Selective inference and inferactive data analysis

J. Taylor

September 3-6, 2017

Outline

Talk I

Talk II

\[ \newcommand{\sqbinom}[2]{\begin{bmatrix} #1 \\ #2 \end{bmatrix}} \newcommand{\Ee}{\mathbb{E}} \newcommand{\Pp}{\mathbb{P}} \newcommand{\real}{\mathbb{R}} \newcommand{\hauss}{{\cal H}} \newcommand{\lips}{{\cal L}} \newcommand{\mink}{{\cal M}} \newcommand{\data}{{\cal D}} \]

Selective inference

Critical points and statistics

Selective inference

LASSO revisited

Selective inference

LASSO revisited

Selective inference

LASSO revisited

Selective inference

LASSO revisited

## 
## Call:
## lm(formula = Y ~ ., data = data.frame(Y, Xselect))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9654 -0.3327 -0.0651  0.2653  4.9333 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.252e-12  2.497e-02   0.000 1.000000    
## P62V         4.465e-02  2.999e-02   1.489 0.136994    
## P65R         2.837e-01  2.612e-02  10.860  < 2e-16 ***
## P67N         1.423e-01  2.884e-02   4.935 1.03e-06 ***
## P69i         1.649e-01  2.691e-02   6.126 1.61e-09 ***
## P75I         2.770e-02  3.955e-02   0.700 0.483889    
## P77L         4.774e-02  4.327e-02   1.103 0.270371    
## P83K        -7.475e-02  2.551e-02  -2.930 0.003513 ** 
## P90I         1.038e-01  2.536e-02   4.094 4.81e-05 ***
## P115F        6.754e-02  2.729e-02   2.475 0.013593 *  
## P151M        9.424e-02  3.541e-02   2.661 0.007992 ** 
## P181C        9.691e-02  2.623e-02   3.694 0.000240 ***
## P184V        2.218e+00  2.610e-02  84.973  < 2e-16 ***
## P190A        4.797e-02  2.582e-02   1.858 0.063696 .  
## P215F        1.152e-01  2.896e-02   3.976 7.83e-05 ***
## P215Y        1.748e-01  2.992e-02   5.845 8.24e-09 ***
## P219R        8.512e-02  2.569e-02   3.313 0.000976 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6281 on 616 degrees of freedom
## Multiple R-squared:  0.9313, Adjusted R-squared:  0.9296 
## F-statistic: 522.2 on 16 and 616 DF,  p-value: < 2.2e-16

Selective inference

LASSO revisited

Selective inference

Selective model

Selective inference

Parameters of interest

Selective inference

Nuisance parameters

Selective inference

Truncated Gaussian statistic

Selective inference

Selective inference

Polyhedral lemma

Selective inference

fixedLassoInf(X, Y, beta.hat, 43, intercept=FALSE)
## 
## Call:
## fixedLassoInf(x = X, y = Y, beta = beta.hat, lambda = 43, intercept = FALSE)
## 
## Standard deviation of noise (specified or estimated) sigma = 0.634
## 
## Testing results at lambda = 43.000, with alpha = 0.100
## 
##  Var   Coef Z-score P-value LowConfPt UpConfPt LowTailArea UpTailArea
##   16  0.045   1.476   0.184    -0.045    0.145       0.050      0.050
##   17  0.284  10.761   0.000     0.240    0.336       0.049      0.049
##   19  0.142   4.890   0.000     0.095    0.225       0.049      0.050
##   23  0.165   6.070   0.000     0.114    0.210       0.048      0.049
##   27  0.028   0.694   0.723    -0.434    0.094       0.050      0.049
##   30  0.048   1.093   0.234    -0.108    0.324       0.050      0.050
##   31 -0.075  -2.904   0.025    -0.117   -0.013       0.050      0.049
##   32  0.104   4.057   0.007     0.041    0.146       0.050      0.049
##   41  0.068   2.453   0.083    -0.015    0.119       0.050      0.050
##   54  0.094   2.637   0.040     0.006    0.168       0.049      0.050
##   67  0.097   3.661   0.001     0.056    0.282       0.049      0.050
##   68  2.218  84.205   0.000     2.162    2.262       0.049      0.049
##   69  0.048   1.841   0.845    -0.973    0.053       0.050      0.049
##   81  0.115   3.940   0.008     0.044    0.214       0.050      0.049
##   82  0.175   5.792   0.000     0.124    0.225       0.048      0.050
##   87  0.085   3.283   0.049     0.000    0.139       0.050      0.049
## 
## Note: coefficients shown are partial regression coefficients

Selective inference

Why does plug-in fail?

Selective inference

Why does plug-in fail?

Selective inference

Why does plug-in fail?

Selective inference

Why does plug-in fail?

Selective inference

Why does plug-in fail?

Selective inference

A selected model

Selective inference

A selected model

Selective inference

The problem with truncation

Selective inference

Data selected model

Selective inference

Asymptotics

Selective inference

Consistency

Weak convergence

Selective inference

Selective likelihood ratio

Selective inference

Linear decomposition

Selective inference

Linear decomposition

Selective inference

Randomization

Selective inference

Randomized LASSO

Selective inference

Randomized LASSO

Selective inference

Randomized LASSO

Selective inference

Randomized LASSO

Selective sampler

General case arxiv.org/1609.05609

Selective sampler

Reconstruction

Selective sampler

Selective likelihood ratio

Selective sampler

Density of MLE

Selective sampler

Differences with MLE

Selective sampler

Forward stepwise

Selective sampler

Group LASSO

Selective sampler

Putting things together

Inferactive data analysis

A (typical?) data scientist’s workflow…

Inferactive data analysis

What are we trying to do?

Inferactive data analysis

What are we trying to do?

Data scientist might ask a second question…

Inferactive data analysis

What are we trying to do?

Data scientist might collect some fresh data…

Inferactive data analysis

What are we trying to do?

Inferactive data analysis

What can we do?

Inferactive data analysis

What can we do?

Inferactive data analysis

What can we do?

Inferactive data analysis

What can we do?

Inferactive data analysis

What can we do?

Inferactive data analysis

What can we not do?

Inferactive data analysis

Multiple queries

Query 2 is allowed to depend on the outcome of query 1.

Inferactive data analysis

Multiple queries

Inferactive data analysis

Multiple queries

Inferactive data analysis

Linear decomposition

Inferactive data analysis

Linear decomposition

Inferactive data analysis

Linear decomposition (Markovic and T. (2016))

Inferactive data analysis

Final model

Selective CLT

Final model