Kinematic and Kac-Rice formulae

J. Taylor

September 3-6, 2017

Outline

\[ \newcommand{\sqbinom}[2]{\begin{bmatrix} #1 \\ #2 \end{bmatrix}} \newcommand{\Ee}{\mathbb{E}} \newcommand{\Pp}{\mathbb{P}} \newcommand{\real}{\mathbb{R}} \newcommand{\hauss}{{\cal H}} \newcommand{\lips}{{\cal L}} \newcommand{\mink}{{\cal M}} \]

Talk I

Talk II

Kinematic Formulae

Tube formulae

Kinematic Formulae

\[ \hauss_3\left( \text{Tube}([0,a] \times [0,b] \times [0,c],r)\right) = abc + 2r \cdot ( ab+bc+ac) + (\pi r^2) \cdot (a+b+c) + \frac{4\pi r^3}{3} \]

Kinematic Formulae

Kinematic Fundamental Formula

Integral geometry

Kinematic Fundamental Formula

Kinematic Formulae

Relation to expected EC

Kinematic Formulae

Pushing the analogy further

Kinematic Formulae

\(D\) the rejection region of an \(F\) or \(t\) test

Kinematic Formulae

Inverse image \(f^{-1}D\)

Kinematic Formulae

Gaussian Kinematic Formula

Kinematic Formulae

Gaussian Kinematic Formula

Kinematic Formulae

Why?

Finite Karhunen-Loeve

Kinematic Formulae

Poincare’s limit (Diaconis and Freedman (1982))

Kinematic Formulae

Metric induced by \(f\)

Kinematic Formulae

How?

Limit of KFF

Kinematic Formulae

How?

Kac-Rice formula

Volume of tubes

Metric projection

Volume of tubes

Volume of tubes

KKT conditions

Volume of tubes

KKT conditions

Volume of tubes

Change of measure

Volume of tubes

Volume of tubes

Steiner-Weyl formula

Volume of tubes

Intrinsic nature

Volume of tubes

Gaussian Minkowski functionals

Volume of tubes

Change of measure

Conditional law

Volume of tubes

Application to LASSO

Kac-Rice formula

Critical points for non-convex functions

Kac-Rice formula

Kac-Rice formula

Kac-Rice formula

\[ \begin{aligned} \Ee \left({\cal H}_0(\text{Crit}(f))\right) = \int_M \Ee\left(|\det(\nabla^2 f(x))| \bigl \vert \nabla f(x)=0 \right) \; p_{\nabla f(x)}(0) \; dx \end{aligned} \]

Kac-Rice formula

Kac-Rice formula

Expected Euler characteristic

Kac-Rice formula

Expected Euler characteristic

Kac-Rice formula

Metric projection

Kac-Rice formula

Comparison to local maxima

\[ \begin{aligned} \left|\Ee \left(\chi(M \cap f^{-1}[u,+\infty))\right) - \Ee\left(\text{local maxima of $f$ above $u$}\right)\right| &\leq \int_M \Ee(|\det(-\nabla^2 f(x))| 1_{\{- \nabla f^2 \ngeq 0\}} \bigl \vert \nabla f(x)=0) \; p_{\nabla f(x)}(0) \; dx \\ & \overset{u \to \infty}{\lessapprox} e^{-\alpha u^2/2} \end{aligned} \] for some \(\alpha > 1\).

Kac-Rice formula

Characterizing the global maximizer

Kac-Rice formula

Characterizing the global maximizer

Kac-Rice formula

Accuracy of EC

Slepian models

Metric projection

Slepian models

Slepian models

General processes

Slepian models

Slepian process

Summary