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▶ Observed mean global annual temperature anomaly relative to
20th century mean.

▶ Data contain climate component + random weather component.
Data are sample from population of all possible mean annual
series that could have happened, given underlying climate.

▶ Questions: which features are annual randomness, which climate
trend? Is there any evidence for recent slowing of increase?

Simple temperature model

▶ TAi = f (Yeari) + ϵi, ϵi ∼
ind.

N(0, σ2) and f (·) a smooth function.

▶ Equivalently TAi ∼
ind.

N(f (Yeari), σ
2).

▶ R package mgcv provides gam – glm plus smooth terms.
require(mgcv)
b <- gam(TA ~ s(Year),data=gt,method="REML")
b

Family: gaussian
Link function: identity

Formula:
TA ~ s(Year)

Estimated degrees of freedom:
8.04 total = 9.04

REML score: -145.3959

▶ Residual checks as GLM OK. Default max DoF of 10 not OK!

More flexible fit

b <- gam(TA ~ s(Year,k=30),data=gt,method="REML")
plot(b,scheme=1) ## default plot
## create bespoke plot...
pb <- predict(b,se=TRUE) ## get predictions and s.e.s
ul <- pb$fit + pb$se.fit*2 ## lower conf limit, upper next...
ll <- pb$fit - pb$se.fit*2; n <- length(ul)
with(gt,plot(Year,TA,ylab="Temperature Anomaly",pch=19,cex=.5))
## plot CI...
polygon(c(gt$Year,gt$Year[n:1]),c(ul,ll[n:1]),col=4,border=NA)
with(gt,points(Year,TA,pch=19,cex=.5)) ## make points visible
lines(gt$Year,pb$fit,col=2,lwd=2) ## best fit
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▶ No evidence of easing rate of increase.



More checks

plot(gt$Year,residuals(b),xlab="Year")
acf(residuals(b))
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▶ Residual variance appears constant as assumed by model.
▶ There is significant residual correlation at lag 1 - see later.
▶ Also somewhat at lags 5 and 6 – an El Niño effect?

But what model exactly is the software using and how? It’s time to
investigate the main underlying ideas.

Good and bad unknown function models

▶ We could use polynomials to model unknown functions. i.e.
f (x) = β0 + β1x + β2x2 + β3x3 · · · . Simple, but. . .

1. choosing the order of polynomial is clunky, and
2. they become ever less statistically stable1 with increasing

flexibility (left), unlike equally flexible alternatives (right).
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Polynomial regression, orders 10−14
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▶ The instability relates to the polynomial being continuous in all
its derivatives. Forgo this and we get more stable behaviour.

1numerical stability is not the problem - easy to handle

Models for unknown functions: simple examples

▶ How should we model an unknown function?
▶ One way is to treat it as an observation of a stochastic process.
▶ Consider a piecewise linear function. Evenly spaced ‘knots’ at

x1, x2, . . ., parameters βi = f (xi).
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▶ Can model βi as random walk. e.g. . .
1. Random Gaussian increments, ϵi , so βi+1 = βi + ϵi.
2. Random Gaussian slope changes, ϵi, so βi+2 = 2βi+1 − βi + ϵi.

. . . 2 gives visually smoother paths.
▶ Choose more than enough knots to avoid underfit, and let

var(ϵi) = σ2 control function complexity.

RW2 function prior: β ∼ N(0, σ2(DTD)−)

▶ We can write ϵ = Dβ where ϵi are independent N(0, σ2), i.e.
 ϵ1

ϵ2
·

 =

 1 −2 1 · ·
· 1 −2 1 ·
· · · · ·

 β1
β2
·


▶ What distribution for β does this imply? Not unique as β has 2

more elements than ϵ.
▶ Improper Gaussian β ∼ N(0, σ2(DTD)−) works. σ2(DTD)− is

pseudoinverse of precision matrix λDTD where λ−1 = σ2.
▶ Why? Form singular value decomposition2 DT = UTVT so that

DTD = UT2UT and (DTD)− = UT−2UT.
▶ ϵ is a linear transform of β, so Gaussian, E(ϵ) = DE(β) = 0

and cov(ϵ) = D(DTD)−DTσ2 = VTUTUT−2UTUTVTσ2 = Iσ2

2U column orthogonal p × p − 2, T diagonal, V orthogonal; p = dim(β)



Function estimates
▶ Let’s write prior as β ∼ N(0,S−

λ ) where Sλ = λDTD.
▶ Let model be E(yi) = µi = f (xi), where yi is from some tractable

distribution, so we can write down a likelihood.
▶ Posterior modes3, β̂ maximize π(β|y) ∝ π(y|β)π(β).
▶ So on the log scale, writing l(β) = log π(y|β)

β̂ = argmax
β

l(β)− βTSλβ/2

– λ controls level of quadratic penalization, hence smoothness.
▶ We arrived here by considering a latent Gaussian process model,

▶ but we could have started by constructing the prior precision or
covariance for f (x) or β directly,

▶ or by simply deciding to use a piecewise linear f and penalize the
resulting likelihood to control its smoothness.

. . . they are all basically the same in practice, as is treating the
Bayesian prior as a frequentist random effect distribution instead.

3a.k.a. MAP estimates

Posterior distribution for β

▶ Given log π(β|y) = l(β)− βTSλβ/2 + c, replace RHS by its
2nd order Taylor approximation about β̂ and exponentiate.

⇒ π(β|y) ∝ exp{−(β − β̂)T(Î + Sλ)(β − β̂)/2}

i.e. β|y ∼ N{β̂, (Î + Sλ)
−1} in n → ∞ limit4.

▶ Denote this Gaussian approximate posterior πG(β|y) for later.
▶ Can use result directly, or to construct MCMC proposals to

simulate from posterior, or as the key ingredient in the INLA
approximation (improved tails).

▶ Here we’ll mostly use it directly.

4remember Î if second derivate matrix (Hessian) of negative log likelihood.

Effective degrees of freedom

▶ The degrees of freedom of a model is usually the number of its
parameters that are unknown and free to vary (rather than fixed).

▶ But smoothing penalties/priors restrict parameters’ freedom to
vary. How should we then define degrees of freedom?

▶ Scale by amount penalization has reduced parameter variability.
▶ cov(β) ≃ I−1 if unpenalized. How to compare to penalized

version (I + Sλ)
−1? Covariance terms awkward.

▶ Reparameterize so covariances zero! β′ = Rβ where RTR = I
so R−1R−T = I−1. Unpenalized cov(β′) = RR−1R−TRT = I.
Now sum of variances is unpenalized degrees of freedom.

▶ Penalized cov(β′) = R(I + Sλ)
−1RT. So sum of penalized

variances is tr{R(I + Sλ)
−1RT} = tr{(I + Sλ)

−1RTR} =
tr{(I + Sλ)

−1I} - effective degrees of freedom.

Function spaces, bases and basis functions

▶ Working effectively with model functions requires a convenient
way of writing them down mathematically (and coding them up).

▶ Above ‘Piecewise linear function with evenly spaced ‘knots’ at
x1, x2, . . ., parameters βi = f (xi)’, describes a space of functions.

▶ Convenient to represent f (x) using basis functions of the space,

f (x) =
p∑

j=1

bj(x)βj.

▶ Here, the bj(x) are tent functions, taking value 1 at xj, descending
linearly to 0 at xj−1 and xj+1, and being zero outside (xj−1, xj+1).



How the basis works

▶ So the function, f (x), is represented by multiplying each tent
function by its coefficient, βj, and summing the results. . .
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▶ Given the basis functions and coefficients, we can predict the
value of f anywhere in the range of the xj values.

Better bases
▶ Piecewise linear functions are statistically stable, but not visually

smooth, and even for noiseless data the approximation error is
O(h2) where h is the x spacing of the knots.

▶ Suppose we seek the function5, f , that interpolates noise free
data observed at x1, x2, . . . while minimizing

∫
f ′′(x)2dx.

1. The function is a cubic spline: it is piecewise cubic, with
continuity up to 2nd derivative at the xj: visually smooth.

2. It has approximation error O(h4). A rather high rate.
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5among all continuous functions with absolutely continuous first derivative

Spline bases

▶ There are, of course, many possible bases for the space of cubic
splines with a given knot sequence, i.e. of different bj(x)
enabling the spline to be written f (x) =

∑
j βjbj(x).

▶ A convenient one is the B-spline basis. Here is an example.
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Spline penalty

▶ Given how the spline bases are obtained theoretically,
∫

f ′′(x)2dx
is the natural smoothing penalty.

▶ Clearly f ′′(x) =
∑

j βjb′′j (x) = βTb′′(x), by definition of vector
function b′′(x).

▶ Hence f ′′(x)2 = βTb′′(x)b′′(x)Tβ.
▶ So if S =

∫
b′′(x)b′′(x)Tdx, then

∫
f ′′(x)2dx = βTSβ:

▶ a quadratic penalty;
▶ β ∼ N(0,S−/λ) is the equivalent spline smoothing prior;
▶ and the spline itself can also be viewed as realization of a latent

Gaussian process.

▶ Clearly the spline model yields exactly the same general
structure as the simple piecewise linear random walk processes,
so identical methods apply.



spline basis-penalty fit illustrations
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How much to penalize: estimating λ6

1. Prediction error optimization. Which λ would be best for
predicting data not fitted? Optimize GCV/AIC like criteria, e.g.

−2l(β̂) + 2EDF.

2. Marginal likelihood maximisation. Choose λ to maximize the
average likelihood of random draws from the prior. i.e. maximize

REML =

∫
π(y|β)π(β|λ)dβ

— intractable, but re-using Gaussian approximate posterior, πG

REML = π(y|λ) = π(y|β̂)π(β̂|λ)
π(β̂|y,λ)

≃ π(y|β̂)π(β̂)|λ)
πG(β̂|y,λ)

is tractable: Laplace Approximation.

6including vector λ

Marginal likelihood smoothness selection idea

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

5
0

5
1

0
1

5
2

0

λ too low, prior variance too high

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

5
0

5
1

0
1

5
2

0

λ and prior variance about right

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

5
0

5
1

0
1

5
2

0

λ too high, prior variance too low

x

y

1. Choose λ to maximize the average likelihood of random draws
from the prior implied by λ.

2. If λ too low, then almost all draws are too variable to have high
likelihood. If λ too high, then draws all underfit and have low
likelihood. The right λ maximizes the proportion of draws close
enough to data to give high likelihood.

Prediction error vs. likelihood λ estimation
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1. Pictures show GCV and REML scores for different replicates
from same truth.

2. Compared to REML, GCV penalizes overfit only weakly, and so
is more likely to occasionally undersmooth.



Credible Intervals

▶ Given the posterior approximation β|y ∼ N{β̂, (Î + Sλ)
−1} and

the basis expansion for f (x), continuous Bayesian credible
intervals are easily constructed.

▶ (Î + Sλ)
−1 is the covariance matrix implied by sampling

variability plus the prior expectation of the squared smoothing
bias matrix bbT, where b is the vector of smoothing bias in β̂.

▶ By accounting for the uncertainty due to smoothing bias and
sampling variability the Bayesian intervals achieve close to
nominal coverage, across the function, when treated as
frequentist confidence intervals (Nychka, 1988, JASA).

. . . so we have now covered all the ideas and methods used in the
initial global temperature example.

Summary

▶ We can model unknown smooth functions using basis expansions
with smoothing priors/penalties to control complexity.
▶ also interpretable as latent Gaussian process models.

▶ Bayesian or penalized likelihood methods used for estimation.
▶ Smoothing parameters controlling penalization/prior precision

estimated by prediction error/cross validation, or by Laplace
approximate marginal likelihood.

▶ Approximate Bayesian posterior gives well calibrated CIs (on
average across function).

▶ mgcv implements this approach in R, via a gam function that is
like glm with added smooth terms.


