Aim of statistics

Background statistical concepts

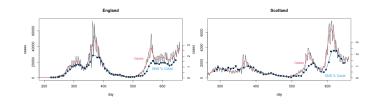
Simon Wood School of Mathematics, University of Edinburgh, U.K.

- Extract information from data for understanding and prediction.
- ► While...
 - 1. Avoiding being misled by irreproducible random features of data.
 - measurement errors, sampling variability, patient-to-patient variability etc.
 - 2. Avoiding biases from systematic selection effects in data.
 - biased and non-random sampling, systematic patterns of missingness, survivorship bias, publication bias (in meta-analysis)
 - 3. Avoiding our own cognitive biases.
 - availability bias, confirmation bias, seeing patterns in the noise (evolutionary heritage perhaps: better to 'see' three bears that aren't there, than miss one bear that is).

Data bias example: Survivorship¹

- WW2 analysis of the damage to returning bombers to decide where reinforcement should be added.
- Eventually realized: reinforcement should be added to the areas **not** damaged in the *surviving* bombers.
- Those were the areas most likely hit in the non-returners.
- Similarly when combining evidence from scientific literature...
- Surprising, interesting and 'positive' results much more likely to 'survive' to publication (and more likely to be wrong).
- Especially in 'top' journals demanding high interest/novelty.

Data bias examples: biased samples



- Covid 'recorded cases' (black line, red curve) were routinely used to assess the state of the pandemic, as if they were a representative sample of people with Covid.
- They are people who tested positive among those who decided to, or were told to by track and trace, and could get a test.
- The actual prevalence of Covid, measured by randomly sampling UK residents, is shown as black dots and a blue smooth curve.
- Treating cases as representative of prevalence overestimated the severity of each upswing.

¹Image: Grandjean, McGeddon, Moll, Wikimedia

Data bias examples: biased design

- A celebrated example is the 1930 Lanarkshire milk trial²
- The trial examined relative growth benefits, if any, of daily drinking of raw or pasteurised milk.
- 5000 children each were given 3/4 pint of raw or pasteurized milk daily for 4 months, for comparison with 10000 controls.
- Within schools, allocation to milk or control was by lottery or alphabetic, but teachers were given discretion to adjust the groups if they appeared 'unbalanced'.
- The teachers appear to have adjusted by allocating undernourished children to receive milk.
- On average controls were initially larger than the milk receivers by an amount greater than 4 months average growth!
- ► Data a can of worms! Avoidable by proper randomization.

²whose design was first criticised by Student (of t-test fame).

Cognitive biases II

- ► The question and answer switch.
 - Use an easy question to provide the answer to a difficult question.
 - e.g. Use who would be a better drinking buddy? to answer who has the better economic policies?
 - or use how did google mobility data change around lockdown? to answer how did Covid relevant inter-personal contacts change around lockdown?
- Seeing patterns in the noise.
 - We are so good at spotting patterns that we see them in the arrangement of stars, the sequence of lottery numbers, and almost inevitably in the noise in our data.
 - Whole books are written on these problems: See *Thinking Fast and Slow* (Daniel Kahneman, 2011) for more.

Cognitive biases I

- Availability bias.
 - Concentrate on readily available data (e.g. early deaths from Covid), ignoring difficult to access or delayed data (e.g. early deaths from effects of Covid measures).
 - Similar to selection biases. Excessive weight given to what's visible and accessible.
- Confirmation bias.
 - Look for (notice) data supporting a theory/model, not for data contradicting it.
 - Tendency to require much higher standard of proof for contradiction than for confirmation.

Every time I did this the sun rose next morning!

The statistical approach: learning from random samples

- Treat data as a random sample from a population, where some fixed property of the population is the information of interest.
- Use the data sample variability to learn about the population.
- Random samples from populations avoid data selection biases.
- ► The population can be concrete or abstract. e.g.
 - ► The population of UK adults.
 - The population of possible energy yields from replication of a collision experiment under practically identical conditions.
 - ... the key is to identify what population your data can be treated as sampling, and what property of that population is of interest.
- Models of how the data were randomly sampled from the population allow us to
 - *infer* properties of the population from the data.
 - *avoid* over-interpreting random patterns in the data.

The statistical roles of randomness

- 1. By modelling the component of data that would change from replicate to replicate in a random unexplained way, we avoid over-interpretation of 'noise' and can characterize the reliability of the information gained from the data.
- 2. By designing data collection to randomly sample from the population of interest we can avoid data selection biases.
- 3. In *experiments* on non-identical experimental units (people, guinea pigs, 5-year old crash helmets) where we manipulate one 'treatment' variable to find its effect on a 'response' variable, systematic association between the unit characteristics and treatment is avoided by *randomizing* units to treatment levels.

Causality and caution

- Randomized experiments can show that a treatment variable and nothing else *caused* the changes seen in the response, because all other unit properties are forced to vary only randomly and independently across the treatment levels.
- For data not from a randomized experiment observational data³ – we would need to be able to allow for the effect of every possible variable also influencing the response before we could conclude anything causal about the treatment's effect.
- Usually we don't know what these variables are, let alone have measurements for them.
- ▶ This makes *causal inference* difficult with observational data.
- Unless we measure every variable relevant to the response, and have a very good model relating the response to these variables, great care is then needed in drawing causal conclusions!

³still a random sample hopefully!

Statistical regression models

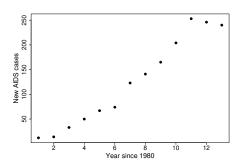
- *n* observations, y_i , of a *response variable* of primary interest.
- With each y_i is a *covariate* vector \mathbf{x}_i that influences its value.
- \blacktriangleright *y_i*, **x***_i may* be sampled randomly from the joint distribution of *y*, **x**.
- But we only *require* that each y_i is sampled randomly from the sub-population for which the covariates take the corresponding observed value x_i.
- We create a model relating y_i to the x_i, and use it for all such sub-populations.
- In particular we model the distribution of y given x, not the more complicated joint distribution of y and x.
- Crucially, $y_i | \mathbf{x}_i$ can often be modelled as independent of $y_j | \mathbf{x}_j$ for all $i \neq j$. This simplification is untrue for y_i and y_j 'marginally'⁴.

Regression model general structure

- Regression models specify some mathematical form for the relationship between the statistical distribution of the response and the covariates, in the population.
- This mathematical expression contains some unknown parameters, whose values provide interesting information about the population.
- We learn about the parameters from the sample of data.

⁴i.e. without conditioning.

Simple regression model example: Poisson GLM



- cases_i ~ Poi(μ_i) where log(μ_i) = $\theta_0 + \theta_1$ year_i + θ_2 year_i².
- μ_i represents the underlying case rate in the population over time.
- The actual number of cases seen in a year is assumed to be a Poisson random variable with mean µ_i.
- The parameters θ control the change in μ_i over time.
- Need to estimate θ from the data.

Basic inference methods: Maximum Likelihood

A regression model specifies π(y_i|x_i, θ), the p.d.f. of y_i|x_i. Given conditional independence the p.d.f. of y given x is

$$\prod_{i=1}^n \pi(y_i | \mathbf{x}_i, \boldsymbol{\theta})$$

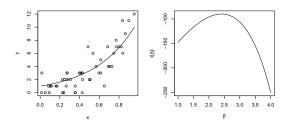
Plug the observed y values into the joint p.d.f. take logs and consider it as a function of θ

$$l(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log \pi(y_i | \mathbf{x}_i, \boldsymbol{\theta})$$

– the *log likelihood*. θ values are more *likely* to be correct, the higher probability they ascribe to the observed data.

So $\hat{\theta} = \operatorname{argmax}_{\theta} l(\theta)$ is the maximum likelihood estimate of θ .

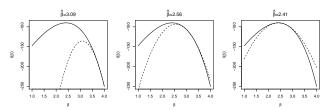
Simple simulated one parameter likelihood example



- Left: data + expected value curve for model $y_i \sim \text{Poi}\{\exp(\beta x_i)\}$.
- Right: corresponding $l(\beta)$ function. $\hat{\beta} \simeq 2.4$.
- Poisson p.d.f of y_i is: $\exp(\beta x_i)^{y_i} \exp\{-\exp(\beta x_i)\}/y_i!$
- So log-likelihood function is

$$l(\beta) = \sum_{i=1}^{n} y_i \beta x_i - \exp(\beta x_i) - \log y_i!$$

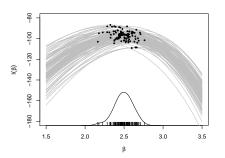
Maximizing log likelihoods by Newton's method



- Log likelihoods can be maximized numerically by Newton's method. Iterate...
 - 1. Find the quadratic matching the first and second derivatives of $l(\theta)$ w.r.t. θ at current $\hat{\theta}$ guess.
 - 2. Maximize the quadratic to get an updated $\hat{\theta}$ estimate.
- To guarantee convergence, perturb Hessian⁵ to be negative def. if it's not and step half (repeatedly) if log likelihood not increased.
- Note: log likelihood of a Gaussian is exactly quadratic this is successive Gaussian approximation, improving with iteration.

⁵second derivative matrix

Sampling distribution of MLE



- How would the MLE vary under repeated replication of the data sampling process?
- The figure illustrates how the likelihood curves of the simple simulated example vary under replication.
- This variability in the likelihood function leads to variability in the MLE (black dots maxima, black ticks MLEs).

Hypothesis testing: comparing nested models

- Consider testing whether a simplified model could be adequate for our data.
- Express the simplification as a *null hypothesis* placing *r* restrictions on θ . Say, $H_0 : R(\theta) = 0$.
- ▶ If H_0 is true, $\hat{\theta}_r$ is the MLE given $R(\theta) = \mathbf{0}$ and $n \to \infty^6$

$$2\{l(\hat{\theta}) - l(\hat{\theta}_r)\} \sim \chi_r^2$$

but if H_0 is untrue the LHS will be too large for χ^2_r .

- Use result to compute *p*-value (prob. a χ_r^2 r.v. \geq observed LHS)
 - Very roughly: what's the chance of getting these data if H_0 is true.
 - Exactly: if H_0 is true, how probable are data with at least this low a ratio of probability under H_0 to probability without restrictions.
 - \ldots so low p-value casts doubt on H_0 .

Theoretical sampling distribution of MLE

• Actually replication impractical, but if $\hat{\mathcal{I}} = -\partial^2 l / \partial \theta \partial \theta^{\mathsf{T}}$ and $n \to \infty$ we have theoretical result

$$\hat{\boldsymbol{\theta}} \sim N(\boldsymbol{\theta}, \hat{\boldsymbol{\mathcal{I}}}^{-1}).$$

- Can also substitute $\mathbb{E}(\hat{\mathcal{I}})$ for $\hat{\mathcal{I}}$.
- Can immediately use this to summarize uncertainty in θ by constructing *confidence intervals*.
- A confidence interval is a random interval having a specified probability (e.g. 0.95) of containing the true parameter value, over imagined replication of the data sampling process. e.g.

Comparing models by prediction performance

- Perhaps we don't have nested models, or don't want to specially favour simplicity.
- Can compare models by their ability to predict new (replicate) y_i data *not used in fitting*.
- Favour the model that would ascribe the highest probability to such new replicate data.
- Idea leads theoretically to choosing model with lowest

$$AIC = -2l(\hat{\theta}) + 2\dim(\theta)$$

Or use a brute force estimate. Let θ^[-i] be MLE on omission of y_i, x_i from fit. Maximize leave one out cross validation criterion

$$OCV = \sum_{i=1}^{n} \log \pi(y_i | \mathbf{x}_i, \hat{\boldsymbol{\theta}}^{[-i]}).$$

 $^{{}^{6}}R(\theta)$ must not restrict θ to edge of feasible parameter space, *l* must be 'regular'.

Basic inference methods: Bayesian

- MLE: θ are fixed constants to estimate. $\hat{\theta}$ variability over theoretical replication of data sampling characterizes uncertainty.
- Bayesian approach: use probability distributions to model our uncertainty about θ values, treating θ as random variables.
- A Bayesian model describes the pre-data uncertainty about parameters using a *prior* distribution, $\pi(\theta)$, say.
- The sampling model describes how the data have been sampled from the population given θ values. It provides the p.d.f. $\pi(\mathbf{y}|\boldsymbol{\theta})$.
- $\pi(\theta)$ is then updated given the observed y using the fact that $\pi(\mathbf{y}, \theta) = \pi(\theta|\mathbf{y})\pi(\mathbf{y}) = \pi(\mathbf{y}|\theta)\pi(\theta)$ implying *Bayes rule*

 $\pi(\boldsymbol{\theta}|\mathbf{y}) = \pi(\mathbf{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})/\pi(\mathbf{y}).$

• Plug in observed y. We have posterior \propto likelihood \times prior.

One technical reminder: covariance matrices

- A covariance matrix for y is a matrix with variances of y on leading diagonal and covariances on off diagonals.
- i.e. if $\operatorname{cov}(\mathbf{y}) = \mathbf{V}$ then $V_{ij} = \operatorname{covariance}(y_i, y_j)$. Equivalently $\mathbf{V} = \mathbb{E}[\{\mathbf{y} \mathbb{E}(\mathbf{y})\}\{\mathbf{y} \mathbb{E}(\mathbf{y})\}^{\mathsf{T}}].$
- From these basic definitions it is easy to show that if y = Ax and x has covariance matrix V_x then the covariance matrix of y is

$$\mathbf{V}_y = \mathbf{A} \mathbf{V}_x \mathbf{A}^\mathsf{T}$$

... this result gets used quite a bit.

Using Bayes

- Given $\pi(\theta|\mathbf{y})$ we can obtain *credible intervals*: fixed intervals containing the *random* parameter with specified probability.
- ► Despite the switching of fixed and random, confidence and credible intervals frequently converge as n → ∞.
- As n → ∞ the likelihood's impact on the posterior usually dominates the prior, so the choice of prior becomes unimportant.
- Hence we can often use 'uninformative' priors if unsure.
- But we can't escape the impact of π(θ) choice if trying to compute the relative posterior probability of models, for model selection. This makes model selection tricky.
- As for MLE, use of $\pi(\theta|\mathbf{y})$ usually requires numerical methods.
 - 1. One approach is to use stochastic simulation methods to simulate draws from $\pi(\theta|\mathbf{y})$.
 - 2. Other approaches make judicious use of Gaussian approximations, for approximate posterior calculations.

Enough background. Let's move on to smooth models, GAMs etc...