The basic model

» The methods for simple smooth models can be used more
generally, for example for generalized additive models.

Generalized Additive Models » Response, y;, predictors xj;, model
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i o m(vilp 0) where g(p) = Ay + 3 fi(xi).
J

» 7 is a p(d)f: location parameter i and other parameters 6.
» The f; are smooth functions to be estimated.
> A is a model matrix: associated parameters -y to be estimated.
> g is a known link function (e.g. identity or log).
» If 7 is an exponential family distribution then this is a GLM with
linear predictor dependent on smooth functions of predictors.

Example: Poisson regression Model representation and estimation

» Without ) fj(x;;) the model is a standard regression model: use
maximum likelihood estimation via Newton’s method.
> With > fi(xj;) we:
1. Represent each f; using its own basis expansion.
2. Control f;’s smoothness with its own smoothing prior/penalty.

00 02 04 08 08 10 00 0z 04 0s 08 10 00 02 04 06 08 10 3. Estimate basis coefficients, smoothing parameters etc using
0 4 2 penalized regression/empirical Bayes methods already covered.
> yi ~ Poi(u;) where log(p) = o + fo(xoi) + fi(x1:) +f2(x2i)- > As previously basis expansion is f(x) = Y, Bixbjk(x). ..

P gam(y~s (x0)+s(x1)+s(x2), family=poisson())

5(x0,2.69)

-05 0.0 05

T y f ¥ ! T f Y f ¥ ¥ t T f \ y ¥ t
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 o o

X0 x1 x2 T T T T T T



Model representation with basis

» The basis expansions for the f; turn the model into
vi ~ m(yilpi, @) where g(p;) = Xif3,

BT =(".B1.5;...)and

A A oo bi(xnn) bia(xin) --- ba(xn)

X — Ay Ap -+ bi(xi2) bia(xi2) -+ ba(xn)

P So the likelihood is readily computed and if 7 is an exponential
family distribution this is just a richly parameterized GLM.

> n=Ary+ > fi(xi) = XBis called the linear predictor.

Smoothing penalty/prior

» With each f; we can associate a quadratic smoothing penalty
)\jﬁjTS ;3 as in the univariate case.

» For notational convenience let S; denote a matrix of zeroes with
S; placed on one diagonal block so that BTSJ-B = ,BJ-TS i3]

> Writing Sy = > ;i AjSj» the smoothing penalty for the GAM is
now 3'S,/3.

» Equivalently the smoothing prior is 3 ~ N(0, S ).

» The mathematical form of the penalty/prior is similar to the
simple univariate case, so the same methods can be used.

Identifiability

> The fjin >, fj(x;;) are only identifiable up to an additive constant.

» So, impose identifiability constraints ) . f;(x;;) = 0, for all j.

» Can absorb into the bases. bj(x) < bjx(x) —n= 1 S0 bix(x;i),
for all k and drop least variable bj(x) is one option.

P> e.g. used on centred data. ..

P> Note: no uncertainty about where a fully penalized straight line
passes through zero.

Inferential methods

» Penalized likelihood is optimized for the model coefficients 3,
exactly as in the simple univariate case.

» Similarly, cross validation or Laplace approximate REML
criteria are optimized to find the A.

» The only real complication is that we now have a multivariate
optimization to perform over A.

» The effective degrees of freedom of a component f; is computed
by summing those leading diagonal elements of the matrix
(Z + S,) " corresponding to the coefficients 3;.



Computing the A estimates

Optimize the Laplace Approximate REML' (or other criterion)
by Newton or Quasi- Newton method w.r.t. p = log A. i.e.
maximize successive quadratic approximations to REML, based
on derivatives of REML w.r.t. p.

Each trial p requires
1. an inner Newton iteration to find ﬁ for this p, and hence evaluate
the REML.
2. an implicit differentiation step to find derivatives of B w.r.t. p and
hence the derivatives of the LAML.
A less involved approach approximately maximizes the LAML
by alternating updates of B given X\ with simple Fellner-Schall®
updates of A\ given B.

"Laplace Approximate Marginal Likelihood (or LAML), Wood, 2011, JRSSB
2Wood and Fasiolo, 2017, Biometrics

Model selection: null space penalties

>

v

Smoothing parameter estimation does most of the work of model
selection, by selecting between a large set of model functions of
differing complexity.

But most smoothing penalties have a null space of functions for
which ,6st 3 = 0. e.g. straight lines for the cubic spline.
Hence no choice of )\; will penalize the term to zero.

We can add an extra penalty (and smoothing parameter) to each
term, made to only penalize functions in the penalty null space.

How? Form eigen-decomp. S; = UAUT, and let Uy denote the
columns of U (eigenvectors) for which eigenvalues A;; = 0.

Then 5\1-3 = S\J-UOUE penalizes just the null space.
If both \; and S\j — oo then f; — 0, penalized out of the model.

Model selection tools

> We need means for comparing models/deciding what terms to

include. . .

1. Null space penalization: add an extra penalty and smoothing
parameter for each f; which allows it to be penalized to zero
during smoothing parameter estimation.

2. P-values: ‘invert’ the Bayesian CI for f; to compute a p-value for
Hy : f; = 0 (different for pure random effects terms).

3. Akaike’s Information Criterion becomes

—21(3) + 2EDF

but to use for model comparison, rather than A estimation, we
must correct for A estimation uncertainty>.

» Inmgcv: 1. gam(...,select=TRUE) 2. summary or

anova 3. AIC.

3Problem: Greven & Kneib 2010 Biometrika. Solution: Wood et al. 2016 JASA

Model selection: p-values

Want to test Hy : fi(x) = 0.

Given good frequentist coverage of Bayesian confidence
intervals it is tempting to form Wald test statistic B,-V;l B,
where V; is Bayes covariance matrix for 3;.

Low power! Most heavily penalized components of f; are most
heavily up-weighted by V.

Use a low rank approximation to V; in the Wald statistic, where
rank is based on EDF of f;.

Null distribution is then a sum of 2 random variables:
approximate p-value computable®.

Different approach needed for terms with no null space.

“not perfect - variability in other smoothing parameters neglected



Simple model extensions

P Standard GLMs/GAMs cover single parameter exponential
family distributions for y, notably Gaussian (normal), Poisson,
binomial, gamma, and inverse Gaussian, plus quasi-likelihood
models simply specifying V such that var(y;) = ¢V (u;).

» The inference framework is not limited to these. mgcv also
provides negative binomial, Tweedie, order categorical, censored
normal. .. (nb, tw, ocat, cnorm,...). See ?family.mgcv.

» QOccasionally the distribution of y; can change with i - that is
easily handled as well. See ?gfam.

» Given that smooth functions can be viewed as Gaussian random
effects, any random effect that makes a contribution Zb to a
linear predictor, where Z is a model matrix for the term and
b ~ N(0,I\~1), can be treated just like any smooth function in
the model (only p-value computation differs).

» Model terms like z;f;(x;), or terms with a separate smooth of x for
each level of a factor g are also easy to include with no new
methods needed. Both use the form s (x, by=z) in mgcv.

Survival modelling

» Survival data can also be modelled in the same framework.

» Smooth Cox proportional hazards models are provided by the
cox .ph family.
» Smooth Cox PH models for time varying covariates can also be

handled using an equivalent Poisson likelihood trick, and some
big data accelerations. See ?cox.pht.

» Smooth accelerated failure time models are available via the
censored normal family, ?cnorm.

Location scale and shape models®

P Actually, the methods are not restricted to only specifying a
model relating E(y;) to covariates. Other parameters of y;’s
distribution can also be modelled.

> Let 0; be the parameters of the distribution of y;, often including
the mean, p;.

» We can model each element of 6; with its own linear predictor
vi ~ m(yil6;) where g(0;) = Ay + Y fij(xii)-
ind. P’

» e.g. for a Gaussian, we might model the mean and the log
standard deviation.

» In mgcv linear predictors are specified by supplying a list of
formulae to gam. See ? family.mgcv for distributions.

3Often known as GAMLSS (Rigby and Stasinopoulos, JRSSC, 2005), or
distributional regression.

GAMs with mgcv:gamin R

» Basically like any other regression model function in R.

» Modelling function gam has several key arguments:
» a model formula: response on Lh.s and linear predictor on r.h.s.
» the linear predictor can include smooth functions of predictors:
e.g. s (x,k=15,bs="cr") isarank 15 cubic spline.
> if there are several linear predictors a list of formulae is supplied.
> A family, specifying the distribution and any link functions.
> A data frame containing the variables referred to in the formula.

P> gam returns a fitted model object of class gam. Various methods
functions are used to extract its components and summarize it. . .
» plot, gam.check, vis.gam, gg.gam, fitted,
residuals etc. are for visualization and checking.
» summary, anova, AIC, predict, vcov, gam.vcomp etc.
are for further inference and prediction.



Example: Sitka spruce growth data Example: Sitka spruce growth model

require (gamair); require(lattice); require (mgcv)
data (sitka); sitka$id.num <- factor(sitka$id.num)

> log.size; = f(days;) +y0ozone; +a;q +bid(,~)daysi +e€
aj ~ N(0,02), bj ~ N(0,02) and ¢; ~ N(0, 0?).

xyplot (log.size~days|as.factor (ozone),data=sitka, » Fit with mgcv (famlly gaussian 1s defau]t)

type="1",groups=id.num ) .
P 9 b ) m0 <- gam(log.size ~ s(days) + s(id.num,bs="re")

: _n =a =n "
200 300 400 500 600 + s (id.num,days,bs="re")+ozone,data=sitka, method="REML")

e » Basic checking with gam. check (m0) and plot (m0) and
residual checks like. ..

plot (sitka$days, residuals (m0), xlab="days")
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. variance not constant? Constant additive ozone effect?
Example: Sitka spruce growth model 2 Example: Sitka model 2 effects
> log.size,-—f(daysi)—l-ozone'fl(days-)—I—aid(-)—I—bid(,-)daysi—l-ei, - . o) o . .
par (mfrow=c (2, ,mar=c (4,4, 2, ; plot (ml, scheme=
aj ~ N(0,07), bj ~ N(0,07), ¢ ~ N(0,07), log 0; = fr(days,). plot (fitted(ml) [, 1], residuals (ml))
[ g In mgcv . 5(id.num,75.97)
ml <- gam(list (log.size ~ s(days) + s(days,by=ozone) + ;: . ;: 71
s (id.num, bs="re") + s(id.num,days,bs="re"), ~ s(days)), g o | § o | ., ;:
family=gaulss,data=sitka, method="REML") :g o g &
» AIC improves by about 180. Residual plots better. = R e
> anova (ml) f"..,..‘ ST f"..,..‘ i O
. 200 300 400 500 600 200 300 400 500 600 -2 -1 0 1 2
Approximate significance of smooth terms: . s(id,num?:fys,-,z_g-,) o Gaussn auanties
edf Ref.df Chi.sq p-value & 00 ° -] 1 I
s (days) 8.733 8.955 2.239e+03 < 2e-16 o
s(days) :ozone  4.933 5.752 2.75le+01 0.000106 s < N g
s (id.num) 75.969 77.000 6.649e+06 < 2e-16 s g IS 3
s (id.num,days) 72.971 77.000 1.675e+06 < 2e-16 e =
s.1(days) 5.096 5.927 2.056e+02 < 2e-16 o .
» Ozone effect significant (unlike if it’s a constant). Also, dropping R mmem T e

it increases AIC by 17.



Example: Sitka model 2 predictions Model checking introduction

P As for any regression, examine standardised residuals to check

sitkas$Elog.size <- predict (ml) [, 1] for mean-variance and independence assumption violations.
xyplot (Elog.size~days|as.factor (ozone),data=sitka, type="1", . .. . .
groups=id.num) ’ ’ P Details of the distribution beyond these properties are often less

important (consider quasi-likelihood theory), but problems may
200 300 400 500 600 . .
s s s s s s s s s s s s have some influence on smoothness selection. See gg. gam.

» Careful residual plotting can indicate what is missing in a model.
P Are the smooth basis dimensions overly restrictive? Must check!

L » EDF close to its upper limit (k', say) is suspicious.

» Randomization test for residual pattern w.r.t. x;: compare mean
square difference between residuals for neighbouring x; values to
mean square difference between randomly selected residual pairs.

2 4 - Pattern may indicate oversmoothing because basis too small.
200 300 400 500 600 P> gam.check provides such checks, amongst others. e.g. ..
days k’ edf k-index p-value
s(x0) 9.0 2.5 1.04 0.77

Elog.size

» See gam.check, residuals, fitted etc. for more.

Summary

» GAMs allow a response to depend on smooth functions of
predictor variables.

» The smooth functions are represented using a basis expansion
and quadratic smoothing penalty.

» The quadratic penalties are equivalent to Gaussian priors on the
coefficients, providing a Bayesian interpretation, including well
behaved Cls.

P Basis coefficients are estimated by penalized MLE, smoothing
parameters by REML or cross validation.

P> A variety wide variety of response distributions is possible — for
some we may provide linear predictors for other distribution
parameters in addition to the mean.

» Model selection and checking are similar to any regression
model (but check the basis dimensions).



