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These lectures
I) Basics of empirical likelihood

II) Estimating equations

III) Research frontier�
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Today: Research topics
1) Hybrids with parametric likelihoods

2) Bayes and EL

3) Log concavity

4) Escaping from the hull

5) Sparse likelihoods

6) Convex objective; bilinear constraint

7) Regression and convexity

These are areas that are either new, have potential for new uses, or are ripe for

improvement.
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EL hybrids (mostly Jing Qin)

Part of the problem is parametric

We want to use that knowledge

The rest of the problem is non-parametric
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One parametric sample, one not
Y well studied and has parametric distribution

X new and/or does not follow parametric distribution

Xi ∼ F, i = 1, . . . , n

Y j ∼ G(y; θ), j = 1, . . . ,m

0 =

� �
h(x,y,φ)dF (x)dG(y; θ)

e.g. φ = E(Y )− E(X)
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Multiply the likelihoods

L(F, θ) =
n�

i=1

F ({xi})
m�

j=1

g(yj ; θ)

R(F, θ) = L(F, θ)/L( �F , θ̂)

R(φ) = max
F,θ

R(F, θ) such that

0 =
n�

i=1

wi

�
h(xi,y,φ)dG(y; θ)

Qin gets a χ2 limit
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Parametric model for data ranges

X ∼





f(x; θ) x ∈ P0

??? x �∈ P0

Examples

• Extreme values, exponential tails on P0 = [T,∞) something else below T

• Normal data on P0 = [−T, T ] with outliers outside

L =
n�

i=1

f(xi; θ)
xi∈P0 w

xi �∈P0
i

Define R using

1 =

�

P0

dF (x; θ) +
n�

i=1

wi1x �∈P0

Qin & Wong get a χ2 limit for means
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More hybrids
Parametric Nonparametric

g(y | x; θ) X ∼ F

X ∼ f(x; θ) Y | X = x ∼ Gx Few x vals

X ∼ f(x; θ) (Y − µ(x))/σ(x) ∼ G
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Bayesian empirical likelihood (Lazar)
Prior θ ∼ π(θ)

x ∼ F nonparametric

Posterior ∝ π(θ)R(θ)

Here we have informative prior nonparametric likelihood

Reverse of a common practice

Posterior regions asymptotically properly calibrated

Maybe it can be justified via least favorable families

Schennach (2005) multiplies an exponential likelihood by a prior.
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Approximate Bayesian Computation
ABC is used in problems where the likelihood cannot be computed.

For example, suppose we have a model with parameter θ for how biological

populations may have evolved over a long time period. But we only have data on

the present. There may be no good way to evaluate the probability of the present

as a function of θ.

In ABC we sample θ1, . . . , θN from the prior distribution on θ and then data X

from its distribution given θ. If Xi is close to the observed value X∗ then we

retain θi and give it a ‘weight’ that is inversely proportional to some

dist(Xi,X
∗).

The normalized weights are interpreted as a posterior distribution on θ. There are

many versions.

Mengersen, Pudlo & Robert (2013) use empirical likelihood for an ABC-like

algoirthm, when the parameter is defined by estimating equations.
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Log concavity
There is an MLE for the problem of maximizing

�n
i=1 f(xi) where f is a log

concave density on Rd.

Suppose now that we maximize this likelihood subject to
�

Rd

xf(x) dx = µ, or

�

Rd

m(x, θ)f(x) dx = 0

Will the result yield a χ2 calibration?

How will we compute it?

The MLE density f̂ is supported on the convex hull of xi and so the hull issue

(below) will be relevant when d is large
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Probability µ0 in the hull

H =
� n�

i=1

wixi | wi ≥ 0,
n�

i=1

wi = 1
�

Wendel (1962)

If distn of Xi symmetric about µ then

Pr(µ �∈ H) =
d−1�

k=0

�
n− 1

k

��1
2

�n−1

= Pr(Bin(n− 1, 1/2) < d)

d− 1 or fewer heads in n− 1 trials

NB: a set of n− 1 independent coin toss events corresponding to this result has

yet to be exhibited.
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Plain EL under-coverage (extreme

case)
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Vertical asymptote from atom at +∞ for −2 logR(µ0).
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Growing dimension
Hjort, McKeague & Van Keilegom (2009)

Consider EL for dimension p growing with n

Bounded Xn,i IID mean 0 variance Σn with eigenvalues in [A,B] ⊂ (0,∞)

Key condition for χ2 limit is p3

n → 0

For q > 2 moments p3+6/(q−2)

n → 0
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Penalized EL
Bartolucci (2007) gives 15 points in R4 from χ2

(1). The mean is not in the hull.

Bootstrapping: x̄ is not in the hull of resampled data 30% of the time.

relax the constraint

L
†(µ, h) = max

w

n�

i=1

wi × e
−nδ(ν−µ)/(2h2)

where ν =
�

i wixi and δ(ν − µ) = (ν − µ)TV −1(ν − µ) for V positive

definite (eg sample covariance)

This favors ν close to µ but does not enforce it. There’s a χ2 limit if

h = O(n−1/2)

Lahiri & Mukhopadhyay (2012) avoid using a sample covariance

extend to very large p including some p > n
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Escape from the hull
Idea: extend the sample to ensure that µ ∈ H

If we knew a support set for F we could use it.

Or, add an artificial point (undata) xn+1. Now,

T (F ) =
n+1�

i=1

wixi, and,

L(F ) =
n�

i=1

wi, or,

L(F ) =
n+1�

i=1

wi.

The second version is easier computationally and asymptotically the same

(if �xn+1� reasonable).

Chen, Variyath & Abraham (2008) originate this approach.
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Adjusted empirical likelihood
Chen, Variyath & Abraham (2008) use

xn+1 = µ− an(x̄− µ), an = log(n)/2

an = op(n
2/3) preserves 1st order asymptotics

Note: new point xn+1 depends on µ

Now µ is between x̄ and xn+1:

µ =
xn+1 + anx̄

1 + an

Hull of x1, . . . ,xn+1 contains µ
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Not all is well yet

Let R∗ be adjusted profile empirical likelihood. Then we can show:

−2 logR∗(µ) ≤ −2

�
n log

�
(n+ 1)an
n(an + 1)

�
+ log

�
n+ 1

an + 1

��

which is bounded, even if �µ� → ∞.

Opposite problem from logR(µ) which diverged at finite �µ�.

Instead of a bounded 100% region we can get all of Rd at less than 100%

confidence.

Extreme example ctd.

n = 10, d = 4, 88.1% region is R4.
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Adjusted EL coverage (extreme case)
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Balanced adjusted empirical likelihood
Dissertation: Emerson (2009)

1) Add 2 points xn+1 and xn+2

2) (xn+1 + xn+2)/2 = x̄ (preserving sample mean)

3) farther new points if µ− x̄ is a direction where the sample varies a lot

Add points

xn+1 = µ− scu∗u
∗

xn+2 = 2x̄− µ+ scu∗u
∗

where

u
∗ =

x̄− µ

�x̄− µ�
cu∗ = (u∗T

S
−1

u
∗)−1/2

S =
1

n− 1

n�

i=1

(xi − x̄)(xi − x̄)T s ≈ 1.9
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Choice of s
Choice of s is based on empirical work. The best s depends (weakly) on d eg

s = 1.7 for d = 2 to s = 2.4 for d = 20

Animation

Show some slides of S. Emerson illustrating how xn+1 and xn+2 move with µ
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Related

Independently Liu & Chen (2009) also added 2 points.

Their 2 points were designed to improve Bartlett correction.

Ours were tuned to give good small sample coverage in high dimensions.
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Invariance
Let A ∈ Rd×d be non-singular.

Set �xi = Axi and �µ = Aµ.

Let C be the balanced adjusted empirical likelihood region for µ0 based on

x1, . . . ,xn.

Let �C be the balanced adjusted empirical likelihood region for �µ0 = Aµ0 based

on �x1, . . . , �xn.

Then µ ∈ C ⇐⇒ �µ ∈ �C .

Emerson & O (2009) Proposition 4.1.

Hotelling’s T 2 and the original EL are also invariant this way.
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Avoiding the boundedness
Recall −2 logR∗ was bounded.

The new criterion −2 logR∗∗ is unbounded.

The ultimate cause is that

�xn+1 − µ� is proportional to �x̄− µ� in AEL but is of constant order in BAEL

The larger �xn+1 − µ� in AEL means that less weight needs to go there.

Less weight there · · · allows more weight on the other n points and a higher

likelihood.
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Connection to T 2

Recall

xn+1 = µ− scu∗u
∗ xn+2 = 2x̄− µ+ scu∗u

∗
, where

u
∗ =

x̄− µ

�x̄− µ�
and cu∗ = (u∗T

S
−1

u
∗)−1/2

.

Theorem 4.2

lim
s→∞

2ns2

(n+ 2)2

�
−2 logR∗∗(µ)

�
= T

2(µ)

Emerson & O (2009)
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Comments
1) More examples in the article

2) Good calibration for distributions with shorter tails

3) High kurtosis is harder

4) Even there the calibration is almost linear so a Bartlett correction could help a

lot

5) Exact nonparametric CI.s for the mean are unobtainable Bahadur & Savage

(1956)
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Infinitely many estimating equations
Symmetry:

E(|X − µ|
ksign(X − µ)) = 0, ∀k ≥ 1

Independence:

E(φ(X)ψ(Y )) = E(φ(X))E(ψ(Y )), ∀φ(·),ψ(·)
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EL with sparse likelihoods
Replacing −2

�n
i=1 log(nwi) by some multiple of

�n
i=1 |nwi − 1| should

lead to many data points with wi = 1/n exactly. The exceptions may be

interpretable.

L∞ version

max
1≤i≤n

|nwi − 1|

Using this criterion should often lead to a subset of observations with wi at some

maximal level and another subset at a minimal level. That pattern may be

revealing.
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Profiling for regression
Maximize

�n
i=1 log(nwi) subject to wi ≥ 0

�
i wi = 1

�

i

wi(Yi − xT
i β)xi = 0

and βj = βj0.

Not quite convex optimization

The free variables are βk for k �= j as well as w1, . . . , wn.

The computational challenge comes from bilinearity of the constraint.

If β is held fixed the normal equation constraint is linear in w and vice versa.
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Multisample EL
Chapter 11.4 of the text “Empirical likelihood” looks at a multi-sample setting.

Observations Xi
iid
∼ F for i = 1, . . . , n independent of Y j

iid
∼ G for

j = 1, . . . ,m. The likelihood ratio is

n�

i=1

m�

j=1

(nui)(mvj)

with ui ≥ 0, vj ≥ 0,
�

i ui = 1,
�

j vj = 1 and

�

i

�

j

uivjh(xi,yj , θ) = 0 (1)

For example: h(X,Y, θ) = 1X−Y >θ − 1/2. The computational problem is a

challenge. The log likelihood is convex but constraint (1) is bilinear. So

computation is awkward.
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Regression again

Y ≈ xT
β, x ∈ Rd

y ∈ R

Estimating equations∗

E
�
(Y − xT

β)x
�
= 0

Normal equations
n�

i=1

(yi − xT
i β)xi = 0 ∈ Rd

In principle we let zi = zi(β) ≡ (yi − xT
i β)xi ∈ Rd, adjoin zn+1 and

zn+2, and carry on.

∗residuals � = y − xTβ are uncorrelated with x.

They have mean zero too, when as usual, x contains a constant.
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Regression hull condition

R(β) = sup

�
n�

i=1

nwi

��� wi ≥ 0,
n�

i=1

wi = 1,
n�

i=1

wi(yi −xT
i β)xi = 0

�

P = P(β) = {xi | yi − xT
i β > 0} x with pos resid

N = N (β) = {xi | yi − xT
i β < 0} x with neg resid

Convex hull condition O (2000)

chull(P)
�
chull(N ) �= ∅ =⇒ β ∈ C(0)

For xi = (1, ti)T ∈ R2 P and N are intervals in {1}× R.
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Converse
Suppose that τ �∈ {t1, . . . , tn} and

Sign(yi − β0 − β1ti) =





1, ti > τ

−1, ti < τ

Suppose also that

�

i

wi



1

ti



 (yi − β0 − β1ti) =



0

0





Then �

i

wi(yi − β0 − β1ti)(ti − τ) = 0

But (yi − β0 − β1ti)(ti − τ) > 0 ∀i

Therefore the hull condition is necessary.
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Y = β0 + β1X + σ� β = (0, 3)T, σ = 1

β solid β̂ dashed
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Example regression data
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Red line is on boundary of set of (β0,β1) with positive empirical likelihood
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Another boundary line.
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Example regression data

x

y

Yet another boundary line.

Left side has positive residuals; right side negative.

Wiggle it up and point 3 gets a negative residual =⇒ ok.

Wiggle down =⇒ NOT ok.

Les Diablerets, February 2014

Empirical Likelihood III: Challenges and open problems 39

●

●

●

●
●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−2
0

2
4

Example regression data

x

y

All the boundary lines that interpolate two data points.

They are a subset of the boundary.
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Boundary points (β0,β1). Region is not convex.

It is convex in β0 (vertical) for fixed β1 (horizontal).
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What is a convex set of lines?
• convex set of (β0,β1)?

• convex set of (ρ, θ)? (polar coordinates)

• convex set of (a, b) (ax+ by = 1)?
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Polar coordinates of a line

x

y

●

y = mx + b

r

θ
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Boundary pts in polar coords
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Not convex here either.
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Intrinsic convexity
There is a geometrically intrinsic notion for a convex set of linear flats.

J. E. Goodman (1998) “When is a set of lines in space convex?”

Maybe · · · that can support some computation.

Dual definition

The set of flats that intersects a convex set C ⊂ Rd is a convex set of flats.

So is the set of flats that intersect all of C1, . . . , Ck ⊂ Rd for convex Cj .

Convex functions

This notion of convex set does not yet seem to have a corresponding notion of

convex function. There could be quasi-convex functions, those where the level

sets are convex. But quasi-convexity is much less powerful computationally than

convexity.
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