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Topics (out of order)
– Why UQ?
– quality of evidence

– “it’s the data, stupid” (and the code, too)
– known unknowns and unknown unknowns
– experimental design
– error models v model errors
– bugs, reproducibility, replicability
– epistemic and aleatory uncertainty

– constraints and priors
– models all the way down

– Freedman’s Rabbit-Hat theorem
– hierarchical priors
– the ludic fallacy

– rates versus probabilities
– theories of probability
– probability as metaphor
– responsible quantification v. quantifauxcation
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– how big is your model space?

– bias/variance tradeoffs
– is the bias bounded?
– regularization for inference vs estimation
– assuming the problem away

– lampposting and hypocognition
– how bad can it be?

– lower bounds on minimax uncertainties for emulators
– uncertainty quantification for the HEP unfolding problem
– curse of dimensionality
– bugs, bugs, bugs
– reproducibility and replicability; verification and validation
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Abstract

UQ tries to appraise and quantify the uncertainty of models of
physical systems calibrated to noisy data (and of predictions
from those models), including contributions from ignorance;
systematic and stochastic measurement error; limitations of
theoretical models; limitations of numerical representations of
those models; limitations of the accuracy and reliability of
computations, approximations, and algorithms; and human
error (including software bugs).
Much UQ research focuses on developing efficient numerical
approximations (emulators) of computationally expensive
numerical models.
In some circles, UQ is nearly synonymous with the study of
emulators and Bayesian models.
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What sources of uncertainty does a UQ analysis take into
account? What does it ignore? How ignorable are the ignored
sources? What assumptions were made? What evidence
supports those assumptions? Are the assumptions testable?
What happens if the assumptions are false?
I will sketch an embedding of UQ within the theory of
statistical estimation and inverse problems.
I will point to a few examples of work that quantifies
uncertainty from systematic measurement error and
discretization error.
Bad examples will be drawn from the 2009 NAS report,
“Evaluation of Quantication of Margins and Uncertainties
Methodology for Assessing and Certifying the Reliability of the
Nuclear Stockpile,” the Climate Prospectus, and probabilistic
seismic hazard analysis (PSHA).
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Why Uncertainty Quantification Matters

Figure: Montparnasse
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Reuters / Japan TSB
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Figure: L’Aquila
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What is UQ?

UQ is typically more specific than just quantifying uncertainty:

UQ = inverse problems + approximate forward model.
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What are inverse problems?

statistics
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What is the effect of an approximate forward

model, discretization, etc.?

additional systematic measurement error
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How can we deal with systematic measurement

error?

statistics
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So,

UQ = statistics
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What makes UQ special?

– the particular sources of systematic error
– poorly understood/characterized measurement error
– poorly understood/characterized properties of the

underlying “model”
– heavy computational burden (in some applications)
– numerical approximations
– reliance on simulation
– big data (in some applications)
– heterogeneous and legacy data (in some applications)
– need for speed (in some applications)
– societal consequences (in some applications)

23



Abstract mumbo-jumbo
How can we embed UQ in the framework of statistics?1

Statistical decision theory.
Ingredients:

– The the state of the world θ. Math object that represents
the physical system.

– Set of possible states of the world Θ. Know a priori that
θ ∈ Θ.

– Observations Y . Sample space of possible observations Y .
– measurement model that relates the probability

distribution of Y to θ. If θ is state of the world, then
Y ∼ Prθ. Incorporates the forward model.

– one or more parameters of interest, λ = λ[θ]
– an estimator λ̂(Y ) of the parameter (might be set-valued)
– a risk function that measures the expected loss from

estimating λ[θ] by λ̂(Y )
1Moreover, does it help?

24



How does UQ fit into this framework?

– What’s Prθ?

– Systematic errors are additional unknown parameters.

– need constraints on them or can’t say much

– Augment θ, Θ to include the systematic errors as
parameters.

– Systematic errors are nuisance parameters: the
distribution of the data depends on them, but they are
not of interest.
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What’s missing?

– Given θ, do we actually know (or can we simulate from)
Prθ?
Do we know the mapping θ → Prθ?
If not, more unknowns to take into account.

– Usefully constrained sets Θ of possible models.
– Ways of quantifying/bounding the systematic error.
– Ways of assessing the stochastic errors.
– Estimators λ̂ for λ[θ] in light of the stochastic and

systematic errors, Θ, θ → Prθ.
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What can we do with the framework?

– Bayes or frequentist analysis?

– Nature of the assumptions.

– Where does the prior come from?
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Back to basics: Data quality

Tendency to gloss over data uncertainties:

– ignore systematic error
– treat all error bars as if they were SDs (or a multiple)
– treat all measurement error as Normal (or Poisson, for

counts)
– treat measurement errors as independent
– ignore data reduction steps, normalization, calibration

background fits, etc.
– treat inverse of final Hessian of nonlinear LS as if it

characterizes the uncertainty.
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Where do the data come from?

Design & processing matter

– random sampling?

– random assignment to treatment or control?

– understood instrumental errors?

– Many steps of reduction and processing from raw
instrumental/experimental/observational data to produce
the numbers that statisticians work with.

– can take place in the instrument or the pipeline
– poorly understood effect on uncertainties/errors
– often based on heuristics
– raw data often not recorded or not retained
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Data quality: It ain’t what we pretend it is

– “n =all”: Boston bump, predictive policing
– Helioseismology. Nominal “statistical” uncertainties

didn’t even account for numerical instability in the data
reduction.

– Post-Enumeration Survey data from the U.S. Census
– online behavior monitoring
– historical nuclear test data used to calibrate numerical

models for “Reliable Replacement Warhead.”

– instruments gone
– people who recorded the data retired
– transformations & data reduction mysterious
– lots of ±10%: What does ±10% mean?
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Can’t get off the ground

How can you know how well the model should fit the data, if
you don’t understand the nature and probable / possible /
plausible size of systematic and stochastic errors in the data?
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Theory and Practice

– In theory, there’s no difference between theory and
practice. But in practice, there is.
–Jan L.A. van de Snepscheut

– The difference between theory and practice is smaller in
theory than it is in practice.
–unknown UQ master
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Bad incentives:

Grappling with Data Quality ain’t Sexy

– Academic statisticians rewarded for proving hard
theorems, doing heroic numerical work (speed or size),
making splashy images that get on the cover of Nature,
being “first.”

– We fall in love with technology, models, technique, tools.

– Digging into data quality, systematic errors, etc., is
crucial, unglamorous, and unrewarded—but crucial.

– Can’t Q U without understanding limitations of the data.
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The society which scorns excellence in plumbing as a humble
activity and tolerates shoddiness in philosophy because it is an
exalted activity will have neither good plumbing nor good
philosophy: neither its pipes nor its theories will hold water.
–John W. Gardner
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What does the analysis tell us?

– If UQ gives neither an upper bound nor a lower bound on
a sensibly defined measure of uncertainty, what have we
learned?

– At the very least, should list what we have and have not
taken into account.
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Examples with uncertain forward models and

discretization error

– Stark (1992) treats a problem in helioseismology in which
the forward model is known only approximately; bounds
the systematic error that introduces and takes it into
account to find confidence sets for a fully
infinite-dimensional model; also gives a general
framework.

– Evans & Stark (2002) give a more general framework.

– Stark (2008) discusses generalizing “resolution” to
nonlinear problems and problems with systematic errors.

– Gagnon-Bartsch & Stark (2012) treat a problem in
gravimetry with discretized domain; bound systematic
error from discretization and take it into account to find
confidence sets for a fully infinite-dimensional model.
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Generic approach: Strict Bounds

– Find sup and inf of parameter λ[θ] of interest over a
confidence set for the model θ, including stochastic and
systematic error included in Prθ.

– Leads to infinite-dimensional optimization problems

– can be exactly reduced to finite-dimensional problems in some
cases

– prior constraints usually essential
– functionals that can be estimated w finite uncertainty are

limited
– convexity and other properties help
– often solvable using Fenchel duality
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The optimization problem

Y = K[θ] + ε

µ ≡ K[θ]

Ξ = Ξ(Y ) satisfies Pr{Ξ 3 µ} ≥ 1− α

∆ ≡ {ν : K[ν] ∈ Ξ}

Then
[ inf
ν∈∆∩Θ

λ[ν], sup
ν∈∆∩Θ

λ[ν]]

is a 1− α confidence interval for λ[θ].
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(Thanks to Mikael Kuusela!)
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Evaluation of Quantification of Margins and
Uncertainties Methodology for Assessing and
Certifying the Reliability of the Nuclear Stockpile
(EQMU)

Committee on the Evaluation of Quantification of Margins and
Uncertainties Methodology for Assessing and Certifying the
Reliability of the Nuclear Stockpile, 2009.
http://www.nap.edu/openbook.php?record id=12531&page=R1
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Fundamental Theorem of Physics

Axiom: Anything that comes up in a physics problem is
physics.

Lemma: Nobody knows more about physics than physicists.2

Theorem: There’s no reason for physicists to talk to anybody
else to solve physics problems.

2Follows from the axiom: Nobody knows more about anything than
physicists.
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Practical consequence

Physicists often re-invent the wheel. It is not always as good
as the wheel a mechanic would build.

Some “unsolved” problems–according to EQMU—are solved.
But not by physicists.

NAS panel included physicists, nuclear engineer, senior
manager, probabilistic risk assessor, and one statistician
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Cream of EQMU (p25)
Assessment of the accuracy of a computational prediction
depends on assessment of model error, which is the difference
between the laws of nature and the mathematical equations
that are used to model them. Comparison against experiment
is the only way to quantify model error and is the only
connection between a simulation and reality. . . .

Even if model error can be quantified for a given set of
experimental measurements, it is difficult to draw justifiable
broad conclusions from the comparison of a finite set of
simulations and measurements. . . . it is not clear how to
estimate the accuracy of a simulated quantity of interest for
an experiment that has not yet been done. . . .

In the end there are inherent limits [which] might arise from
the paucity of underground nuclear data and the circularity of
doing sensitivity studies using the same codes that are to be
improved in ways guided by the sensitivity studies. 43



EQMU example, pp. 9–11, 25–6. Notation

changed
– Device needs voltage VT to detonate.
– Detonator applies VA.
– “Boom” if VA ≥ VT .

VT estimated as V̂T = 100V , with uncertainty UT = 5V .
VA estimated as V̂A = 150V , with uncertainty UA = 10V .

– Margin M = 150V − 100V = 50V .
– Total uncertainty U = UA + UT = 10V + 5V = 15V .
– “Confidence ratio” M/U = 50/15 = 3 1

3
.

Magic ratio M/U = 3. (EQMU, p46)

“If M/U >> 1, the degree of confidence that the system will
perform as expected should be high. If M/U is not
significantly greater than 1, the system needs careful
examination.” (EQMU, p14)
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Scratching the veneer

– Are VA and/or VT random? Or simply unknown?
– Are V̂A and V̂T design parameters? Estimates from data?
– Why should UA and UT add to give total uncertainty U?
– How well are UA and UT known?
– If U is a bound on the possible error, then have complete

confidence if M > U : ratio doesn’t matter.
– If U isn’t a bound, what does U mean?
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EQMU says:

– “Generally [uncertainties] are described by probability
distribution functions, not by a simple band of values.”
(EQMU, p13)

– “An important aspect of [UQ] is to calculate the (output)
probability distribution of a given metric and from that
distribution to estimate the uncertainty of that metric.
The meaning of the confidence ratio (M/U) depends
significantly on this definition . . . ” (EQMU, p15)
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Vision 1: Us are error bars

Suppose VA and VT are independent random variables3 with
known means V̂A and V̂T , respectively. Suppose
Pr{V̂A − VA ≤ UA} = 90% and Pr{VT − V̂T ≤ UT} = 90%.

– What’s Pr{VA − VT ≥ 0}?
Can’t say, but . . .

– Bonferroni’s inequality:

Pr{V̂A − VA ≤ UA and VT − V̂T ≤ UT} ≥ 80%.

– Conservative bound. What’s the right answer?

3Are they random variables? If so, why not dependent?
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Vision 2: Us are (multiples of) SDs
“. . . if one knows the type of distribution, it could be very
helpful to quantify uncertainties in terms of standard
deviations. This approach facilitates meaningful quantitative
statements about the likelihood of successful functioning.”
(EQMU, p27)

– Does one ever know the type of distribution?
– Is the SD known to be finite?
– Can very long tails be ruled out?
– Even if so, that’s not enough: what’s the joint

distribution of VA and VT?
– If VA and VT were independent with means V̂A and V̂T

and SDs UA and UT , the SD of VA − VT would be√
U2
A + U2

T , not UA + UT .

– If they are correlated, SD could be
√
U2

A + U2
T + 2UAUT
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If Us are multiples of SDs, what’s the confidence?
– Suppose U = SD(VA − VT ).

What does M/U = k imply about Pr{VA > VT}?

Chebychev’s inequality:

Pr
{
|VA − VB − (V̂A − V̂B)| ≤ kU

}
≥ 1− 1

k2
.

E.g., k = 3 gives “confidence” 1− 1/9 = 88.9%.

C.f. typical Gaussian assumption: k = 3 gives “confidence”

Pr

{
VA − VB − (V̂A − V̂B)

σ(VA − VT )
≥ 3

}
≈ 99.9%.

88.9% < 99.9% < 100%.
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Vision 3: one of each

From description, makes sense that:

– VT is an unknown parameter
– V̂T is an already-computed estimate of VT from data
– V̂A is a design parameter
– VA is a random variable that will be “realized” when the

button is pushed

If so, makes sense that UT is an “error bar” computed from
data.

Either VT − V̂T ≤ UT or not: no probability left, only
ignorance.

Whether V̂A − VA ≤ UA is still a random event; depends on
what happens when the button is pushed.
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– EQMU is careless about

– what is known
– what is estimated
– what is uncertain
– what is random
– etc.

– The “toy” lead example is problematic.
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Historical error bars

– How to make sense of error bars on historical data?
– Seldom know how the bars were constructed or what they

were intended to represent.

– Variability in repeated experiments?
– Spatial variability (e.g., across-channel variation) within a

single experiment?
– Instrumental limitation or measurement error?
– Hunch? Wish? Prayer? Knee-jerk “it’s 10%?”

– Measuring apparatus can retire, along with institutional
memory.
Can’t repeat experiments.
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Good quote (EQMU, p. 27, fn 5)

“To the extent (which is considerable) that input uncertainties
are epistemic and that probability distribution functions
(PDFs) cannot be applied to them, uncertainties in
output/integral parameters cannot be described by PDFs.”

And then nonsense.

53



Bad quotes (EQMU, p21)

“Given sufficient computational resources, the labs can sample
from input-parameter distributions to create output-quantity
distributions that quantify code sensitivity to input variations.”

“Sampling from the actual high-dimensional input space is not
a solved problem.” ” . . . the machinery does not exist to
propagate [discretization errors] and estimate the uncertainties
that they generate in output quantities.”
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Fallacy (EQMU, p23)

“Analysis shows that 90 percent of the realistic input space
(describing possible values of nature’s constants) maps to
acceptable performance, while 10 percent maps to failure. This
90 percent is a confidence number . . . we have a 90 percent
confidence that all devices will meet requirements and a 10
percent confidence that all will fail to meet requirements.”
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Laplace’s Principle of Insufficient Reason

– If there’s no reason to think possibilities have different
probabilities, assume that the probabilities are equal.

– No evidence of difference 6= evidence of no difference.

– Example: Gas thermodynamics

– Gas of of n non-interacting particles. Each can be in any of r
quantum states; possible values of “state vector” equally
likely.

– Maxwell-Boltzman. State vector gives the quantum state of
each particle: rn possible values.

– Bose-Einstein. State vector gives # particles in each quantum
state:

(
n+r−1

n

)
possible values.

– Fermi-Dirac. State vector gives the number of particles in
each quantum state, but no two particles can be in the same
state:

(
r
n

)
possible values.
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– Maxwell-Boltzman common in probability theory, but but
describes no known gas.

– Bose-Einstein describes bosons, e.g., photons and He4

atoms.

– Fermi-Dirac describes fermions, e.g., electrons and He3

atoms.

Outcomes can be defined or parametrized in many ways.
Not clear which–if any–give equal probabilities.
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Constraints versus prior probabilities

Bayesian machinery is appealing but can be misleading.

– Capturing constraints using priors adds “information” not
present in the constraints.

– Why a particular form?
– Why particular values of the parameters?
– What’s the relation between the “error bars” the prior

represents and specific choices?
– Distributions on states of nature Bayes’ Rule:

Pr(B|A) = Pr(A|B) Pr(B)/Pr(A). “Just math.”
– To have posterior Pr(B|A), need prior Pr(B).
– The prior matters. Where does it come from?
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Conservation of Rabbits

The Rabbit Axioms

1. For the number of rabbits in a closed system to increase,
the system must contain at least two rabbits.

2. No negative rabbits.
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Freedman’s Rabbit-Hat Theorem

You cannot pull a rabbit from a hat unless at least
one rabbit has previously been placed in the hat.
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– The prior puts the rabbit in the hat
– PRA puts many rabbits in the hat
– Hierarchical priors put many rabbits in the hat
– Bayes/minimax duality: minimax uncertainty is Bayes

uncertainty for least favorable prior.4

4Least favorable 6= “uninformative.”
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Bounded normal mean

– Know that θ ∈ [−τ, τ ].
– Observe Y = θ + Z .
– Z ∼ N(0, 1).
– Want to estimate θ.
– Bayes approach: capture constraint using prior, e.g.,
θ ∼ U[−τ, τ ].

– Credible region: 95% posterior probability.

– Frequentist approach: use constraint directly.

– Confidence interval: 95% coverage probability whatever be θ.
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95% Confidence sets vs. credible regions
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Coverage of 95% credible regions
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Expected size of credible regions and confidence

intervals
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Interpreting earthquake predictions (with D.A.

Freedman)

Globally, on the order of 1 magnitude 8 earthquake per year.
Locally, recurrence times for big events O(100 y). Big quakes
deadly and expensive. Much funding and glory in promise of
prediction. Would be nice if prediction worked.

Some stochastic models for seismicity:

– Poisson (spatially heterogeneous; temporally
homogeneous; marked?)

– Gamma renewal processes
– Weibull, lognormal, normal, double exponential, . . .
– ETAS
– Brownian passage time
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Coin Tosses.

What does P(heads) = 1/2 mean?

– Equally likely outcomes: Nature indifferent; principle of
insufficient reason

– Frequency theory: long-term limiting relative frequency
– Subjective theory: strength of belief
– Probability models: property of math model; testable

predictions

Math coins 6= real coins. Weather predictions: look at sets of
assignments. Scoring rules.
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USGS 1999 Forecast

P(M≥6.7 event by 2030) = 0.7± 0.1

– What does this mean?
– Where does the number come from?

Two big stages.
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Stage 1

– Determine regional constraints on aggregate fault
motions from geodetic measurements.

– Map faults and fault segments; identify segments with
slip ≥ 1˜mm/y. Estimate the slip on each fault segment
principally from paleoseismic data, occasionally
augmented by geodetic and other data. Determine (by
expert opinion) for each segment a ‘slip factor,’ the
extent to which long-term slip on the segment is
accommodated aseismically. Represent uncertainty in
fault segment lengths, widths, and slip factors as
independent Gaussian random variables with mean 0.
Draw a set of fault segment dimensions and slip factors at
random from that probability distribution.
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– Identify (by expert opinion) ways segments of each fault
can rupture separately and together. Each combination of
segments is a ‘seismic source.’

– Determine (by expert opinion) extent that long-term fault
slip is accommodated by rupture of each combination of
segments for each fault.

– Choose at random (with probabilities of 0.2, 0.2, and 0.6)
1 of 3 generic relationships between fault area and
moment release to characterize magnitudes of events that
each combination of fault segments supports. Represent
the uncertainty in generic relationship as Gaussian with
zero mean and standard deviation 0.12, independent of
fault area.

– Using the chosen relationship and the assumed probability
distribution for its parameters, determine a mean event
magnitude for each seismic source by Monte Carlo.
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– Combine seismic sources along each fault ‘to honor their
relative likelihood as specified by the expert groups;’
adjust relative frequencies of events on each source so
every fault segment matches its estimated slip rate.
Discard combinations of sources that violate a regional
slip constraint.

– Repeat until 2,000 regional models meet the slip
constraint. Treat the 2,000 models as equally likely for
estimating magnitudes, rates, and uncertainties.
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– Estimate background rate of seismicity:

– Use an (unspecified) Bayesian procedure to categorize
historical events from three catalogs either as associated or
not associated with the seven fault systems.

– Fit generic Gutenberg-Richter magnitude-frequency relation
N(M) = 10a−bM to events deemed not to be associated with
the seven fault systems.

– Model background seismicity as a marked Poisson process.
Extrapolate Poisson model to M ≥ 6.7, which gives a
probability of 0.09 of at least one event.

– Generate 2,000 models; estimate long-term seismicity
rates as a function of magnitude for each seismic source.
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Stage 2:

– Fit 3 stochastic models for earthquake
recurrence—Poisson, Brownian passage time and
“time-predictable”—to long-term seismicity rates
estimated in stage 1.

– Combine stochastic models to estimate chance of a large
earthquake:

– Use Poisson and Brownian passage time models to estimate
the probability an earthquake will rupture each fault segment.

– Some parameters fitted to data; some set more arbitrarily.
– Aperiodicity (standard deviation of recurrence time, divided by

expected recurrence time) set to three different values, 0.3,
0.5, and 0.7.

– Method needs estimated date of last rupture of each segment.
Model redistribution of stress by earthquakes; predictions
made w/ & w/o adjustments for stress redistribution.
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– contd.

– Predictions for segments combined into predictions for each
fault using expert opinion about the relative likelihoods of
different rupture sources.

– ‘Time-predictable model’ (stress from tectonic loading needs
to reach the level at which the segment ruptured in the
previous event for the segment to initiate a new event) used
to estimate the probability that an earthquake will originate
on each fault segment.

– Estimating the state of stress before the last event requires
date of the last event and slip during the last event. Those
data are available only for the 1906 earthquake on the San
Andreas Fault and the 1868 earthquake on the southern
segment of the Hayward Fault.
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– contd.

– Time-predictable model could not be used for many Bay Area
fault segments. Need to know loading of the fault over time;
relies on viscoelastic models of regional geological structure.
Stress drops and loading rates modeled probabilistically; the
form of the probability models not given.

– Loading of San Andreas fault by the 1989 Loma Prieta
earthquake and the loading of Hayward fault by the 1906
earthquake were modeled.

– Probabilities estimated using time-predictable model were
converted into forecasts using expert opinion for relative
likelihoods that an event initiating on one segment will stop or
will propagate to other segments.

– outputs of the 3˜types of stochastic models for each segment
weighted using opinions of a panel of 15 experts.

– When results from the time-predictable model were not
available, the weights on its output were 0.
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So, what does it mean?
– No standard interpretation of probability applies.
– Aspects of Fisher’s fiducial inference, frequency theory,

probability models, subjective probability.
– Frequencies equated to probabilities; outcomes assumed

to be equally likely; subjective probabilities used in ways
that violate Bayes’ Rule.

– Calibrated using incommensurable data–global,
extrapolated across magnitude ranges using “empirical”
scaling laws.

– PRA is very similar—made-up models for various risks,
hand enumeration of possibilities. Lots of “expert
judgment” turned into the appearance of precise
quantification: quantifauxcation

– UQ for RRW similar to EQ prediction: can’t do relevant
experiments to calibrate the models, lots of judgment
needed.
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More uncertainty: failures of reproducibility

– attempts to replicate experiments or data analyses often
fail to support the original claims.5

– P-hacking, ignoring multiplicity, small effects, file-drawer
effect, bugs, etc.

– Failures contribute to uncertainty: hard to quantify

– Journals generally uninterested in publishing negative
results or replications of positive results: emphasis is on
“discoveries.”

– Thermo ML found ˜20% of papers that otherwise would
have been accepted had serious errors, discovered b/c
required sharing data

5E.g., http://science.sciencemag.org/content/349/6251/aac4716.full
http://www.newyorker.com/magazine/2010/12/13/the-truth-wears-off
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– Selecting data, hypotheses, data analyses, and results, to
produce (apparently) positive results inflates the apparent
signal-to-noise ratio and overstates statistical significance.

– Automation of data analysis, including feature selection
and model selection, combined with the large number of
variables measured in many modern studies and
experiments, including “omics,” high-energy physics, and
sensor networks: inevitable that many “discoveries” will
be wrong.
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Most software has bugs

– 2014 study by Coverity, based on code-scanning
algorithms, found 0.61 errors per 1,000 lines of source
code in open-source projects and 0.76 errors per 1,000
lines of source code in commercial software6

– Few scientists use sound software engineering practices,
such as rigorous testing—or even version control.7

6http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-
Scan-Report.pdf

7See, e.g.: Merali, Z., 2010. Computational science: . . . Error . . .
why scientific programming does not compute. Nature, 467, 775–777
doi:10.1038/467775a
http://www.nature.com/news/2010/101013/full/467775a.html; Soergel,
D.A.W., 2015. Rampant software errors may undermine scientific results.
F1000Research, 3, 303. doi:10.12688/f1000research.5930.2
http://f1000research.com/articles/3-303/v2
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“Rampant software errors undermine scientific

results”

Soergel, 2015

Errors in scientific results due to software bugs are
not limited to a few high-profile cases that lead to
retractions and are widely reported. Here I estimate
that in fact most scientific results are probably wrong
if data have passed through a computer, and that
these errors may remain largely undetected. The
opportunities for both subtle and profound errors in
software and data management are boundless, yet
they remain surprisingly underappreciated.

80



How can we do better?

– Scripted analyses: no point-and-click tools, especially
spreadsheet calculations

– Revision control systems

– Documentation, documentation, documentation

– Coding standards/conventions

– Pair programming

– Issue trackers

– Code reviews (and in teaching, grade code, not just
output)

– Code tests: unit, integration, coverage, regression
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Integration tests

Figure: Integration testing

http://imgur.com/qSN5SFR by Datsun280zxt
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Spreadsheets especially bad
– Easier to commit errors and harder to find them.
– 2010 work of Reinhart and Rogoff8 used to justify

austerity measures in southern Europe. Errors in their
Excel spreadsheet lead to the wrong conclusion9

– Spreadsheets might be OK for data entry, but not for
calculations.

– Conflate input, output, code, presentation; facilitate &
obscure error

– According to KPMG and PWC, over 90% of corporate
spreadsheets have errors

– Not just errors: bugs in Excel too: +, *, random
numbers, statistical routines

– “Stress tests” of international banking system use Excel
simulations!

8Reinhart, C. and K. Rogoff, 2010. Growth in a Time of Debt,
Working Paper no. 15639,
National Bureau of Economic Research,
http://www.nber.org/papers/w15639; Reinhart, C. and K. Rogoff, 2010.
Growth in a Time of Debt, American Economic Review, 100, 573–578.

9Herndon, T., M. Ash, and R. Pollin, 2014. Does high public debt
consistently stifle economic growth? A critique of Reinhart and Rogoff,
Cambridge Journal of Economics, 38 257–279. doi:10.1093/cje/bet075
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Questions for reproducibility

– materials (organisms), instruments, procedures, &
conditions specified adequately to allow repeating data
collection?

– data analysis described adequately to check/repeat?
– code & data available to re-generate figures and tables?
– code readable and checkable?
– software build environment specified adequately?
– what is the evidence that the result is correct?
– how generally do the results hold? how stable are the

results to perturbations of the experiment?
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– What’s the underlying experiment?
– What are the raw data? How were they

collected/selected?
– How were raw data processed to get “data”?
– How were processed data analyzed?
– Was that the right analysis?
– Was it done correctly?
– Were the results reported correctly?
– Were there ad hoc aspects? What if different choices had

been made?
– What other analyses were tried?
– How was multiplicity treated?
– Can someone else use the procedures and tools?
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Abridged catalog of sources of uncertainty

Broad categories:
calibration data, theoretical approximation to the system,
numerical approximation of the theoretical approximation in
the simulator, interpolation of the simulated results, sampling
and testing candidate models, coding errors, inferential
techniques
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– faulty assumptions
– error in the calibration data, including noise and

systematic error, and assumptions about these
– approximations in the model, including physics and

parametrization
– finite-precision arithmetic
– numerical approximations to the approximate physics

embodied in the simulator
– algorithmic errors in the numerical approximation, tuning

parameters in the simulations
– sampling variability in stochastic algorithms and

simulations
– limitations of PRNGs and other algorithms; numerical

approximations
– choices of the training points for the

interpolator/emulator
– choices of the interpolator: functional form, tuning

parameters, fitting algorithm
– choice of the measure of agreement between observation

and prediction
– choices in the sampler, including the probability

distribution used and the number of samples drawn.
– technique actually used to draw conclusions from the

emulated output
– bugs, data transcription errors, faulty proofs, . . .
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Conclusions

– UQ is hard to do well.
– Most attempts ignore sources of uncertainty that could

contribute more than the sources they include:
lampposting.

– Some of those sources can be appraised.
– Errors and error bars for the original measurements are

poorly understood: insurmountable?
– Bayesian methods make very strong assumptions about

the probability distribution of data errors, models and
output; reduce apparent but not real uncertainty.

– Extrapolating complex simulations requires refusing to
contemplate violations of assumptions that cannot be
tested using calibration data.

– Numerical experiments are not an adequate substitute for
real experiments.
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