The basic model

- The methods for simple smooth models can be used more generally, for example for *generalized additive models*.
- **•** Response, y_i , predictors x_{ji} , model

$$y_i \underset{\text{ind.}}{\sim} \pi(y_i | \mu_i, \boldsymbol{\theta}) \text{ where } g(\mu_i) = \mathbf{A}_i \boldsymbol{\gamma} + \sum_j f_j(x_{ji}).$$

- π is a p(d)f: location parameter μ and other parameters θ .
- The f_i are *smooth functions* to be estimated.
- A is a model matrix: associated parameters γ to be estimated.
- ▶ g is a known *link function* (e.g. identity or log).
- If π is an exponential family distribution then this is a GLM with linear predictor dependent on smooth functions of predictors.

Example: Poisson regression

Generalized Additive Models

Simon Wood School of Mathematics, University of Edinburgh, U.K.

Model representation and estimation

- Without $\sum f_j(x_{ji})$ the model is a standard regression model: use maximum likelihood estimation via Newton's method.
- With $\sum f_j(x_{ji})$ we:
 - 1. Represent each f_j using its own basis expansion.
 - 2. Control f_j 's smoothness with its own smoothing prior/penalty.
 - 3. Estimate basis coefficients, smoothing parameters etc using penalized regression/empirical Bayes methods already covered.
- As previously basis expansion is $f_j(x) = \sum_k \beta_{jk} b_{jk}(x) \dots$

Model representation with basis

• The basis expansions for the f_j turn the model into

So the likelihood is readily computed and if π is an exponential family distribution this is just a richly parameterized GLM.

•
$$\eta = \mathbf{A}_i \gamma + \sum_j f_j(x_{ji}) = \mathbf{X} \boldsymbol{\beta}$$
 is called the *linear predictor*.

Identifiability

- The f_j in $\sum_j f_j(x_{ji})$ are only identifiable up to an additive constant.
- So, impose identifiability constraints $\sum_i f_j(x_{ji}) = 0$, for all *j*.
- ► Can absorb into the bases. $b_{jk}(x) \leftarrow b_{jk}(x) n^{-1} \sum_{i=1}^{n} b_{jk}(x_{ji})$, for all *k* and drop least variable $b_{jk}(x)$ is one option.
- e.g. used on centred data...

Note: no uncertainty about where a fully penalized straight line passes through zero.

Smoothing penalty/prior

- With each f_j we can associate a quadratic smoothing penalty $\lambda_j \beta_j^{\mathsf{T}} \mathcal{S}_j \beta_j$ as in the univariate case.
- For notational convenience let \mathbf{S}_j denote a matrix of zeroes with $\boldsymbol{\mathcal{S}}_j$ placed on one diagonal block so that $\boldsymbol{\beta}^{\mathsf{T}} \mathbf{S}_j \boldsymbol{\beta} = \boldsymbol{\beta}_j^{\mathsf{T}} \boldsymbol{\mathcal{S}}_j \boldsymbol{\beta}_j$.
- Writing $\mathbf{S}_{\lambda} = \sum_{j} \lambda_{j} \mathbf{S}_{j}$, the smoothing penalty for the GAM is now $\boldsymbol{\beta}^{\mathsf{T}} \mathbf{S}_{\lambda} \boldsymbol{\beta}$.
- Equivalently the smoothing prior is $\beta \sim N(\mathbf{0}, \mathbf{S}_{\lambda}^{-})$.
- The mathematical form of the penalty/prior is similar to the simple univariate case, so the same methods can be used.

Inferential methods

- Penalized likelihood is optimized for the model coefficients β, exactly as in the simple univariate case.
- Similarly, cross validation or Laplace approximate REML criteria are optimized to find the $\hat{\lambda}$.
 - The only real complication is that we now have a multivariate optimization to perform over λ.
- The effective degrees of freedom of a component *f_j* is computed by summing those leading diagonal elements of the matrix (*I* + S_λ)⁻¹*I* corresponding to the coefficients β_j.

Computing the λ estimates

- Optimize the Laplace Approximate REML¹ (or other criterion) by Newton or Quasi- Newton method w.r.t. *ρ* = log *λ*. i.e. maximize successive quadratic approximations to REML, based on derivatives of REML w.r.t. *ρ*.
- Each trial ρ requires
 - 1. an inner Newton iteration to find $\hat{\beta}$ for this ρ , and hence evaluate the REML.
 - 2. an implicit differentiation step to find derivatives of $\hat{\beta}$ w.r.t. ρ and hence the derivatives of the LAML.
- A less involved approach approximately maximizes the LAML by alternating updates of $\hat{\beta}$ given λ with simple *Fellner-Schall*² updates of λ given $\hat{\beta}$.

Model selection: null space penalties

- Smoothing parameter estimation does most of the work of model selection, by selecting between a large set of model functions of differing complexity.
- ▶ But most smoothing penalties have a null space of functions for which $\beta_i^T S_j \beta_j = 0$. e.g. straight lines for the cubic spline.
- Hence no choice of λ_j will penalize the term to zero.
- We can add an extra penalty (and smoothing parameter) to each term, made to only penalize functions in the penalty null space.
- How? Form eigen-decomp. $S_j = U\Lambda U^T$, and let U_0 denote the columns of U (eigenvectors) for which eigenvalues $\Lambda_{ii} = 0$.
- Then $\bar{\lambda}_j \bar{\boldsymbol{\mathcal{S}}}_j = \bar{\lambda}_j \mathbf{U}_0 \mathbf{U}_0^{\mathsf{T}}$ penalizes just the null space.
- If both λ_j and $\bar{\lambda}_j \to \infty$ then $f_j \to 0$, penalized out of the model.

Model selection tools

- We need means for comparing models/deciding what terms to include...
 - 1. Null space penalization: add an extra penalty and smoothing parameter for each f_j which allows it to be penalized to zero during smoothing parameter estimation.
 - 2. P-values: 'invert' the Bayesian CI for f_j to compute a p-value for $H_0: f_j = 0$ (different for pure random effects terms).
 - 3. Akaike's Information Criterion becomes

 $-2l(\hat{oldsymbol{eta}})+2EDF$

but to use for model comparison, rather than λ estimation, we must correct for λ estimation uncertainty³.

In mgcv: 1. gam(..., select=TRUE) 2. summary or anova 3. AIC.

³Problem: Greven & Kneib 2010 Biometrika. Solution: Wood et al. 2016 JASA

Model selection: p-values

- Want to test $H_0: f_j(x) = 0$.
- Given good frequentist coverage of Bayesian confidence intervals it is tempting to form Wald test statistic $\hat{\beta}_j \mathbf{V}_j^{-1} \hat{\beta}_j$, where \mathbf{V}_j is Bayes covariance matrix for β_j .
- Low power! Most heavily penalized components of f_j are most heavily up-weighted by V⁻¹_i.
- Use a low rank approximation to \mathbf{V}_j in the Wald statistic, where rank is based on EDF of \hat{f}_j .
- Null distribution is then a sum of χ² random variables: approximate p-value computable⁴.
- Different approach needed for terms with no null space.

¹Laplace Approximate Marginal Likelihood (or LAML), Wood, 2011, JRSSB ²Wood and Fasiolo, 2017, Biometrics

Simple model extensions

- Standard GLMs/GAMs cover single parameter exponential family distributions for *y*, notably Gaussian (normal), Poisson, binomial, gamma, and inverse Gaussian, plus quasi-likelihood models simply specifying *V* such that $var(\mathbf{y}_i) = \phi V(\mu_i)$.
- The inference framework is not limited to these. mgcv also provides negative binomial, Tweedie, order categorical, censored normal...(nb, tw, ocat, cnorm, ...). See ?family.mgcv.
- Occasionally the distribution of y_i can change with i that is easily handled as well. See ?gfam.
- Given that smooth functions can be viewed as Gaussian random effects, any random effect that makes a contribution Zb to a linear predictor, where Z is a model matrix for the term and b ~ N(0, Iλ⁻¹), can be treated just like any smooth function in the model (only p-value computation differs).
- Model terms like z_if_j(x_i), or terms with a separate smooth of x for each level of a factor g are also easy to include with no new methods needed. Both use the form s (x, by=z) in mgcv.

Survival modelling

- Survival data can also be modelled in the same framework.
- Smooth Cox proportional hazards models are provided by the cox.ph family.
- Smooth Cox PH models for time varying covariates can also be handled using an equivalent Poisson likelihood trick, and some big data accelerations. See ?cox.pht.
- Smooth accelerated failure time models are available via the censored normal family, ?cnorm.

Location scale and shape models⁵

- ► Actually, the methods are not restricted to only specifying a model relating E(y_i) to covariates. Other parameters of y_i's distribution can also be modelled.
- Let θ_i be the parameters of the distribution of y_i , often including the mean, μ_i .
- We can model each element of θ_i with its own linear predictor

$$y_i \underset{\text{ind.}}{\sim} \pi(y_i | \boldsymbol{\theta}_i) \text{ where } g(\theta_{ij}) = \mathbf{A}_{ij} \boldsymbol{\gamma}_j + \sum_k f_{kj}(x_{kji}).$$

- e.g. for a Gaussian, we might model the mean and the log standard deviation.
- In mgcv linear predictors are specified by supplying a list of formulae to gam. See ?family.mgcv for distributions.

⁵Often known as GAMLSS (Rigby and Stasinopoulos, JRSSC, 2005), or *distributional regression*.

GAMs with <code>mgcv:gam</code> in R

- Basically like any other regression model function in R.
- Modelling function gam has several key arguments:
 - ▶ a model formula: response on l.h.s and linear predictor on r.h.s.
 - the linear predictor can include smooth functions of predictors: e.g. s (x, k=15, bs="cr") is a rank 15 cubic spline.
 - if there are several linear predictors a list of formulae is supplied.
 - A family, specifying the distribution and any link functions.
 - A data frame containing the variables referred to in the formula.
- gam returns a fitted model object of class gam. Various methods functions are used to extract its components and summarize it...
 - plot, gam.check, vis.gam, qq.gam, fitted, residuals etc. are for visualization and checking.
 - summary, anova, AIC, predict, vcov, gam.vcomp etc. are for further inference and prediction.

Example: Sitka spruce growth data

Example: Sitka spruce growth model

- ► log.size_i = $f(\text{days}_i) + \gamma \text{ozone}_i + a_{id(i)} + b_{id(i)} \text{days}_i + \epsilon_i$ $a_j \sim N(0, \sigma_a^2), b_j \sim N(0, \sigma_b^2) \text{ and } \epsilon_i \sim N(0, \sigma^2).$
- Fit with mgcv (family gaussian is default)

Basic checking with gam.check(m0) and plot(m0) and residual checks like...

plot(sitka\$days,residuals(m0),xlab="days")

... variance not constant? Constant additive ozone effect?

Example: Sitka spruce growth model 2

400

500

600

300

200

► log.size_i = $f(\text{days}_i)$ +ozone_i $f_1(\text{days}_i)$ + $a_{\text{id}(i)}$ + $b_{\text{id}(i)}$ days_i+ ϵ_i , $a_j \sim N(0, \sigma_a^2), b_j \sim N(0, \sigma_b^2), \epsilon_i \sim N(0, \sigma_i^2), \log \sigma_i = f_2(\text{days}_i).$

days

▶ In mgcv

log.size

3

► AIC improves by about 180. Residual plots better.

Ozone effect significant (unlike if it's a constant). Also, dropping it increases AIC by 17.

Example: Sitka model 2 effects

Example: Sitka model 2 predictions

sitka\$Elog.size <- predict(m1)[,1]</pre>

xyplot(Elog.size~days|as.factor(ozone),data=sitka,type="1",

Model checking introduction

- As for any regression, examine standardised residuals to check for mean-variance and independence assumption violations.
- Details of the distribution beyond these properties are often less important (consider quasi-likelihood theory), but problems may have some influence on smoothness selection. See qq.gam.
- Careful residual plotting can indicate what is missing in a model.
- ► Are the smooth basis dimensions overly restrictive? Must check!
 - EDF close to its upper limit (k', say) is *suspicious*.
 - Randomization test for residual pattern w.r.t. x_j: compare mean square difference between residuals for neighbouring x_j values to mean square difference between randomly selected residual pairs. Pattern may indicate oversmoothing because basis too small.
 - gam.check provides such checks, amongst others. e.g...

k' edf k-index p-value s(x0) 9.0 2.5 1.04 0.77

▶ See gam.check, residuals, fitted etc. for more.

Summary

- GAMs allow a response to depend on smooth functions of predictor variables.
- The smooth functions are represented using a basis expansion and quadratic smoothing penalty.
- The quadratic penalties are equivalent to Gaussian priors on the coefficients, providing a Bayesian interpretation, including well behaved CIs.
- Basis coefficients are estimated by penalized MLE, smoothing parameters by REML or cross validation.
- A variety wide variety of response distributions is possible for some we may provide linear predictors for other distribution parameters in addition to the mean.
- Model selection and checking are similar to any regression model (but check the basis dimensions).