Empirical Likelihood

These lectures

Art B. Owen 1) Basics of empirical likelihood

Il) Estimating equations/

Ill) Research frontier
Department of Statistics
Stanford University

Today: Estimating equations

1) Smooth functions of means EL fOI’ Other than the mean

2) Defns for estimating equations

Some simple statistics are available as smooth functions of a vector mean. Taylor
3) Side information and MELEs expansion, as in the delta method, then extends empirical likelihood inferences to

many such cases.

Much greater generality can be attained via estimating equations. These define a
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quantity € implicitly via E(m(X, 0)) = 0.

Time series
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)
)
)

4) Regression modeling
)
) Finite populations
)

7) Computation



Smooth functions of means

o= E(X?) - E(X)?
E(XY) — E(X)E(Y)

P EXD) - EX2VEY?D) - E(V)2 _
Q;L{E((U,v),,,.,(z)w( JmEY EL for smooth functions

Generally

n n n
R(O) = max{il:[l nw; | w; > O,;wi = l,h<; wﬂ:i) = 9}
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0 = h(@) = h(EX) + (@~ E(X) 5

h(E(X))

h nearly linear near E(X) == 6 nearly a mean

S&P 500 returns S&P 500 returns
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Return = log(z;11/%;) Annualized Volatility of SP500 (Percent)
Nearly AV (0, 02) but heavy tails
Volatility o is standard deviation of returns

Solid = Empirical likelihood

Dashed = Normal likelihood



Estimating equations
More powerful and general than smooth functions
Define 0 via E(m(X,0)) =0
Define 0 via L " m(x;,0) =0

Usually dim(m) = dim(0)

Basic examples:

m(X,0) Statistic

X -0 Mean

Ixeca—10 Probability of set A
lx<p— 3 Median

2 log(f(X;0)) MLE under f

—2log R(bp) — Xgank(val'(m(xﬁo)))

Nuisance parameters

Sometimes it is not easy to write E(m(X, 8)) = 0 directly, but it may become
much easier by introducing a few extra (nuisance) parameters not of direct
interest.

E(m(X,0,v))=0
where 6 is of interest and v is the nuisance. IE, we expand the parameter vector
from 6 to (6, v).

n n n
R(O,v) = max{H nw; | w; > O,Zwi,Zwim(mi,H,u)}
i=1 i=1 i=1
R(6) = maxR(0,v)
v
The first optimization is simple. The second may be difficult.

Typically —2log R(6y) — X?dim(@))

Empirical likelihood for a median
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Median pounds of milk

LR is constant between observations
E(lx<m —1/2) =0
a-quantile: E(1x<g — ) =0

Example: correlation

Suppose we are interested in p = Corr(X,Y). Then,

0=E(X — )

0=EY — )

0=E((X - p)* = 03)

0=E((Y — uy)* —o})

0=E((X = p2)(Y = py) = pozoy)

Parameter and nuisance

Qz(p) andy:(/lxallmo'xao'y) A
E(m(X,0,v)=0=23" m(X;,0,0)
m(+) has the five components above
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Huber’s robust M -estimate

_1" T;— W _1" Ti— p\2
IR SIC=0
Like mean for small obs, median for outliers

z, |z] <1.35

v(e) = 1.35sign(z), |z| > 1.35.

R(p) = maaxmax{ﬁnwi |0 < wi,zwi = LZwﬂp(%‘;N) =0,
i=1 i i
Su[o("4) 1] =0}

Les Diablerets, February 2014
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EL for mean and Huber’s location
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Passage time

Curve for the mean is much more skewed by the outlier.
Robust statistic slightly skewed.

Les Diablerets, February 2014
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Newcomb’s passage times of light
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From Stigler
Les Diablerets, February 2014
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Side information
€ RPT known E(X) = 1,0
Y

Use what we know
n
Rx,y (Has py) = max{H nw; | w; > 0, szxz = Ha, Zwiyi = Hy}
=1 [ [

Rx(pz) = max{H nw; | w; > O,Zwiwi = uw}
i=1 i

Rx,y (fha, thy)

—2log Ry |x (ky | tz0) = X{y)

Les Diablerets, February 2014



Maximum E. L. estimates

X Yrw Ewy
Var =
Y EW Zyy

MELE fiy = > wiy;, =Y — 8y, X (X — ptao)
=1

nVar(fiy) = Sy = Sy — Sye o Say

Using known mean reduces variance when Y correlated with X

Maximum empirical likelihood estimates

Hartley & Rao 1968 means & finite population setting
0. 1991  means IID sampling

Qin & Lawless 1993  estimating egns IID

General side information

Can be incorporated via estimating equations

Known parameter  Estimating equation

mean X — g

« quantile lx<g —«
Pr(X€A|B) (lxea—p)lp
E(X | B) (X — w)1p

Qin has a nice example of Y vs X regression where E(Y") is known

20

Overdetermined equations

E(m(X,0)) =0, dim(m) > dim(0)
Popular in econometrics, e.g. Generalized Method of Moments Hansen
Approaches:
1) Drop dim(m) — dim(#) equations

2) Replace m(X, 0) by m(X, 0)A(6) where
Aadim(m) x dim(6) matrix (IE pick dim(#) linear comb. of m)

3) GMM: estimate the optimal A

4) MELE: § = arg maxy maxy, [[;nw; st Y i wym(x;,0) =0
MELE has same asymptotic variance as using optimal A(G)

Bias scales more favorably with dimensions for MELE than for A methods

Newey, Smith, Kitamura
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Regression

i E(Y | X =2) = By + iz
Qin and Lawless result | ) = Bo+ B

dim(m) =p+q>p=dim(d) MELEG Models (Freedman)

Correlation  (X;,Y;) ~ Fxy 1D

~ Regression  x; fixed, Y; ~ Fy|x—(1,4;) indep
—2log(R(60)/R(0)) — X%p) conf regions for 6y
X

—2log R(0) — X3

(@ goodness of fit tests when ¢ > 0 Correlation model

Uses only differentiability, moment, identifiability and non-degeneracy conditions, B = E(XTX)—IE(XTy)

) 1 n -11 n
Bz(n;XiTXi) E;XJYZ-

(3 and B well defined even for lack of fit

no parametric assumptions.
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Cancer deaths vs population, by county Estimating equations for regression

n

1 ~
E(XT(Y —XTp3)) =0, - S (Yi—a[B)@ =0

o 1=1

? . .-".'.-. LN ' n n n

° ° ...g,&'ﬁ@? R(B) = maX{Hnwi \ ZwiZi(ﬁ) =0,w; > O,Zwi = 1}

o | . X f-‘-',-,t-“.- . i=1 i=1 i=1

i Zi(p) = (Yi —x] Bz

05 5.0 50.0 05 5.0 50.0
Population (1000s) Population (1000s) need ]E(||Z||2) < E(HXHQ(Y - XTB)2> < 00
Don’t need:
Nearly linear regression nonconstant residual variance

normality, constant variance, exact linearity
Royall via Rice
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For cancer data

P; = population of #'th county in 1000s

C; = cancer deaths of 7'th county in 20 years

Ci=pBo+ 1B

51 = 3.58 = 3.58/20 = 0.18 deaths per thousand per year

Bo = —0.53 near zero, as we'd expect
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Regression parameters
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Intercept Cancer Rate

Intercept nearly 0, MELE smaller than MLE
Cl based on conditional empirical likelihood

Constraint narrows Cl for slope by over half
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Regression through the origin

Ci =B P

Residuals should have mean zero and be orthogonal to P;
We want two equations in one unknown (3
Equivalently, side information 8y = 0

Least squares regression through origin does not solve both equations

MELE j3; = arg maxg, R(01)
R(B1) = max{H nw; | Zw1(01 —P;p1) =0,
=1 i=1

zn:wipi(ci - Pip1) = O,i:wi =1w; > 0}
=1

=1
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Fixed predictor regression model

E(Y;) = pi = Bo + Bi; fixed, and Var(Y;) = o?
With lack of fit u; # Bo + B1x;
No good definition of ‘true’ 5 given L.O.F.
Z; = (Y; — z] B)x; have
1) E(Z;) = (u; — = B)x; 0 may be the common value

2) Var(Z;) = x;x]0?  non-constant, even if 7 constant



Triangular array ELT

Z11
Zi2  Za
Z13  Zoz  Zs3
Zln Z2n ZSn Znn
Row n has indep Z1,, . . . , Znun, common mean 0 not ident distributed

Different rows have different distns

Still get — log R(Common mean = 0) — X?iim(z) under mild conditions

Applies for fixed @ regression: Z;,, = (Y; — =] B)x;

Heteroscedastic model

00 02 04 06 08 1.0

00 02 04 06 08 1.0

32 34 36 38 40

Cancer Rate

0.5 0.7 0.9

Standard Deviation Power

Left: solid curve accounts for nonconstant variance

Right: solid curve forces By = 0, and,

rules out y; = 1/2 (Poisson) and y; = 1 (Gamma)
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Variance modelling
Working model Y ~ N (a1 3, e2'7)

1 n
0=— E x;i(yi — ) B) e 2=l (weight o< 1/var)
n
i=1

n

0= % Z Zi (1 — exp(—22z]7)(y; — wiTﬁ)Q)

=1
For cancer data
w;=(LP)" 2z =(1log(P)"
E(Y;) = Bo + B1Pi \/Var(Y;) = exp(vo + 1 log(P;)) = e P
and Bp =0

Nonlinear regression

Ca uptake

Time

y = f(z,0) = 01(1 — exp(—ba2))

30

32
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Nonlinear regression regions

Logistic regression

< s e Giant cell arteritis is a type of vasculitis (inflamation of blood or lymph vessels)
g e Not all vasculitis is GCA
2 e Try to predict GCA from 8 binary predictors

35 40 45 50 55 6.0

Theta(1)
- T eXP(Bo+ B1 X1+ + B3 Xs)
Pr(GCA)=7(X'8) = 1+ exp(Bo+ /1 X1+ -+ B Xs)

Likelihood estimating equations reduce to: Z;(3) = X ;(Y; — (X[ )
n a
i=1

Don’t need: normality or constant variance
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Logistic regression coefficients Prediction accuracy
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Multiple biased samples

Population k sampled from F’ with bias u (), k =1,...,s
XikNGk, i:l,...,nk, k=1,...,8
U dF

= Tulw)dry)’ "0

Examples
1) clinical trials with varying enrolment criteria
2) mix of length biased and unbiased samples
3) telescopes with varying detection limits

4) sampling from different frames

NPMLEs Vardi (also Wellner) and X2 limits Qin by multiplying likelihoods
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Reduce to independence

Vimp=5Yier —p) + -+ B (Yiep — ) +

E(e;) =0
E(e}) = exp(2r)
E(ei(Yi—j —p)) =0
i B —2logR(B; =0)
1 0.627 30.16
2  —0.093 0.48
3 0.214 4.05

5500 6500 7500

Time series

St. Lawrence River flow

1860 1880 1900 1920 1940 1960

Year

Blocking of time series

Block 7 of observations, outof n = | (T'— M) /L + 1] blocks

Bi= (Yoot Ya-1)oem)
M = length of blocks

L = spacing of start points

Large M = L = block dependence small
Large M — block dependence predictable given L

Blocked estimating equation, replace m by b

M
1
b(B;,0) = Vi Zm(x(i—l)L-i-jae)
j=1

T
—2(— ) logR(B) > x*  as M — 00, MT™Y/2 -0 Kiamura
n
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Empirical Likelihood II: Estimating equations

Bristlecone pine

4

Empirical Likelihood II: Estimating equations

Les Diablerets, February 2014
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Probability of sharp decrease

04 06 08 10

0.2

0.0

0.010 0.015 0.020 0.025  0.030

Sharp = drop of over 0.2 mm from average of previous 10 years.

0.035  0.040

Les Diablerets, February 2014
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5405 years of Bristlecone pine tree ring widths

Campito tree ring data

010 100in 0.01 mm Fritts et al.

Les Diablerets, February 2014
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MELEs for finite population sampling

1) use side information
(a) population means, totals, sizes

(b) stratum means, totals, sizes
2) take unequal sampling probabilities
3) use non-negative observation weights

Hartley & Rao, Chen & Qin, Chen & Sitter

More finite population results

X2 limits —2(1 = £)R(p) — x* Zhong & Rao
EL variance ests  via pairwise inclusion probabilities ~ Sitter & Wu

Multiple samples  varying distortions Zhong, Chen, & Rao

Les Diablerets, February 2014
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Curve estimation problems

(@) = nlhdz;f((xl;x) density

- 1 < T —T .
i (x) = o Z K( - )YZ regression
=1
Triangular array ELT applies Bias adjustment issues

Dimensions and geometry

Dim(x) Dim(y) Estimate Region
1 >2 space curve confidence tube
> 2 1 (hyper)-surface  confidence sandwich
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Confidence tube for men’s mean SBP, DBP

Mean blood pressure confidence tube

DBP
65 70 75 80 85

80

60 70

Age
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Trajectories of mean blood pressure

Men Women

150
150

140
140

Systolic
130
Systolic
130

120
120

70 75 80 70 75 80

Diastolic Diastolic

dots at ages 25, 30, ..., 80
data from Jackson et al., courtesy of Yee
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Empirical likelihood vs bootstrap

EL gives shape of regions for d > 1
EL Bartlett correctable, bootstrap not
EL can be faster, but,

EL optimization can be hard
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Computation

log R(0) = maxlogR(6,v)
= max m}%n L(6,v,\), where,
L(6,v,\) = — Z log(1+ ATm(z;,0,v))
i=1

Inner and outer optimizations < n dimensional
Used NPSOL, expensive and not public domain (but it works)
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Next: research directions

Two main challenges for empirical likelihood are
1) escaping the convex hull
2) profiling out nuisance parameters

Problem 1 is important when the parameter is high dimensional. Less important
when we only want a confidence statement on on or two of the components.

Problem 2 is also difficult for parametric likelihoods; usually we just make a

second order Taylor approximation to the log likelihood around the MLE.

There has been great progress on problem 1.
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Algorithmic strategies

Newton’s method to solve for a saddlepoint:

0

0= %L(Q, v, )\)
0
0= aL(&, v, )\)

Progress towards a saddle-point is more difficult to define than progress towards

a mode.

Newton’s method to solve
max R(6,v)
v

deriving gradient and Hessian from IL(6, v, \)

These methods usually work well around the MLE.
As n. — o0 the region where they work grows.



