claims significant
improvements brought by this additional stage, but it makes me somewhat uneasy:
For one thing, it uses the data twice, with a risk of over-concentration. For another, I
do not see how the restricted region could be constructed, esp. in large dimensions
(an issue I had when using HPD regions for harmonic mean estimators), apart from
the maybe inefficient hypercube. For yet another (maybe connected with the first
thing!), a difference between models is induced by this pilot run restriction, which
amounts to changing the prior weights of the models under comparison.

A side remark in the conclusion suggests using different vectors of statistics in
a pairwise comparison of models. While I have also been tempted by this solution,
because it produces a huge reduction in dimension, I wonder at its validation, as it
amounts to comparing models based on different (transforms of) observations, so the
evidences are not commensurable. I however agree with the authors that using a set
of summary statistics to run ABC model comparisons and another one to run ABC
estimation for a given model sounds like a natural approach, as it fights the curse of
dimensionality.

6.6 Towards Estimating Posterior Probabilities

Stoehr et al. (2014) attack the recurrent problem of selecting summary statistics
for ABC in a hidden Markov random field, where is no fixed dimension sufficient
statistics. The paper provides a very broad overview of the issues and difficulties
related with ABC model choice, which has been the focus of some advanced research
only for a few years. Most interestingly, the authors define a novel, local, and
somewhat Bayesian misclassification rate, an error that is conditional on the observed
value and derived from the ABC reference table. It is the posterior predictive error
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rate
PABC(m̂(yobs) 6= m|S(yobs))

integrating in both the model index m and the corresponding random variable Y
(and the hidden intermediary parameter) given the observation. Or rather given the
transform of the observation by the summary statistic S. The authors even go further
to define the error rate of a classification rule based on a first (collection of) statistic,
conditional on a second (collection of) statistic (see Definition 1). A notion rather
delicate to validate on a fully Bayesian basis. And they advocate the substitution
of the unreliable (estimates of the) posterior probabilities by this local error rate,
estimated by traditional non-parametric kernel methods. Methods that are calibrated
by cross-validation. Given a reference summary statistic, this perspective leads (at
least in theory) to select the optimal summary statistic as the one leading to the
minimal local error rate. Besides its application to hidden Markov random fields,
which is of interest per se, this paper thus opens a new vista on calibrating ABC
methods and evaluating their true performances conditional on the actual data. The
advocated abandonment of the estimation of all posterior probabilities could almost
justify the denomination of a paradigm shift. This is also the approach advocated in
Pudlo et al. (2014).

However, the above posterior predictive error rate is the conditional expected value
of a misclassification loss when conditioning on the data (or more precisely some
summaries of the data) being what it is. Hence, when integrating this conditional
error over the marginal distribution of the summaries of the data, we recover the
misclassification error integrated over the whole prior space. This quantity differs
from the posterior (predictive) error rate computed in an initial version of Pudlo
et al. (2014), which involves an expectation over the predictive distribution given the
observed data and thus, a second integral over the data space. As a consequence, the
conditional error rates of Stoehr et al. (2014) is on the same ground as the posterior
probabilities.

Pudlo et al. (2014) offers the central arguments that (a) using random forests is
a good tool for choosing the most appropriate model, (b) evaluating the posterior
misclassification error is available via standard ABC arguments, and (c) estimating
the posterior probability of the selected model is possible via further random forests.
The call to the machine-learning tool of a random forest (Breiman, 2001), traditionally
used in classification, may sound at first at odds with a Bayesian approach, but it
becomes completely justified once one sets the learning set as generated from the
prior predictive distribution. A random forest is then a randomised version of a
non-parametric predictor of the model index given the data. Note that Pham et al.
(2014) also use random forests for ABC parameter estimation.

Let us briefly recall that a random forest aggregates classification trees, CART,
(Breiman et al., 1984) by introducing for each tree a randomisation step represented
in Algorithm 7 and consisting in bootstrapping the original sample and subsampling
the summary statistics at each node of the tree. A CART is a binary classification tree
that partitions the covariate space towards a prediction of the class index. Each node
of this tree consists in a rule of the form S j < t j, where S j is one of the covariates
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and t j is chosen towards minimising an heterogeneity index (Hastie et al., 2009). In
ABC model choice, a CART tree is calibrated from the reference table and it returns
a model index for the observed summary statistic sobs, following a path according to
these binary rules.

Algorithm 7 Randomised CART
start the tree with a single root
repeat

pick a non-homogeneous tip v such that Q(v) 6= 1
attach to v two daughter nodes v1 and v2
draw a random subset of covariates of size ntry
for all covariates X j in the random subset do

find the threshold t j in the rule S j < t j that minimises N(v1)Q(v1)+N(v2)Q(v2)
end for
find the rule S j < t j that minimises N(v1)Q(v1)+N(v2)Q(v2) in j and set this best rule
to node v

until all tips v are homogeneous (Q(v) = 0)
set the labels of all tips

Reproduced with permission of the authors from Pudlo et al. (2014).

Pudlo et al. (2014) then selects the most likely model among a collection of
models, based on a random forest classifier made of several hundreds CARTs as
illustrated below, as a majority vote decision, i.e., the most fequently allocated model
among the trees.

Algorithm 8 RF for classification
for b = 1 to B do

draw a bootstrap sub-sample Z∗ of size Nboot from the training data
grow a tree Tb trained on Z∗ with Algorithm 7

end for
output the ensemble of trees {Tb,b = 1 . . .B}

Reproduced with permission of the authors from Pudlo et al. (2014).

A first approach envisioned random forests as a mere filter applied to a large set of
summary statistics in order to produce a relevant subset of significant statistics, with
the additional appeal of an associated distance between datasets induced by the forest
itself. However, we later realised that (a) further ABC steps were counterproductive,
once the model was selected by the random forest; (b) including more summary
statistics was always beneficial to the performances of the forest; and (c) the connec-
tions between (i) the true posterior probability of a model, (ii) the ABC version of this
probability, (iii) the random forest frequency approximating the above, were at best
very loose. While the random forest approach offers the advantage of incorporating
all available summary statistics and not imposing a preliminary selection among
those, it obviously weights the most discriminating ones more heavily. For instance,
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in Pudlo et al. (2014), the linear discriminant analysis (LDA) components are among
the most often used. Experimentts in Pudlo et al. (2014) show that the frequencies of
the various models produced by Algorithm 6 are however not directly related with
their posterior probabilities.

Exploiting the approach of Stoehr et al. (2014), Pudlo et al. (2014) still managed
to produce a reliable estimate of those. Indeed, the posterior expected error associated
with the 0–1 loss (Robert, 2001)

I(m̂(sobs) 6=m) (2)

where m̂(sobs) is the model selection procedure, can be shown to satisfy (Pudlo et al.,
2014)

E[I(m̂(sobs) 6=m)|sobs] = 1−P[m= m̂(sobs)|sobs] .

This expected loss is thus the complement to the posterior probability that the true
model is the MAP. While it is not directly available, it can be estimated from the
reference table as a regression of m or more exactly I(m̂(s) 6=m) over sobs. A natural
solution in this context is to use another random forest, producing a function ρ(s)
that estimates P[m 6= m̂(s)|s] and to apply this function to the actual observations to
deduce 1−ρ(sobs) as an estimate of P[m= m̂(sobs)|sobs].

7 Conclusion

This survey reflects upon the diversity and the many directions of progress in the field
of ABC research. The overall take-home message is that the on-going research in this
area has led both to consider ABC as part of the statistical toolbox and to envision
different approaches to statistical modelling, where a complete representation of the
whole world is no always feasible. Following the evolution of ABC in the past fifteen
years we have thus moved from constructing approximate methods to accepting
working with approximate models, a positive move in my opinion. This document
being based on blog posts written when the initial version of the paper, they may
appear overcritical of papers later smoothed into journal articles. I am thus welcoming
any reply or discussion to be included in later versions of the survey.
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