Empirical Likelihood

These lectures

Art B. Owen 1) Basics of empirical likelihood
1) Estimating equations

Ill) Research frontier”’
Department of Statistics
Stanford University

Today: Research topics
1) Hybrids with parametric likelihoods
Bayes and EL EL hybrids (mostly Jing Qin)

2
3

Log concavity

5 Part of the problem is parametric

6

Sparse likelihoods
We want to use that knowledge

Convex objective; bilinear constraint

)
)
)

4) Escaping from the hull
)
) . .
) The rest of the problem is non-parametric

7) Regression and convexity

These are areas that are either new, have potential for new uses, or are ripe for

improvement.



One parametric sample, one not

Y well studied and has parametric distribution
X new and/or does not follow parametric distribution

X;~F, izl,...,n

o_// 2., 0)dF (2)dG(y; 0)

eg. ¢=E(Y X)

Parametric model for data ranges

;0 € F
X f(x;0) x 0
22?2  x ¢ Dy

Examples
e Extreme values, exponential tails on Py = [T, 00) something else below T
e Normal data on Py = [T, T] with outliers outside
n

L = H f(:c“ e)iciEPo w,imigpo

i=1
Define R using
1= / dF(xz;0) + Zwilmgpo
Po i=1

Qin & Wong get a X2 limit for means

Multiply the likelihoods

L(F,0) =

i=1

= L(F,

0)/L(F,6)

H ({wi}) H 9(y;:0)

ax R(F,0) such that

0= Zwi/h(wi,yaé)dG(y;H)
=1

Qin gets a x2 limit

Parametric
9(y | x;0)
X ~ f(z;0)
X ~ f(x;0)

More hybrids

Nonparametric

X~F
Y| X
(Y

=x ~ Gy

— w(®))/o(x)

~G

Few x vals



Bayesian empirical likelihood (Lazar)

Prior § ~ 7(0)

x ~ F nonparametric
Posterior < 7(0)R(0)

Here we have informative prior nonparametric likelihood

Reverse of a common practice
Posterior regions asymptotically properly calibrated
Maybe it can be justified via least favorable families

Schennach (2005) multiplies an exponential likelihood by a prior.

Log concavity

There is an MLE for the problem of maximizing [ [;-, f(x;) where f is a log
concave density on R%.

Suppose now that we maximize this likelihood subject to

/Rdmf(w)d:c:,u, or m(x,0)f(x)de =0

Rd
Will the result yield a x2 calibration?
How will we compute it?

The MLE density f is supported on the convex hull of x; and so the hull issue
(below) will be relevant when d is large

Approximate Bayesian Computation

ABC is used in problems where the likelihood cannot be computed.

For example, suppose we have a model with parameter ¢ for how biological
populations may have evolved over a long time period. But we only have data on
the present. There may be no good way to evaluate the probability of the present
as a function of 6.

In ABC we sample 61, . . ., O from the prior distribution on # and then data X
from its distribution given 6. If X ; is close to the observed value X * then we
retain 0; and give it a ‘weight’ that is inversely proportional to some

dist(X;, X ™).

The normalized weights are interpreted as a posterior distribution on 6. There are
many versions.

Mengersen, Pudlo & Robert (2013) use empirical likelihood for an ABC-like
algoirthm, when the parameter is defined by estimating equations.

Probability 14 in the hull

i=1 1=1
Wendel (1962)

If distn of X ; symmetric about 4 then

d — 1 or fewer heads in n — 1 trials

NB: a set of n — 1 independent coin toss events corresponding to this result has
yet to be exhibited.



Plain EL under-coverage (extreme
case)

d=4,n=10
Normal
Q-Q Plot P-P Plot
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Emerson & O (2009)
Vertical asymptote from atom at 400 for —21og R (ug).

Penalized EL

Bartolucci (2007) gives 15 points in R* from X?l)' The mean is not in the hull.
Bootstrapping: & is not in the hull of resampled data 30% of the time.

relax the constraint

LY (u,h) = maxﬁ w; x e~ MW=/ (2h%)
f—"
where v =Y w;x;and 6 (v — p) = (v — p) TV L (v — ) for V positive
definite (eg sample covariance)

This favors v close to 1 but does not enforce it. There’s a X2 limit if
h=0(n"1?)

Lahiri & Mukhopadhyay (2012) avoid using a sample covariance

extend to very large p including some p > n

Growing dimension

Hjort, McKeague & Van Keilegom (2009)
Consider EL for dimension p growing with 1
Bounded X, ; IID mean 0 variance X,, with eigenvalues in [4, B] C (0, c0)

3
Key condition for x? limitis 2~ — 0

3+6/(q—2)
For ¢ > 2 moments &——— — 0

Escape from the hull

Idea: extend the sample to ensure that 1 € H
If we knew a support set for F' we could use it.

Or, add an artificial point (undata) @,,1. Now,

n+1
T(F) = Zwiwi, and,
i=1

n
L(F) =[] wi, o
=1

n+1

L(F) = H w;.

The second version is easier computationally and asymptotically the same
(if |& 1] reasonable).

Chen, Variyath & Abraham (2008) originate this approach.



Adjusted empirical likelihood
Chen, Variyath & Abraham (2008) use

Lpt1 = B — CLn(:E - M)a Ap = IOg(n)/2

an = op(n2/ 3)  preserves 1st order asymptotics

Note: new point &,,41 depends on [
Now (1 is between & and @, 1:

- Lpt1 + anx
1+a,

Hullof 1, ..., T,41 contains

Adjusted EL coverage (extreme case)
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Emerson & O (2009)

Not all is well yet

Let R* be adjusted profile empirical likelihood. Then we can show:

—2log R* (1) < Z[nlog(m> +1°g<;++11>}

which is bounded, even if ||u4|| — oo.
Opposite problem from log R (1) which diverged at finite || 14]].
Instead of a bounded 100% region we can get all of R? at less than 100%
confidence.
Extreme example ctd.

n =10, d = 4, 88.1% region is R*.
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Balanced adjusted empirical likelihood

Dissertation: Emerson (2009)
1) Add 2 points ;41 and &, 42
2) (p41 + ®py2)/2 =T (preserving sample mean)
3) farther new points if 4 — & is a direction where the sample varies a lot
Add points
Tpi1 = b — SCyu=u”

Tpio = 2T — 1+ SCy-u”

where
u* = 7:? —H Cur = (U*Tsflu*)fl/Z
[ — pull
R _ T
S:n_lz(a:i—:n)(wi—w) s~ 1.9

=1
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Choice of s

Choice of s is based on empirical work. The best s depends (weakly) on d eg
s=1.7Tford=2tos =2.4ford =20

Animation

Show some slides of S. Emerson illustrating how &,,41 and &, 2 move with 1
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Invariance

Let A € R4*9 be non-singular.
Setx; = Ax; and 1 = Ap.

Let C' be the balanced adjusted empirical likelihood region for 11 based on

L1,...,Lnp.

Let 5 be the balanced adjusted empirical likelihood region for iy = Ao based

onT1,..., Ty
Thenp € C < fieC.
Emerson & O (2009) Proposition 4.1.

Hotelling’s T2 and the original EL are also invariant this way.
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Related

Independently Liu & Chen (2009) also added 2 points.
Their 2 points were designed to improve Bartlett correction.

Ours were tuned to give good small sample coverage in high dimensions.
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Avoiding the boundedness

Recall —2 log R* was bounded.

The new criterion —2 log R** is unbounded.

The ultimate cause is that

|41 — pe|| is proportional to ||& — | in AEL but is of constant order in BAEL

The larger ||€,,+1 — ]| in AEL means that less weight needs to go there.
Less weight there - - - allows more weight on the other n points and a higher
likelihood.



Empirical Likelihood Ill: Challenges and open problems

Connection to T2

Recall

Tl = p— SCuU*  Tpio = 2T — i+ Scy=u”, where

w= 2P ang Cor = (u* TS T*) 712,
|z — pll
Theorem 4.2
L§<_21 R ( )) = T%(p)
81{20 (n+2)2 0g B)) = ,U

Emerson & O (2009)
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Empirical Likelihood Ill: Challenges and open problems

Comments

1) More examples in the article

)

2) Good calibration for distributions with shorter tails

3) High kurtosis is harder
)

4) Even there the calibration is almost linear so a Bartlett correction could help a

lot

5) Exact nonparametric Cl.s for the mean are unobtainable Bahadur & Savage
(1956)
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Empirical Likelihood Ill: Challenges and open problems

Normal

Quantile-Quantile Plots

d=4,n=10

1(3) Double Exponential

Empirical Quantiles

Empirical Quantiles
Empirical Quantiles

Chi-Square (4) Quantiles

Uniform

Beta(0.1, 0.1)

Chi-Square (4) Quantiles Chi-Square (4) Quantiles

Exponential(3)

Empirical Quantiles

/

Empirical Quantiles
Empirical Quantiles

-

/

Chi-Square (4) Quantiles

F(4,10)

Chi-square(1)

Chi-Square (4) Quantiles Chi-Square (4) Quantiles

Gamma(1/4, 1/10)

Empirical Quantiles

Empirical Quantiles
Empirical Quantiles

Chi-Square (4) Quantiles

Emerson & O (2009)
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Chi-Square (4) Quantiles Chi-Square (4) Quantiles

Empirical Likelihood Ill: Challenges and open problems

Les Diablerets, February 2014
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Infinitely many estimating equations

Symmetry:

E(|X — p|*sign(X —pu)) =0, Vk>1

E(o(X)¢(Y))

Independence:

E(o(X))E((Y)),

Vo(-),9()

Les Diablerets, February 2014
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EL with sparse likelihoods

Replacing —2 >, log(nw;) by some multiple of » ;" ; |nw; — 1| should
lead to many data points with w; = 1 / n exactly. The exceptions may be
interpretable.

L, version

max |nw; — 1]
1<i<n

Using this criterion should often lead to a subset of observations with w; at some
maximal level and another subset at a minimal level. That pattern may be

revealing.
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Multisample EL

Chapter 11.4 of the text “Empirical likelihood” looks at a multi-sample setting.
i’ ) id

Observations X ; X Frori = 1,...,nindependent of Y ; ~ G for

j =1,...,m. The likelihood ratio is

n m

[T [T (i) (moy)

i=1j=1
withu; > 0,v; >0, u; =1, Zjvj =1land
DD wivih(@i,y;,0) =0 (1)
i g

For example: h(X,Y,0) = 1x_ysg — 1/2. The computational problem is a
challenge. The log likelihood is convex but constraint (1) is bilinear. So
computation is awkward.
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Profiling for regression

Maximize )., log(nw;) subjectto w; > 0>, w; =1
Zwi(Y; —x/B)x; =0

and 8; = Bjo.
Not quite convex optimization
The free variables are 5, for k # j as well as w1, . . . , Wy,
The computational challenge comes from bilinearity of the constraint.

If 5 is held fixed the normal equation constraint is linear in w and vice versa.

Regression again

Yr~a', xzecR?! yeR
Estimating equations*
E(Y —z"B)z) =0

Normal equations

n

Z(yz —xB)z; =0 R?

i=1

In principle we let z; = z;(8) = (y; — =] 8)x; € R?, adjoin 2,41 and
Zp+2, and carry on.

*residuals € = y — wTﬁ are uncorrelated with .
They have mean zero too, when as usual, & contains a constant.



Empirical Likelihood Ill: Challenges and open problems 33

Regression hull condition

R(B) = SUP{ Hnwz
i=1

n n
003 = 1S w2y = o}
i=1 i=1

P=PB)={z; |y —z/B8>0} x with pos resid
N =N(B) ={=; |y — !B <0} x with neg resid

Convex hull condition O (2000)
chull(P) N chull(NV) # 0 = S € C(0)

Forz; = (1,t;)T € R? P and N areintervalsin {1} x R.

Les Diablerets, February 2014

Empirical Likelihood Ill: Challenges and open problems 35

Example regression data

Y =8+ /X +oe =(0,3)T,0=1
Bsolid 3 dashed

Les Diablerets, February 2014

Empirical Likelihood Ill: Challenges and open problems 34

Converse

Suppose that 7 & {t1,...,t,} and

) 1, t;,>71
Sign(y; — o — Piti) =
-1, ti<T
Suppose also that
1
(yi — Bo — Pits) =

2.0\,

i

Then

> wilyi — Bo — Buti)(t —7) =0

But (y; — Bo — Biti)(ti —7) > 0Vi

Therefore the hull condition is necessary.
Les Diablerets, February 2014

Empirical Likelihood Ill: Challenges and open problems 36

Example regression data

Red line is on boundary of set of (5y, £1) with positive empirical likelihood

Les Diablerets, February 2014
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Example regression data

Example regression data
< 4
< 4
~
>
~ 4
> o -
o
o
I
o
I
X
x Yet another boundary line.

Left side has positive residuals; right side negative.

Another boundary line. ) . . . .
Wiggle it up and point 3 gets a negative residual =—> ok.

Wiggle down = NOT ok.

Les Diablerets, February 2014 Les Diablerets, February 2014
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Some regression parameters on the boundary

Example regression data ‘
o
%
.
od. * :)LS.
& true
.
-1 .
~ - -
- ~ *
o Z £ © .
>
o Z
= o
o - ‘T —
I _ -
T T T T T
.
-1.0 -0.5 0.0 0.5 1.0 ‘ ‘ ‘ ‘ : : :
2 4 6 8 10 12 14

By
All the boundary lines that interpolate two data points.

They are a subset of the boundary. Boundary points (89, 81).  Region is not convex.
It is convex in 3 (vertical) for fixed 1 (horizontal).

Les Diablerets, February 2014 Les Diablerets, February 2014



What is a convex set of lines?

e convex set of (Bg, 51)?

e convex set of (p, #)? (polar coordinates)

e convex set of (a, b) (ax + by = 1)?

Boundary pts in polar coords

Some boundary points (polar coords)

-0.4
|

angle

-0.8
|

-1.0

-04

Not convex here either.

T T T T T
-0.2 0.0 0.2 0.4 0.6

radius

0.8

41
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Polar coordinates of a line

y=mx+b
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Intrinsic convexity

There is a geometrically intrinsic notion for a convex set of linear flats.
J. E. Goodman (1998) “When is a set of lines in space convex?”

Maybe - - - that can support some computation.
Dual definition
The set of flats that intersects a convex set C' C R is a convex set of flats.
So is the set of flats that intersect all of C4, . . ., C, C R for convex C;.
Convex functions

This notion of convex set does not yet seem to have a corresponding notion of
convex function. There could be quasi-convex functions, those where the level
sets are convex. But quasi-convexity is much less powerful computationally than

convexity.
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