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Emulators, Surrogate functions, Metamodels

Common to approximate “expensive” functions from few values.

Expense computational or real (e.g., experiment).

• Kriging

• Multivariate Adaptive Regression Splines (MARS)

• Projection Pursuit Regression

• Polynomial Chaos Expansions

• Gaussian process models (GP)

• Neural networks

• etc.
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Noiseless non-parametric function estimation

• True f infinite-dimensional, on possibly high-dimensional
domain.

• Observe only n samples from f .

• Estimating f is grossly underdetermined problem.

• Usual context is scientific problem involving values of f
where it was not observed.
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Common context

Part of larger problem in uncertainty quantification (UQ):

• Real-world phenomenon

• Physics description of phenomenon

• Theoretical simplification/approximation of the physics

• Numerical solution of the approximation f

• Emulation of the numerical solution of the approximation f̂

• Calibration to noisy data

• “Inference”
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HEB Models
High dimensional domain, Expensive, Black-box.

• Climate models (Covey et al., 2011: 21–28-dimensional
domain 1154 simulations, Kriging and MARS)

• Car crashes (Aspenberg et al., 2012: 15-dimensional
domain; 55 simulations; polynomial response surfaces and
neural networks).

• Chemical reactions (Holena et al., 2011: 20–30-dimensional
domain, boosted surrogate models; Shorter et al., 1999:
46-dimensional domain)

• Aircraft design (Srivastava et al., 2004: 25-dimensional
domain, 500 simulations, response surfaces and Kriging;
Koch et al., 1999: 22-dimensional domain, minutes per run,
response surfaces and Kriging; Booker et al., 1999:
31-dimensional domain, minutes to days per run, Kriging).

• Electric circuits (Bates et al., 1996: 60-dimensional
domain; 216 simulations; Kriging).
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How accurate are emulators?

• High-consequence decisions are made on the basis of
emulators.

• How accurate are they in practice?

• How can the accuracy be estimated reliably, measured or
bounded?

• How many training data are needed to ensure that an
emulator is accurate?
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Common strategies

• For Bayesian emulators, common to use the posterior
distribution to measure uncertainty (Tebaldi & Smith,
2005)

• Also common to measure error using observations not used
to train the emulator (Fang et al., 2006)

• Required conditions generally cannot be verified or known
to be false.

• Posterior depends on prior and likelihood, but inputs are
generally fixed parameters, not random.

• Validation on hold-out observations relevant if the error at
the held-out observations is representative of the error
everywhere. Observations not usually IID; values of f not
IID.
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Constraints are key

• Without constraints on f , no reliable way to extrapolate to
values of f at unobserved inputs: completely indeterminate.

• Need f to have some kind of regularity; does not typically
come from the problem.

• Uncertainty estimates are driven by assumptions about f .

• Stronger assumptions → smaller uncertainties.

• What do the data justify?

• How can we avoid foolhardy optimism?
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Lipschitz bound

Use absolute condition number aka Lipschitz constant:

Given a metric d on dom(g), best Lipschitz constant K for g is

K (g) ≡ sup

{
g(v)− g(w)

d(v ,w)
: v ,w ∈ dom(g) and v 6= w

}
. (1)

If f /∈ C[0, 1]p, then K (f ) ≡ ∞.
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What’s the problem?

• If we knew f , we could emulate it perfectly—by f .

• Require emulator f̂ ito be computable from the
observations, without relying on any other information
about f .

• If we knew that the Lipschitz constant of f is K , could
guarantee of some level of accuracy.

• All else equal, the larger K is, the more difficult it is to
guarantee that an approximation of f is accurate.
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What do we know about K?

Observations f |X impose a lower bound on K (but no upper
bound).

∃ f̂ , computable from the data f |X , guaranteed to be accurate
throughout the domain of f —no matter what f is—provided f
agrees with the observations f |X and has a Lipschitz constant
not greater than the observed lower bound on K?
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Minimax formulation: Information-Based Complexity

• potential error: minimax error of emulators over the set F
of functions that agree with data & have Lipschitz constant
no greater than the lower bound, as function over dom(f )

• maximum potential error: supremum of potential error
over dom(f )

• For known K , finding potential error is standard problem
in information-based complexity.

• K is unknown since f is only partially observed. We bound
potential error using a lower bound for K computed from
data.



Emulators Notation Data bounds CAM1 Lower Bounds CAM2 Extensions Conclusions

Sketch of results

• Lower bound on number of additional observations possibly
necessary to “learn” f w/i ε.

• Application to Community Atmosphere Model: n required
could be astronomical.

• Two lower bounds on the maximum potential error for
approximating f from a fixed set of observations:
empirical, and as a fraction of the unknown K .

• Conditions under which a constant emulator has smaller
maximum potential error than best emulator trained on
the actual observations. Conditions hold for the CAM
simulations.

• Use sampling to estimate quantiles and mean of the
potential error across the domain. For CAM, moderate
quantiles are a large fraction of maximum.
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Notation and problem formulation

f : fixed unknown real-valued function on [0, 1]p

C[0, 1]p: real-valued continuous functions on [0, 1]p

dom(g): domain of function g
g |D : restriction of g to D ⊂ dom(g)
f |X : data, observations of f on X
f̂ : emulator based on f |X , but no other information about f
‖h‖∞ ≡ supw∈dom(h) |h(w)|
d : a metric on dom(g)
K (g): best Lipschitz constant for f
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Fκ(g) ≡ {h ∈ C[0, 1]p : K (h) ≤ κ and h|dom(g) = g}.

F∞(f |X ) is the space of functions in C[0, 1]p that fit the data.

potential error of f̂ ∈ C[0, 1]p over the set of functions F :

E(w ; f̂ ,F) ≡ sup
{
|f̂ (w)− g(w)| : g ∈ F

}
.

maximum potential error of f̂ ∈ C[0, 1]p over the set of functions
F :

E(f̂ ,F) ≡ sup
w∈[0,1]p

E(w ; f̂ ,F) =
{
‖f̂ − g‖∞ : g ∈ F

}
.
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Maximum potential error

• Example of worst-case error in IBC.

• The uncertainty f̂ is E(f̂ ,F∞(f |X ).

• Presumes f ∈ C[0, 1]p.

• If f /∈ C[0, 1]p, f̂ could differ from f by more.

• We lower-bound uncertainty of the best possible emulator
of f , under optimistic assumptions about the regularity of
f .

• maximum potential error is infinite unless f has more
regularity than continuity.
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Let K ≡ K (f ) and K̂ ≡ K (f |X ). Because X ⊂ [0, 1]p, K̂ ≤ K .

f

Dotted line is tangent to f where f attains its Lipschitz
constant: slope K . The dashed line is the steepest line that
intersects any pair of observations: slope K̂ ≤ K .
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More notation

Fκ ≡ Fκ(f |X )

and
Eκ(f̂ ) ≡ E(f̂ ,Fκ).

radius of F ⊂ C[0, 1]p is

r(F) ≡ 1

2
sup {‖g − h‖∞ : g , h ∈ F} .
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Eκ(f̂ ) ≥ r(Fκ). (2)

Equality holds for the emulator that “splits the difference”:

f ?κ (w) ≡ 1

2

[
inf

g∈Fκ
g(w) + sup

g∈Fκ
g(w)

]

That is, for all emulators f̂ that agree with f on X ,

Eκ(f̂ ) ≥ Eκ(f̂ ∗κ ) ≡ E∗κ :

f ?κ is a minimax (over f ∈ Fκ) for infinity-norm error.
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e−κ

e+κ

f

e−κ

e+κ

f

K̂ = 0; optimal interpolant f ?κ is constant. Left panel: κ = K .
Right panel: κ < K . If κ ≥ K then e−κ ≤ f ≤ e+

κ , and,
equivalently, f ∈ Fκ.
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Define

e+
κ (w) ≡ e+

f ,X ,κ(w) ≡ min
x∈X

[f (x) + κd(x ,w)] ,

e−κ (w) ≡ e−f ,X ,κ(w) ≡ max
x∈X

[f (x)− κd(x ,w)] ,

and

e?κ(w) ≡ e?f ,X ,κ(w) ≡ 1

2

[
e+
f ,X ,κ(w)− e−f ,X ,κ(w)

]
.

e?κ(w) is minimax error at w : smallest (across emulators f̂ )
maximum (across functions g) error at the point w ∈ [0, 1]p is
e?κ(w).
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e−κ

e+κ

f ⋆
κ

e−κ

e+κ

f ⋆
κ

e−κ

e+κ

f ⋆
κ

Black error bars are twice the maximum potential error over
Fκ. The succession of panels shows that as the slope between
observations approaches κ, e?(w) approaches 0 for points w
between observations, and the maximum potential error over Fκ
decreases.
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Bounds on the number of observations

Fix “tolerable error” ε > 0

If
∥∥∥f̂ |A − g |A

∥∥∥
∞
≤ ε, then f̂ ε-approximates g on A. If

A = dom(g), then f̂ ε-approximates g .

If F is a non-empty class of functions with common domain D,
then f̂ ε-approximates F on A ⊂ D if ∀g ∈ F , f̂ ε-approximates
g on A. If A = D, then f̂ ε-approximates F .
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ε-approximates

f̂ ε-approximates F if and only if the maximum potential error
of f̂ on F does not exceed ε.

Since K̂ is the observed variation of f on X , a useful value of ε
would typically be much smaller than K̂ . (Otherwise, we might
just as well take f̂ to be a constant.)
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For fixed ε > 0, and Y ⊂ dom(f ), Y is ε-adequate for f on A if
f ?K ε-approximates FK (f |Y ) on A. If A = dom(f ), then Y is
ε-adequate for f .

B(x , δ): open ball in Rp centered at x with radius δ.

Nf ≡ min{#Y : Y is ε-adequate for f },

where #Y is the cardinality of Y .

The minimum potential computational burden is

M ≡ max{Ng : g ∈ FK}.

Over all experimental designs Y , M is the smallest number of
data to guarantee that maximum error of the best emulator
based on those data is not larger than ε.
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Upper bound on Nf

For each x ∈ X , f ?K ε-approximates FK (f |K ) on (at least)
B(x , ε/K ). Thus, f ?K ε-approximates FK on

⋃
x∈X B(x , ε/K ).

Hence, the cardinality of any Y ⊂ [0, 1]p for which

V ≡
{
B
(
x ,

ε

K

)
: x ∈ Y

}
⊃ [0, 1]p

is an upper bound on Nf .

In `∞, [0, 1]p can be covered by
⌈
K+

2ε

⌉p
balls of radius ε/K+.
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Lower bound on Nf

• Can happen that f ?
K̂
ε-approximates FK on regions of the

domain not contained in ∪x∈XB(x , ε/K ).

• If f varies on X , then for a function g to agree with f at
the observations requires g to vary too.

• Fitting the data“spends” some of g ’s Lipschitz constant:
can’t get as far away from f as it could if fX were constant.

• Can quantify to find lower bounds for M.
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Define γ̄ ≡ arg minγ∈R
∑

x∈X |f (x)− γ|p.

Let X+ ≡ {x ∈ X : f (x) ≥ γ̄} and let X− ≡ {x ∈ X : f (x) < γ̄}.
Let

Q+ ≡
⋃

x∈X+

{
B

(
x ,

f (x)− γ̄
K̂

)⋂
[0, 1]p

}
and

Q− ≡
⋃

x∈X−

{
B

(
x ,
γ̄ − f (x)

K̂

)⋂
[0, 1]p

}
.

Then Q+ ∩ Q− = ∅
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Define

f̄ : [0, 1]p → R

w 7→


e−
K̂

(w), w ∈ Q+

e+

K̂
(w), w ∈ Q−

γ̄, otherwise.
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f̄

γ̄ e−κ

e+κ

γ̄

f̄ (left panel) is comprised of segments of e+

K̂
, e−

K̂
and the

constant γ̄ (right panel). f̄ constant over roughly half of the
domain. No function between e−

K̂
and e+

K̂
(inclusive) is constant

over a larger fraction of the domain.
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Result 1
µ: Lebesgue measure. Q̄ ≡ [0, 1]p \ (Q+ ∪ Q−).

µ(Q̄) ≥ 1−
∑
x∈X

µ
(
B
(
x , |f (x)− γ̄|/K̂

))
.

C2 ≡ πp/2

Γ(p/2+1) and C∞ ≡ 2p. For q ∈ {2,∞},

µ(Q̄) ≥ 1− Cq

∑
x∈X

(
|f (x)− γ̄|/K̂

)p
.

If ∃x ∈ X for which {x} is ε-adequate for f on A ⊂ Q̄, then
µ(A) ≤µ(B(0, ε/K̂ )).

M ≥

⌈
µ(Q̄)

µ(B(0, ε/K̂ ))

⌉
≥

⌈
ε−p

[
K̂p

Cq
−
∑
x∈X
|f (x)− γ̄|p

]⌉
. (3)
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PCMDI

• Program for Climate Model Diagnosis & Intercomparison
(PCMDI) at LLNL: 1154 climate simulations using the
Community Atmosphere Model (CAM).

• p = 21 parameters scaled so that [0, 1] has all plausible
values.

• f is global average upwelling longwave flux (FLUT)
approximately 50 years in the future.

• Each run took several days on a supercomputer.

• PCDMI used several approaches to choose X ⊂ [0, 1]p:
Latin hypercube, one-at-a-time, and random-walk
multiple-one-at-a-time.

• 1154 simulations total.
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γ̄ = 232.77; K̂ = 14.20 for q = 2:

M ≥
⌈
ε−21

[
1.57× 1024

0.0038
− 6.81× 1024

]⌉
> ε−21 × 1026.

If ε is 1% of K̂ , then M ≥ 1043.

Even if ε is 50% of K̂ , M > 108. For q =∞, K̂ = 34.68; in that
case

M ≥
⌈
ε−21

[
2.19× 1032

221
− 6.81× 1025

]⌉
> ε−21 × 1025.
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Lower bounds on maximum potential error

• Two lower bounds on the maximum potential error E∗K for
fixed X : absolute, and as a fraction of unknown K .

• Bound as fraction of K shows that when a
statistic—calculable from the observations—exceeds a
calculable threshold, the maximum potential error is no
less than the maximum potential error from one
observation at the centroid.

• Observing f for all x ∈ X was wasteful: one observation
would have been better.

• For LLNL CAM runs, both bounds are large.
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Result 2

Theorem

EK (f̂ ) ≥ sup e?
K̂
.

sup e?
K̂

, a statistic calculable from data f |X , is a lower bound on

the maximum potential error for any emulator f̂ based on the
observations f |X .
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Result 3: Scaling Lemma

Lemma

For any λ, if sup e?
K̂
≥ λK̂ , then EK (f̂ ) ≥ λK .
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Maximum potential error from 1 observation

Work in `∞: d(v ,w) = ‖v − w‖∞.

z ≡ (1/2, . . . , 1/2), the centroid of [0, 1]p.

ĝ ∈ F∞(f |{z}) is constant function ĝ(w) ≡ f (z), ∀w ∈ [0, 1]p.

`∞ distance from z to any boundary point of [0, 1]p is 1/2, so

EK (ĝ ,FK (f |{z})) =
K

2
.
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Result 4

Let W ⊂ [0, 1]p be finite and c ∈ R. Suppose f |W = c . Let
ĥ ∈ F∞(f |W ). By examining the corners of the domain, it
follows that if |W | < 2p,

EK (ĥ,FK (f |W )) ≥ K

2
.

If f is constant on W , any emulator based on fewer than 2p

observations of f will have at least K/2 maximum potential
error.

Making 2p observations of f is intractable for CAM and many
other applications.
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Result 5

Theorem

If sup e?
K̂
≥ K̂/2, then

EK (f̂ ) = EK (f̂ ,FK (f |X )) ≥ K

2
≥ EK (ĝ ,FK (f |{z})).

If sup e?
K̂
≥ K̂/2, no f̂ based on f |X has smaller maximum

potential error than the constant emulator based on one
observation.
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CAM: Upper bound from non-adjacent corners in `∞.

Theorem

sup e?
K̂
≤ 1

2

{
min
x∈X

[
f (x) + K̂ d̃(x)

]
−max

x∈X

[
f (x)− K̂ d̃(x)

]}
.

sup e?
K̂
≤ 20.95 for the CAM dataset.
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CAM: Lower bounds from corners in `∞.

Clearly

sup e?
K̂
≥ max

{
e?
K̂

(w) : ∀w ∈ {0, 1}p
}
.

Essentially sharp for the CAM dataset.

Divide [0, 1]p into 2p hypercubes {Ri}2p
i=1 with edge-length 1/2,

disjoint interiors, each containing a different corner of [0, 1]p

Because X contains only 1154 points, most Ri do not contain
any x ∈ X .
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The bounds are tight for CAM

For the CAM dataset, one corner rj attains e?
K̂

(rj) = 20.95.

So, e?
K̂

attains the upper bound established in the previous
section, and sup e?

K̂
= 20.95.
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Implications for CAM

Because sup e?
K̂

= 20.95 ≥ 17.34 = K̂/2, EK (f̂ ) ≥ K/2 for any

interpolation f̂ .

Maximum potential error would have been no greater had we
just observed f once, at z , and predicted f̂ (w) = f (z) for all
w ∈ [0, 1]p.



Emulators Notation Data bounds CAM1 Lower Bounds CAM2 Extensions Conclusions

Extensions

• Looked at maximum uncertainty over all w ∈ [0, 1]p.

• Important in some applications; in others, maybe less
interesting than the fraction of [0, 1]p where uncertainty is
large.

• Can estimate the fraction of [0, 1]p for which e∗ ≥ ε > 0 by
sampling.

• Draw w ∈ [0, 1]p at random and evaluate e∗ at each
selected point.

• Yields binomial lower confidence bounds for the fraction of
[0, 1]p where uncertainty is large, and confidence bounds
for quantiles of the potential error.
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CAM: bounds on percentiles of error

95% lower confidence bound
norm lower quartile median upper quartile average

Euclidean 1.454 1.596 1.731 1.595
supremum 0.649 0.717 0.782 0.715

Error of minimax emulator f ?
K̂

of CAM model from 1154 LLNL
observations. Column 1: metric d used to define the Lipschitz
constant. Columns 2–4: Binomial lower confidence bounds for
quartiles of the pointwise error. Column 5: 95% lower
confidence bound for the integral of the pointwise error over the
entire domain [0, 1]p. Columns 2–5 are expressed as multiple of
K̂/2. Based on 10,000 random samples.
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Conclusions

• In some problems, every emulator based on any tractable
number of observations of f has large maximum potential
error (and the potential error is large over much of the
domain), even if f is no less regular than it is observed to
be.

• Can find sufficient conditions under which all emulators are
potentially substantially incorrect.

• Conditions depend only on the observed values of f ; can be
computed from the same observations used to train an
emulator, at small incremental cost.

• Conditions are sufficient but not necessary: f could be less
regular than any finite set of observations reveals it to be.

• It is not possible to give necessary conditions that depend
only on the data.

• Conditions seem to hold for problems with large societal
interest.



Emulators Notation Data bounds CAM1 Lower Bounds CAM2 Extensions Conclusions

• Reducing the potential error of emulators in HEB problems
requires either more information about f (knowledge, not
merely assumptions), or changing the measure of
uncertainty—changing the scientific question.

• Both tactics are application-specific: the underlying science
dictates the conditions that actually hold for f and the
senses in which it is useful to approximate f .

• Not clear that emulators help address the most important
questions.

• Approximating f pointwise rarely ultimate goal; most
properties of f are nuisance parameters.

• Important questions about f might be answered more
directly.

• Some research questions cannot be answered through
simulation at present.

• Employing complex emulators and massive computational
is a distraction.
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