Empirical Likelihood

Art B. Owen

Department of Statistics
Stanford University

Today: Research topics

1) Hybrids with parametric likelihoods
2) Bayes and EL
3) Log concavity
4) Escaping from the hull
5) Sparse likelihoods
6) Convex objective; bilinear constraint
7) Regression and convexity

These are areas that are either new, have potential for new uses, or are ripe for mprovement.

These lectures

I) Basics of empirical likelihood
II) Estimating equations
III) Research frontier ${ }^{\checkmark}$

EL hybrids (mostly Jing Qin)

Part of the problem is parametric
We want to use that knowledge
The rest of the problem is non-parametric

One parametric sample, one not

\boldsymbol{Y} well studied and has parametric distribution
\boldsymbol{X} new and/or does not follow parametric distribution

$$
\begin{aligned}
\boldsymbol{X}_{i} & \sim F, \quad i=1, \ldots, n \\
\boldsymbol{Y}_{j} & \sim G(\boldsymbol{y} ; \theta), \quad j=1, \ldots, m \\
0 & =\iint h(\boldsymbol{x}, \boldsymbol{y}, \phi) d F(\boldsymbol{x}) d G(\boldsymbol{y} ; \theta) \\
\text { e.g. } \quad \phi & =\mathbb{E}(\boldsymbol{Y})-\mathbb{E}(\boldsymbol{X})
\end{aligned}
$$

Multiply the likelihoods

$$
\begin{aligned}
L(F, \theta) & =\prod_{i=1}^{n} F\left(\left\{\boldsymbol{x}_{i}\right\}\right) \prod_{j=1}^{m} g\left(\boldsymbol{y}_{j} ; \theta\right) \\
R(F, \theta) & =L(F, \theta) / L(\widehat{F}, \hat{\theta}) \\
\mathcal{R}(\phi) & =\max _{F, \theta} R(F, \theta) \text { such that } \\
0 & =\sum_{i=1}^{n} w_{i} \int h\left(\boldsymbol{x}_{i}, \boldsymbol{y}, \phi\right) d G(\boldsymbol{y} ; \theta)
\end{aligned}
$$

Qin gets a χ^{2} limit

Parametric model for data ranges

$$
\boldsymbol{X} \sim\left\{\begin{array}{cc}
f(\boldsymbol{x} ; \theta) & \boldsymbol{x} \in P_{0} \\
? ? ? & \boldsymbol{x} \notin P_{0}
\end{array}\right.
$$

Examples

- Extreme values, exponential tails on $P_{0}=[T, \infty)$ something else below T
- Normal data on $P_{0}=[-T, T]$ with outliers outside

$$
L=\prod_{i=1}^{n} f\left(\boldsymbol{x}_{i} ; \theta\right)^{\boldsymbol{x}_{i} \in P_{0}} w_{i}^{\boldsymbol{x}_{i} \notin P_{0}}
$$

Define \mathcal{R} using

$$
1=\int_{P_{0}} d F(\boldsymbol{x} ; \theta)+\sum_{i=1}^{n} w_{i} 1_{\boldsymbol{x} \notin P_{0}}
$$

Qin \& Wong get a χ^{2} limit for means

Bayesian empirical likelihood (Lazar)

Prior $\theta \sim \pi(\theta)$
$x \sim F$ nonparametric
Posterior $\propto \pi(\theta) \mathcal{R}(\theta)$
Here we have informative prior nonparametric likelihood
Reverse of a common practice
Posterior regions asymptotically properly calibrated
Maybe it can be justified via least favorable families
Schennach (2005) multiplies an exponential likelihood by a prior.

Approximate Bayesian Computation

$A B C$ is used in problems where the likelihood cannot be computed.
For example, suppose we have a model with parameter θ for how biological populations may have evolved over a long time period. But we only have data on the present. There may be no good way to evaluate the probability of the present as a function of θ.
In ABC we sample $\theta_{1}, \ldots, \theta_{N}$ from the prior distribution on θ and then data \boldsymbol{X} from its distribution given θ. If \boldsymbol{X}_{i} is close to the observed value \boldsymbol{X}^{*} then we retain θ_{i} and give it a 'weight' that is inversely proportional to some $\operatorname{dist}\left(\boldsymbol{X}_{i}, \boldsymbol{X}^{*}\right)$.
The normalized weights are interpreted as a posterior distribution on θ. There are many versions.
Mengersen, Pudlo \& Robert (2013) use empirical likelihood for an ABC-like algoirthm, when the parameter is defined by estimating equations.

Log concavity

There is an MLE for the problem of maximizing $\prod_{i=1}^{n} f\left(\boldsymbol{x}_{i}\right)$ where f is a log concave density on \mathbb{R}^{d}.
Suppose now that we maximize this likelihood subject to

$$
\int_{\mathbb{R}^{d}} \boldsymbol{x} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\mu, \quad \text { or } \quad \int_{\mathbb{R}^{d}} m(\boldsymbol{x}, \theta) f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0
$$

Will the result yield a χ^{2} calibration?
How will we compute it?
The MLE density \hat{f} is supported on the convex hull of \boldsymbol{x}_{i} and so the hull issue (below) will be relevant when d is large

Probability μ_{0} in the hull

$$
\begin{gathered}
\mathcal{H}=\left\{\sum_{i=1}^{n} w_{i} \boldsymbol{x}_{i} \mid w_{i} \geq 0, \sum_{i=1}^{n} w_{i}=1\right\} \\
\text { Wendel (1962) }
\end{gathered}
$$

If distn of \boldsymbol{X}_{i} symmetric about μ then

$$
\begin{aligned}
\operatorname{Pr}(\mu \notin \mathcal{H}) & =\sum_{k=0}^{d-1}\binom{n-1}{k}\left(\frac{1}{2}\right)^{n-1} \\
& =\operatorname{Pr}(\operatorname{Bin}(n-1,1 / 2)<d)
\end{aligned}
$$

$d-1$ or fewer heads in $n-1$ trials
NB: a set of $n-1$ independent coin toss events corresponding to this result has yet to be exhibited.

Plain EL under-coverage (extreme

 case)

Emerson \& O (2009)
Vertical asymptote from atom at $+\infty$ for $-2 \log \mathcal{R}\left(\mu_{0}\right)$.

Growing dimension

Hjort, McKeague \& Van Keilegom (2009)
Consider EL for dimension p growing with n
Bounded $\boldsymbol{X}_{n, i}$ IID mean 0 variance Σ_{n} with eigenvalues in $[A, B] \subset(0, \infty)$
Key condition for χ^{2} limit is $\frac{p^{3}}{n} \rightarrow 0$
For $q>2$ moments $\frac{p^{3+6 /(q-2)}}{n} \rightarrow 0$

Penalized EL

Bartolucci (2007) gives 15 points in \mathbb{R}^{4} from $\chi_{(1)}^{2}$. The mean is not in the hull. Bootstrapping: $\overline{\boldsymbol{x}}$ is not in the hull of resampled data 30% of the time.
relax the constraint

$$
L^{\dagger}(\mu, h)=\max _{w} \prod_{i=1}^{n} w_{i} \times e^{-n \delta(\nu-\mu) /\left(2 h^{2}\right)}
$$

where $\nu=\sum_{i} w_{i} \boldsymbol{x}_{i}$ and $\delta(\nu-\mu)=(\nu-\mu)^{\top} V^{-1}(\nu-\mu)$ for V positive definite (eg sample covariance)

This favors ν close to μ but does not enforce it. There's a χ^{2} limit if $h=O\left(n^{-1 / 2}\right)$
Lahiri \& Mukhopadhyay (2012) avoid using a sample covariance extend to very large p including some $p>n$

Escape from the hull

Idea: extend the sample to ensure that $\mu \in \mathcal{H}$
If we knew a support set for F we could use it.
Or, add an artificial point (undata) \boldsymbol{x}_{n+1}. Now,

$$
\begin{aligned}
T(F) & =\sum_{i=1}^{n+1} w_{i} \boldsymbol{x}_{i}, \quad \text { and } \\
L(F) & =\prod_{i=1}^{n} w_{i}, \quad \text { or, } \\
L(F) & =\prod_{i=1}^{n+1} w_{i}
\end{aligned}
$$

The second version is easier computationally and asymptotically the same
(if $\left\|\boldsymbol{x}_{n+1}\right\|$ reasonable).
Chen, Variyath \& Abraham (2008) originate this approach.

Adjusted empirical likelihood

Chen, Variyath \& Abraham (2008) use

$$
\begin{aligned}
\boldsymbol{x}_{n+1} & =\mu-a_{n}(\overline{\boldsymbol{x}}-\mu), \quad a_{n}=\log (n) / 2 \\
a_{n} & =o_{p}\left(n^{2 / 3}\right) \quad \text { preserves 1st order asymptotics }
\end{aligned}
$$

Note: new point \boldsymbol{x}_{n+1} depends on μ
Now μ is between $\overline{\boldsymbol{x}}$ and \boldsymbol{x}_{n+1} :

$$
\mu=\frac{\boldsymbol{x}_{n+1}+a_{n} \overline{\boldsymbol{x}}}{1+a_{n}}
$$

Hull of $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n+1}$ contains μ

Not all is well yet

Let \mathcal{R}^{*} be adjusted profile empirical likelihood. Then we can show:

$$
-2 \log \mathcal{R}^{*}(\mu) \leq-2\left[n \log \left(\frac{(n+1) a_{n}}{n\left(a_{n}+1\right)}\right)+\log \left(\frac{n+1}{a_{n}+1}\right)\right]
$$

which is bounded, even if $\|\mu\| \rightarrow \infty$.
Opposite problem from $\log \mathcal{R}(\mu)$ which diverged at finite $\|\mu\|$.
Instead of a bounded 100\% region we can get all of \mathbb{R}^{d} at less than 100% confidence.

> Extreme example ctd.
$n=10, d=4,88.1 \%$ region is \mathbb{R}^{4}.

Adjusted EL coverage (extreme case)

[^0]
Balanced adjusted empirical likelihood

Dissertation: Emerson (2009)

1) Add 2 points \boldsymbol{x}_{n+1} and \boldsymbol{x}_{n+2}
2) $\left(\boldsymbol{x}_{n+1}+\boldsymbol{x}_{n+2}\right) / 2=\overline{\boldsymbol{x}} \quad$ (preserving sample mean)
3) farther new points if $\mu-\overline{\boldsymbol{x}}$ is a direction where the sample varies a lot

$$
\begin{gathered}
\text { Add points } \\
\boldsymbol{x}_{n+1}=\mu-s c_{u^{*}} u^{*}
\end{gathered}
$$

$$
\boldsymbol{x}_{n+2}=2 \overline{\boldsymbol{x}}-\mu+s c_{u^{*}} u^{*}
$$

where

$$
\begin{aligned}
u^{*} & =\frac{\overline{\boldsymbol{x}}-\mu}{\|\overline{\boldsymbol{x}}-\mu\|} \quad c_{u^{*}}=\left(u^{* \top} S^{-1} u^{*}\right)^{-1 / 2} \\
S & =\frac{1}{n-1} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{\top} \quad s \approx 1.9
\end{aligned}
$$

Choice of s

Choice of s is based on empirical work. The best s depends (weakly) on d eg $s=1.7$ for $d=2$ to $s=2.4$ for $d=20$

Animation

Show some slides of S . Emerson illustrating how \boldsymbol{x}_{n+1} and \boldsymbol{x}_{n+2} move with μ

Related

Independently Liu \& Chen (2009) also added 2 points.
Their 2 points were designed to improve Bartlett correction.
Ours were tuned to give good small sample coverage in high dimensions.

Invariance

Let $A \in \mathbb{R}^{d \times d}$ be non-singular.
Set $\widetilde{\boldsymbol{x}}_{i}=A \boldsymbol{x}_{i}$ and $\widetilde{\mu}=A \mu$.
Let C be the balanced adjusted empirical likelihood region for μ_{0} based on $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$.
Let \widetilde{C} be the balanced adjusted empirical likelihood region for $\widetilde{\mu}_{0}=A \mu_{0}$ based
on $\widetilde{\boldsymbol{x}}_{1}, \ldots, \widetilde{\boldsymbol{x}}_{n}$.
Then $\mu \in C \Longleftrightarrow \widetilde{\mu} \in \widetilde{C}$.
Emerson \& O (2009) Proposition 4.1.
Hotelling's T^{2} and the original EL are also invariant this way

Avoiding the boundedness

Recall $-2 \log \mathcal{R}^{*}$ was bounded.
The new criterion $-2 \log \mathcal{R}^{* *}$ is unbounded.
The ultimate cause is that
$\left\|\boldsymbol{x}_{n+1}-\mu\right\|$ is proportional to $\|\overline{\boldsymbol{x}}-\mu\|$ in AEL but is of constant order in BAEL
The larger $\left\|\boldsymbol{x}_{n+1}-\mu\right\|$ in AEL means that less weight needs to go there.
Less weight there \cdots allows more weight on the other n points and a higher
likelihood.

Connection to T^{2}

Recall

$$
\begin{aligned}
\boldsymbol{x}_{n+1} & =\mu-s c_{u^{*}} u^{*} \quad \boldsymbol{x}_{n+2}=2 \overline{\boldsymbol{x}}-\mu+s c_{u^{*}} u^{*}, \quad \text { where } \\
u^{*} & =\frac{\overline{\boldsymbol{x}}-\mu}{\|\overline{\boldsymbol{x}}-\mu\|} \quad \text { and } \quad c_{u^{*}}=\left(u^{* \top} S^{-1} u^{*}\right)^{-1 / 2} .
\end{aligned}
$$

Theorem 4.2

$$
\lim _{s \rightarrow \infty} \frac{2 n s^{2}}{(n+2)^{2}}\left(-2 \log \mathcal{R}^{* *}(\mu)\right)=T^{2}(\mu)
$$

Emerson \& O (2009)

Comments

1) More examples in the article
2) Good calibration for distributions with shorter tails
3) High kurtosis is harder
4) Even there the calibration is almost linear so a Bartlett correction could help a lot
5) Exact nonparametric CI. s for the mean are unobtainable Bahadur \& Savage (1956)

EL with sparse likelihoods

Replacing $-2 \sum_{i=1}^{n} \log \left(n w_{i}\right)$ by some multiple of $\sum_{i=1}^{n}\left|n w_{i}-1\right|$ should lead to many data points with $w_{i}=1 / n$ exactly. The exceptions may be interpretable.

$$
\begin{gathered}
L_{\infty} \text { version } \\
\max _{1 \leq i \leq n}\left|n w_{i}-1\right|
\end{gathered}
$$

Using this criterion should often lead to a subset of observations with w_{i} at some maximal level and another subset at a minimal level. That pattern may be revealing.

Profiling for regression

Maximize $\sum_{i=1}^{n} \log \left(n w_{i}\right)$ subject to $w_{i} \geq 0 \sum_{i} w_{i}=1$

$$
\sum_{i} w_{i}\left(Y_{i}-\boldsymbol{x}_{i}^{\top} \beta\right) \boldsymbol{x}_{i}=0
$$

and $\beta_{j}=\beta_{j 0}$.

Not quite convex optimization

The free variables are β_{k} for $k \neq j$ as well as w_{1}, \ldots, w_{n}.
The computational challenge comes from bilinearity of the constraint.
If β is held fixed the normal equation constraint is linear in w and vice versa.

Multisample EL

Chapter 11.4 of the text "Empirical likelihood" looks at a multi-sample setting.
Observations $\boldsymbol{X}_{i} \stackrel{\text { iid }}{\sim} F$ for $i=1, \ldots, n$ independent of $\boldsymbol{Y}_{j} \stackrel{\text { iid }}{\sim} G$ for
$j=1, \ldots, m$. The likelihood ratio is

$$
\prod_{i=1}^{n} \prod_{j=1}^{m}\left(n u_{i}\right)\left(m v_{j}\right)
$$

with $u_{i} \geq 0, v_{j} \geq 0, \sum_{i} u_{i}=1, \sum_{j} v_{j}=1$ and

$$
\begin{equation*}
\sum_{i} \sum_{j} u_{i} v_{j} h\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}, \theta\right)=0 \tag{1}
\end{equation*}
$$

For example: $h(X, Y, \theta)=1_{X-Y>\theta}-1 / 2$. The computational problem is a challenge. The log likelihood is convex but constraint (1) is bilinear. So computation is awkward.

Regression again

$$
Y \approx x^{\top} \beta, \quad x \in \mathbb{R}^{d} \quad y \in \mathbb{R}
$$

Estimating equations*

$$
\mathbb{E}\left(\left(Y-\boldsymbol{x}^{\boldsymbol{\top}} \beta\right) \boldsymbol{x}\right)=0
$$

Normal equations

$$
\sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i}^{\top} \beta\right) \boldsymbol{x}_{i}=0 \in \mathbb{R}^{d}
$$

In principle we let $\boldsymbol{z}_{i}=\boldsymbol{z}_{i}(\beta) \equiv\left(y_{i}-\boldsymbol{x}_{i}^{\top} \beta\right) \boldsymbol{x}_{i} \in \mathbb{R}^{d}$, adjoin \boldsymbol{z}_{n+1} and \boldsymbol{z}_{n+2}, and carry on.
*residuals $\epsilon=y-\boldsymbol{x}^{\top} \beta$ are uncorrelated with \boldsymbol{x}.

They have mean zero too, when as usual, \boldsymbol{x} contains a constant.

Regression hull condition

$$
\begin{gathered}
\mathcal{R}(\beta)=\sup \left\{\prod_{i=1}^{n} n w_{i} \mid w_{i} \geq 0, \sum_{i=1}^{n} w_{i}=1, \sum_{i=1}^{n} w_{i}\left(y_{i}-\boldsymbol{x}_{i}^{\top} \beta\right) \boldsymbol{x}_{i}=0\right\} \\
\mathcal{P}=\mathcal{P}(\beta)=\left\{\boldsymbol{x}_{i} \mid y_{i}-\boldsymbol{x}_{i}^{\top} \beta>0\right\} \\
\mathcal{N}=\mathcal{N}(\beta)=\left\{\boldsymbol{x}_{i} \mid y_{i}-\boldsymbol{x}_{i}^{\top} \beta<0\right\}
\end{gathered}
$$

Convex hull condition O (2000)
$\operatorname{chull}(\mathcal{P}) \bigcap \operatorname{chull}(\mathcal{N}) \neq \emptyset \Longrightarrow \beta \in C(0)$
For $\boldsymbol{x}_{i}=\left(1, t_{i}\right)^{\top} \in \mathbb{R}^{2} \quad \mathcal{P}$ and \mathcal{N} are intervals in $\{1\} \times \mathbb{R}$.

Example regression data

$Y=\beta_{0}+\beta_{1} X+\sigma \epsilon \quad \beta=(0,3)^{\top}, \sigma=1$
β solid $\hat{\beta}$ dashed

Converse

Suppose that $\tau \notin\left\{t_{1}, \ldots, t_{n}\right\}$ and

$$
\operatorname{Sign}\left(y_{i}-\beta_{0}-\beta_{1} t_{i}\right)=\left\{\begin{aligned}
1, & t_{i}>\tau \\
-1, & t_{i}<\tau
\end{aligned}\right.
$$

Suppose also that

$$
\sum_{i} w_{i}\binom{1}{t_{i}}\left(y_{i}-\beta_{0}-\beta_{1} t_{i}\right)=\binom{0}{0}
$$

Then

$$
\sum_{i} w_{i}\left(y_{i}-\beta_{0}-\beta_{1} t_{i}\right)\left(t_{i}-\tau\right)=0
$$

But $\left(y_{i}-\beta_{0}-\beta_{1} t_{i}\right)\left(t_{i}-\tau\right)>0 \forall i$
Therefore the hull condition is necessary.

Example regression data

Red line is on boundary of set of $\left(\beta_{0}, \beta_{1}\right)$ with positive empirical likelihood

Another boundary line.

Example regression data

All the boundary lines that interpolate two data points
They are a subset of the boundary.

Example regression data

Yet another boundary line.
Left side has positive residuals; right side negative.
Wiggle it up and point 3 gets a negative residual \Longrightarrow ok.
Wiggle down \Longrightarrow NOT ok.

Boundary points $\left(\beta_{0}, \beta_{1}\right)$. Region is not convex.
It is convex in β_{0} (vertical) for fixed β_{1} (horizontal).

What is a convex set of lines?

- convex set of (β_{0}, β_{1})?
- convex set of (ρ, θ) ? (polar coordinates)
- convex set of $(a, b)(a x+b y=1)$?

Polar coordinates of a line

x

Boundary pts in polar coords

Not convex here either.

Intrinsic convexity

There is a geometrically intrinsic notion for a convex set of linear flats.
J. E. Goodman (1998) "When is a set of lines in space convex?"

Maybe . . . that can support some computation.

Dual definition

The set of flats that intersects a convex set $C \subset \mathbb{R}^{d}$ is a convex set of flats. So is the set of flats that intersect all of $C_{1}, \ldots, C_{k} \subset \mathbb{R}^{d}$ for convex C_{j}.

Convex functions

This notion of convex set does not yet seem to have a corresponding notion of convex function. There could be quasi-convex functions, those where the level sets are convex. But quasi-convexity is much less powerful computationally than convexity.

Acknowledgments

1) Sarah Emerson and Jiahua Chen for discussions
2) National Science Foundation for support
3) Univ.s Geneva, Lausanne, Neuchatel, Fribourg, Bern, EPFL
4) Valérie Chavez-Demoulin
5) Elvezio Ronchetti
6) Mervet Cluzeau

> Merci et au revoir!

[^0]: Emerson \& O (2009)

