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Aim of statistics

▶ Extract information from data for understanding and prediction.
▶ While. . .

1. Avoiding being misled by irreproducible random features of data.
▶ measurement errors, sampling variability, patient-to-patient

variability etc.
2. Avoiding biases from systematic selection effects in data.

▶ biased and non-random sampling, systematic patterns of
missingness, survivorship bias, publication bias (in meta-analysis)

3. Avoiding our own cognitive biases.
▶ availability bias, confirmation bias, seeing patterns in the noise

(evolutionary heritage perhaps: better to ‘see’ three bears that
aren’t there, than miss one bear that is).

Data bias example: Survivorship1

▶ WW2 analysis of the damage to
returning bombers to decide where
reinforcement should be added.

▶ Eventually realized: reinforcement
should be added to the areas not
damaged in the surviving bombers.

▶ Those were the areas most likely hit
in the non-returners.

▶ Similarly when combining evidence from scientific literature. . .
▶ Surprising, interesting and ‘positive’ results much more likely to

‘survive’ to publication (and more likely to be wrong).
▶ Especially in ‘top’ journals demanding high interest/novelty.

1Image: Grandjean, McGeddon, Moll, Wikimedia

Data bias examples: biased samples

▶ Covid ‘recorded cases’ (black line, red curve) were routinely
used to assess the state of the pandemic, as if they were a
representative sample of people with Covid.

▶ They are people who tested positive among those who decided
to, or were told to by track and trace, and could get a test.

▶ The actual prevalence of Covid, measured by randomly sampling
UK residents, is shown as black dots and a blue smooth curve.

▶ Treating cases as representative of prevalence overestimated the
severity of each upswing.



Data bias examples: biased design

▶ A celebrated example is the 1930 Lanarkshire milk trial2

▶ The trial examined relative growth benefits, if any, of daily
drinking of raw or pasteurised milk.

▶ 5000 children each were given 3/4 pint of raw or pasteurized
milk daily for 4 months, for comparison with 10000 controls.

▶ Within schools, allocation to milk or control was by lottery or
alphabetic, but teachers were given discretion to adjust the
groups if they appeared ‘unbalanced’.

▶ The teachers appear to have adjusted by allocating
undernourished children to receive milk.

▶ On average controls were initially larger than the milk receivers
by an amount greater than 4 months average growth!

▶ Data a can of worms! Avoidable by proper randomization.

2whose design was first criticised by Student (of t-test fame).

Cognitive biases I

▶ Availability bias.
▶ Concentrate on readily available data (e.g. early deaths from

Covid), ignoring difficult to access or delayed data (e.g. early
deaths from effects of Covid measures).

▶ Similar to selection biases. Excessive weight given to what’s
visible and accessible.

▶ Confirmation bias.
▶ Look for (notice) data supporting a theory/model, not for data

contradicting it.
▶ Tendency to require much higher standard of proof for

contradiction than for confirmation.

Every time I did this the sun rose next morning!

Cognitive biases II

▶ The question and answer switch.
▶ Use an easy question to provide the answer to a difficult question.
▶ e.g. Use who would be a better drinking buddy? to answer who

has the better economic policies?
▶ or use how did google mobility data change around lockdown? to

answer how did Covid relevant inter-personal contacts change
around lockdown?

▶ Seeing patterns in the noise.
▶ We are so good at spotting patterns that we see them in the

arrangement of stars, the sequence of lottery numbers, and almost
inevitably in the noise in our data.

▶ Whole books are written on these problems: See Thinking Fast
and Slow (Daniel Kahneman, 2011) for more.

The statistical approach: learning from random samples

▶ Treat data as a random sample from a population, where some
fixed property of the population is the information of interest.

▶ Use the data sample variability to learn about the population.
▶ Random samples from populations avoid data selection biases.
▶ The population can be concrete or abstract. e.g.

▶ The population of UK adults.
▶ The population of possible energy yields from replication of a

collision experiment under practically identical conditions.

. . . the key is to identify what population your data can be treated
as sampling, and what property of that population is of interest.

▶ Models of how the data were randomly sampled from the
population allow us to
▶ infer properties of the population from the data.
▶ avoid over-interpreting random patterns in the data.



The statistical roles of randomness

1. By modelling the component of data that would change from
replicate to replicate in a random unexplained way, we avoid
over-interpretation of ‘noise’ and can characterize the reliability
of the information gained from the data.

2. By designing data collection to randomly sample from the
population of interest we can avoid data selection biases.

3. In experiments on non-identical experimental units (people,
guinea pigs, 5-year old crash helmets) where we manipulate one
‘treatment’ variable to find its effect on a ‘response’ variable,
systematic association between the unit characteristics and
treatment is avoided by randomizing units to treatment levels.

Causality and caution

▶ Randomized experiments can show that a treatment variable and
nothing else caused the changes seen in the response, because all
other unit properties are forced to vary only randomly and
independently across the treatment levels.

▶ For data not from a randomized experiment – observational
data3 – we would need to be able to allow for the effect of every
possible variable also influencing the response before we could
conclude anything causal about the treatment’s effect.

▶ Usually we don’t know what these variables are, let alone have
measurements for them.

▶ This makes causal inference difficult with observational data.
▶ Unless we measure every variable relevant to the response, and

have a very good model relating the response to these variables,
great care is then needed in drawing causal conclusions!

3still a random sample hopefully!

Statistical regression models

▶ n observations, yi, of a response variable of primary interest.
▶ With each yi is a covariate vector xi that influences its value.
▶ yi, xi may be sampled randomly from the joint distribution of y, x.
▶ But we only require that each yi is sampled randomly from the

sub-population for which the covariates take the corresponding
observed value xi.

▶ We create a model relating yi to the xi, and use it for all such
sub-populations.

▶ In particular we model the distribution of y given x, not the more
complicated joint distribution of y and x.

▶ Crucially, yi|xi can often be modelled as independent of yj|xj for
all i ̸= j. This simplification is untrue for yi and yj ‘marginally’4.

4i.e. without conditioning.

Regression model general structure

▶ Regression models specify some mathematical form for the
relationship between the statistical distribution of the response
and the covariates, in the population.

▶ This mathematical expression contains some unknown
parameters, whose values provide interesting information about
the population.

▶ We learn about the parameters from the sample of data.



Simple regression model example: Poisson GLM
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▶ casesi ∼ Poi(µi) where log(µi) = θ0 + θ1yeari + θ2year2i.
▶ µi represents the underlying case rate in the population over time.
▶ The actual number of cases seen in a year is assumed to be a

Poisson random variable with mean µi.
▶ The parameters θ control the change in µi over time.
▶ Need to estimate θ from the data.

Basic inference methods: Maximum Likelihood

▶ A regression model specifies π(yi|xi,θ), the p.d.f. of yi|xi. Given
conditional independence the p.d.f. of y given x is∏n

i=1
π(yi|xi,θ)

▶ Plug the observed y values into the joint p.d.f. take logs and
consider it as a function of θ

l(θ) = log L(θ) =
n∑

i=1

log π(yi|xi,θ)

– the log likelihood. θ values are more likely to be correct, the
higher probability they ascribe to the observed data.

▶ So θ̂ = argmaxθl(θ) is the maximum likelihood estimate of θ.

Simple simulated one parameter likelihood example

●

●

●

●

●

●● ●●

●

●●

●

●

●●

● ●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8
10

12

x

y

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
25

0
−

20
0

−
15

0
−

10
0

β

l(β
)

▶ Left: data + expected value curve for model yi ∼ Poi{exp(βxi)}.
▶ Right: corresponding l(β) function. β̂ ≃ 2.4 .
▶ Poisson p.d.f of yi is: exp(βxi)

yi exp{− exp(βxi)}/yi!

▶ So log-likelihood function is

l(β) =
n∑

i=1

yiβxi − exp(βxi)− log yi!

Maximizing log likelihoods by Newton’s method
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▶ Log likelihoods can be maximized numerically by Newton’s
method. Iterate. . .

1. Find the quadratic matching the first and second derivatives of
l(θ) w.r.t. θ at current θ̂ guess.

2. Maximize the quadratic to get an updated θ̂ estimate.

▶ To guarantee convergence, perturb Hessian5 to be negative def. if
it’s not and step half (repeatedly) if log likelihood not increased.

▶ Note: log likelihood of a Gaussian is exactly quadratic - this is
successive Gaussian approximation, improving with iteration.

5second derivative matrix



Sampling distribution of MLE
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▶ How would the MLE vary under repeated replication of the data
sampling process?

▶ The figure illustrates how the likelihood curves of the simple
simulated example vary under replication.

▶ This variability in the likelihood function leads to variability in
the MLE (black dots maxima, black ticks MLEs).

Theoretical sampling distribution of MLE
▶ Actually replication impractical, but if Î = −∂2l/∂θ∂θT and

n → ∞ we have theoretical result

θ̂ ∼ N(θ, Î−1
).

▶ Can also substitute E(Î) for Î .
▶ Can immediately use this to summarize uncertainty in θ by

constructing confidence intervals.
▶ A confidence interval is a random interval having a specified

probability (e.g. 0.95) of containing the true parameter value,
over imagined replication of the data sampling process. e.g.

βtrue

Hypothesis testing: comparing nested models

▶ Consider testing whether a simplified model could be adequate
for our data.

▶ Express the simplification as a null hypothesis placing r
restrictions on θ. Say, H0 : R(θ) = 0.

▶ If H0 is true, θ̂r is the MLE given R(θ) = 0 and n → ∞6

2{l(θ̂)− l(θ̂r)} ∼ χ2
r

but if H0 is untrue the LHS will be too large for χ2
r .

▶ Use result to compute p-value (prob. a χ2
r r.v. ≥ observed LHS)

▶ Very roughly: what’s the chance of getting these data if H0 is true.
▶ Exactly: if H0 is true, how probable are data with at least this low

a ratio of probability under H0 to probability without restrictions.

. . . so low p-value casts doubt on H0.

6R(θ) must not restrict θ to edge of feasible parameter space, l must be ‘regular’.

Comparing models by prediction performance

▶ Perhaps we don’t have nested models, or don’t want to specially
favour simplicity.

▶ Can compare models by their ability to predict new (replicate) yi

data not used in fitting.
▶ Favour the model that would ascribe the highest probability to

such new replicate data.
▶ Idea leads theoretically to choosing model with lowest

AIC = −2l(θ̂) + 2dim(θ)

▶ Or use a brute force estimate. Let θ̂[−i] be MLE on omission of
yi, xi from fit. Maximize leave one out cross validation criterion

OCV =

n∑
i=1

log π(yi|xi, θ̂
[−i]).



Basic inference methods: Bayesian

▶ MLE: θ are fixed constants to estimate. θ̂ variability over
theoretical replication of data sampling characterizes uncertainty.

▶ Bayesian approach: use probability distributions to model our
uncertainty about θ values, treating θ as random variables.

▶ A Bayesian model describes the pre-data uncertainty about
parameters using a prior distribution, π(θ), say.

▶ The sampling model describes how the data have been sampled
from the population given θ values. It provides the p.d.f. π(y|θ).

▶ π(θ) is then updated given the observed y using the fact that
π(y,θ) = π(θ|y)π(y) = π(y|θ)π(θ) implying Bayes rule

π(θ|y) = π(y|θ)π(θ)/π(y).

▶ Plug in observed y. We have posterior ∝ likelihood × prior.

Using Bayes

▶ Given π(θ|y) we can obtain credible intervals: fixed intervals
containing the random parameter with specified probability.

▶ Despite the switching of fixed and random, confidence and
credible intervals frequently converge as n → ∞.

▶ As n → ∞ the likelihood’s impact on the posterior usually
dominates the prior, so the choice of prior becomes unimportant.

▶ Hence we can often use ‘uninformative’ priors if unsure.
▶ But we can’t escape the impact of π(θ) choice if trying to

compute the relative posterior probability of models, for model
selection. This makes model selection tricky.

▶ As for MLE, use of π(θ|y) usually requires numerical methods.
1. One approach is to use stochastic simulation methods to simulate

draws from π(θ|y).
2. Other approaches make judicious use of Gaussian

approximations, for approximate posterior calculations.

One technical reminder: covariance matrices

▶ A covariance matrix for y is a matrix with variances of y on
leading diagonal and covariances on off diagonals.

▶ i.e. if cov(y) = V then Vij = covariance(yi, yj). Equivalently
V = E[{y − E(y)}{y − E(y)}T].

▶ From these basic definitions it is easy to show that if y = Ax and
x has covariance matrix Vx then the covariance matrix of y is

Vy = AVxAT

. . . this result gets used quite a bit.

Enough background. Let’s move on to smooth models, GAMs etc. . .


