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The basic model

▶ The methods for simple smooth models can be used more
generally, for example for generalized additive models.

▶ Response, yi, predictors xji, model

yi ∼
ind.

π(yi|µi,θ) where g(µi) = Aiγ +
∑

j

fj(xji).

▶ π is a p(d)f: location parameter µ and other parameters θ.
▶ The fj are smooth functions to be estimated.
▶ A is a model matrix: associated parameters γ to be estimated.
▶ g is a known link function (e.g. identity or log).

▶ If π is an exponential family distribution then this is a GLM with
linear predictor dependent on smooth functions of predictors.

Example: Poisson regression
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▶ yi ∼ Poi(µi) where log(µi) = α+ f0(x0i) + f1(x1i) + f2(x2i).
▶ gam(y~s(x0)+s(x1)+s(x2),family=poisson())
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Model representation and estimation
▶ Without

∑
fj(xji) the model is a standard regression model: use

maximum likelihood estimation via Newton’s method.
▶ With

∑
fj(xji) we:

1. Represent each fj using its own basis expansion.
2. Control fj’s smoothness with its own smoothing prior/penalty.
3. Estimate basis coefficients, smoothing parameters etc using

penalized regression/empirical Bayes methods already covered.

▶ As previously basis expansion is fj(x) =
∑

k βjkbjk(x). . .
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Model representation with basis

▶ The basis expansions for the fj turn the model into

yi ∼
ind.

π(yi|µi,θ) where g(µi) = Xiβ,

βT = (γT,βT
1 ,β

T
2 . . .) and

X =


A11 A12 · · · b11(x11) b12(x11) · · · b21(x21) · · ·
A21 A22 · · · b11(x12) b12(x12) · · · b21(x22) · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·


▶ So the likelihood is readily computed and if π is an exponential

family distribution this is just a richly parameterized GLM.
▶ η = Aiγ +

∑
j fj(xji) = Xβ is called the linear predictor.

Identifiability
▶ The fj in

∑
j fj(xji) are only identifiable up to an additive constant.

▶ So, impose identifiability constraints
∑

i fj(xji) = 0, for all j.
▶ Can absorb into the bases. bjk(x)← bjk(x)− n−1 ∑n

i=1 bjk(xji),
for all k and drop least variable bjk(x) is one option.

▶ e.g. used on centred data. . .
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▶ Note: no uncertainty about where a fully penalized straight line
passes through zero.

Smoothing penalty/prior

▶ With each fj we can associate a quadratic smoothing penalty
λjβ

T
j S jβj as in the univariate case.

▶ For notational convenience let Sj denote a matrix of zeroes with
S j placed on one diagonal block so that βTSjβ = βT

j S jβj.
▶ Writing Sλ =

∑
j λjSj, the smoothing penalty for the GAM is

now βTSλβ.
▶ Equivalently the smoothing prior is β ∼ N(0,S−

λ ).
▶ The mathematical form of the penalty/prior is similar to the

simple univariate case, so the same methods can be used.

Inferential methods

▶ Penalized likelihood is optimized for the model coefficients β,
exactly as in the simple univariate case.

▶ Similarly, cross validation or Laplace approximate REML
criteria are optimized to find the λ̂.
▶ The only real complication is that we now have a multivariate

optimization to perform over λ.

▶ The effective degrees of freedom of a component fj is computed
by summing those leading diagonal elements of the matrix
(I + Sλ)

−1I corresponding to the coefficients βj.



Computing the λ estimates

▶ Optimize the Laplace Approximate REML1 (or other criterion)
by Newton or Quasi- Newton method w.r.t. ρ = logλ. i.e.
maximize successive quadratic approximations to REML, based
on derivatives of REML w.r.t. ρ.

▶ Each trial ρ requires
1. an inner Newton iteration to find β̂ for this ρ, and hence evaluate

the REML.
2. an implicit differentiation step to find derivatives of β̂ w.r.t. ρ and

hence the derivatives of the LAML.

▶ A less involved approach approximately maximizes the LAML
by alternating updates of β̂ given λ with simple Fellner-Schall2

updates of λ given β̂.

1Laplace Approximate Marginal Likelihood (or LAML), Wood, 2011, JRSSB
2Wood and Fasiolo, 2017, Biometrics

Model selection tools

▶ We need means for comparing models/deciding what terms to
include. . .

1. Null space penalization: add an extra penalty and smoothing
parameter for each fj which allows it to be penalized to zero
during smoothing parameter estimation.

2. P-values: ‘invert’ the Bayesian CI for fj to compute a p-value for
H0 : fj = 0 (different for pure random effects terms).

3. Akaike’s Information Criterion becomes

−2l(β̂) + 2EDF

but to use for model comparison, rather than λ estimation, we
must correct for λ estimation uncertainty3.

▶ In mgcv: 1. gam(...,select=TRUE) 2. summary or
anova 3. AIC.

3Problem: Greven & Kneib 2010 Biometrika. Solution: Wood et al. 2016 JASA

Model selection: null space penalties

▶ Smoothing parameter estimation does most of the work of model
selection, by selecting between a large set of model functions of
differing complexity.

▶ But most smoothing penalties have a null space of functions for
which βT

j S jβj = 0. e.g. straight lines for the cubic spline.
▶ Hence no choice of λj will penalize the term to zero.
▶ We can add an extra penalty (and smoothing parameter) to each

term, made to only penalize functions in the penalty null space.
▶ How? Form eigen-decomp. S j = UΛUT, and let U0 denote the

columns of U (eigenvectors) for which eigenvalues Λii = 0.
▶ Then λ̄jS̄ j = λ̄jU0UT

0 penalizes just the null space.
▶ If both λj and λ̄j→∞ then fj → 0, penalized out of the model.

Model selection: p-values

▶ Want to test H0 : fj(x) = 0.
▶ Given good frequentist coverage of Bayesian confidence

intervals it is tempting to form Wald test statistic β̂jV−1
j β̂j,

where Vj is Bayes covariance matrix for βj.
▶ Low power! Most heavily penalized components of fj are most

heavily up-weighted by V−1
j .

▶ Use a low rank approximation to Vj in the Wald statistic, where
rank is based on EDF of f̂j.

▶ Null distribution is then a sum of χ2 random variables:
approximate p-value computable4.

▶ Different approach needed for terms with no null space.

4not perfect - variability in other smoothing parameters neglected



Simple model extensions
▶ Standard GLMs/GAMs cover single parameter exponential

family distributions for y, notably Gaussian (normal), Poisson,
binomial, gamma, and inverse Gaussian, plus quasi-likelihood
models simply specifying V such that var(yi) = ϕV(µi).

▶ The inference framework is not limited to these. mgcv also
provides negative binomial, Tweedie, order categorical, censored
normal. . . (nb, tw, ocat, cnorm, . . . ). See ?family.mgcv.

▶ Occasionally the distribution of yi can change with i - that is
easily handled as well. See ?gfam.

▶ Given that smooth functions can be viewed as Gaussian random
effects, any random effect that makes a contribution Zb to a
linear predictor, where Z is a model matrix for the term and
b ∼ N(0, Iλ−1), can be treated just like any smooth function in
the model (only p-value computation differs).

▶ Model terms like zifj(xi), or terms with a separate smooth of x for
each level of a factor g are also easy to include with no new
methods needed. Both use the form s(x,by=z) in mgcv.

Location scale and shape models5

▶ Actually, the methods are not restricted to only specifying a
model relating E(yi) to covariates. Other parameters of yi’s
distribution can also be modelled.

▶ Let θi be the parameters of the distribution of yi, often including
the mean, µi.

▶ We can model each element of θi with its own linear predictor

yi ∼
ind.

π(yi|θi) where g(θij) = Aijγj +
∑

k

fkj(xkji).

▶ e.g. for a Gaussian, we might model the mean and the log
standard deviation.

▶ In mgcv linear predictors are specified by supplying a list of
formulae to gam. See ?family.mgcv for distributions.

5Often known as GAMLSS (Rigby and Stasinopoulos, JRSSC, 2005), or
distributional regression.

Survival modelling

▶ Survival data can also be modelled in the same framework.
▶ Smooth Cox proportional hazards models are provided by the

cox.ph family.
▶ Smooth Cox PH models for time varying covariates can also be

handled using an equivalent Poisson likelihood trick, and some
big data accelerations. See ?cox.pht.

▶ Smooth accelerated failure time models are available via the
censored normal family, ?cnorm.

GAMs with mgcv:gam in R

▶ Basically like any other regression model function in R.
▶ Modelling function gam has several key arguments:

▶ a model formula: response on l.h.s and linear predictor on r.h.s.
▶ the linear predictor can include smooth functions of predictors:

e.g. s(x,k=15,bs="cr") is a rank 15 cubic spline.
▶ if there are several linear predictors a list of formulae is supplied.

▶ A family, specifying the distribution and any link functions.
▶ A data frame containing the variables referred to in the formula.

▶ gam returns a fitted model object of class gam. Various methods
functions are used to extract its components and summarize it. . .
▶ plot, gam.check, vis.gam, qq.gam, fitted,

residuals etc. are for visualization and checking.
▶ summary, anova, AIC, predict, vcov, gam.vcomp etc.

are for further inference and prediction.



Example: Sitka spruce growth data

require(gamair); require(lattice); require(mgcv)
data(sitka); sitka$id.num <- factor(sitka$id.num)
xyplot(log.size~days|as.factor(ozone),data=sitka,

type="l",groups=id.num)
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Example: Sitka spruce growth model

▶ log.sizei = f (daysi) + γozonei + aid(i) + bid(i)daysi + ϵi

aj ∼ N(0, σ2
a), bj ∼ N(0, σ2

b) and ϵi ∼ N(0, σ2).
▶ Fit with mgcv (family gaussian is default)

m0 <- gam(log.size ~ s(days) + s(id.num,bs="re")
+ s(id.num,days,bs="re")+ozone,data=sitka,method="REML")

▶ Basic checking with gam.check(m0) and plot(m0) and
residual checks like. . .
plot(sitka$days,residuals(m0),xlab="days")
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. . . variance not constant? Constant additive ozone effect?

Example: Sitka spruce growth model 2

▶ log.sizei = f (daysi)+ozonei f1(daysi)+aid(i)+bid(i)daysi+ϵi,
aj ∼ N(0, σ2

a), bj ∼ N(0, σ2
b), ϵi ∼ N(0, σ2

i ), log σi = f2(daysi).
▶ In mgcv

m1 <- gam(list(log.size ~ s(days) + s(days,by=ozone) +
s(id.num,bs="re") + s(id.num,days,bs="re"), ~ s(days)),
family=gaulss,data=sitka, method="REML")

▶ AIC improves by about 180. Residual plots better.
> anova(m1)
...
Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value
s(days) 8.733 8.955 2.239e+03 < 2e-16
s(days):ozone 4.933 5.752 2.751e+01 0.000106
s(id.num) 75.969 77.000 6.649e+06 < 2e-16
s(id.num,days) 72.971 77.000 1.675e+06 < 2e-16
s.1(days) 5.096 5.927 2.056e+02 < 2e-16

▶ Ozone effect significant (unlike if it’s a constant). Also, dropping
it increases AIC by 17.

Example: Sitka model 2 effects

par(mfrow=c(2,3),mar=c(4,4,2,2)); plot(m1,scheme=1)
plot(fitted(m1)[,1],residuals(m1))
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Example: Sitka model 2 predictions

sitka$Elog.size <- predict(m1)[,1]
xyplot(Elog.size~days|as.factor(ozone),data=sitka,type="l",

groups=id.num)
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Model checking introduction

▶ As for any regression, examine standardised residuals to check
for mean-variance and independence assumption violations.

▶ Details of the distribution beyond these properties are often less
important (consider quasi-likelihood theory), but problems may
have some influence on smoothness selection. See qq.gam.

▶ Careful residual plotting can indicate what is missing in a model.
▶ Are the smooth basis dimensions overly restrictive? Must check!

▶ EDF close to its upper limit (k′, say) is suspicious.
▶ Randomization test for residual pattern w.r.t. xj: compare mean

square difference between residuals for neighbouring xj values to
mean square difference between randomly selected residual pairs.
Pattern may indicate oversmoothing because basis too small.

▶ gam.check provides such checks, amongst others. e.g. . .
k’ edf k-index p-value

s(x0) 9.0 2.5 1.04 0.77

▶ See gam.check, residuals, fitted etc. for more.

Summary

▶ GAMs allow a response to depend on smooth functions of
predictor variables.

▶ The smooth functions are represented using a basis expansion
and quadratic smoothing penalty.

▶ The quadratic penalties are equivalent to Gaussian priors on the
coefficients, providing a Bayesian interpretation, including well
behaved CIs.

▶ Basis coefficients are estimated by penalized MLE, smoothing
parameters by REML or cross validation.

▶ A variety wide variety of response distributions is possible – for
some we may provide linear predictors for other distribution
parameters in addition to the mean.

▶ Model selection and checking are similar to any regression
model (but check the basis dimensions).


