Empirical Likelihood

Art B. Owen

Department of Statistics
Stanford University
II) Estimating equations ${ }^{\checkmark}$
III) Research frontier

These lectures

I) Basics of empirical likelihood

Today: Estimating equations

1) Smooth functions of means
2) Defns for estimating equations
3) Side information and MELEs
4) Regression modeling
5) Time series
6) Finite populations
7) Computation

EL for other than the mean

Some simple statistics are available as smooth functions of a vector mean. Taylor expansion, as in the delta method, then extends empirical likelihood inferences to many such cases.

Much greater generality can be attained via estimating equations. These define a quantity θ implicitly via $\mathbb{E}(m(\boldsymbol{X}, \theta))=0$.

Smooth functions of means

$$
\begin{aligned}
& \sigma=\sqrt{\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}} \\
& \rho=\frac{\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)}{\sqrt{\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}} \sqrt{\mathbb{E}\left(Y^{2}\right)-\mathbb{E}(Y)^{2}}} \\
& \theta=h(\mathbb{E}(U, V, \ldots, Z))
\end{aligned}
$$

Generally

$$
\begin{aligned}
\boldsymbol{X} & =(U, V, \ldots, Z) \\
\theta & =\mathbb{E}(h(\boldsymbol{X})) \\
\hat{\theta} & =h(\overline{\boldsymbol{x}}) \doteq h(\mathbb{E}(\boldsymbol{X}))+(\overline{\boldsymbol{x}}-\mathbb{E}(\boldsymbol{X}))^{\top} \frac{\partial}{\partial \boldsymbol{x}} h(\mathbb{E}(\boldsymbol{X}))
\end{aligned}
$$

h nearly linear near $\mathbb{E}(\boldsymbol{X}) \Longrightarrow \theta$ nearly a mean

EL for smooth functions

$$
\mathcal{R}(\theta)=\max \left\{\prod_{i=1}^{n} n w_{i} \mid w_{i} \geq 0, \sum_{i=1}^{n} w_{i}=1, h\left(\sum_{i=1}^{n} w_{i} \boldsymbol{x}_{i}\right)=\theta\right\}
$$

S\&P 500 returns

Estimating equations

More powerful and general than smooth functions
Define θ via $\mathbb{E}(m(\boldsymbol{X}, \theta))=0$
Define $\hat{\theta}$ via $\frac{1}{n} \sum_{i=1}^{n} m\left(\boldsymbol{x}_{i}, \hat{\theta}\right)=0$
Usually $\operatorname{dim}(m)=\operatorname{dim}(\theta)$

Basic examples:	
$m(\boldsymbol{X}, \theta)$	Statistic
$\boldsymbol{X}-\theta$	Mean
$1_{\boldsymbol{X} \in A}-\theta$	Probability of set A
$1_{X \leq \theta}-\frac{1}{2}$	Median
$\frac{\partial}{\partial \theta} \log (f(\boldsymbol{X} ; \theta))$	MLE under f

$-2 \log \mathcal{R}\left(\theta_{0}\right) \rightarrow \chi_{\text {Rank }\left(\operatorname{Var}\left(m\left(X, \theta_{0}\right)\right)\right)}^{2}$

Empirical likelihood for a median

LR is constant between observations
$\mathbb{E}\left(1_{X \leq m}-1 / 2\right)=0$
α-quantile: $\mathbb{E}\left(1_{X \leq \theta}-\alpha\right)=0$

Nuisance parameters

Sometimes it is not easy to write $\mathbb{E}(m(\boldsymbol{X}, \theta))=0$ directly, but it may become much easier by introducing a few extra (nuisance) parameters not of direct interest.

$$
\mathbb{E}(m(\boldsymbol{X}, \theta, \nu))=0
$$

where θ is of interest and ν is the nuisance. IE, we expand the parameter vector from θ to (θ, ν).

$$
\begin{aligned}
\mathcal{R}(\theta, \nu) & =\max \left\{\prod_{i=1}^{n} n w_{i} \mid w_{i} \geq 0, \sum_{i=1}^{n} w_{i}, \sum_{i=1}^{n} w_{i} m\left(\boldsymbol{x}_{i}, \theta, \nu\right)\right\} \\
\mathcal{R}(\theta) & =\max _{\nu} \mathcal{R}(\theta, \nu)
\end{aligned}
$$

The first optimization is simple. The second may be difficult.
Typically $-2 \log \mathcal{R}\left(\theta_{0}\right) \rightarrow \chi_{(\operatorname{dim}(\theta))}^{2}$

Example: correlation

Suppose we are interested in $\rho=\operatorname{Corr}(X, Y)$. Then,

$$
\begin{aligned}
& 0=\mathbb{E}\left(X-\mu_{x}\right) \\
& 0=\mathbb{E}\left(Y-\mu_{y}\right) \\
& 0=\mathbb{E}\left(\left(X-\mu_{x}\right)^{2}-\sigma_{x}^{2}\right) \\
& 0=\mathbb{E}\left(\left(Y-\mu_{y}\right)^{2}-\sigma_{y}^{2}\right) \\
& 0=\mathbb{E}\left(\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)-\rho \sigma_{x} \sigma_{y}\right)
\end{aligned}
$$

Parameter and nuisance
$\theta=(\rho)$ and $\nu=\left(\mu_{x}, \mu_{y}, \sigma_{x}, \sigma_{y}\right)$
$\mathbb{E}(m(\boldsymbol{X}, \theta, \nu))=0=\frac{1}{n} \sum_{i=1}^{n} m\left(X_{i}, \hat{\theta}, \hat{\nu}\right)$
$m(\cdot)$ has the five components above

Huber's robust M-estimate

$$
0=\frac{1}{n} \sum_{i=1}^{n} \psi\left(\frac{x_{i}-\mu}{\sigma}\right) \quad 0=\frac{1}{n} \sum_{i=1}^{n}\left[\psi\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}-1\right]
$$

Like mean for small obs, median for outliers

$$
\psi(z)= \begin{cases}z, & |z| \leq 1.35 \\ 1.35 \operatorname{sign}(z), & |z| \geq 1.35\end{cases}
$$

$$
\begin{gathered}
\mathcal{R}(\mu)=\max _{\sigma} \max \left\{\prod_{i=1}^{n} n w_{i} \mid 0 \leq w_{i}, \sum_{i} w_{i}=1, \sum_{i} w_{i} \psi\left(\frac{x_{i}-\mu}{\sigma}\right)=0\right. \\
\left.\sum_{i} w_{i}\left[\psi\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}-1\right]=0\right\}
\end{gathered}
$$

Newcomb's passage times of light

From Stigler

EL for mean and Huber's location

Curve for the mean is much more skewed by the outlier.
Robust statistic slightly skewed

$$
\begin{gathered}
\text { Side information } \\
\binom{\boldsymbol{X}}{\boldsymbol{Y}} \in \mathbb{R}^{p+q} \text { known } \mathbb{E}(\boldsymbol{X})=\mu_{x 0} \\
\text { Use what we know } \\
\mathcal{R}_{X, Y}\left(\mu_{x}, \mu_{y}\right)=\max \left\{\prod_{i=1}^{n} n w_{i} \mid w_{i} \geq 0, \sum_{i} w_{i} \boldsymbol{x}_{i}=\mu_{x}, \sum_{i} w_{i} \boldsymbol{y}_{i}=\mu_{y}\right\} \\
\mathcal{R}_{X}\left(\mu_{x}\right)=\max \left\{\prod_{i=1}^{n} n w_{i} \mid w_{i} \geq 0, \sum_{i} w_{i} \boldsymbol{x}_{i}=\mu_{x}\right\} \\
\mathcal{R}_{Y \mid X}\left(\mu_{y} \mid \mu_{x}\right)=\frac{\mathcal{R}_{X, Y}\left(\mu_{x}, \mu_{y}\right)}{\mathcal{R}_{X}\left(\mu_{x}\right)} \\
-2 \log \mathcal{R}_{Y \mid X}\left(\mu_{y} \mid \mu_{x 0}\right) \rightarrow \chi_{(p)}^{2}
\end{gathered}
$$

Maximum E. L. estimates

$$
\begin{gathered}
\operatorname{Var}\binom{\boldsymbol{X}}{\boldsymbol{Y}}=\left(\begin{array}{ll}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{y x} & \Sigma_{y y}
\end{array}\right) \\
\text { MELE } \widetilde{\mu}_{y}=\sum_{i=1}^{n} w_{i} \boldsymbol{y}_{i} \doteq \overline{\boldsymbol{Y}}-\Sigma_{y x} \Sigma_{x x}^{-1}\left(\overline{\boldsymbol{X}}-\mu_{x 0}\right) \\
n \operatorname{Var}\left(\widetilde{\mu}_{y}\right) \doteq \Sigma_{y \mid x} \equiv \Sigma_{y y}-\Sigma_{y x} \Sigma_{x x}^{-1} \Sigma_{x y}
\end{gathered}
$$

Using known mean reduces variance when \boldsymbol{Y} correlated with \boldsymbol{X}

General side information

Can be incorporated via estimating equations

Known parameter	Estimating equation
mean	$\boldsymbol{X}-\mu_{x}$
α quantile	$1_{X \leq Q}-\alpha$
$\operatorname{Pr}(\boldsymbol{X} \in A \mid B)$	$\left(1_{\boldsymbol{X} \in A}-\rho\right) 1_{B}$
$\mathbb{E}(\boldsymbol{X} \mid B)$	$(\boldsymbol{X}-\mu) 1_{B}$

Qin has a nice example of Y vs X regression where $E(Y)$ is known

Overdetermined equations

$$
\mathbb{E}(m(\boldsymbol{X}, \theta))=0, \quad \operatorname{dim}(m)>\operatorname{dim}(\theta)
$$

Popular in econometrics, e.g. Generalized Method of Moments Hansen
Approaches:

1) $\operatorname{Drop} \operatorname{dim}(m)-\operatorname{dim}(\theta)$ equations
2) Replace $m(\boldsymbol{X}, \theta)$ by $m(\boldsymbol{X}, \theta) A(\theta)$ where
A a $\operatorname{dim}(m) \times \operatorname{dim}(\theta)$ matrix (IE pick $\operatorname{dim}(\theta)$ linear comb. of m)
3) GMM: estimate the optimal A
4) MELE: $\widetilde{\theta}=\arg \max _{\theta} \max _{w_{i}} \prod_{i} n w_{i} \quad$ st $\quad \sum_{i=1}^{n} w_{i} m\left(\boldsymbol{x}_{i}, \theta\right)=0$

MELE has same asymptotic variance as using optimal $A(\theta)$
Bias scales more favorably with dimensions for MELE than for \hat{A} methods
Newey, Smith, Kitamura

Qin and Lawless result

$$
\begin{aligned}
\operatorname{dim}(m)=p+q \geq p=\operatorname{dim}(\theta) & \operatorname{MELE} \tilde{\theta} \\
-2 \log \left(\mathcal{R}\left(\theta_{0}\right) / \mathcal{R}(\widetilde{\theta})\right) \rightarrow \chi_{(p)}^{2} & \text { conf regions for } \theta_{0} \\
-2 \log \mathcal{R}(\widetilde{\theta}) \rightarrow \chi_{(q)}^{2} & \text { goodness of fit tests when } q>0
\end{aligned}
$$

Uses only differentiability, moment, identifiability and non-degeneracy conditions, no parametric assumptions.

Regression

$\mathbb{E}(Y \mid X=x) \doteq \beta_{0}+\beta_{1} x$
Models (Freedman)

Correlation	$\left(X_{i}, Y_{i}\right) \sim F_{X Y} \quad$ IID
Regression	x_{i} fixed, $\quad Y_{i} \sim F_{Y \mid X=\left(1, x_{i}\right)} \quad$ indep
	Correlation model

$$
\begin{aligned}
& \beta=\mathbb{E}\left(X^{\top} X\right)^{-1} \mathbb{E}\left(X^{\top} Y\right) \\
& \hat{\beta}=\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{\top} X_{i}\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{\top} Y_{i}
\end{aligned}
$$

β and $\hat{\beta}$ well defined even for lack of fit

Cancer deaths vs population, by county
Estimating equations for regression

$$
\begin{gathered}
\mathbb{E}\left(\boldsymbol{X}^{\top}\left(Y-\boldsymbol{X}^{\top} \beta\right)\right)=0, \quad \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{x}_{i}^{\top} \hat{\beta}\right) \boldsymbol{x}_{i}=0 \\
\mathcal{R}(\beta)=\max \left\{\prod_{i=1}^{n} n w_{i} \mid \sum_{i=1}^{n} w_{i} \boldsymbol{Z}_{i}(\beta)=0, w_{i} \geq 0, \sum_{i=1}^{n} w_{i}=1\right\} \\
\boldsymbol{Z}_{i}(\beta)=\left(Y_{i}-\boldsymbol{x}_{i}^{\top} \beta\right) \boldsymbol{x}_{i} \\
\text { need } \mathbb{E}\left(\|\boldsymbol{Z}\|^{2}\right) \leq \mathbb{E}\left(\|\boldsymbol{X}\|^{2}\left(Y-\boldsymbol{X}^{\top} \beta\right)^{2}\right)<\infty \\
\text { Don't need: }
\end{gathered}
$$

normality, constant variance, exact linearity

For cancer data

$$
\begin{aligned}
& P_{i}=\text { population of } i \text { 'th county in } 1000 \mathrm{~s} \\
& C_{i}=\text { cancer deaths of } i \text { 'th county in } 20 \text { years } \\
& C_{i} \doteq \beta_{0}+\beta_{1} P_{i} \\
& \hat{\beta}_{1}=3.58 \quad \Longrightarrow 3.58 / 20=0.18 \text { deaths per thousand per year } \\
& \hat{\beta}_{0}=-0.53 \quad \text { near zero, as we'd expect }
\end{aligned}
$$

Regression through the origin

$$
C_{i} \doteq \beta_{1} P_{i}
$$

Residuals should have mean zero and be orthogonal to P_{i}

We want two equations in one unknown β_{1}

Equivalently, side information $\beta_{0}=0$
Least squares regression through origin does not solve both equations

$$
\begin{gathered}
\text { MELE } \widetilde{\beta}_{1}=\arg \max _{\beta_{1}} \mathcal{R}\left(\beta_{1}\right) \\
\mathcal{R}\left(\beta_{1}\right)=\max \left\{\prod_{i=1}^{n} n w_{i} \mid \sum_{i=1}^{n} w_{i}\left(C_{i}-P_{i} \beta_{1}\right)=0\right. \\
\left.\sum_{i=1}^{n} w_{i} P_{i}\left(C_{i}-P_{i} \beta_{1}\right)=0, \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}
\end{gathered}
$$

Regression parameters

Intercept nearly 0 , MELE smaller than MLE Cl based on conditional empirical likelihood Constraint narrows Cl for slope by over half

Fixed predictor regression model

$\mathbb{E}\left(Y_{i}\right)=\mu_{i} \doteq \beta_{0}+\beta_{1} x_{i}$ fixed, and $\operatorname{Var}\left(Y_{i}\right)=\sigma_{i}^{2}$
With lack of fit $\mu_{i} \neq \beta_{0}+\beta_{1} x_{i}$
No good definition of 'true' β given L.O.F.

$$
\boldsymbol{Z}_{i}=\left(Y_{i}-\boldsymbol{x}_{i}^{\top} \beta\right) \boldsymbol{x}_{i} \text { have }
$$

1) $\mathbb{E}\left(\boldsymbol{Z}_{i}\right)=\left(\mu_{i}-\boldsymbol{x}_{i}^{\top} \beta\right) \boldsymbol{x}_{i} \quad 0$ may be the common value
2) $\operatorname{Var}\left(\boldsymbol{Z}_{i}\right)=\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \sigma_{i}^{2} \quad$ non-constant, even if σ_{i}^{2} constant

Triangular array ELT

Z_{11}				
Z_{12}	Z_{22}			
Z_{13}	Z_{23}	Z_{33}		
\vdots	\vdots	\vdots	\ddots	
$Z_{1 n}$	$Z_{2 n}$	$Z_{3 n}$	\cdots	$Z_{n n}$

Row n has indep $Z_{1 n}, \ldots, Z_{n n}$, common mean 0 not ident distributed Different rows have different distns

Still get $-\log \mathcal{R}($ Common mean $=0) \rightarrow \chi_{\operatorname{dim}(Z)}^{2}$ under mild conditions Applies for fixed \boldsymbol{x} regression: $Z_{i n}=\left(Y_{i}-\boldsymbol{x}_{i}^{\top} \beta\right) \boldsymbol{x}_{i}$

Variance modelling

Working model $Y \sim \mathcal{N}\left(\boldsymbol{x}^{\top} \beta, e^{2 \boldsymbol{z}^{\top} \gamma}\right)$

$$
\begin{aligned}
& 0=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}\left(y_{i}-\boldsymbol{x}_{i}^{\top} \beta\right) e^{-2 \boldsymbol{z}_{i}^{\top} \gamma} \quad(\text { weight } \propto 1 / \text { var }) \\
& 0=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{z}_{i}\left(1-\exp \left(-2 \boldsymbol{z}_{i}^{\top} \gamma\right)\left(y_{i}-\boldsymbol{x}_{i}^{\top} \beta\right)^{2}\right)
\end{aligned}
$$

For cancer data

$$
\boldsymbol{x}_{i}=\left(1, P_{i}\right)^{\top} \quad \boldsymbol{z}_{i}=\left(1, \log \left(P_{i}\right)\right)^{\top}
$$

$$
\mathbb{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} P_{i} \quad \sqrt{\operatorname{Var}\left(Y_{i}\right)}=\exp \left(\gamma_{0}+\gamma_{1} \log \left(P_{i}\right)\right)=e^{\gamma_{0}} P_{i}^{\gamma_{1}}
$$

$$
\text { and } \beta_{0}=0
$$

Heteroscedastic model

Left: solid curve accounts for nonconstant variance
Right: solid curve forces $\beta_{0}=0$, and,
rules out $\gamma_{1}=1 / 2$ (Poisson) and $\gamma_{1}=1$ (Gamma)

Nonlinear regression

$$
y \doteq f(x, \theta) \equiv \theta_{1}\left(1-\exp \left(-\theta_{2} x\right)\right)
$$

Nonlinear regression regions

Don't need: normality or constant variance

Logistic regression

- Giant cell arteritis is a type of vasculitis (inflamation of blood or lymph vessels)
- Not all vasculitis is GCA
- Try to predict GCA from 8 binary predictors

$$
\operatorname{Pr}(\mathrm{GCA}) \doteq \tau\left(X^{\boldsymbol{\top}} \beta\right)=\frac{\exp \left(\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{8} X_{8}\right)}{1+\exp \left(\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{8} X_{8}\right)}
$$

Likelihood estimating equations reduce to: $\boldsymbol{Z}_{i}(\beta)=\boldsymbol{X}_{i}\left(Y_{i}-\tau\left(\boldsymbol{X}_{i}^{\top} \beta\right)\right)$

Logistic regression coefficients

Prediction accuracy

Multiple biased samples

Population k sampled from F with bias $u_{k}(\cdot), k=1, \ldots, s$

$$
\begin{aligned}
\boldsymbol{X}_{i k} & \sim G_{k}, \quad i=1, \ldots, n_{k}, \quad k=1, \ldots, s \\
G_{k}(A) & =\frac{\int_{A} u_{k}(\boldsymbol{y}) d F(\boldsymbol{y})}{\int u_{k}(\boldsymbol{y}) d F(\boldsymbol{y})}, \quad k=1, \ldots, s
\end{aligned}
$$

Examples

1) clinical trials with varying enrolment criteria
2) mix of length biased and unbiased samples
3) telescopes with varying detection limits
4) sampling from different frames

NPMLEs Vardi (also Wellner) and χ^{2} limits Qin by multiplying likelihoods

Time series

St. Lawrence River flow

Reduce to independence

$$
\begin{aligned}
Y_{i}-\mu & =\beta_{1}\left(Y_{i-1}-\mu\right)+\cdots+\beta_{k}\left(Y_{i-k}-\mu\right)+\epsilon_{i} \\
\mathbb{E}\left(\epsilon_{i}\right) & =0 \\
\mathbb{E}\left(\epsilon_{i}^{2}\right) & =\exp (2 \tau) \\
\mathbb{E}\left(\epsilon_{i}\left(Y_{i-j}-\mu\right)\right) & =0
\end{aligned}
$$

j	$\hat{\beta}_{j}$	$-2 \log \mathcal{R}\left(\beta_{j}=0\right)$
1	0.627	30.16
2	-0.093	0.48
3	0.214	4.05

Blocking of time series

Block i of observations, out of $n=\lfloor(T-M) / L+1\rfloor$ blocks

$$
\begin{aligned}
B_{i} & =\left(Y_{(i-1) L+1}, \ldots, Y_{(i-1) L+M}\right) \\
M & =\text { length of blocks } \\
L & =\text { spacing of start points }
\end{aligned}
$$

$$
\text { Large } M=L \Longrightarrow \text { block dependence small }
$$

Large $\mathrm{M} \Longrightarrow$ block dependence predictable given L
Blocked estimating equation, replace m by b

$$
\begin{aligned}
b\left(B_{i}, \theta\right) & =\frac{1}{M} \sum_{j=1}^{M} m\left(X_{(i-1) L+j}, \theta\right) \\
-2\left(\frac{T}{n M}\right) \log \mathcal{R}\left(\theta_{0}\right) & \rightarrow \chi^{2} \quad \text { as } M \rightarrow \infty, M T^{-1 / 2} \rightarrow 0 \quad \text { Kitamura }
\end{aligned}
$$

Bristlecone pine

Les Diablerets, February 2014

Probability of sharp decrease

[^0]5405 years of Bristlecone pine tree ring widths

0 to 100 in 0.01 mm
Fritts et al.

MELEs for finite population sampling

1) use side information
(a) population means, totals, sizes
(b) stratum means, totals, sizes
2) take unequal sampling probabilities
3) use non-negative observation weights

Hartley \& Rao, Chen \& Qin, Chen \& Sitter

More finite population results		
χ^{2} limits	$-2\left(1-\frac{n}{N}\right) \mathcal{R}(\mu) \rightarrow \chi^{2}$	Zhong \& Rao
EL variance ests	via pairwise inclusion probabilities	Sitter \& Wu
Multiple samples	varying distortions	Zhong, Chen, \& Rao

Curve estimation problems

$$
\begin{array}{ll}
\widehat{f}_{h}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x_{i}-x}{h}\right) \quad \text { density } \\
\widehat{\mu}_{h}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x_{i}-x}{h}\right) Y_{i} \quad \text { regression }
\end{array}
$$

Triangular array ELT applies Bias adjustment issues
Dimensions and geometry

$\operatorname{Dim}(\mathrm{x})$	$\operatorname{Dim}(\mathrm{y})$	Estimate	Region
1	≥ 2	space curve	confidence tube
≥ 2	1	(hyper)-surface	confidence sandwich

Trajectories of mean blood pressure
Men
Women

80
dots at ages $25,30, \ldots, 80$

Diastolic
data from Jackson et al., courtesy of Yee

Confidence tube for men's mean SBP, DBP

Mean blood pressure confidence tube

Empirical likelihood vs bootstrap

1) EL gives shape of regions for $d>1$
2) EL Bartlett correctable, bootstrap not
3) EL can be faster, but,
4) EL optimization can be hard

Algorithmic strategies

Computation

$$
\begin{aligned}
\log \mathcal{R}(\theta) & =\max _{\nu} \log \mathcal{R}(\theta, \nu) \\
& =\max _{\nu} \min _{\lambda} \mathbb{L}(\theta, \nu, \lambda), \quad \text { where, } \\
\mathbb{L}(\theta, \nu, \lambda) & =-\sum_{i=1}^{n} \log \left(1+\lambda^{\top} m\left(x_{i}, \theta, \nu\right)\right)
\end{aligned}
$$

Inner and outer optimizations $\ll n$ dimensional
Used NPSOL, expensive and not public domain (but it works)

Newton's method to solve for a saddlepoint:

$$
\begin{aligned}
0 & =\frac{\partial}{\partial \nu} \mathbb{L}(\theta, \nu, \lambda) \\
0 & =\frac{\partial}{\partial \lambda} \mathbb{L}(\theta, \nu, \lambda)
\end{aligned}
$$

Progress towards a saddle-point is more difficult to define than progress towards a mode.

Newton's method to solve

$$
\max _{\nu} \mathcal{R}(\theta, \nu)
$$

deriving gradient and Hessian from $\mathbb{L}(\theta, \nu, \lambda)$
These methods usually work well around the MLE. As $n \rightarrow \infty$ the region where they work grows.

Next: research directions

Two main challenges for empirical likelihood are

1) escaping the convex hull
2) profiling out nuisance parameters

Problem 1 is important when the parameter is high dimensional. Less important when we only want a confidence statement on on or two of the components.

Problem 2 is also difficult for parametric likelihoods; usually we just make a second order Taylor approximation to the log likelihood around the MLE.

There has been great progress on problem 1.

[^0]: Sharp \equiv drop of over 0.2 mm from average of previous 10 years

