
More advanced smooth modelling

Simon Wood
School of Mathematics, University of Edinburgh, U.K.

Bigger model/data methods

▶ Some data-model size combinations impractical with gam, e.g.
UK ‘black smoke’ daily data. n ≈ 107 needs ≈ 104 coef model.

0 100 200 300 400 500 600

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

east (km)

n
o
rt

h
 (

k
m

)

a

1960 1970 1980 1990 2000

1
2

3
4

5
6

7

year

lo
g
(b

s
)

b

0 100 200 300

2
.5

3
.5

4
.5

day

lo
g
(b

s
)

c

0 5000 10000 15000

2
4

6
8

day

lo
g
(b

s
)

d

Big model/data strategy

▶ Iteratively estimate smoothing parameters using REML for
working penalized linear models.

1. As for GLM fitting, Newton optimization of penalized likelihood
can be re-cast as iterative fitting of a weighted working penalized
linear model.

2. REML for that working model is fairly easy to optimize and to
justify as a large sample approximation to original model REML.

3. Fastest if just a single Newton log(λ) update step is taken for
each working model.

▶ Adjust numerical methods to exploit ‘cache friendly’ matrix
methods, and parallelize.

▶ Exploit fact that covariates usually take ≪ n discrete values, or
can be discretized to O(n1/2) unique values without statistically
important information loss.

▶ Only available for mean (location) regression models so far, not
location scale etc.

Discrete covariate methods

▶ Formation of XTWX is the leading order cost: O(np2).
▶ Lang et al.1 point out that for a single 1D smooth, f (x), the

product XTWX is very efficiently computable if x has only
m ≪ n discrete values.

▶ As statisticians we should be prepared to discretise x to
m = O(

√
n) bins.

▶ It is possible to find similarly efficient methods for all the
expensive matrix products in the multiple smooth discretised
covariate case, both for multiple 1D smooths and for ‘tensor
product’ smooths of multiple covariates.

1Lang, Umlauf, Wechselberger, Harttgen & Kneib, 2014, Statistics & Computing.

Simple discrete method example
▶ Suppose a variable xj has mj unique values x̄j such that

xj(i) = x̄j(kj(i)) where kj is an appropriate index vector.
▶ For a single smooth of xj, its n × pj model matrix becomes

Xj(i, l) = X̄j(kj(i), l)

where X̄j is an mj × pj matrix evaluating the smooth at the
corresponding gridded values.

▶ For example, direct computation of XT
j y has O(npj) cost, but

XT
j y = X̄T

j ȳ where ȳl =
∑

kj(i)=l

yi

Cost: O(n) + O(mjpj) – for mj ≪ n this a factor of pj saving.
▶ In general all required (cross)products are a factor of pj more

efficient, where pj is the largest (marginal) basis dimension
involved in the term.

bam(...,discrete=TRUE)

▶ The preceding methods are implemented by function bam, with
option discrete=TRUE.

▶ bam is used like gam, although not all features and options are
available.

▶ For the black smoke model it is at least 104× faster than gam
with a tiny fraction of the memory footprint. See ?bam.

0 100 200 300 400 500 600 700

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0 1963

km east

k
m

 n
o
rt

h

0 100 200 300 400 500 600 700

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0 1965

km east

k
m

 n
o
rt

h

0 100 200 300 400 500 600 700

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0 1967

km east

k
m

 n
o
rt

h

0 100 200 300 400 500 600 700

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0 1969

km east

k
m

 n
o
rt

h

Linear functionals of smooths

▶ In the models looked at so far, functions always contributed to
the linear predictor by being evaluated at single covariate points.

▶ But the same methods will work with linear functionals of
smooths. For example
▶ Consider modelling respiratory hospitalizations as a function of

ozone levels over the preceding 5 days. A suitable model term for
the ith day might be

∑5
d=0 f (o3i−d, d) where f is a tensor product

smooth of ozone and lag (distributed lag).
▶ Sometimes covariates take the form of observations of whole

functions, e.g. xi(ν), and a suitable contribution to ηi might be∫
f (ν)xi(ν)dν

where f is a smooth function (signal regression).
▶ Occasionally the response depends not on a point evaluation of f ,

but on its integral over some range.

Using linear functionals of smooths

▶ Linear functionals can always be discretized into weighted sums
of point evaluations of smooths.

▶ mgcv then allows them to be added to a model using a
summation convention.

▶ Specifically, suppose X is a matrix of covariate values, and W a
weight matrix of the same dimension, both with one row per yi.

▶ Then s(X,by=W) implements the term∑
j

f (Xij)Wij

for a smooth function f . e.g. for an integral X and W would be
quadrature points and weights.

▶ Similarly s(X,Z,by=W) is
∑

j f (Xij,Zij)Wij. te also useable.

Linear functional signal regression example

▶ Consider predicting octane from near IR spectra of fuel samples.

1000 1200 1400 1600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

wavelength (nm)

lo
g(

1/
R

)

octane
88.3
85.25
88.45
83.4
87.9
85.5
88.9
88.3

▶ A model is octanei =
∑

j f (nmij)NIRij + ϵi, where NIRij is
intensity at wavelength nmij – jth wavelength for ith sample.

Octane model estimation and fit
▶ Let matrices nm and NIR have samples in rows, wavelength/

intensity in cols. Then fit with mgcv. . .

library(gamair) ## for data
b <- gam(octane~s(nm,by=NIR,k=50),data=gas)

1000 1200 1400 1600

−
10

−
5

0
5

nm

s(
nm

,9
.1

6)
:N

IR

84 85 86 87 88 89

84
85

86
87

88
89

predicted octane

m
ea

su
re

d
oc

ta
ne

Deconvolution example: Covid incidence

▶ Can’t observe Covid infections happening as there are variable
delays from infection to disease onset.

▶ Working out when Covid fatalities2 were infected provides
useful information on how Covid infection rate changed. This is
a deconvolution problem.

▶ Simple model of deaths each day is deathsi ∼ Poi(µi)

E[deathsi] = µi =

d+∑
d=0

f (dayi − d)π(d),

▶ π is infection to death distribution (several studies, including
ISARIC); smooth function f (t) is daily new infections.

2NHS England hospital deaths with Covid.

Covid deconvolution with gam
▶ Modelling zeroes with Poisson and identity link awkward - use

normal approximation to Poisson - variance from pilot smooth.
b0 <- gam(deaths ~ s(julian,k=k),family=poisson,method="REML")
w <- 1/fitted(b0) # set var proportional to pilot run E(deaths)
b <- gam(deaths ~ s(Day,by=W,k=k,bs="ad",m=8,pc=list(Day=40))+

s(dow,k=7,bs="cc")-1,weights=w,
method="REML",knots=list(dow=c(0,7)))

▶ Uses matrix summation convention where Dayij = juliani − j
and Wij = j. dow is day of week (matters in UK).

100 200 300 400 500

0
50

0
10

00
15

00

england

Day

s(
D

ay
,3

9.
35

):
W

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

More advanced posterior inference

▶ Suppose that we are interested in inference about some quantity
that is non-linear in the model coefficients. How can we obtain
its posterior distribution or a CI for it?

▶ Posterior simulation is a convenient approach. 2 options. . .
1. Simulate a large set of i.i.d. coefficient vectors from the Gaussian

approximate posterior N{β̂, (Î + Sλ)
−1}, and compute the

quantity of interest from each. From this posterior sample, CIs
and the approx. posterior density are computable.

2. Use the approximate posterior as the basis for proposals in a
simple Metropolis Hastings sampler, which simulated samples
from the exact posterior of β.

▶ If the Gaussian posterior is suspected to be poor?
1. Again simulate from posterior using Metropolis Hastings, or
2. use an INLA approximation.

Posterior simulation example

▶ Here is an adaptive smooth fit to the motorcycle data.

10 20 30 40 50

−
1
0
0

−
5
0

0
5
0

1
0
0

times

s
(t

im
e
s
,8

.7
5
)

▶ Suppose we would like a 95% CI for the trough to peak height.

Trough to peak CI

library(MASS)
b <- gam(accel~s(times,bs="ad"),data=mcycle,method="REML")
pd <- data.frame(times=seq(10,40,length=1000))
Xp <- predict(b,pd,type="lpmatrix") ## map coefs to fitted curves
beta <- coef(b);Vb <- vcov(b) ## posterior mean and cov of coefs
n <- 10000
br <- rmvn(n,beta,Vb) ## simulate n rep coef vectors from post.
a.range <- rep(NA,n)
for (i in 1:n) { ## loop to get trough to peak diff for each sim

pred.a <- Xp%*%br[i,] ## curve for this replicate
a.range[i] <- max(pred.a)-min(pred.a) ## range for this curve

}
quantile(a.range,c(.025,.975))

2.5% 97.5%
139.0497 178.4933

▶ This is very fast compared to e.g. boot-strapping, and less
problematic.

▶ The for loop is only for clarity, it can be eliminated.

Trough to peak CI by Metropolis Hastings

bs <- gam.mh(b,ns=10000,burn=1000,t.df=40,rw.scale=.25,thin=1)
|==| 100%

fixed acceptance = 0.7804 RW acceptance = 0.1214
br <- bs$bs ## ... then same code as above given bs...

2.5% 97.5%
138.6949 178.7967

▶ But actually the MH sampling was pointless here. The Gaussian
posterior is exact for a Gaussian likelihood.

Posterior Gaussian failure

b <- gam(y ~ s(x, k = 15),method = ’REML’, family = binomial)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0 50 100 150

−
20

0
−

10
0

0
10

0
20

0

x

s(
x,

4.
33

)

▶ Right smooth estimated from left binary data.
▶ Gaussian posterior approximation fails. Symmetry of

approximation completely wrong here.

MH posterior sampling solution

br <- gam.mh(b,thin=2,ns=2000,rw.scale=.4)$bs
X <- model.matrix(b)
plot(x, y, col = rgb(0,0,0,0.25), ylim = c(0,1))
ff <- X%*%t(br) ## posterior curve sample
linv <- b$family$linkinv ## inverse of logit link
Get intervals for the curve on the response scale...
fq <- linv(apply(ff,1,quantile,probs=c(.025,.5,.975)))
lines(x,fq[1,],col=2,lty=2);lines(x,fq[3,],col=2,lty=2)
lines(x,fq[2,],col=2);
Compare to the Gaussian posterior approximation
fv <- predict(b,se=TRUE)
lines(x,linv(fv$fit))
lines(x,linv(fv$fit-2*fv$se.fit),lty=3)
lines(x,linv(fv$fit+2*fv$se.fit),lty=3)

MH posterior sampling results

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

black Gaussian

red MH

The basic INLA idea

▶ The key idea in INLA is

π(βi|y) =
π(β, y)

π(β−i|βi, y)
≃ π(β̃, y)

πgg(β̃−i|βi, y)
= π̃(βi|y)

where πgg is some Gaussian approximation to π(β̃−i|βi, y) and
β̃ maximizes the joint density subject to constraint β̃i = βi.

▶ π̃(βi|y) approximation much better in tails than πG, because:
1. we only evaluate the Gaussian approximation at its mean, not out

in its inaccurate tails.
2. the approximation error enters multiplicatively, rather than

growing into the tails
3. a univariate marginal is easy to renormalize.

▶ β̃ relatively cheap to obtain numerically, but have to base πgg on
approximation to exact Hessian, otherwise too costly.

▶ INLA also integrates over smoothing parameters - less important.

mgcv ginla code

G <- gam(y ~ s(x, k = 15),fit=FALSE, family = binomial)
b <- gam(G=G,method="REML")
xp <- quantile(x,prob=seq(0,1,length=15))
matrix mapping coefs to function values at 15 points...
Xp <- predict(b,newdata=data.frame(x=xp),type="lpmatrix")
inap <- ginla(G,Xp)
[slightly involved 90% CI plotting code omitted]

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Neighbourhood Cross Validation and Autocorrelation

▶ Could use other fit measures, not just log likelihood.
▶ Given some loss function L

β̂ = argmin
β

∑n

i
L(yi,β) +

∑
k
λkβ

TSkβ

- MAP, if L is negative log likelihood.
▶ Could cross validate. If β̂[−i] is β̂ when yi omitted from fit,

λ̂ = argmin
λ

n∑
i

L(yi, β̂
[−i])

▶ Works with any smooth loss (e.g. ELF loss for quantile
regression), can use link with Jackknife to get uncertainty of β̂.

CV autocorrelation Problem

▶ In the presence of short range un-modelled autocorrelation cross
validation ‘overfits’.

▶ e.g. yi = ft(xi) + (ei−1 + ei + ei+1)/3, where ei are i.i.d., fitted
using GCV ignoring correlation (ft in red). . .

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

x

y

▶ REML less bad, but not good. Building full autocorrelation
model often awkward, expensive and a distraction.

NCV autocorrelation solution
▶ Cross validate by leave-out-neighbours (e.g. Chu & Marron

1991 AOS; Roberts et al. 2017 Ecography).

λ̂ = argmin
λ

n∑
i

L(yi, β̂
−nei(i))

▶ Solves the problem, but at high computational cost in general.

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

x

y

▶ It turns out that for smooth regression models there’s a cheap and
accurate (O(n−2)) approximation.

Works for spatial as well

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

z

 −
0
.8

 −
0
.6

 −0.6

 −
0.6

 −0.4

 −0.4

 −
0
.4

 −
0
.4

 −
0
.4

 −
0
.2

 −0.2

 −0.2

 0

 0

 0

 0

 0

 0.2

 0.2

 0.4

 0.4

 0.6

 0.8

 1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

z

 −
0.6

 −0.4

 −0.4

 −0.2

 −0.2

 0

 0

 0

 0

 0.2

 0.2

 0.4

 0.6

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

z

 −1

 −1

 −0.5

 −0.5

 0

 0 0

 0.5

 0
.5

 1

 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

z

 −1.2

 −1

 −1

 −0.8

 −0.6

 −0.6

 −
0.4

 −
0.4

 −
0.2

 −
0
.2

 0

 0

 0.2

 0.2

 0
.2

 0.4

 0.4

 0.6

 0.8

 1

 1
.2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

z

 −
0
.6

 −0.6

 −0.4

 −0.4

 −0.4

 −
0
.4

 −0.2

 −0.2

 0

 0

 0

 0

 0
 0

 0

 0.2

 0.2

 0.2

 0.2

 0.4

 0.4

 0.6

 0.6

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

z

 −0.5

 −0.5

 −
0.4

 −0.4

 −0.3

 −0.3

 −0.2

 −
0.2

 −0.1

 −
0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

NCV in gam

b0 <- gam(TA~s(Year,k=30),data=gt,method="NCV") ## leave one out
n <- nrow(gt)
k[m[i-1]:m[i]] indexes neighbours of i to drop
k <- -1:1 + rep(1:n,each=3); k <- k[3:length(k)-1]
nei <- list(k=k,m= cumsum(c(2,rep(3,n-2),2)))

b <- gam(TA~s(Year,k=30),data=gt,method="NCV",nei=nei)
par(mfrow=c(1,2),mar=c(4,4,1,1))
plot(b0,rug=FALSE,residuals=TRUE,pch=19,cex=.5,scheme=1)
plot(b,rug=FALSE,residuals=TRUE,pch=19,cex=.5,scheme=1)

1850 1900 1950 2000

−
0.

5
0.

0
0.

5
1.

0

Year

s(
Ye

ar
,2

3.
95

)

1850 1900 1950 2000

−
0.

5
0.

0
0.

5
1.

0

Year

s(
Ye

ar
,1

0.
13

)

A few other packages (not exhaustive)

▶ qgam for smooth quantile regression.
▶ scam for shape constrained GAMs.
▶ mgcViz for ggplot based GAM visualization and checking,

including for big data.
▶ INLA for the full power of the INLA method.
▶ gamlss and VGAM for GAMLSS and multivariate models.
▶ gss for smoothing spline ANOVA.
▶ GAMPL in SAS, for mgcv style GAMs in SAS.

