Empirical Likelihood I: Basics 2 Empirical Likelihood I: Basics 2

Empirical Likelihood

Art B. Owen

Department of Statistics
Stanford University

These lectures

- Basics of empirical likelihood√
- II) Estimating equations
- III) Research frontier

Les Diablerets, Feb 2014

Les Diablerets, Feb 2014

Today: Basics of EL

- 1) Parametric likelihood
- 2) Nonparametric likelihood
- 3) NPMLEs

Empirical Likelihood I: Basics

- 4) Nonparametric likelihood ratios
- 5) EL definition
- 6) EL computation for the mean
- 7) Statistical properties of EL for the mean
- 8) Calibration
- 9) Euclidean likelihood, Renyi-Cressie-Read
- 10) Biased sampling

Empirical likelihood provides:

4

- likelihood methods for inference, especially
 - tests, and

Empirical Likelihood I: Basics

- confidence regions,
- without assuming a parametric model for data
- competitive power even when parametric model holds

Like the bootstrap, but without resampling.

Les Diablerets, Feb 2014

Les Diablerets, Feb 2014

Empirical Likelihood I: Basics 5 Empirical Likelihood I: Basics 6

Some good things about EL

- 1) (correct) data driven shape for confidence sets Hall
- 2) power optimality of tests Kitamura
- 3) allows side constraints O (1991), Qin & Lawless (1993)
- 4) Bartlett correctable DiCiccio, Hall & Romano (1991)
- 5) extends for
 - (a) censoring
 - (b) truncation
 - (c) biased sampling,
- 6) methods for
 - (a) time series Kitamura
 - (b) survey sampling Qin, Chen, Sitter, ...

Many more extensions S.-X. Chen; Hjort, McKeague & van Keilegom; Lahiri

Les Diablerets, Feb 2014

Empirical Likelihood I: Basics 7

Likelihood examples

$$X_i \sim \text{Poi}(\theta), \quad \theta \ge 0$$

$$L(\theta) = \prod_{i=1}^{n} \frac{e^{-\theta} \theta^{x_i}}{x_i!}$$

$$Y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$$
 x_i fixed

$$L(\beta_0, \beta_1, \sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y_i - \beta_0 - \beta_1 x_i)^2}$$

Parametric likelihoods

Data have **known** distribution f_{θ} with **unknown** parameter θ

$$\Pr(X_1 = x_1, \dots, X_n = x_n) = f(x_1, \dots, x_n; \theta)$$

 $\Pr(x_1 \le X_1 \le x_1 + \Delta, \dots, x_n \le X_n \le x_n + \Delta) \propto f(x_1, \dots, x_n; \theta)$

 $f(\cdots;\cdot)$ known, $\ \theta\in\Theta\subseteq\mathbb{R}^p$ unknown

Likelihood function

$$L(\theta) = L(\theta; x_1, \dots, x_n) = f(x_1, \dots, x_n; \theta)$$

"Chance, under θ , of getting the data we did get"

Les Diablerets, Feb 2014

8

Empirical Likelihood I: Basics

Likelihood inference

Maximum likelihood estimate

$$\hat{\theta} = \arg\max_{\theta} L(\theta; x_1, \dots, x_n)$$

Likelihood ratio inferences

$$-2\log(L(\theta_0)/L(\hat{\theta})) \to \chi^2_{(g)}$$
 Wilks

Typically . . . Neyman-Pearson, Cramer-Rao, . . .

- 1) $\hat{\theta}$ asymptotically normal
- 2) $\hat{\theta}$ asymptotically efficient
- 3) Likelihood ratio tests powerful
- 4) Likelihood ratio confidence regions small

Empirical Likelihood I: Basics 9 Empirical Likelihood I: Basics 10

Other likelihood advantages

- can model data distortion: bias, censoring, truncation
- can combine data from different sources
- can factor in prior information
- obey range constraints: MLE of correlation in [-1,1]
- transformation invariance
- data determined shape for $\{\theta \mid L(\theta) \geq rL(\hat{\theta})\}$
- incorporates nuisance parameters

Les Diablerets, Feb 2014

Les Diablerets, Feb 2014

Nonparametric methods

Assume only $X_i \sim F$ where

ullet F is continuous, or,

Empirical Likelihood I: Basics

- F is symmetric, or,
- F has a monotone density, or,
- F has log-concave density, or,
- · · · other believable, but big, family

Nonparametric usually means infinite dimensional parameter

Sometimes lose power (e.g. sign test), sometimes not

Unfortunately

We might not know a correct $f(\cdots;\theta)$

No reason to expect that new data belong to one of our favorite families

Wrong models sometimes work (e.g. Normal mean via CLT) and sometimes fail (e.g. Normal variance)

Also,

Usually easy to compute $L(\theta)$, but . . .

Sometimes hard to find $\hat{\theta}$

Sometimes hard to compute $\max_{\theta_2} L((\theta_1, \theta_2); x_1, \dots, x_n)$ (Profile likelihood)

Empirical Likelihood I: Basics 12

Nonparametric maximum likelihood

For
$$X_i$$
 IID from F , $L(F) = \prod_{i=1}^n F(\{x_i\})$

The NPMLE is
$$\widehat{F} = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$$

where δ_x is a point mass at x

Kiefer and Wolfowitz, 1956

Empirical Likelihood I: Basics 13 Empirical Likelihood I: Basics 14

Proof

Distinct values z_i appear n_i times in sample, $j = 1, \ldots, m$

Let $F(\{z_j\})=p_j\geq 0$ and $\widehat{F}(\{z_j\})=\hat{p}_j=n_j/n$ with some $p_j\neq\hat{p}_j$

$$\log\left(\frac{L(F)}{L(\widehat{F})}\right) = \sum_{j=1}^{m} n_j \log\left(\frac{p_j}{\widehat{p}_j}\right)$$

$$= n \sum_{j=1}^{m} \widehat{p}_j \log\left(\frac{p_j}{\widehat{p}_j}\right)$$

$$< n \sum_{j=1}^{m} \widehat{p}_j \left(\frac{p_j}{\widehat{p}_j} - 1\right)$$

$$= 0. \quad \Box$$

Les Diablerets, Feb 2014

15

Other NPMLEs

NPMLEs are useful when we want the analogue of the empirical CDF for nonstandard settings.

Kaplan-Meier Right censored survival times

Lynden-Bell Left truncated star brightness

Hartley-Rao Sample survey data

Grenander Monotone density for actuarial data

Empirical Likelihood I: Basics

Empirical Likelihood I: Basics

Les Diablerets, Feb 2014

16

Censoring and Truncation

The likelihood can be used to compensate for sampling distortions.

Censoring

 X_i only known to be in set C_i . E.g.: patient survived ≥ 438 days. If observed exactly, then $C_i = \{X_i\}$ others. Conditional on C_i

$$L(F) = \prod_{i=1}^{n} F(C_i)$$

Truncation

 X_i only observed if $X_i \in T_i$. E.g.: star only seen if it is bright enough.

$$L(F) = \prod_{i=1}^n \frac{F(\{X_i\})}{F(T_i)} \quad \text{or} \quad \prod_{i=1}^n \frac{F(C_i \cap T_i)}{F(T_i)}$$

Kaplan-Meier

X = failure time, or age, or other positive quantity

Y= censoring time. If X>Y we just know $X\in (Y,\infty)$

Let F be the distribution of X.

Let $t_1 < t_2 < \cdots < t_k$ be distinct failure/censoring times.

Discrete case

Represent
$$F$$
 via $\lambda_j = \dfrac{F(\{t_j\})}{F([t_j,\infty))}$ (hazard)

$$L(F) = \prod_{j=1}^{\kappa} \lambda_j^{d_j} (1-\lambda_j)^{r_j-d_j} \quad d_j \text{ out of } r_j \text{ remaining, fail at time } t_j$$

$$\hat{\lambda}_j = \frac{d_j}{r_i} \quad \text{MLE}$$

$$\hat{F}(t) = 1 - \prod_{j \mid t_i < t} \frac{r_j - d_j}{r_j}$$
 product limit

Les Diablerets, Feb 2014

Les Diablerets, Feb 2014

Lynden-Bell

Let X = brightness of a star and Y = distance from us

Choose units so that observation is possible only when $X \geq Y$

If $X \sim F$ and $Y \sim G$ independently then

$$L = \prod_{i=1}^{n} \frac{F(\{X_i\})}{G([0, X_i])}$$

The MLE for ${\cal F}$ is also of 'product-limit' form. Lynden-Bell (conditional likelihood) for left truncated data

$$\widehat{F}((-\infty, t]) = 1 - \prod_{i=1}^{n} \left(1 - \frac{1_{x_i \le t}}{\sum_{\ell=1}^{n} 1_{y_\ell < x_i \le x_\ell}} \right)$$

Can have $\widehat{F}((-\infty, x_{(i)}] = 1$ for some i < n

Les Diablerets, Feb 2014

Empirical Likelihood I: Basics 19

A log concave MLE

Downloaded January 2014 from

http://www.statslab.cam.ac.uk/Statistics/
activities/CSI RS2.png

Monotone & unimodal

Grenander (1956) $X\in[0,\infty)$ density f non-decreasing NPMLE \hat{F} is 'least concave majorant of the ECDF'

piece-wise linear density

Log concave

Recent work Samworth, Cule, Walther, Dumbgen · · ·

 $\log f({m x})$ concave on ${\mathbb R}^d$

MLE computable for small d

No bandwidth to select

Les Diablerets, Feb 2014

Empirical Likelihood I: Basics

20

Nonparametric likelihood ratios

Likelihood ratio: $R(F) = L(F)/L(\widehat{F})$

Confidence region: $\{T(F) \mid R(F) \geq r\}$

Profile likelihood: $\mathcal{R}(\theta) = \sup\{R(F) \mid T(F) = \theta\}$

Confidence region: $\{\theta \mid \mathcal{R}(\theta) \geq r\}$

Choosing r in a parametric setting, $\frac{2.1-\alpha}{r}$

$$-2\log(r) = \chi_{(q)}^{2,1-\alpha}$$

We seek a nonparametric version

Empirical Likelihood I: Basics 21 Empirical Likelihood I: Basics 22

Survival curve

Thomas & Grunkemeier (1975)

$$L(F) = \prod_{j=1}^{k} \lambda_j^{d_j} (1 - \lambda_j)^{r_j - d_j}$$

 \hat{F} is Kaplan Meier

$$R(F) = L(F)/L(\hat{F})$$
 Likelihood ratio function

Profile likelihood ratio

$$\mathcal{R}(s,t) = \max\{R(F) \mid F([t,\infty)) = s\}$$

$$s_0 = F_0([t,\infty))$$
 for true F_0

They find
$$-2\log(\mathcal{R}(s_0,t)) \to \chi^2_{(1)}$$
 heuristically

Subsequent empirical likelihood ratios

Data type	Statistic	Reference
Right censoring	Survival prob	Thomas & Grunkemeier, Li, Murphy
Left truncation	Survival prob	Li
Left trunc, right cens	Mean	Murphy & van der Vaart
Right censoring	proportional hazard param	Murphy & van der Vaart
Right censoring	integral vs cumu hazard	Pan & Zhou

Les Diablerets, Feb 2014

Empirical Likelihood I: Basics 23

General statistic (first with no ties)

Let
$$w_i = F(\{\boldsymbol{x}_i\})$$
 $w_i \ge 0$ $\sum_{i=1}^n w_i \le 1$ $\boldsymbol{x}_i \in \mathbb{R}^d$

$$L(F) = \prod_{i=1}^{n} w_i \quad L(\widehat{F}) = \prod_{i=1}^{n} 1/n \quad R(F) = \prod_{i=1}^{n} nw_i$$

$$\mathcal{R}(\theta) = \sup\Bigl\{\prod_{i=1}^n nw_i \mid T(F) = \theta\Bigr\} \qquad \text{some parameter } T(F)$$

If there are ties . . .

$$L(F)\to L(F)\times\prod_j n_j^{n_j}\quad\text{and},\quad L(\widehat F)\to L(\widehat F)\times\prod_j n_j^{n_j}$$

$$R\text{ and }\mathcal R\text{ unchanged}$$

Les Diablerets, Feb 2014

24

Empirical Likelihood I: Basics

For the mean of F

$$T(F) \equiv \int \boldsymbol{x} dF(\boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^d$$

$$\widehat{T} \equiv T(\widehat{F}) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

We get
$$\{T(F) \mid R(F) \ge \epsilon\} = \mathbb{R}^d, \quad \forall r < 1$$

Let
$$F_{\epsilon, \boldsymbol{x}} = (1 - \epsilon) \widehat{F} + \epsilon \delta_{\boldsymbol{x}}$$

For any
$$r < 1$$
,

$$R(F_{\epsilon, m{x}}) = rac{L((1-\epsilon)\widehat{F}+\epsilon\delta_{m{x}})}{L(\widehat{F})} \geq (1-\epsilon)^n \geq r$$
 for small enough ϵ

Then let $\delta_{m{x}}$ range over \mathbb{R}^d

Bounded random variables

If $\Pr(\boldsymbol{X} \in B) = 1$, for known bounded set B, then the confidence region

$$\left\{ \int \boldsymbol{x} dF(\boldsymbol{x}) \mid R(F) \ge c, F(B) = 1 \right\}$$

does not become degenerate.

Which bounded set?

If $\mathbb{E}(\|\boldsymbol{X}\|^2) < \infty$ then it works to take B to be the convex hull of the sample. (The hull approaches the support fast enough.)

Then maximizing the likelihood for F(B)=1 reduces to maximizing it for $F(\{{\pmb x}_1,\dots,{\pmb x}_n\})=1$

Les Diablerets, Feb 2014

Les Diablerets, Feb 2014

28

Empirical Likelihood I: Basics 27 Empirical Likelihood I: Basics

Multinomial likelihood for n=3

Contours of $\prod_i nw_i$ MLE at center LR= i/10, $i=0,\ldots,9$

Empirical likelihood for the mean

Restrict to $F(\{\boldsymbol{x}_1,\dots,\boldsymbol{x}_n\})=1$ i.e. $\sum_{i=1}^n w_i=1$

Confidence region is

$$C_{r,n} = \left\{ \sum_{i=1}^{n} w_i \boldsymbol{x}_i \mid w_i \ge 0, \sum_{i=1}^{n} w_i = 1, \prod_{i=1}^{n} n w_i > r \right\}$$

Profile likelihood

$$\mathcal{R}(\mu) = \sup \left\{ \prod_{i=1}^{n} n w_i \mid w_i > 0, \sum_{i=1}^{n} w_i = 1, \sum_{i=1}^{n} w_i \boldsymbol{x}_i = \mu \right\}$$

We have a multinomial on the n data points, hence n-1 parameters

Empirical likelihood theorem

Suppose that $oldsymbol{X}_i \sim F_0$ are IID in \mathbb{R}^d

$$\mu_0 = \int \boldsymbol{x} dF_0(\boldsymbol{x})$$

$$V_0 = \int (oldsymbol{x} - \mu_0) (oldsymbol{x} - \mu_0)^T dF_0(oldsymbol{x})$$
 finite

$$\operatorname{rank}(V_0)=q>0$$

Then as $n \to \infty$

$$-2\log \mathcal{R}(\mu_0) \to \chi^2_{(q)}$$

same as parametric limit

Empirical Likelihood I: Basics 29 Empirical Likelihood I: Basics 30

Cavendish's measurements of Earth's density

Les Diablerets, Feb 2014

Empirical Likelihood I: Basics 31

Dipper, Cinclus cinclus

Eats larvae of Mayflies, Stoneflies, Caddis flies, other

Les Diablerets, Feb 2014

Profile empirical likelihood

Bars show 95% C.I. Dot is at presently known value.

Les Diablerets, Feb 2014

Empirical Likelihood I: Basics

Dipper diet means

Top row shows EL; bottom Hotelling's T^2 ellipses Data from Iles

32

Empirical Likelihood I: Basics 33 Empirical Likelihood I: Basics 34

Computing EL for the mean

Start with the convex hull:

$$\mathcal{H} = \mathcal{H}(x_1, ..., x_n) = \left\{ \sum_{i=1}^n w_i x_i \mid w_i \ge 0, \sum_{i=1}^n w_i = 1 \right\}$$

$$\mu \notin \mathcal{H} \implies \log \mathcal{R}(\mu) = -\infty$$

If
$$\mu \in \mathcal{H}$$
 then $\mathcal{R}(\mu) < \infty$

and we will compute it via Lagrange multipliers

Les Diablerets, Feb 2014

Empirical Likelihood I: Basics 35

Convex duality

Let
$$\mathbb{L}(\lambda) \equiv -\sum_{i=1}^{n} \log(1 + \lambda^{\mathsf{T}}(\boldsymbol{x}_{i} - \mu)) = \log R(F)$$

$$\frac{\partial \mathbb{L}}{\partial \lambda} = -\sum_{i=1}^{n} \frac{\boldsymbol{x}_{i} - \mu}{1 + \lambda^{\mathsf{T}}(\boldsymbol{x}_{i} - \mu)}$$

Minimizing $\mathbb L$ sets gradient to 0 and maximizes $\log R$

$$\frac{\partial^2 \mathbb{L}}{\partial \lambda \partial \lambda^{\mathsf{T}}} = \sum_{i=1}^n \frac{(\boldsymbol{x}_i - \boldsymbol{\mu})(\boldsymbol{x}_i - \boldsymbol{\mu})^{\mathsf{T}}}{(1 + \lambda^{\mathsf{T}}(\boldsymbol{x}_i - \boldsymbol{\mu}))^2}$$

 \mathbb{L} is convex and d dimensional \implies easy optimization

Lagrange multipliers

$$G = \sum_{i=1}^{n} \log(nw_i) - n\lambda^{\mathsf{T}} \left(\sum_{i=1}^{n} w_i (\boldsymbol{x}_i - \mu) \right) + \gamma \left(\sum_{i=1}^{n} w_i - 1 \right)$$

$$\frac{\partial}{\partial w_i} G = \frac{1}{w_i} - n\lambda^{\mathsf{T}} (\boldsymbol{x}_i - \mu) + \gamma = 0$$

$$\sum_{i} w_i \frac{\partial}{\partial w_i} G = n + \gamma = 0 \implies \gamma = -n$$
Cabbing

Solving,

$$w_i = \frac{1}{n} \frac{1}{1 + \lambda^\mathsf{T} (\boldsymbol{x}_i - \mu)}$$

Where $\lambda = \lambda(\mu)$ solves

$$0 = \sum_{i=1}^{n} \frac{\boldsymbol{x}_i - \mu}{1 + \lambda^{\mathsf{T}} (\boldsymbol{x}_i - \mu)}$$

reciprocal tilting

Les Diablerets, Feb 2014

36

Empirical Likelihood I: Basics

Range extension

Recall

$$\mathbb{L}(\lambda) \equiv -\sum_{i=1}^{n} \log(1 + \lambda^{\mathsf{T}}(\boldsymbol{x}_{i} - \mu)) = \log R(F)$$

At the solution

$$w_i = \frac{1}{n} \frac{1}{1 + \lambda^{\mathsf{T}}(\boldsymbol{x}_i - \mu)} \le 1$$

Therefore

$$1 + \lambda^{\mathsf{T}}(\boldsymbol{x}_i - \mu) \ge 1/n$$

So we may replace \log by

$$\log_{\star}(z) = \begin{cases} \log(z), & z \ge 1/n \\ Q(z), & z < 1/n. \end{cases}$$

for function $Q(\cdots)$ matching $\log(\cdots)$ and several derivatives at z=1/n

Empirical Likelihood I: Basics 37 Empirical Likelihood I: Basics 38

Extended function

Now

Empirical Likelihood I: Basics

$$\mathbb{L}_{\star}(\lambda) \equiv -\sum_{i=1}^{n} \log_{\star} (1 + \lambda^{\mathsf{T}} (\boldsymbol{x}_{i} - \mu))$$

is well defined for **all** $\lambda \in \mathbb{R}^d$ (no constraints needed)

If R(F) is finite then \mathbb{L}_{\star} has the same minimizer as \mathbb{L}

Optimization

The Newton step for minimizing \mathbb{L}_{\star} turns out to be least squares.

As a result there are fast and stable algorithms for it.

Recent work O. (2013) shows that we can choose \mathbb{L}_{\star} to be a self-concordant* convex function. Then global convergence is assured for Newton's method with step reduction Boyd & VandenBerghe.

* $|f'''(x)| \le 2|f''(x)|^{3/2}$, and multidimensional generalizations

Les Diablerets, Feb 2014

Sketch of χ^2 limit proof

WLOG q=d, and anticipate a small λ

$$0 = \frac{1}{n} \sum_{i=1}^{n} \frac{\boldsymbol{x}_i - \boldsymbol{\mu}}{1 + (\boldsymbol{x}_i - \boldsymbol{\mu})^\mathsf{T} \lambda} \qquad 1/(1 + \epsilon) = 1 - \epsilon + \epsilon^2 - \epsilon^3 \cdots$$

$$\stackrel{\cdot}{=} \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{x}_i - \boldsymbol{\mu}) - (\boldsymbol{x}_i - \boldsymbol{\mu})(\boldsymbol{x}_i - \boldsymbol{\mu})^\mathsf{T} \lambda, \quad \text{so,}$$

$$\lambda \stackrel{\cdot}{=} S^{-1} (\bar{\boldsymbol{x}} - \boldsymbol{\mu}), \quad \text{where,}$$

$$S = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{x}_i - \boldsymbol{\mu})(\boldsymbol{x}_i - \boldsymbol{\mu})^\mathsf{T}$$

Les Diablerets, Feb 2014

40

39 Empirical Likelihood I: Basics

Sketch continued

$$-2\log\prod_{i=1}^{n}nw_{i} = -2\log\prod_{i=1}^{n}\frac{1}{1+\lambda^{\mathsf{T}}(\boldsymbol{x}_{i}-\mu)}$$

$$=2\sum_{i=1}^{n}\log(1+\lambda^{\mathsf{T}}(\boldsymbol{x}_{i}-\mu)) \qquad \log(1+\epsilon) = \epsilon - (1/2)\epsilon^{2} + \cdots$$

$$\stackrel{\cdot}{=}2\sum_{i=1}^{n}\left(\lambda^{\mathsf{T}}(\boldsymbol{x}_{i}-\mu) - \frac{1}{2}\lambda^{\mathsf{T}}(\boldsymbol{x}_{i}-\mu)(\boldsymbol{x}_{i}-\mu)^{\mathsf{T}}\lambda\right)$$

$$=n\left(2\lambda^{\mathsf{T}}(\bar{\boldsymbol{x}}-\mu) - \lambda^{\mathsf{T}}S\lambda\right)$$

$$=n\left(2(\bar{\boldsymbol{x}}-\mu)^{\mathsf{T}}S^{-1}(\bar{\boldsymbol{x}}-\mu) - (\bar{\boldsymbol{x}}-\mu)^{\mathsf{T}}S^{-1}SS^{-1}(\bar{\boldsymbol{x}}-\mu)\right)$$

$$=n(\bar{\boldsymbol{x}}-\mu)^{\mathsf{T}}S^{-1}(\bar{\boldsymbol{x}}-\mu)$$

$$\rightarrow \chi_{(d)}^{2}$$

Coverage errors

- 1) $\Pr(\mu_0 \in C_{r,n}) = 1 \alpha + O\left(\frac{1}{n}\right)$ as $n \to \infty$ Hall
- 2) One-sided errors of $O(\frac{1}{\sqrt{n}})$ cancel
- 3) Bartlett correction DiCiccio, Hall, Romano
- (a) replace $\chi^{2,1-\alpha}$ by $\left(1+\frac{a}{n}\right)\chi^{2,1-\alpha}$ for carefully chosen a
- (b) get coverage errors $O(\frac{1}{n^2})$
- (c) a does not depend on α
- (d) e.g., $a=(\kappa+3)/2-\gamma^2/3$ for $\mathbb{E}(X)$
- (e) data based \hat{a} gets same rate
- (f) the rate seems to set in slowly

same as for parametric likelihoods

Empirical Likelihood I: Basics 41 Empirical Likelihood I: Basics 42

Power

Some nonparametric methods are inefficient

E.g.: sign test for $\#\{X_i > \mu\} \sim \text{Bin}(n/1/2)$ when $X \sim \mathcal{N}(\mu, \sigma^2)$

EL for the mean is efficient

Suppose $X_i \in \mathbb{R}$ with $\mathbb{E}(X) = \mu$ and $\text{Var}(X) = \sigma^2 > 0$.

Then

$$-2\log(\mathcal{R}(\mu_0 + \tau \sigma_0 n^{-1/2})) \to \chi^2_{(1)}(\tau^2)$$

noncentral χ^2 . Then power $=\Pr(\chi^2_{(1)}(\tau^2)\geq\chi^{2,1-lpha}_{(1)})$, same as in parametric setting

Finer print

When a parametric model holds, we may use it to generate an MLE of $\hat{\theta}$ EL inferences for that estimate are also as efficient as ones based on parametric likelihood, to a second order analysis in Lazar and Mykland (1998)

Les Diablerets, Feb 2014

Calibrating empirical likelihood

 ${\rm Plain}\ \chi^{2,1-\alpha} \qquad \quad {\rm undercovers}$

 $F_{d,n-d}^{1-lpha}$ is a bit better

Bartlett correction asymptotics slow to take hold

Bootstrap seems to work best

Les Diablerets, Feb 2014

44

es Diablerets, reb 2014

43

Empirical Likelihood I: Basics

Empirical Likelihood I: Basics

Bootstrap calibration

Recipe

Sample $oldsymbol{X}_i^*$ IID \widehat{F}

$$\operatorname{Get} - 2 \log \mathcal{R}(\bar{\boldsymbol{x}}; \boldsymbol{x}_1^*, \dots, \boldsymbol{x}_n^*)$$

 ${\it Repeat}~B=1000~{\it times}~~{\it (or~more)}$

Use $1-\alpha$ bootstrap quantile of $-2\log\mathcal{R}^*$

Results

Regions get empirical likelihood shape and bootstrap size

Coverage error $O(n^{-2})$

Same error rate as bootstrapping the bootstrap

Sets in faster than Bartlett correction

Need further adjustments for one-sided inference

Empirical Likelihood I: Basics 45 Empirical Likelihood I: Basics 46

Resampled $-2\log \mathcal{R}(\mu)$ values vs χ^2

Les Diablerets, Feb 2014

Les Diablerets, Feb 2014

48

Empirical Likelihood I: Basics 47 Empirical Likelihood I: Basics

Euclidean likelihood

Minimize
$$\sum_{i=1}^n (nw_i-1)^2$$
 Subject to $\sum_{i=1}^n w_i=1$, and $\sum_{i=1}^n w_i x_i=\mu$

This is a quadratic programming problem.

Allows
$$w_i < 0$$
, and so

Good news confidence regions for means can get out of the convex hull

Bad news but confidence regions no longer obey range restrictions (e.g. weighted variances can be negative)

Euclidean log likelihood

 $-\sum_{i=1}^n \log(nw_i)$ is a distance of w from $(1/n,\ldots,1/n)$.

Replace loglik by

$$\ell_E = -\frac{1}{2} \sum_{i=1}^{n} (nw_i - 1)^2$$

Then $-2\ell_E o \chi^2_{(q)}$ too

Reduces to Hotelling's T^2 for the mean O. (1990)

Reduces to Huber-White covariance for regression

Reduces to continuous updating GMM Kitamura

Quadratic approx to EL, like Wald test is to parametric likelihood

Exponential empirical likelihood

Replace $-\sum_{i=1}^{n} \log(nw_i)$ by

$$\mathsf{KL} = \sum_{i=1}^{n} w_i \log(nw_i)$$

relates to entropy and exponential tilting

Hellinger distance

$$\sum_{i=1}^{n} (w_i^{1/2} - n^{-1/2})^2$$

Empirical Likelihood I: Basics 50

Renyi, Cressie-Read

$$\frac{2}{\lambda(\lambda+1)} \sum_{i=1}^{n} ((nw_i)^{-\lambda} - 1)$$

- λ Method
- -2 Euclidean log likelihood
- ightarrow -1 Exponential empirical likelihood
- -1/2 Freeman-Tukey
- $\rightarrow 0$ Empirical likelihood
 - 1 Pearson's

Les Diablerets, Feb 2014

Empirical Likelihood I: Basics 51

Alternate artificial likelihoods

All Renyi Cressie-Read familiies have χ^2 calibrations. Baggerly

Only EL is Bartlett correctable Baggerly

$$-2\sum_{i=1}^n \widetilde{\log}(nw_i)$$
 Bartlett correctable if

$$\widetilde{\log}(1+z) = z - \frac{1}{2}z^2 + \frac{1}{3}z^3 - \frac{1}{4}z^4 + o(z^4), \quad \text{as } z \to 0$$

Corcoran

 $-\widetilde{\log}(\cdot)$ is also convex and self-concordant O (2013)

Renyi-Cressie-Read contours

Top to bottom, left to right, λ : -5 -2 0 1 2/3 3/2

Les Diablerets, Feb 2014

Empirical Likelihood I: Basics 52

Biased sampling

Examples

- 1) Sample children, but record family sizes.
- 2) Draw blue line over cotton, sample fibers that are partly blue.
- 3) When Y = y it is recorded as X with prob. u(y), lost with prob. 1 u(y).

 $m{Y} \sim F$, observe $m{X} \sim G$, but we really want F

$$G(A) = \frac{\int_A u(\mathbf{y}) dF(\mathbf{y})}{\int u(\mathbf{y}) dF(\mathbf{y})}$$

$$L(F) = \prod_{i=1}^{n} G(\{\boldsymbol{x}_i\}) = \prod_{i=1}^{n} \frac{F(\{\boldsymbol{x}_i\}) u(\boldsymbol{x}_i)}{\int u(\boldsymbol{x}) dF(\boldsymbol{x})}$$

Empirical Likelihood I: Basics 53 Empirical Likelihood I: Basics 54

NPMLE

$$\widehat{G}(\{oldsymbol{x}_i\}) = rac{1}{n}$$
 (for simplicity, suppose no ties)

$$\widehat{G}(\{\boldsymbol{x}_i\}) \propto \widehat{F}(\{\boldsymbol{x}_i\}) \times u(\boldsymbol{x}_i)$$

$$\widehat{F}(\{x_i\}) = \frac{u_i^{-1}}{\sum_{j=1}^n u_j^{-1}}$$

For the mean

$$\hat{\mu} = \frac{\sum_{i=1}^{n} x_i / u_i}{\sum_{i=1}^{n} 1 / u_i}$$

Empirical Likelihood I: Basics

Horvitz-Thompson estimator is NPMLE

$$\hat{\mu} = \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i^{-1}\right)^{-1}$$

when $u_i \propto x_i$, so length bias \implies harmonic mean

Les Diablerets, Feb 2014

55

Transect sampling of shrubs (Muttlak & McDonald)

Biased sampling again

$$0 = \int (\boldsymbol{x} - \mu) dF(\boldsymbol{x}) = \int \frac{\boldsymbol{x} - \mu}{u(\boldsymbol{x})} dG(\boldsymbol{x})$$

$$G(\{\boldsymbol{x}_i\}) = w_i \implies F(\{\boldsymbol{x}_i\}) = \frac{w_i/u_i}{\sum_{j=1}^n 1/u_j}$$

Very simple recipe

$$\mathcal{R}(\theta) = \max \left\{ \prod_{i=1}^{n} n w_i \mid w_i \ge 0, \sum_{i=1}^{n} w_i = 1, \sum_{i=1}^{n} w_i \frac{x_i - \mu}{u_i} = 0 \right\}$$

Les Diablerets, Feb 2014

56

Empirical Likelihood I: Basics

Mean shrub width

$$0 = \sum_{i=1}^n w_i rac{x_i - \mu}{x_i}$$
 Solid, at left

$$0 = \sum_{i=1}^n w_i(x_i - \mu)$$
 Dotted, at right

Empirical Likelihood I: Basics 57

Next: Estimating equations

The mean is but one of many interesting quantities in statistical problems.

It often happens that a solution for the mean extends readily to other problems.

A key technique is to use estimating equations. Let $\theta \in \mathbb{R}^p$ be defined by

$$\mathbb{E}(m(\boldsymbol{X}, \theta)) = 0$$

where m is usually a function from $\mathbb{R}^{d \times p}$ to \mathbb{R}^p .

Then $\hat{\theta}$ is defined by

$$\frac{1}{n}\sum_{i=1}^{n}m(\boldsymbol{x}_{i},\hat{\theta})=0$$

and we can test H_0 : $\theta=\theta_0$ by testing whether $m({m X}_i,\theta_0)$ has mean zero.

Les Diablerets, Feb 2014