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Today: Basics of EL

1) Parametric likelihood

2) Nonparametric likelihood

3) NPMLEs
4) Nonparametric likelihood ratios

5) EL definition

7) Statistical properties of EL for the mean
8
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Calibration
Euclidean likelihood, Renyi-Cressie-Read
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6) EL computation for the mean
)

)

)

) Biased sampling

These lectures

1) Basics of empirical likelihood*’
1) Estimating equations

Ill) Research frontier

Empirical likelihood provides:

e likelihood methods for inference, especially
— tests, and

— confidence regions,
e without assuming a parametric model for data
e competitive power even when parametric model holds

Like the bootstrap, but without resampling.



Empirical Likelihood I: Basics

Some good things about EL

1) (correct) data driven shape for confidence sets Hall

) (
2) power optimality of tests Kitamura
3) allows side constraints O (1991), Qin & Lawless (1993)
)
)

4) Bartlett correctable DiCiccio, Hall & Romano (1991)

5) extends for
(a) censoring
(b) truncation
(c) biased sampling,
6) methods for
(a) time series Kitamura
(b) survey sampling Qin, Chen, Sitter, . . .

Many more extensions S.-X. Chen; Hjort, McKeague & van Keilegom; Lahiri
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Likelihood examples

Xi ~ POI(Q), 0 Z 0

n —09:81

L) =J[ o

i=1

Y; ~ N(Bo+ brxi, o

%) x; fixed

e_za%(yi_BO_ﬁlwi)Q

A |
L(/B()aﬁho-) = E \/%O'
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Parametric likelihoods

Data have known distribution fy with unknown parameter 6

PI‘(X1 = L1y,
PI‘((E1§X1 §$1+A7...,
f(-++5+) known, 6 € © C RP unknown
Likelihood function
L(e) :L(e;xlv"'axn) :f(x17~~~7xn;0)

“Chance, under 0, of getting the data we did get”

Xn:xn):f(xla“'a

X3 0)
Zp;0)
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Likelihood inference

Maximum likelihood estimate

0= argméaxL(O;xl, cey )
Likelihood ratio inferences
—2log(L(00)/L()) — X7, Wiks

Typically . . .

1 asymptotlcally normal

3
4

) ¢

2) 6 asymptotically efficient
) Likelihood ratio tests powerful
)

Likelihood ratio confidence regions small

Neyman-Pearson, Cramer-Rao, . . .
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Other likelihood advantages

e can model data distortion: bias, censoring, truncation
e can combine data from different sources

e can factor in prior information

e obey range constraints: MLE of correlation in [—1, 1]
e transformation invariance

e data determined shape for {# | L(0) > rL(6)}

® incorporates nuisance parameters

Nonparametric methods

Assume only X; ~ F where
e F'is continuous, or,
e F'is symmetric, or,
e F' has a monotone density, or,
e [ has log-concave density, or,
e - - - other believable, but big, family
Nonparametric usually means infinite dimensional parameter

Sometimes lose power (e.g. sign test), sometimes not

Unfortunately

We might not know a correct f(- - ;6)
No reason to expect that new data belong to one of our favorite families

Wrong models sometimes work (e.g. Normal mean via CLT) and sometimes fail
(e.g. Normal variance)

Also,
Usually easy to compute L(6), but . . .
Sometimes hard to find &

Sometimes hard to compute maxg, L((01,02);x1,...,Ty)
(Profile likelihood)

Nonparametric maximum likelihood

For X; D from ', L(F) = ﬁF({%})

i=1

~ 1<
The NPMLE s F = — Zléz
=

where J,, is a point mass at =

Kiefer and Wolfowitz, 1956



Proof
Distinct values z; appear n; times in sample, j = 1,...,m Other N PM LES
Let F'({z;}) = p; > 0 and ﬁ({zj}) = pj = n;/n with some p; # p; NPMLEs are useful when we want the analogue of the empirical CDF for
nonstandard settings.
1Og(LE€;> — i”ﬂ‘ 10g<?1’> Kaplan-Meier Right censored survival times
L(F — pj
Jj=1
m Lynden-Bell  Left truncated star brightness
=n Z pj log <pij)
=1 ! Hartley-Rao ~ Sample survey data
i 5 (P - -
< 11’] P Grenander Monotone density for actuarial data
=
=0. O
15 16
Censoring and Truncation Kaplan-Meier

X = failure time, or age, or other positive quantity
Y = censoring time. If X > Y we just know X € (Y, 00)

The likelihood can be used to compensate for sampling distortions.

Censoring Let F be the distribution of X.

X;; only known to be in set Cj. E.g.: patient survived > 438 days. Letty <tz < --- <1 bedistinct failure/censoring times.

If observed exactly, then C; = { X} others. Conditional on C; Discrete case

i F({t;})
R t Fvia\; = ——22"_ (hazard
L(F) _ HF(CZ) epresen via Aj F([tj,oo)) (hazard)
i=1
Truncation L(F) = H )\jj (1 —X;)7~% d; outof r; remaining, fail at time ¢
X, only observed if X; € T;. E.g.: star only seen if it is bright enough. =t
N=-  MLE
- X; = F C;NT; J )
L(F):HF({ }) or H ( ) Tj

F(T; . F(T; . .
o P i=1 (T:) Fit)=1- H M product limit
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Lynden-Bell

Let X = brightness of a star
and Y = distance from us

Choose units so that observation is possible only when X > Y

If X ~ FandY ~ G independently then

F{Xi})
[0, Xi])

L= Gl

n
=

1

The MLE for F'is also of ‘product-limit’ form. Lynden-Bell (conditional likelihood)
for left truncated data

F((~o0,t]) =1~ ﬁ(1 #)

- n
i—1 Ef:l Ly<wi<a,

Can have ﬁ((—oo,w(i)] = 1forsomei < n
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A log concave MLE

Downloaded January 2014 from
http://www.statslab.cam.ac.uk/Statistics/
activities/CSI_RS2.png
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Monotone & unimodal

Grenander (1956) X € [O7 00) density f non-decreasing NPMLE Fis ‘least

concave majorant of the ECDF’
piece-wise linear density

Log concave
Recent work Samworth, Cule, Walther, Dumbgen - - -
log f(z) concave on R?
MLE computable for small d

No bandwidth to select

Empirical Likelihood I: Basics
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Nonparametric likelihood ratios

Likelihood ratio: ~ R(F) = L(F)/L(F)
Confidence region: {T(F) | R(F) > r}

Profile likelihood: ~ R(0) = sup{R(F) | T'(F) = 0}

Confidence region: {6 | R(6) > r}

Choosing 7 in a parametric setting,
—2log(r) = x;

We seek a nonparametric version

Les Diablerets, Feb 2014
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Survival curve
Thomas & Grunkemeier (1975)

L(F) = Hk_ )\C-lj(l — ;)i

R J=1"
F'is Kaplan Meier

R(F) = L(F)/L(F) Likelihood ratio function
Profile likelihood ratio

R(s,t) = max{R(F) | F([t,00)) = s}

so = Fy([t,00)) fortrue Fy

They find —21log(R(so,1)) _>le) heuristically
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General statistic (first with no ties)

Let w; = F({ml}) w; >0 Z?:l w; <1 =x; € R¢

F):le Hl/n R(F Han

R(0) = SUP{H nw; | T(F) = 9} some parameter T'(F)

i=1

If there are ties . . .

L(F) an and, L( )%L(ﬁ)an;J
J
R and ‘R unchanged

Subsequent empirical likelihood ratios

22

Data type Statistic Reference

Right censoring Survival prob
Left truncation Survival prob Li
Left trunc, right cens  Mean Murphy & van der Vaart
Right censoring proportional hazard param  Murphy & van der Vaart

Right censoring integral vs cumu hazard Pan & Zhou

Thomas & Grunkemeier, Li, Murphy

For the mean of I’
T(F)= [zdF(z), = €R?
TET(ﬁ):%Z?:lxi

Weget {T(F) | R(F)>e} =R? Vr<1
Let Fep = (1 — e)ﬁ + €0y

Forany r < 1,

R(Fez) = % > (1 — €)™ > r for small enough €

Then let 8, range over R4

24



Bounded random variables

If Pr(X € B) = 1, for known bounded set B, then the confidence region

{/wdF(a:) | R(F) > ¢, F(B) = 1}

does not become degenerate.

Which bounded set?

IFE(]| X [|?) < oo then it works to take B to be the convex hull of the sample.

(The hull approaches the support fast enough.)

Then maximizing the likelihood for F'(B) = 1 reduces to maximizing it for

F{xy,...,z,}) =1

Multinomial likelihood for n = 3

Contours of [ [, nw; MLE at center

LR=14/10,i=0,...,9

25
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Empirical likelihood for the mean

Restrictto F'({z1,...,z,}) =1 ie. > o jw; =1

Confidence region is
Cr,n = {szmz | w; > O,sz = ].,HTLU)Z > ’I"}
=1 =1 i=1
Profile likelihood

R(p) = Sup{ﬁ nw; | w; > ini = 1,iwimi = u}
i=1 i=1 i=1

We have a multinomial on the n data points, hence n — 1 parameters

Empirical likelihood theorem

Suppose that X ; ~ Fy are IID in R?

po = [ wdFy(x)

Vo = [(z — po)(x — po) T dFy(z) finite
rank(Vp) = ¢ >0

Thenas n — o0

—2log R(po) = X{y)

same as parametric limit

26

28
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Cavendish’s measurements of Earth’s density

© -
< 4
N I II
. A
r T
4.0 4.5 5.0 5.5 6.0
Density
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Dipper, Cinclus cinclus

Les Diablerets, Feb 2014

Eats larvae of Mayflies, Stoneflies, Caddis flies, other

Empirical Likelihood I: Basics

Profile empirical likelihood

30

08 1.0

0.6

0.2

0.0

Bars show 95% C.I.
Dot is at presently known value.

Empirical Likelihood I: Basics

Stonefly larvae
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0
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Dipper diet
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Top row shows EL; bottom Hotelling’s T2 ellipses
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Computing EL for the mean

Start with the convex hull:
n n
i=1 i=1

pegH = logR(n) = —o0
If o € H then R(p) < 00

and we will compute it via Lagrange multipliers

35

Convex duality

Let L(\)=-— ilog(l + AT (z; — p)) = log R(F)

oL T, —
ﬁ__Zl+>\T(l'i*M)

i=1

Minimizing I sets gradient to 0 and maximizes log R

82L - r; — r; — T
=S (i — p) (i — p)

ONONT — (1+ ATz — p))?

Il is convex and d dimensional = easy optimization
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Lagrange multipliers

G= ilog(nwi) —nAT (i w;(x; — u)) + v(i w; — 1)

0 1 T
('“)wiG_E_n)\ (x;, —p)+v=0

ZwiiG:n+’y:0 = y=-n

Solving,
o
nl+AT(x; —p)

Where A = A\(11) solves

n

Ti — [
0= —_—
; 14+ AT (x; — p)
reciprocal tilting
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Range extension

Recall
L(\) = — Z log(1+ AT(; — 1)) = log R(F)

At the solution
1 1

v nl+AT(x; —p) ~
Therefore
1+)\T(CL‘Z‘ —p) > 1/n

So we may replace log by

_ Jlog(z), 2=1/n
tog.(2) = {Q(z), z < 1/n.

for function Q(- - - ) matching log(- - - ) and several derivatives at z = 1/n



Now
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Extended function

L.(A) = =) log,(1+AT(zi — )

i=1

is well defined for all A € R? (no constraints needed)

If R(F") is finite then L. has the same minimizer as L

Optimization

The Newton step for minimizing IL, turns out to be least squares.

As a result there are fast and stable algorithms for it.

Recent work O. (2013) shows that we can choose IL, to be a self-concordant™

convex function. Then global convergence is assured for Newton’s method with

step reduction Boyd

& VandenBerghe.

£ ()] < 2|f"(2)|>/?, and multidimensional generalizations

—2log ﬁ nw; =
i=1

—
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Sketch continued

- 1
921 - -
Ogg 1+ A (2 — )
2 g log(1 + AT (z; — p)) log(14€) =¢—(1/2)e* 4 ---

2> (N (@i = ) — AT — )z — 1))
n(2)\T(§: —p) - /\TS)\>

(2@ - TS @ - )~ (@ - p)STISS @ - )
n(@—p) SNz - p)

X?d)

Sketch of ? limit proof

WLOG ¢ = d, and anticipate a small A

1 . T, — U 2 3
== —_— 1/(1 =1- —€ -
0 niZZIIJr(mi*M)T)\ /(1+¢€) et+e —e¢

=S ) — (= ) — ) A, s

A= S Yz — ), where,
1 n
S==> (& —p) (@i —p)"
=1

n-

Coverage errors

1) Pr(po € Crp) =1 —a+ O(1) asn — oo Hall

2) One-sided errors of O(ﬁ) cancel

3) Bartlett correction DiCiccio, Hall, Romano
(a) replace XQ’l_“ by (1 + %)XQ’l_“ for carefully chosen a
(b) get coverage errors O(#)
(c) a does not depend on &
(d) e.g.,a=(k+3)/2—~2/3forE(X)
(e) data based a gets same rate

(f) the rate seems to set in slowly

same as for parametric likelihoods

38
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Power
Some nonparametric methods are inefficient
E.g.: sign test for #{X; > u} ~ Bin(n/1/2) when X ~ N (i, 0?)
EL for the mean is efficient
Suppose X; € Rwith E(X) = g and Var(X) = o2 > 0.
Then
—21og(R(po + Toon™ /%)) = X3y (7%)
noncentral 2. Then power = Pr(x%l) (12) > X?S_O‘), same as in parametric
setting

Finer print

When a parametric model holds, we may use it to generate an MLE of 0 EL
inferences for that estimate are also as efficient as ones based on parametric
likelihood, to a second order analysis in Lazar and Mykland (1998)
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Bootstrap calibration

Recipe

Sample X IID F°

Get —2log R(Z; x5, ..., x))

Repeat B = 1000 times (or more)

Use 1 — « bootstrap quantile of —2log R*

Results

Regions get empirical likelihood shape and bootstrap size
Coverage error O(n~=2)

Same error rate as bootstrapping the bootstrap

Sets in faster than Bartlett correction

Need further adjustments for one-sided inference

42

Calibrating empirical likelihood

«

Plain y21~ undercovers

F;;l‘fd is a bit better
Bartlett correction  asymptotics slow to take hold

Bootstrap seems to work best
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Bootstrap (and XQ) calibrated Dipper regions
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Resampled —2log R () values vs x>

20
20
20

15

10

0 5 10 15 0 5 10 15 0 5 10 15

Caddis vs Stonefly Mayfly vs other all four

Euclidean likelihood

Minimize z:(nwZ —1)2

Subject to sz =1, and

This is a quadratic programming problem.

Allows w; < 0, and so
Good news confidence regions for means can get out of the convex hull

Bad news but confidence regions no longer obey range restrictions
(e.g. weighted variances can be negative)

45
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Euclidean log likelihood

— > log(nw;) is a distance of w from (1/n,...,1/n).

Replace loglik by
I = ! En ( 1 ) 2
E B nw;

=1

Then —20p — X%q) too

Reduces to Hotelling’s T2 for the mean O. (1990)
Reduces to Huber-White covariance for regression
Reduces to continuous updating GMM Kitamura

Quadratic approx to EL, like Wald test is to parametric likelihood
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Exponential empirical likelihood

Replace — Y .- log(nw;) by

KL = Z w; log(nw;)

i=1

relates to entropy and exponential tilting

Hellinger distance

Z(wil/2 _ n71/2)2

i=1



Renyi, Cressie-Read

2 - _
ooy S -

i=1

A Method

—2  Euclidean log likelihood
— —1  Exponential empirical likelihood
—1/2  Freeman-Tukey
— 0 Empirical likelihood

1 Pearson’s

Alternate artificial likelihoods

All Renyi Cressie-Read familiies have X2 calibrations. Baggerly
Only EL is Bartlett correctable Baggerly

25" Hg(nwi) Bartlett correctable if

~ 1 1 1
log(l+2)=2— 522 + gzg - 124 +o(z%), asz—0

Corcoran

—log(-) is also convex and self-concordant O (2013)

49
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Renyi-Cressie-Read contours

Top to bottom, lefttoright, A\: -5 -2 0 1 2/3 3/2
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Biased sampling

Examples
1) Sample children, but record family sizes.
2) Draw blue line over cotton, sample fibers that are partly blue.

3) When Y = y itis recorded as X with prob. u(y), lost with prob. 1 — u(y).

Y ~F, observe X ~ (G, butwereally want F'
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NPMLE
Biased sampling again

Q)
S

({a:}) =
G({m:}) o F({=i}) x u()) 0= / (2 — p)dF(z) = / LK aG(a)

o u(a)

" N Ay wilui
G({wz}) = wj; F({ml}) - Z’f}_l 1/'U/j

(for simplicity, suppose no ties)

For the mean Very simple recipe
= M Horvitz-Thompson estimator is NPMLE R(6) = max Hmﬂi | w; >0, sz‘ =1, Zwi il
>ic1 1w i=1 i=1 i=1 i
I !
b= (— Z x; ) when u; X x;, so length bias == harmonic mean
n =1
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Transect sampling of shrubs (Muttlak & McDonald) Mean shrub width
© o
© =
Al || °°
- N °
o [ | LI
© i
o H
2 4 6 8 10 12
< ;
Original Shrub Widths °© ! ‘
o
o ;
o J ,‘\‘ ‘
© o T T
o | T . "
K3 N
5 4 6 8 10 12 0= Zwl - Solid, at left
i=1
Reweighted Shrub Widths n
0= Z wi(z; — p) Dotted, at right
i=1
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Next: Estimating equations

The mean is but one of many interesting quantities in statistical problems.
It often happens that a solution for the mean extends readily to other problems.

A key technique is to use estimating equations. Let 6 € RP be defined by
E(m(X,6)) =0
where m is usually a function from R4*P to RP.

Then 6 is defined by
1 n R
- Z m(x;,0) =0
=1

and we can test Hy : 6 = 6 by testing whether m(X ;, 6y) has mean zero.



